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Abstract

We provide a new theory for nodewise regression when the residuals from a fitted factor model are
used to apply our results to the analysis of maximum Sharpe ratio when the number of assets in a portfolio
is larger than its time span. We introduce a new hybrid model where factor models are combined with
feasible nodewise regression. Returns are generated from increasing number of factors plus idiosyncratic
components (errors). The precision matrix of the idiosyncratic terms is assumed to be sparse, but
the respective covariance matrix can be non-sparse. Since the nodewise regression is not feasible due
to unknown nature of errors, we provide a feasible-residual based nodewise regression to estimate the
precision matrix of errors, as a new method. Next, we show that the residual-based nodewise regression
provides a consistent estimate for the precision matrix of errors. In another new development, we also
show that the precision matrix of returns can be estimated consistently, even with increasing number of
factors. Benefiting from the consistency of the precision matrix estimate of returns, we show that: (1)
the portfolios in high dimensions are mean-variance efficient; (2) maximum out-of-sample Sharpe ratio
estimator is consistent and the number of assets slows the convergence up to a logarithmic factor; (3)
the maximum Sharpe ratio estimator is consistent when the portfolio weights sum to one; and (4) the

Sharpe ratio estimators are consistent in global minimum-variance and mean-variance portfolios.
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1 Introduction

One of the key issues in Finance, specially in empirical asset pricing, is the trade-off between the return
and the risk of a portfolio. To obtain a better risk-adjusted returns, we maximize the Sharpe ratio. In
essence, the weights of the portfolio are chosen in such a way that the return-to-risk ratio is maximized. We
contribute to this literature by studying the case of a large number of assets p, which may be greater than
the time span of the portfolio n. Our analysis also involves time-series data for excess asset returns. To
obtain the maximum Sharpe ratio, we make use of the asset return’s precision matrix. In order to get an
estimate of the precision matrix for asset returns in a large portfolio, we propose that excess returns of assets
are governed by an approximate factor model. Hence, asset returns (excess returns over a risk free asset)
can be explained by increasing, but known and common number of factors with unknown errors entering
the linear relation in an additive way. One major difference with the previous literature is that, in our case,
the covariance matrix of errors can be non-sparse, but precision matrix has to be sparse. So this is a hybrid
method that combines factor models with high-dimensional econometrics.

The first step in getting the maximum Sharpe ratio involves the precision matrix estimate of the idiosyn-
cratic terms (errors). Estimating the precision matrix of errors is not an easy task and the simple nodewise
regression idea as in Meinshausen and Biihlmann (2006) is not feasible. Therefore, we provide a simple
feasible residual-based nodewise regression estimate for the precision matrix of errors. This feasible residual
based nodewise regression is a new idea and it is shown to be consistently estimating the precision matrix
of the errors. Next, we obtain consistent estimators to the precision matrix of asset returns.

Our main contribution is that we are able to obtain mean-variance efficiency for large portfolios even
when p > n when both dimensions are growing. Relatedly, the consistency of our nodewise-based maximum-
out-of-sample Sharpe ratio estimate is established. We also provide the rate of convergence and show that
the number of assets slows the rate of convergence up to a logarithmic factor in p. Consequently, consistent
estimation of the Sharpe ratio of large portfolios is possible. Increasing number of factors slows the rate
of convergence. Second, we consider the rate of convergence and consistency of the maximum Sharpe ratio
when the weights of the portfolio are normalized to one and p > n. Recently, Maller and Turkington (2002)
and Maller et al. (2016) analyze the limit with a fixed number of assets and extend that approach to a
large number of assets but a number less than the time span of the portfolio. Their papers make a key
discovery: in the case of weight constraints (summing to one), the formula for the maximum Sharpe ratio
depends on a technical term, unlike the unconstrained maximum Sharpe ratio case. Practitioners could
obtain the minimum Sharpe ratio instead of the maximum if they are using the unconstrained formula. Our
paper extends their paper by analyzing two issues, first the case of p > n, with both quantities growing to
infinity, and second by handling the uncertainty created by this technical term, which we can estimate and
use to obtain a new constrained and consistent Sharpe ratio. Our third contribution is that we consider
the Sharpe ratios in the global minimum-variance portfolio and Markowitz mean-variance portfolio. Our

analysis uncovers consistent estimators even when p > n



1.1 A Brief Review of the Literature and Main Takeaways

In terms of the literature on nodewise regression and related methods, the most relevant papers are as follows.
Meinshausen and Bithlmann (2006) establish the nodewise regression approach and provide an optimality
result when data are normally distributed. Chang et al. (2018) extend the nodewise regression method to
time-series data and build confidence intervals for the elements in the precision matrix. However, the goal
of Chang et al. (2018) only centers on the elements of the precision matrix, and there is no connection to
factor models. Furthermore, their results are based on the precision matrix of observed data and not on the
residuals of a first-stage estimator. Finally, the authors do not consider the case of maximum Sharpe-Ratio
and it is not clear if their results are directly applicable to financial applications. Caner and Kock (2018)
establish uniform confidence intervals in the case of high-dimensional parameters in heteroskedastic setups
using nodewise regression, but, as in the previous paper, there is no connection to factor models in empirical
finance. Callot et al. (2021) provide the variance, the risk, and the weight estimation of a portfolio via
nodewise regression. They take the nodewise regression directly from Meinshausen and Bithlmann (2006)
and apply it to returns. However, they assume that the precision matrix of returns is sparse. Hence, it is
more restrictive and less realistic than the method we propose. We combine factor models with sparsity of
the precision matrix of errors. As a consequence, our method is much more connected to typical empirical
asset pricing models. Furthermore, we do not impose any sparsity on the precision matrix of returns. Callot
et al. (2021) also have no proofs about the estimation of the Sharpe ratio.

In terms of recent contributions to the literature on factor models and sparse regression we highlight Fan
et al. (2021). The authors consider the combination of factor models and sparse regression in a very general
setting. More specifically, they analyze a panel data model with a factor structure and idiosyncratic terms
that are sparsely related. They also provide an inference procedure designed to test hypotheses on the entries
of the covariance matrix of the residuals of pre-estimated models, including principal component regressions.
Our paper differs from theirs in several directions. First, Fan et al. (2021) considers only the covariance
matrix and not the precision matrix. Second, their approach is not based on nodewise regressions. Finally,
Sharpe ratio estimation and portfolio allocation are not considered. A seminal paper is by Gagliardini et al.
(2016), where they analyze time-varying risk premia in large portfolios with factor models. They develop
a structural model and can tie that to factor models and after that they can estimate time varying risk-
premia. One of the main assumptions is that maximum eigenvalue of covariance matrix of errors in the
factor structure can diverge. Also they assume sparsity of covariance matrix of errors, and observed factors
in the factor model. We also use diverging eigenvalue assumption in Assumption 7(i) in our paper, as well
as increasing number of factors here, but with assumption of sparsity on the precision matrix of errors.

Recently, important contributions have been in this area by using shrinkage and factor models. Ledoit
and Wolf (2017) propose a nonlinear shrinkage estimator in which small eigenvalues of the sample covariance
matrix are increased and large eigenvalues are decreased by a shrinkage formula. Their main contribution

is the optimal shrinkage function, which they find by minimizing a loss function. The maximum out-of-



sample Sharpe ratio is an inverse function of this loss. Their results cover the independent and identically
distributed case and when p/n — (0,1) U (1,4+00). For the analysis of mean-variance efficiency, Ao et al.
(2019) make a novel contribution in which they take a constrained optimization, maximize returns subject
to risk of the portfolio, and show that it is equivalent to an unconstrained objective function, where they
minimize a scaled return of the portfolio error by choosing optimal weights. To obtain these weights, they
use lasso regression and hence, assume a sparse number of nonzero weights of the portfolio, and they analyze
p/n — (0,1). They show that their method maximizes the expected return of the portfolio and satisfies the
risk constraint. This is an important result on its own. One key paper in the literature is by Fan et al.
(2011) which assumes an approximate factor model, but, on the other hand, the authors assume conditional
sparsity-diagonality of the covariance matrix of errors. Fan et al. (2011) show for the first time how to
build a precision matrix of returns in a large portfolio via factor models. Therefore, it is a key paper in the
high-dimensional econometrics literature.

Regarding other papers, Ledoit and Wolf (2003,2004) propose a linear shrinkage estimator of the covari-
ance matrix and apply it to portfolio optimization. Ledoit and Wolf (2017) shows that nonlinear shrinkage
performs better in out-of-sample forecasts. Lai et al. (2011) and Garlappi et al. (2007) approach the same
problem from a Bayesian perspective by aiming to maximize a utility function tied to portfolio optimization.
Another avenue of the literature improves the performance of the portfolios by introducing constraints on
the weights. This is in the case of the global minimum-variance portfolio. Examples of works investigating
this problem include Jagannathan and Ma (2003) and Fan et al. (2012). We also see a combination of
different portfolios proposed by Kan and Zhou (2007) and Tu and Zhou (2011). Very recently, Ding et al.
(2020) extended factor models to assumptions that are more consistent with principal components analysis.
They provide consistent estimation of risk of the portfolio under sparsity of covariance of errors with fixed
number of factors. Barras et al. (2018), Brodie et al. (2009), Chamberlain and Rothschild (1983), DeMiguel
et al. (2009), Fan et al. (2015) analyze mutual fund industry, sparsely constructed Markowitz portfolio,
arbitrage and factor models in large portfolios, sparsely constructed mean-variance portfolios, and risks of

large portfolios, respectively.

1.2 Organization of the Paper

This paper is organized as follows. Section 2 considers our assumptions and feasible precision matrix es-
timation for errors. Section 3 provides the feasible precision matrix estimate for asset returns. Section 4
addresses the maximum out-of-sample Sharpe ratio and the mean-variance efficiency. Section 5 handles the
case of the maximum Sharpe ratio when the weights are normalized to one. Section 6 concerns the global
minimum-variance and Markowitz mean-variance portfolio Sharpe ratios. Section 7 provides simulations
that compare several methods. Section 8 presents an out-of-sample forecasting exercise. The main proofs

are in the Appendix, and the Supplementary Appendix has some benchmark results used in the main proofs



section. Let |||, ||, |V]lcc be the l1,l2,le, norms of a generic vector v. Let |[v]|2 := n=! > 1 v?
which is the prediction norm for an n x 1 vector v. Let Eigmin(A) represents the minimum eigenvalue of a
matrix A, and Eigmax(A) represent the maximum eigenvalue of the matrix A. For a generic matrix A, let
| ANl 1Al 1Al be the I3 induced matrix norm (i.e. maximum absolute column sum norm), l, induced
matrix norm (i.e. maximum absolute row sum norm), spectral matrix norm, respectively. || A/ is maximum
absolute value of element of a matrix, and also a norm (but not a matrix norm). Matrix norms have the
additional desirable feature of submultiplicativity property. For further information on matrix norms, see

p.341 of Horn and Johnson (2013).

2 Factor Model and Feasible Nodewise Regression

We start with the following model, for j th asset return (excess asset return) at time ¢, y;,, for j=1,--- ,p,
and time periodst=1,--- ,n

Yjt = b;‘ft + ujt. (1)

where b; are K x 1 vector of factor loadings, and f; : K x 1 vector of common factors to all assets’ returns,
and u;, is the scalar error term for asset return j, at time t. All the factors are observed. This model is used
at Fan et al. (2011). From this point on, when asset return is mentioned, it should be understood as excess

asset return.

For the j th asset return we can rewrite (1) in the vector form, for j =1,--- |p
Y; = X/bj + uy, (2)
where X = (f1,---, fn) : K x n matrix, and y; = (y;1,--- ,Y;n) : 7 X 1 vector of j th asset returns. We

can also express the same relation in a matrix form.
Y =BX+U, (3)

where Y : p x n matrix, B : p x K matrix, and U : p x n matrix !. Define the covariance matrix of errors,

with the definition of us := (w1, -+ ,uj¢, -+ ,ups) 1 p x 1 error vector
. /
Y = Bugug.

In Assumption 7 below, we assume that maximum eigenvalue of ¥,, can grow with sample size, this is
due to X, being a p X p matrix where p may grow with n. We will assume sparsity for the precision matrix of

errors ) := X1 We assume that at each row of €, which will be denoted as Q; :1 x p, and the s; number

1We can also write the returns for each period in time, t =1,--- ,n
yt = Bft +uy,

where y¢ = (1,6, , Yjt, * »Yp,e) 1 p X 1 vector.



of cells are nonzero, and the rest of the row is zero. We represent the indices of nonzero cells in Q; as Sj,
forl=1,---,p
Sj=A{7: Qu #0},

where €;; represents the j th row and [/ element in that row. Let S7 represent the index set of all zero
elements in j th row of Q. Denote the maximum number of nonzero elements across all rows j = 1,--- ,p
of the precision matrix €2 as

§ = max s;.
1<j<p

This last point is an assumption, and will be shown below in Assumption 1. We can also allow weak sparsity
in the precision matrix of errors as in Theorem 2.2 in van de Geer (2016), but this increases the notation
with no change in the final results. Note that when n — oo, we allow p — oo, and K — 00, § — 00. As in
the literature we do not subscript them by n even though p, K, 5 can increase with n. Specifically, we assume
p, K, § are nondecreasing in n. Also we allow for p > n in our analysis which can be considered ultra-high
dimensional portfolio analysis.

For future references, we denote all of the asset returns except j th one as
Y_;=B_;X+U_j, (4)

where Y_; : p—1 x n matrix, is matrix Y without j th row, B_; : p—1 x K matrix is matrix B without j th
row, and U_j; : p—1 X n matrix, which is U matrix without p th row. Let ¥,, _; _; represent the p—1xp—1
subset of X, when the j th row and j th column of 3, has been removed. Let X, _; ; represent the j th
column of ¥,, with j th element removed, and X, ; _; represent the j th row of 3, with its j th element is
removed. In the assumptions below we will assume, stationary (strict) and ergodic errors for the time series

dimension. Using inverse formula for partitioned matrices, Yuan (2010) shows

Qg = Sy — ZngiZn i Sn—5) " (5)
and
O = =% S (6)

where 997_j is the j th row of €2, without the j th element in that row. Let 7, be the minimizing value of ~y
Eluj — u/—j,t’Y]za
where u;; is the j the element of u; : p x 1 vector, similarly, u_;, is the p — 1 x 1 vector of errors in ¢ th

time period, except j th term in u;. Then
-1
Vi =X i i, (7)

and

;=0 (8)

2=



Define ;¢ := u; —u’_; ,7;, where we can show that by ¥, _; j, %, —; —; definitions, and (7)

Eu_jmi; = FEu_jiujs— Eu_j,tu'_jﬂ;yj
= Snjj— Sn—j—iSnj_;En—s; = 0. 9)
This provides us with
Ujr = uLj,t'Vj + N5t (10)
forall j =1,---,p,t =1,--- ,n, and vector u_;; and 7;, are orthogonal in (10). The vector form is, for
each j=1,--- p,
uj = UL v+ ny, (11)
where u; = (uj1, " ,u5,) (nx1vector), and U’ ;: (n x p—1) matrix. Proceeding with (10) and using (9)

Euj, =S -7 + Enj,,

which implies by (7), and (5) with definition of %, ; ; := Euj ,,

En}y = Snji — S Snj—jSn-id = g (12)
Q.
Define for each j = 1,--- ,p, where we use (12)
12:=En?, = 1 (13)
2 .= = .
! RN
Then clearly, the main diagonal term in the precision matrix is:
1
Q= (14)
J
and j th row of precision matrix, without j th element, by (8)(14) is:
’ 77}
J
Define
0:=7T"2C, (16)
with ~ _
1 Y12 ot TMp
—Y2,1 1
C:=
—Yp1 —Ypa 1
and T2 := diag(r; 2, - - ,7'1;2) which is a p x p diagonal matrix.
Based on (11) and the sparsity of the precision matrix, with a sequence A\, >0, for all j =1,--- ,p,
i = argmin, c ge—1 [|[u; — U 55117 + 2An 15 [14]- (17)



The main issue with (17) is, unlike nodewise regression in Caner and Kock (2018), it is infeasible due to
error terms regressed on each other. This is a major problem, and has not been tackled in this literature
before. We now show how to turn this to feasible regression and still consistently estimate ;.
To get estimates for b; and B’ ;, Fan et al. (2011) uses Ordinary Least Squares (OLS) and p.3347 of Fan
et al. (2011) shows
bj —bj = (XX') "1 Xu,. (18)

Note that we can define OLS residual by (2)

ﬁj Yj — X/i)j
= u; — X'(XX') "' Xuy
= ]\4)(11,]'7 (19)
where we define, (X’ : n x K matrix)
My =1, - X'(XX")7'X. (20)
Then by OLS, with B’_j : K xp—1, B.;: K x p— 1 matrix,
S/ !’ n—1 /
BL, - BL, = (XX'")""XU,.
Define the residuals with transposing (4)

v, = Y ,-XB,

= U ,-X'(B,-B)

= U, - X'(XX")7'XU’,

= MxU’,. (21)
Note that ULJ- inxp—1, Mx :nxn,UL;:nxp—1. Next pre-multiply each side of (11) by My, and use
(19)(21)

i = U 5+ 1oy, (22)

where we define

Nzj = Mxnj, (23)

n x 1 vector. Of course, the key difficulties are how the new 7,;, and usage of the residuals affect the

consistent estimation of v; 7 To answer these questions we define a feasible nodewise estimator

~ . ~ 2 2

3y = argmins, ens— [l = UL 5012 + Al (24)
Then to define Q; which is the j th row of precision matrix estimate, we need

P2 o= (a; — UL A;) /n. (25)

J



Now to form the j th row of ), set the j th element in j th row as
Qy=1/7 (26)

in (14), and the rest of j th row estimate as in (15)

i
A/ T
Q= Fop (27)
j
We want to show that for each j = 1,--- ,p, Q; is consistent. We can write Qg = C‘;/@Q with C'j’ 1xp

20

representing 1 in j th cell and —47 in the other cells.

2.1 Assumptions

In this part we provide the assumptions that will be needed for consistency for the j th row of precision

matrix estimate.

Assumption 1. (i). {u:}7q, {ft}io, are stationary (strictly), and ergodic. Furthermore, {u:}}—q,{ft}1-1
are independent. uy has zero mean (p X 1), with variance matriz ¥, (p X p). Eigmin(%,) > ¢ > 0, with ¢
a positive constant, and max;<;<p Euit < C < 0. (#). Let the maximum number of nonzero cells across
rows of the precision matriz of errors, Q :== X1 be defined as maxi<j<,s; = 5. (4ii). Let F° __, F° be the
3, algebras generated by {(ft,ur)}, for —oo <t <0, and n <t < oo respectively. Denote the strong mizing

coefficient as
a(n) = supacro _ pery|P(A)P(B) — P(AN B
and a(t) < exp(—Ct™), for a positive constant ro > 0.
Assumption 2. There exists positive constants ry,79,73 > 0 and another set of positive constants
b1,b2,b3,81,82,83 >0, and fort=1,--- n,andj=1,--- ,p, withk=1,--- | K
(1).
Plluje| > s1] < exp(—(s1/b1)"™).
Pllnje| > s2] < exp(—(s2/b2)").
Pl frel > s3] < exp(—(s3/b3)"™).
(iv). There exists 0 < 1 < 1 such that v;* = 3r;" +ry", and we also assume 3ry' +ry* > 1, and
3r3t +rgt > L

Define 72_1 = 1.57“1_1 + 1.57’2_1 + 1"0_1, and 73_1 = 1.57’1_1 + 1.57"3_1 + 1"0_1, let Yomin = min(y1,y2,73)-

Assumption 3. (i). (Inp)2/7min)=1 = o(n), and (ii). K> = o(n), (iii). K = o(p).



Assumption 4. (i). FEigmin(covf;) > ¢ > 0, with covf; being the covariance matriz of the factors fy,
t=1,---,n.

(ii). maxi<p<x Eff, < C < oo, minj<x<k EfE, > ¢ > 0.

(iii). max,<j<p En?, < C < o0.

Assumption 5.

s,/ (1),

n

Note that Assumptions 1-3 are standard assumptions and are used in Fan et al. (2011). Also we get
0 <72 <1,0 <73 <1 given Assumption 2(iv). Also by Assumption 3, \/% = o(1). Stationary GARCH
models with finite second moments, and continuous error distributions, as well as causal ARMA processes
with continuous error distributions, and a certain class of stationary Markov chains satisfy our Assumptions
1-2 and are discussed in p.61 of Chang et al. (2018). Chang et al. (2018) also uses similar assumptions. We
should note that main interest of Chang et al. (2018) is just building confidence intervals around entries for
a large precision matrix, there is no finance related theorems.

Assumption 4(i)-(ii) is also used in Fan et al. (2011), and the nodewise error asumption 4(iii) is used in
nodewise regression context in Caner and Kock (2018). Assumption 5 is new and shows the interaction of
sparsity of the precision matrix with factors, they both contribute negatively to biases that our analysis will
show below in theorems. Compared to a regular nodewise sparsity assumption in Callot et al. (2021), we
have an extra K2 factor.

We provide one of the main Theorems in the paper. This is new in the literature and shows that a
feasible-residual based nodewise regression is possible, and it provides consistent estimates for the rows of

the precision matrix of errors.

Theorem 1. Under Assumptions 1-5

R R A Inp
— ! / — — 5 —
12 = Q.. = max 4 — Dl = max [[82; —Qyfls = Op(5)/ =) = 0p(1).

Remarks.

1. Note that QQ,Q; are 1 X p row vectors for the precision matrix estimate and the precision matrix
respectively. The second inequality above just shows that [y norm for a row vector and its column version
(transpose of that same row to column) is the same. Qj,Qj are the column versions of the rows of the

precision matrix estimate (2

%), and the precision matrix, (€2;) respectively.

2. Note that by Theorem 1 statement and matrix I3 norm definition (i.e. !; induced matrix norm,

maximum column sum norm of a matrix). So
A/ J— _— 0 Pp— .
I = 2l = max |, - 0, (28)
where ' is the transpose of (2. Also note that
19 = QI = 12 = Qi (29)

10



where we use [y, [, matrix norm definitions.
3. As long as Assumption 5 is maintained, the rate of approximation error in Theorem 1 matches the

factor model free nodewise regression error in Callot et al. (2021).

3 Precision Matrix Estimate for The Returns

Note that the covariance matrix for asset returns is defined, using independence between factors and errors,
Yy @ p X p matrix

¥, = Beovf; B+ Z,,. (30)

We start with precision matrix formula for the asset returns, based on factor model that we used. Using
Sherman-Morrison-Woodbury formula, as in p.13 of Horn and Johnson (2013), T' := X! is defined as

precision matrix for the returns:
I':=Q - QB[{covf,}' + B'QB]"'B'Q, (31)

and precision matrix estimate for the returns are

=0 - QB[{covf,} " + B'QuymB| ' B'Q, (32)
where stm = Q';Q/, and it is the symmetrized version of our feasible nodewise regression estimator for

the precision matrix for errors. @ =n"'XX" -n"2X1,1/, X’ is the estimate for the covariance matrix
returns, and it is given in p.3327 of Fan et al. (2011) with 1,, representing a vector (n x 1) of ones. Also
B = (YX')(XX')"! are the least-squares estimates for the factor model in (3). Also B is a px K matrix, and
cg\vft is K x K matrix. Note that we use a symmetric version of our precision matrix estimate for errors in
the term in square brackets in (32), there is a technical reason behind that. The proofs depend on symmetry
of the matrix in the square brackets in (32), but the other parts in the proof do not need symmetry of
the precision matrix estimate, hence we use both symmetrized, stm and standard (non-symmetric version)
of the precision matrix estimate, Q). We want to rewrite the precision matrix and its estimate so that its

convenient to analyze them technically. In that respect define
L := B[{covf;} ' + BQB]'B,

and
L= B[{covf,} " + B'QuymB| ' B

So we have

r=0-QLQ, I'=0Q-QLO. (33)

We need to find max; < j<, ||I'; — I';||; where r, f‘; are the 1 X p dimensional rows of the precision matrix

of the returns, and its estimate respectively. I';, fj are simply transposes of these rows which are p x 1. In

11



this respect, using (33)

max |15 — Tyl = max |11 = Tl = max |[( - ) - (%10 -0

1<j<p 1<j<p

5L (34)
Our aim is to simplify and get rates for the right side term in (34). To get a consistency and rate of

convergence result for the precision matrix for returns, rather than the errors as in Theorem 1 above we need

an assumption on factor loadings.

Assumption 6. (Z) maxj<;<p MaxXi<k<K |bjk| <(C < 0.
(ii). |[p~1B'B— Al|1, = o(1) for some K x K symmetric positive definite matriz A such that Eigmin(A)

is bounded away from zero.

Also a strengthened assumption on sparsity compared to Assumption 5 is provided. Note that when

n — 0o, p — 00. Define a rate of convergence, [,, > 0 which will be a part of the rate in Theorem 2 below

b = 12 K2 max(s, /2K 1/2) | ezinp, Inn) (35)
n

Specifically the rate I,, is the rate of estimation error for ||L — L|;_ as in Lemma A.13.

Assumption 7. (i). Figmaz(X,) < Cr,, with C > 0 a positive constant, and v, — 00 as n — 0o, and
rn/p — 0, and 1, is a positive sequence.
(ii). Assume that

sl, — 0.

Note that Assumption 6 is used in Fan et al. (2011). Assumption 7(i) is used in Gagliardini et al. (2016).
Assumption 7(i) allows for the maximal eigenvalue of 3, to grow with n. In special case of a diagonal 3,
due to Assumption 1(i), the maximum eigenvalue of a diagonal ¥,, matrix is finite. But that diagonal matrix
of variance of errors case is empirically less relevant and less realistic. We expect the errors to be correlated
across assets. For an example of where maximum eigenvalue of ¥,, may diverge, we show that this may be
the case for block diagonal matrix structure for 3,, in (37).

Assumption 7(ii) is a sparsity assumption with tradeoffs between maximal eigenvalue and the sparsity of
the precision matrix. This assumption is needed to analyze the precision matrix for the asset returns. To
give an example, ignoring constants, we can have § = Inn, K = Inn,p = 2n,r, = n'/®. Then Assumption

7(ii) is satisfied
(Inn)*/21n(2n)Y/?n?/"

172 — 0.

Next we provide definition for sample mean of asset returns, and the population mean of asset returns.
Define i := %2?21 yt, where y; is a p x 1 vector of asset returns. Let p := Ey;. Next theorem provides
one of our main results, which is the consistent estimation of the precision matrix for asset returns. This

theorem is a crucial input in Sharpe-ratio.
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Theorem 2. (i). Under Assumptions 1-4, 6-7

max [ =Tl = 0 (51) = 0,(1).

(ii). Under Assumptions 1-6

it~ plloe = O, <max<K\/T ﬁ)) = 0,(1).

This theorem is a new result in the literature, and merges two key concepts: factor models and nodewise
regression in high dimensional econometrics-finance. Theorem 2 clearly shows that there is a tradeoff between
the maximal eigenvalue of the errors, number of factors and the sparsity of the precision matrix. Clearly
increasing number of factors in our model badly affect the rate of estimation of the precision matrix of the

returns. In the case of fixed number of factors the rate in Theorem 2(i) is simplified to

Inp, 1
7252 maz(Inp, nn),
n

by using [,, definition in Assumption 7(ii).

3.1 Two examples relating precision matrix restriction to covariance matrix

We also tie the sparsity assumption on the precision matrix of errors to the structure of a covariance matrix
of errors. We provide two examples for errors, one block-diagonal covariance matrix for errors, and the other
one is Toeplitz form for covariance matrix of errors. Then we provide how they affect precision matrix, and
Assumption 7(i).

Block Diagonal Covariance Matrix for Errors: There are m = 1,--- , M blocks in a p X p square matrix

of covariance of errors.

E"vpl

T,Pm

En-,PM i

Each Xy, .. : Pm X pm block and fo:l pm = p. Clearly the inverse is sparse as well
o -
n,p1

Q=x1= -l

n n,Pm

—1
nmpM

The sparsity assumption-Assumption 1- for 2 can be translated into ¥,, as maxi <<y maxi<j<p,. Sp,, =

S, where this is the maximum number of nonzero cells in a given row of a block, across all blocks. For

13



Assumption 7 we need the following inequality from Corollary 6.1.5 of Horn and Johnson (2013), by seeing
that spectral radius of a matrix is larger than or equal to absolute value of any eigenvalue for any square
matrix, A, hence

Eigmax(A) < min(||Ally,, [|Alli..)- (36)

For the same inequality also see Theorem 5.6.9a of Horn and Johnson (2013). Relating to Assumption 7(i)

Bigmaz(L,) < B, Z DEEAE 2, Z | B, v, o,

where 3, ;, s, is the ji, jo element of covariance matrix of errors. By (36) this last inequality becomes

Eigmazr(¥,) < max max g |Ewjy ety ¢
1<m<M 1<j1<pm * jam1

It is easy to see that using Assumption 1(i), and under sufficient conditions for Assumption 7(i), with

DPm —> 00 aS N — 0O

Pm
max max max |Euj uj, | <C < oo, max = — 0, Ty = MAT1<m< M Pm. (37)
1<m<M 1<j1<pm 1<j2<pm <M p

we get Figmaxz(X,) < Cry,r,/p — 0. This allows size of the blocks may be increasing with p, but the ratio
of the maximum block size to total number of parameters should be small.

Toeplitz Analysis: the correlation among errors are Fu; u;; = pli=il with |p| < 1.Then

We have the tri-diagonal inverse, with all other cells being zero except the main and two adjacent diagonals.

1 —p 0 0
g1 1 —p 1+p* —p 0
L=l 0 = 140

1

Clearly 5§ = 3, and the covariance matrix for errors is not sparse. For Assumption 7(i), using (36)
P
; < = lj2—srl|
Bigmaz(Zy) < 2. = max, 3% |70
‘7 =

Clearly Assumption 7(i) is satisfied since the sum on the right side converges to a constant.

3.2 Algorithm For Asset Return Based Precision Matrix Estimate

Here we provide a practical algorithm to get the precision matrix estimate for asset returns: I, and it
will depend on the precision matrix estimate for the residual based nodewise regression estimate Q, and its

symmetric version Qgyn,.
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1. Use (19) to set up the residual from a least squares based regression via known factors with y; as the
Jj the asset returns (n x 1)
iy = y; — X'y,
with b; = (XX') "' Xy;, and X = (f1, -+, fr,- -+, fn) : K X n matrix with f, : K x 1 known factor vector.
2. Form the transpose matrix of residuals for all asset returns except j th one; U’ ; whichisn xp—1
matrix as in (21)

U, =Y ,-X'B",
where B’_j = (XX')7'XY’;, (K x p — 1 matrix), which is the transpose of factor loading estimates,
Y’ :(n x p—1) is the transpose matrix of asset returns except the j the asset.

3. Run (24), nodewise regression of @ on U’ ; via lasso, and get A, from Cross-validation or Generalized
Information Criterion as in Section 7.1.

4. Use (25) to get 77.

5. Now form Q; which is a row in the precision matrix estimate for the errors with 1/ i'jQ as j th element
of that j th row, and put all other elements of the j th row, as 7'%-/%]2.

6. Run steps 1-5forall j =1,--- ,p. Stack allrows j = 1,--- | p to form p x p matrix: . Form symmetric

version by stm = QJFTQ/
7. Form
B=(YX')(xx')!
which is p x K matrix of OLS estimates, where Y : p X n matrix of all asset returns, where j = 1,--- ,p
represent all columns-assets, and rows ¢t = 1,--- ,n time periods. Also form the covariance matrix estimate

for factors
covfy =n XX —n2X1,1. X'
where 1,, is n X 1 column vector of ones.

8. Now form the precision matrix estimate for all asset returns by (32), by steps 6-7
I'=Q— QB[(covf) ! + B'Quym BB,
We use stm in the inverse in square brackets, so that we can use specific inequalities for the inverse in our

proof. ) is the nodewise regression estimator, and €y, is the symmetrized version.

3.3 Why use Nodewise Regression?

In finance, our method considers more complicated cases of p > n and p/n — oo when both p,n — oco. We
also allow the p = n case, which proved to be a hindrance to technical analysis in some shrinkage papers such
as in the illuminating and very useful Ledoit and Wolf (2017). Our theorems also allow for non-iid data. Our
technique should be seen as a complement to the existing factor and shrinkage models. Additionally, with
our technique, one can obtain the mean-variance efficiency even when p > n in the case of the maximum

out-of-sample Sharpe ratio.
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4 Maximum Out-of-Sample Sharpe Ratio

This section analyzes the maximum out of Sharpe ratio that is considered in Ao et al. (2019). To obtain that
formula, we need the optimal calculation of the weights of the portfolio. The optimization of the portfolio
weights is formulated as

argmaz,w'p  subjectto w'S,w < o2, (38)

where we maximize the return subject to a specified positive and finite risk constraint, o2 > 0. After solving
for the optimal weight, which will be shown in the next subsection, we can obtain the maximum out-of-
sample Sharpe ratio. Equation (A.2) of Ao et al. (2019) defines the estimated maximum out-of-sample ratio
when p < n, with the inverse of the sample covariance matrix, 2; V=13 yyi] ™! used as an estimator

for the precision matrix estimate, as:

) e
—~ b))
SRmosco’u = a

and the theoretical version as, since I' := X 1

SR* :== \/u'Tpu.

Then, equation (1.1) of Ao et al. (2019) shows that when p/n — r1 € (0,1), the above plug-in maximum
out-of-sample ratio cannot consistently estimate the theoretical version. We provide a nodewise version
of the plug-in estimate that can estimate the theoretical Sharpe ratio even when p > n. Our maximum

out-of-sample Sharpe ratio estimate using the nodewise estimate I is:
17~
o W
SRmosnw = T
A W8, DG
We need the following sparsity assumption in Assumption 8(i) below that replaces Assumption 7(ii).
Assumption 8(ii) is an assumption on mainly the signal in the problem, combined with Assumption 7(i), this
new assumption tells that signal will dominate noise (in terms of maximum eigenvalues). More sufficient
conditions and explanations are relegated to at the end of Supplement Appendix about Assumption 8(ii).
We allow maximum eigenvalue of the covariance matrix of returns to be increasing with n, but at a rate at

most K. Note that number of factors K is nondecreasing in n.

Assumption 8. (7).
K33, = o(1).

(ii). For a positive constant C > 0
FEigmaz(¥,) < CK.

Now we provide one of our main results in the next theorem.
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Theorem 3. Under Assumptions 1-4,6, 7(i), 8

—
SRmosnw

W —1| = OP(KQEZH) = Op(l).

Remarks. 1. Note that p.4353 of Ledoit and Wolf (2017) shows that the maximum out-of-sample Sharpe
ratio is equivalent to minimizing a certain loss function of the portfolio. The limit of the loss function is
derived under an optimal shrinkage function in Theorem 1. After that, they provide a shrinkage function
even in the cases of p/n — r1 € (0,1) U (1, 400). Their proofs allow for iid data.

2. Also see that with fixed number of factors, the rate in Theorem 3 is, by the definition of /,, in (35)

Inp,1
2352 max( Zp nn)

This rate is the same as in the precision matrix estimate of the returns with fixed number of factors, as

shown in the paragraph after Theorem 2.

4.1 Mean-Variance Efficiency When p > n

This subsection formally shows that we can obtain mean-variance efficiency in an out-of-sample context when
the number of assets in the portfolio is larger than the sample size, a novel result in the literature. Ao et al.
(2019) show that this is possible when p < n, when both p, and n are large. That article is a very important
contribution since they also demonstrate that other methods before theirs could not obtain that result, and
it is a difficult issue to address. Given a finite risk level of 02 > 0, the optimal weights of a portfolio are
given in (2.3) of Ao et al. (2019) in an out-of-sample context. This comes from maximizing the expected
portfolio return subject to its variance being constrained by the square of the risk, where this is shown in

(38). Since I := X!, the formula for weights is

ol
Hoos = T
The estimates that we will use .
~ ol'fu
Woos =

3

Ay
We are interested in maximized out-of-sample expected return p'wyos and its estimate p'toos. Addition-
ally, we are interested in the out-of-sample variance of the portfolio returns w,, X, ws0s and its estimate
W), Xy Woos- Note also that by the formula for weights w),,Xywoes = 02, given I' := ¥ 1.
Below, we show that our estimates based on nodewise regression are consistent, and furthermore, we also

provide the rate of convergence results.

Theorem 4. (i). Under Assumptions 1-4, 6,7(i),8

/A
‘:uwoos

T 1’ = 0,(K23l,) = 0,(1).
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(i1). Under Assumptions 1-4,6,7(i),8

W) Xy loos — 02| = Op(K?5l,) = 0,(1).

Remarks. 1. From the results, we allow p > n, and still there is consistency.

2. From the convergence rates, it is clear that we are penalized by the number of assets but in a
logarithmic fashion; hence, our method is feasible to use in large-portfolio cases. This logarithmic rate in
assets can be seen from the definition of /,, in (35).

3. Ao et al. (2019) provide new results of the mean-variance efficiency of a large portfolio when p < n
and the returns of the assets are normally distributed. They provide a novel way of estimating return and

risk. This involves lasso-sparse estimation of the weights of the portfolio.

5 Maximum Sharpe Ratio: Portfolio Weights Normalized to One

In this section, we define the maximum Sharpe ratio when the weights of the portfolio are normalized to
one. This in turn will depend on a critical term that will determine the formula below.

The maximum Sharpe ratio is defined as follows, with w as the p x 1 vector of portfolio weights:

!

w'
Vw' X, w

where 1, is a vector of ones. This maximum Sharpe ratio is constrained to have portfolio weights that sum

li
AT, ys.t0 Lyw=1,

to one. Maller et al. (2016) shows that depending on a scalar, it has two solutions. When I;Eglu > 0, with

I:= Z;l7 we have the square of the maximum Sharpe ratio:
MSR? = /s, pu. (39)
When 175, 1 < 0, we have
MSR, = p'Sy = (1,5, 1)/ (1,5, 11,). (40)

This is equation (6.1) of Maller et al. (2016). Equation (39) is used in the literature, and this is the formula
when the weights do not necessarily sum to one given a return constraint as in Ao et al. (2019).

These equations can be estimated by their sample counterparts, but in the case of p > n, ¥, is not
invertible, so we need to use new tools from high-dimensional statistics. We analyze the nodewise regression
precision matrix estimate of Meinshausen and Biithlmann (2006). This is denoted by I'. Therefore, we analyze
the asymptotic behavior of the estimate of the maximum Sharpe ratio squared via nodewise regression. We
will also introduce the maximum Sharpe ratio, which addresses the uncertainty regarding whether we should

analyze MSR or MSR,. This is
(MSR*)Q — MSRzl{l;;Z;luZO} + MSR31{1L2511L<0}'

The estimators of M SR, MSR., MSR* will be introduced in the next subsection.
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5.1 Consistency and Rate of Convergence of Constrained Maximum Sharpe

Ratio Estimators

First, when 173 L1 > 0, we have the square of the maximum Sharpe ratio as in (39). To obtain an estimate
by using nodewise regression, we replace I' := X 1 with T Namely, the estimate of the square of the
maximum Sharpe ratio is:

MSE = i/'Th. (41)

Using the result in Theorem 2, we can obtain the consistency of the maximum Sharpe ratio (squared).

Theorem 5. Under Assumptions 1-4, 6,7(i), 8§ with 1,T'u > 0,
2
% — 1| = 0,(K?3l,) = 0,(1).

Remark. To the best of our knowledge, no existing result deals with MSR when p > n and p can grow
exponentially in n. We also allow for time-series data and establish a rate of convergence. The number of
assets, on the other hand, can also increase the error by on a logarithmic scale as can be seen in (35).

Note that the maximum Sharpe ratio above relies on 1;2; 1y > 0, where 1, is a column vector of ones.
This was recently pointed out in equation (6.1) Maller et al. (2016). If 1,5 'y < 0, the Sharpe ratio is
minimized, as shown on p.503 of Maller and Turkington (2002). The new maximum Sharpe ratio in the case
when 1;2;1;1 < 0 is in Theorem 2.1 of Maller and Turkington (2002). The square of the maximum Sharpe
ratio when 1,5y < 0 is given in (40).

An estimator in this case is

MSER, = il Tju— (1,0)2/(1,01,). (42)

The optimal portfolio allocation for such a case is given in (2.10) of Maller and Turkington (2002).

The limit for such estimators when the number of assets is fixed (p fixed) is given in Theorems 3.1b-c of

Maller et al. (2016). We set up some notation for the next theorem. Set 173,11, /p = A, IS u/p = F,
W, u/p=D.

Theorem 6. If 1;2;1/1 < 0, and under Assumptions 1-4,6,7(i), 8 with AD — F? > C > 0, where Cy is a

positive constant,
2

MSR, ,
MSRE 1| = 0,(K?3l,) = 0,(1).

Remarks. 1. Condition AD — F? > C; > 0 is not restrictive, and it is used in Callot et al. (2021) as a
condition that helps us to obtain a finite optimal portfolio variance in the Markowitz (1952) mean-variance

portfolio below.
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2. In Theorem 5, we allow p > n, and time-series data are allowed, unlike the iid or normal return cases
in the literature when dealing with large p,n. Theorem 6 is new and will help us establish a new result in
the following Theorem.

We provide an estimate that takes into account uncertainties about the term 1;2; 1. Note that the
term can be consistently estimated, as shown in Lemma SA.3 in the Supplementary Appendix. A practical

estimate for a maximum Sharpe ratio that will be consistent is:

MSR = MSRLy, o0y + MSReLiy, 0y

where we excluded the case of 1;f‘ﬂ = 0 in the estimator. That specific scenario is very restrictive in terms
of returns and variance. Note that under a mild assumption, when 1;2; Ly > 0, we have 1;,f‘,& > 0, and

when 1;2; Ly < 0, we have 1;f‘ [ < 0 with probability approaching one in the proof of Theorem 7.

Theorem 7. Under Assumptions 1-4,6,7(i), 8, with AD — F? > Cy > 0, where C; is a positive constant,
and assuming |1;Ey_1u|/p > C > 2e > 0, with a sufficiently small positive € > 0, and C being a positive
constant,
(MSR)* 2
(MSR)E 1| = O,(K?5l,,) = 0p(1).
Remarks 1. Condition [1,%,'u|/p > C > 2¢ > 0 shows that apart from a small region around 0, we
include all cases. This is similar to the 8 — min condition in high-dimensional statistics used to achieve
model selection. Note further that since I' = X L

p P

|1;F/~L/P| = | Z Z Lj kpe/pl,

j=1k=1
which is a sum measure of roughly theoretical mean divided by standard deviations. It is difficult to see how
this double sum in p will be a small number, unless the terms in the sum cancel out one another. Therefore,
we exclude that type of case with our assumption. Additionally, € is not arbitrary, from the proof this is the

upper bound on the |F — F| in Lemma SA.3 in Supplementary Appendix, and it is of order
e =0O(Ksl,) =o(1),

where the asymptotically small term follows Assumption 8.

2. In the case of p > n, we only consider consistency since standard central limit theorems (apart
from those in rectangles or sparse convex sets) do not apply, and ideas such as multiplier bootstrap and
empirical bootstrap with self-normalized moderate deviation results do not extend to this specific Sharpe
ratio formulation.

3. This is a new result under the assumption that all portfolio weights sum to one and the uncertainty

about the term 1;2;1,& We allow p > n and time-series data.
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4. Also see that when the number of factors are fixed, K = O(1), then we see that approximation error

improves, given the definition of I,, in (35) to

5o [maz(lnp, Inn)
2 AR, 0T

O(r;s ) =o(1).

n

6 Commonly Used Portfolios with a Large Number of Assets

Here, we provide consistent estimates of the Sharpe ratio of the global minimum-variance and Markowitz

mean-variance portfolios when p > n.

6.1 Global Minimum-Variance Portfolio

In this part, we analyze not the maximum Sharpe ratio under the constraints of portfolio weights adding up
to one but the Sharpe ratio we can infer from the global minimum-variance portfolio. This is the portfolio in
which weights are chosen to minimize the variance of the portfolio subject to the weights summing to one.
Specifically,

Wy, = argmingepew'Syw, such that w'l, = 1.

This is similar to the maximum Sharpe ratio problem, but we minimize the square of the denominator in
the Sharpe ratio definition subject to the same constraint in the maximum Sharpe ratio case above. The
solution to the above problem is well known and is given by
-1
XL,
="
1,371,

Wy,

Next, substitute these weights into the Sharpe ratio formula, normalized by the number of assets

w1 Us iy Us-t, o
SR = u _ P~y Py 1/2' 43
T = R ) (43)
We estimate (43) by nodewise regression, noting that I := X,

_ Ulp 1.1,

SR = /p(H—) ()72, (44)

p p
To the best of our knowledge, the following theorem is a novel result in the literature when p > n and
establishes both consistency and rate of convergence in the case of the Sharpe ratio in the global minimum-

variance portfolio.

Theorem 8. Under Assumptions 1-4, 6,7(i), 8 with [1,5, u|/p > C > 2¢ > 0,

2
SR,
SR?

— 1| = O,(K*/?3l,) = 0,(1).
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Remarks.

1. We see that a large p only affects the error by a logarithmic factor as in definition of I, in (35). The
estimation error increases with the non-sparsity of the precision matrix.

2. We see that factors affect global minimum variance portfolio worse than the constrained portfolio in
Theorem 7. This is related to different optimization here.

3. Also with fixed number of factors, K = O(1) the approximation rate in theorem here and Theorem 7,

Remark 4, is the same

O(r232 max(Inp, inn)

) = o(1).

n

6.2 Markowitz Mean-Variance Portfolio

Markowitz (1952) portfolio selection is defined as finding the smallest variance given a desired expected

return p;. The decision problem is
wary = argmingere(w'Syw) such that w'l, =1, w'p=p;.

The formula for optimal weight is

(WS, ) = pr (1,5, )

DO
MY T ) — (s T )
PGS )~ 0
(1,55 1) (WS ) — (15 )2
which can be rewritten as
D—piF| - pA—F 1
wpy = [AD_FQ} (2, "1,/p) + {AD_FQ (2, 1/p), (45)

where we use A, F, D formulas A := 17511, /p, F := 1,5 ju/p, D := (/S ju/p. We define the estimators
of these terms as A := 1;f1p/p, F= 1;f‘[¢/p, D= ﬂ’f‘ﬂ/p.

The optimal variance of the portfolio in this scenario is normalized by the number of assets

vl [ Ap? —2Fp, + D]
P AD — F? ’
The estimate of that variance is . . -
f/:l Ap? —2Fpy + D .
p| AD- 2 |
By our constraint, we obtain
Wy = p1

Using the variance V above

AD — F?
SRyv = p1 p( )

Ap%—QFpl-i-D
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The estimate of the Sharpe ratio under the Markowitz mean-variance portfolio is

_ AD — F?
SRyv = p1 p( )

A7 —2Fm+ D
We provide the consistency of the maximum Sharpe ratio (squared) in this framework when the number

of assets is larger than the sample size. This is a novel result in the literature.

Theorem 9. Under Assumptions 1-4, 6,7(i), 8 with condition |1;Z;1,u/p| >C > 2 >0 and AD — F? >
C1 >0, Ap? —2Fp; + D > Cy > 0, with py uniformly bounded away from zero and infinity, we have
2
SRy
SRZ,.,

— 1| = O,(K33l,) = 0,(1).

Remarks. 1. Conditions AD — F? > C} > 0 show that the variance is bounded away from infinity, and
Ap? —2Fp; — D > C; > 0 restricts the variance to be positive and bounded away from zero.

2. We provide the rate of convergence of the estimators, which increases with p in a logarithmic way as
in [, definition in (35), and the non-sparsity of the precision matrix affects the error in a linear way.

3. This is the scenario that factors affect the estimation of Sharpe-ratio strongest. With fixed number of

factors, as in previous theorem we can match the rate of approximation as in Theorem 7, Remark 4 there.

7 Simulations

7.1 Models and Implementation Details

In this section, we compare the nodewise regression with several models in a simulation exercise. The two
aims of the exercise are to determine whether our method achieves consistency and how our method performs
compared to others in the estimation of the constrained maximum Sharpe ratio, out-of-sample maximum
Sharpe ratio, and Sharpe ratio in global minimum-variance and Markowitz mean-variance portfolios.

The other methods that are used widely in the literature and benefit from high-dimensional techniques
are the principal orthogonal complement thresholding (POET) from Fan et al. (2013), the nonlinear shrink-
age (NL-LW) and the single factor nonlinear shrinkage (SF-NL-LW) from Ledoit and Wolf (2017) and the
maximum Sharpe ratio estimated and sparse regression (MAXSER) from Ao et al. (2019). All models except
for the MAXSER are plug-in estimators, where the first step is to estimate the precision/covariance matrix,
and the second step is to plug-in the estimate in the desired equation.

The POET uses principal components to estimate the covariance matrix and allows some eigenvalues of
%, to be spiked and grow at a rate O(p), which allows common and idiosyncratic components to be identified

via principal components analysis and can consistently estimate the space spanned by the eigenvectors of
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3,. However, Fan et al. (2013) point out that the absolute convergence rate of the model is not satisfactory
for estimating 32,, and consistency can only be achieved in terms of the relative error matrix.

Nonlinear shrinkage is a method that individually determines the amount of shrinkage of each eigenvalue
in the covariance matrix with respect to a particular loss function. The main aim is to increase the value
of the lowest eigenvalues and decrease the largest eigenvalues to stabilize the high-dimensional covariance
matrix. This is a very novel and excellent idea. Ledoit and Wolf (2017) propose a function that captures
the objective of an investor using portfolio selection. As a result, they have an optimal estimator of the
covariance matrix for portfolio selection for a large number of assets. The SF-NL-LW method extracts a
single factor structure from the data prior to the estimation of the covariance matrix, which is simply an
equal-weighted portfolio with all assets.

Finally, the MAXSER starts with the estimation of the adjusted squared maximum Sharpe ratio that is
used in a penalized regression to obtain the portfolio weights. Of all the discussed models, the MAXSER is
the only one that does not use an estimate of the precision matrix in a plug-in estimator of the maximum
Sharpe ratio.

Regarding implementation, the POET and both models from Ledoit and Wolf (2017) are available in
the R packages POET Fan et al. (2016) and nlshrink Ramprasad (2016). The SF-NL-LW need some minor
adjustments following the procedures described in Ledoit and Wolf (2017). For the MAXSER, we follow the
steps for the non-factor case in Ao et al. (2019), and we use the package lars (Hastie and Efron (2013)) for
the penalized regression estimation. We estimate the nodewise regression following the steps in Section 3.2
using the glmnet package Friedman et al. (2010) for penalized regressions. We used two alternatives to select
the regularization parameter A, a 10-fold cross validation (CV) and the generalized information criterion
(GIC) from Zhang et al. (2010).

The GIC procedure starts by fitting 4; in (24) for a range of A; that goes from the intercept-only model to
the largest feasible model. This is automatically done by the glmnet package. Then, for the GIC procedure,

we calculate the information criterion for a given A; among the ranges of all possible tuning parameters

GI0; () = 5B 3, 10g(p - 1) 108108 (16)

where SSR();) is the sum squared error for a given Aj;, ¢();) is the number of variables, given \A;, in the
model that is nonzero, and p is the number of assets. The last step is to select the model with the smallest
GIC. Once this is done for all assets j = 1,...,p, we can proceed to obtain I'g e

For the CV procedure, we split the sample into k& subsamples and fit the model for a range of A; as in
the GIC procedure. However, we will fit models in the subsamples. We always estimate the models in k — 1
subsamples, leaving one subsample as a test sample, where we compute the mean squared error (MSE).
After repeating the procedure using all k£ subsamples as a test, we finally compute the average MSE across
all subsamples and select the \; for each asset j that yields the smallest average MSE. We can then use the

estimated 4; to obtain Tov.
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7.2 Data Generation Process and Results

The DGP is based on a simplified version of the factor DGP in Ao et al. (2019), for j =1,--- ,p:

K
yj = +Zﬁj,kfk+€j, (47)
k=1

where y;, f; are the monthly asset returns, factor returns respectively, 3; are the individual stock sensi-
tivities to the factors, and o + e; represent the idiosyncratic component of each stock. We start with two
specifications that correspond to two Tables. Table 1 corresponds to 1 factor, which is excess return of the
market portfolio, hence K = 1, and Table 2 corresponds to 3 factors from the Fama & French three factors,
K=3.2Let 5 and Xy be the factors’ sample mean and covariance matrix. The 3, and «a and covariance
matrix of residuals: EA]; are estimated using a simple least squares regression using returns from the S&P500
stocks that were part of the index in the entire period from 2008 to 2017. In each simulation, we randomly
select p stocks from the pool with replacement because our simulations require more than the total number
of available stocks. We then used the selected stocks to generate individual returns with covariance matrix

of errors: 3 =5, © Toeplitz(p), where Toeplitz(p) is the p X p matrix of the form, for (i,j) th element
Toeplitz(p); j := pl* I,

with p = 0.25,0.5,0.75. A ® B represent element by element multiplication (Hadamard product) of two
square matrices A, B of the same dimensions.

Tables 1-2 show the results. The values in each cell show the average absolute estimation error for
estimating the square of the Sharpe ratio in the case of global minimum-variance and Markowitz mean-
variance portfolios in Section 6, out-of-sample forecasting, and the maximum Sharpe ratio in the case of
constrained portfolio optimization in Sections 4-5 across iterations. Each eight column block in the table
shows the results for a different sample size. In each of these blocks, the first four columns are for p =
n/2, and the last four columns are for p = 3n/2. MSR, MSR-OO0S, GMV-SR and MKW-SR are the
constrained maximum Sharpe ratio, the out-of-sample maximum Sharpe ratio, the Sharpe ratio from the
global minimum-variance portfolio and the Sharpe ratio from the Markowitz portfolio with target returns set
to 1%, respectively. Therefore, there are four categories to evaluate the different estimates. The MAXSER
risk constraint was set to 0.04 following Ao et al. (2019). We ran 100 iterations in each simulation setup.
All bold-face entries in tables show category champions.

Both Tables show that our method achieves consistency as shown in Theorems. Analyzing K = 3,
Table 2, with p = 0.50 OOS-MSR (Out Of Sample-Maximum Sharpe Ratio) and Generalized Information
Criterion tuning parameter selection, the estimation error at p = 3n/2, with n = 100 is 1.273, and this error
declines to 0.666 at p = 3n/2,n = 200, and then declines to 0.360 at p = 3n/2,n = 400. So with jointly

increasing n, p we show that the error declines, as predicted by our theorems. The main reason is that errors

2The factors are book-to-market, market capitalization and the excess return of the market portfolio.
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grow with /Inp but decline with n'/2? rate. So the number of assets in a large portfolio only affects the
error logarithmically. To give another example from Table 2, with p = 0.50, GMV-SR (Global Minimum
Variance-Sharpe Ratio) and Cross Validation tuning parameter selection with our method, the estimation
error is 0.743 with p = n/2,n = 100, then this error declines to 0.239 with p = n/2,n = 200, and further
declines to 0.160 with p = n/2,n = 400.

Next, we consider which method achieves the smallest estimation error. Table 1 clearly favors SF-NL-LW
(Single Factor Non-Linear Shrinkage of Ledoit-Wolf) since it has single factor built into this subset of their
technique. We get better results in Table 2 (K = 3) for our methods. We have 4 categories: MSR, OOS-
MSR, GMV-SR, MKW-SR corresponding to our Theorems 3-9. There are 9 possibilities in each category
(given we are either at p = n/2 or p = 3n/2), representing 3 choices of sample sizes paired with 3 choices of
different Toeplitz structure.

We analyze each category. We start with Table 1. With p = 3n/2 in OOS-MSR our NW-GIC method
has the smallest errors 8 out of 9 categories. When p = n/2, MAXSER method dominates all others since
it is specifically factor model designed to handle OOS-MSR with p < n. In GMV-SR, with p = n/2, in 3
out of 9 cases, our NW-GIC dominates. In the other categories in Table 1, non-linear shrinkage method of
Ledoit-Wolf (2017) does the best, but our methods come very close second.

In Table 2, with K = 3, our methods perform better than in Table 1. We start with p = 3n/2, and in
OOS-MSR, our NW-GIC provides the best result with the smallest error at all p = 0.25,0.5,0.75. This is
a very good result, since this measures the estimation error in Out-Of-Sample Maximum Sharpe Ratio in
large portfolios which reflects out of sample performance compared to other three categories. To give a brief
example, with p = 0.75,p = 3n/2,n = 400, our NW-GIC error is 0.404, and our NW-CV method comes
second with 0.405. SF-NL-LW (Single Factor Non-Linear Shrinkage of Ledoit-Wolf) comes third with 0.417,
the other methods fare poorly, with POET coming with 3.607 error. POET depends on sparsity (conditional)
of covariance of errors, hence it suffers under a more realistic non-sparse covariance matrix error setup. In
case of p = n/2 with OOS-MSR category MAXSER method dominates the others, our methods come second.
In the category of GMV-SR, with p = 3n/2, out of 9 possible configurations our methods have the least error
in 7 cases. In case of the same category but with p = 0.5n, 5 out of 9 possibilities, our methods dominate.
In case of the category of MKW-SR, (Markowitz-Sharpe Ratio), our theorems predict that our methods may
suffer from number of factors. In this category, we see that non-linear shrinkage methods are the best, and
our methods are the second best. In the case of constrained maximum sharpe ratio, (MSR) again non-linear

shrinkage methods perform the best, but differences between the methods are small.
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8 Empirical Application

For the empirical application, we use two subsamples. The first subsample uses data from January 1995 to
December 2019 with an out-of-sample period from January 2005 to December 2019. We selected all stocks
that were in the S&P 500 index for at least one month in the out-of-sample period and have data for the
entire 1995-2019 period, which resulted in 382 stocks. The second subsample starts in January 1990 and
ends in December 2019 with an out-of-sample period from January 2000 to December 2019. Using the same
criterion as the first subsample, the number of stocks was 321, which is aroud 15% less stocks than the
first subsample. The objective is to have an out-of-sample competition between models, we only estimated
GMV and Markowitz portfolios for the plug-in estimators. The first out-of-sample period includes only
the recession of 2008. The second out-of-sample period includes the recessions of 2000 and 2008, and the
out-of-sample periods reflect recent history.

The Markowitz return constraint p; is 0.8% per month, and the MAXSER risk constraint is 4%. In the
low-dimensional experiment, we randomly select 50 stocks from the pool to estimate the models with the
same stocks for all windows. We also experimented with 25 stocks, but did not report. This is available
from the authors on demand. In the high-dimensional case, we use all available stocks.

We use a rolling window setup for the out-of-sample estimation of the Sharpe ratio following Callot et al.
(2021). Specifically, samples of size n are divided into in-sample (1 : ny) and out-of-sample (n; + 1 : n).
We start by estimating the portfolio w,,; in the in-sample period and the out-of-sample portfolio returns
W), ;Yn;+1- Then, we roll the window by one element (2 : ny + 1) and form a new in-sample portfolio wy,, 41
and out-of-sample portfolio returns Wy, +1Yn,;+2. This procedure is repeated until the end of the sample.

The out-of-sample average return and variance without transaction costs are

1 n—1 1 n—1
~ ~/ 2 A~ A 2
Hos n—ng E tYt+1, vos = o —1 E (DYe+ flos)
t=ng t=ng

We estimate the Sharpe ratios with and without transaction costs. The transaction cost, ¢, is defined as
50 basis points following DeMiguel et al. (2007). Let yp+1 = Wiyi+1 be the return of the portfolio in period

t + 1; in the presence of transaction costs, the returns will be defined as
P
Ypiir = ypit — (1 +ypita) Z 41,5 — @1,

where uv;j =W j(14+Yi41,5)/(14+ Y41, p) and Yy j and Yy p are the excess returns of asset j and the portfolio
P added to the risk-free rate. The adjustment made in uﬁf ; 1s because the portfolio at the end of the period
has changed compared to the portfolio at the beginning of the period.

The Sharpe ratio is calculated from the average return and the variance of the portfolio in the out-of-
sample period

SR — A:U’os .
Zy,os
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The portfolio returns are replaced by the returns with transaction costs when we calculate the Sharpe ratio
with transaction costs.

We use the same test as Ao et al. (2019) to compare the models. Specifically,
Hy : SRyw <SRy vs H, : SRyw > SR(), (48)

where S Ry is the Sharpe ratio of our feasible nodewise model, which is tested against all remaining models.
This is the Jobson and Korkie (1981) test with Memmel (2003) correction. We also considered the method
of Ledoit and Wolf (2008) for testing the significance of the winner and using the equally weighted portfolio
as a benchmark; the results were very similar and hence are not reported.

We also included equally weighted portfolio (EW). GMV-NW-GIC and GMV-NW-CV denote the node-
wise method with GIC and cross validation tuning parameter choices, respectively, in the global minimum-
variance portfolio (GMV).

In each of our feasible nodewise models with GIC, CV, we either use a single factor model (market as
the only factor), or three factor model. They are denoted GMV-NW-GIC-SF, GMV-NW-GIC-3F for the
global minimum variance portfolio analyzed with feasible nodewise method and GIC criterion for tuning
parameter choice and single and three factor models respectively. In the same way, we define GMV-NW-
CV-SF, GMV-NW-CV-3F. We take GMV-NW-GIC-SF as the benchmark to test against all other methods
since it generally does well in different preliminary forecasts.

GMV-POET, GMV-NL-LW, and GMV-SF-NL-LW denote the POET, nonlinear shrinkage, and single
factor nonlinear shrinkage methods, respectively, which are described in the simulation section and also
used in the global minimum-variance portfolio. The MAXSER is also used and explained in the simulation
section. MW denotes the Markowitz mean-variance portfolio, and MW-NW-GIC-SF denotes the feasible
nodewise method with GIC tuning parameter selection in the Markowitz portfolio with a single factor. All
the other methods with MW headers are analogous and thus self-explanatory.

The results are presented in Tables 3 and 4. Table 3 shows the results for the 2005-2019 out-of-sample
period. Feasible nodewise methods do well in terms of the Sharpe ratio in Table 3. For example, with
transaction costs in the low-dimensional portfolio category, in terms of Sharpe ratio (SR) (averaged over
the out-of-sample time period), GMV-NW-GIC-SF is the best model. It has an SR of 0.210. In the case
of high dimensional case with transaction costs in the same table, GMV-POET and our GMV-NW-GIC-SF
virtually tie (difference in favor of POET in fourth decimal) at 0.214 for the Sharpe-ratio.

If we were to analyze only the Markowitz portfolio in Table 3, with transaction costs in high dimensions,
MW-NW-GIC-SF has the highest SR of 0.211. Therefore, even in other subcategories of Markowitz portfolio,
the feasible nodewise method dominates. Although statistical significance is not established, it is not clear
that these significance tests have high power in our high-dimensional cases.

Table 4 shows the results for the out-of-sample January 2000-2019 subsample. We see that feasible

nodewise methods dominate all scenarios except for the low-dimensional case with transaction costs. In the

30



case of high dimensionality with transaction costs, GMV-NW-GIC-sf (Markowitz-nodewise-GIC) has an SR
of 0.225, and the closest is GMV-POET with 0.204. Also we experimented with two other out-sample periods
of 2005-2017, 2000-2017, and the results are slightly better for our methods, and these can be shared on
demand. We also try 25 stocks in the low dimensional case and the results for MAXSER were very similar,

hence they are not reported. These results are available from authors on demand.

Table 3: Empirical Results — Out-of-Sample Period from Jan. 2005 to Dec. 2019

Without TC With TC
Low Dim. High Dim. Low Dim. High Dim.

SR AVG SD  p-value SR AVG SD  p-value SR AVG SD  p-value SR AVG SD  p-value
EW 0.196  0.010 0.052  0.730 0.197 0.010 0.048  0.644 0.191  0.010 0.052  0.802 0.191 0.009 0.048 0.792
GMV-NW-GIC-SF  0.229 0.008 0.036 0.236 0.008 0.032 0.210 0.008 0.036 0.214  0.007 0.032
GMV-NW-CV-SF  0.226  0.008 0.036  0.590 0.240  0.008 0.032  0.398 0.203  0.007 0.036 0.132 0.192 0.006 0.032  0.002
GMV-NW-GIC-3F  0.215 0.007 0.034  0.576 0.214 0.007 0.033  0.520 0.191  0.007 0.034 0.424 0.183 0.006 0.033  0.398
GMV-NW-CV-3F  0.212 0.007 0.034 0.474 0.226  0.007 0.032  0.790 0.183 0.006 0.034  0.278 0.132  0.004 0.032  0.032
GMV-POET 0.218 0.007 0.034  0.682 0.232  0.007 0.030 0.914 0.203  0.007 0.034  0.822 0.214 0.006 0.030  0.996
GMV-NL-LW 0.236  0.008 0.034 0.834 0.236  0.007 0.030  0.998 0.205 0.007 0.034  0.908 0.179  0.005 0.031  0.490
GMV-SF-NL-LW 0.216  0.007 0.034 0.684 0.245 0.007 0.030 0.886 0.190 0.007 0.034  0.546 0.184 0.006 0.030  0.600
MW-NW-GIC-SF 0.229  0.008 0.034  0.970 0.236 0.008 0.032  0.966 0.205 0.007 0.034  0.786 0.211  0.007 0.032  0.706
MW-NW-CV-SF 0.228 0.008 0.034  0.942 0.242  0.008 0.032  0.620 0.197  0.007 0.034  0.482 0.190 0.006 0.032  0.056
MW-NW-GIC-3F 0.214  0.007 0.033  0.628 0.217  0.007 0.033  0.606 0.185 0.006 0.033 0.444 0.183 0.006 0.033 0.416
MW-NW-CV-3F 0.212  0.007 0.033  0.574 0.225 0.007 0.032  0.790 0.177  0.006 0.033  0.302 0.125 0.004 0.032  0.032
MW-POET 0.223  0.007 0.032  0.880 0.229  0.007 0.030  0.844 0.200 0.006 0.032  0.794 0.207  0.006 0.030  0.840
MW-NL-LW 0.220 0.008 0.034  0.860 0.235 0.007 0.030  0.980 0.186  0.006 0.034  0.636 0.177  0.005 0.030  0.540
MW-SF-NL-LW 0.204 0.007 0.034 0.574 0.241  0.007 0.030  0.920 0.175 0.006 0.034 0.482 0.180 0.005 0.030  0.554
MAXSER 0.161  0.010 0.065  0.510 0.024 0.002 0.066 0.116

The table shows the Sharpe ratio (SR), average returns (Avg), standard deviation (SD) and p-value of the Jobson and Korkie (1981) test with Memmel (2003) correction.
We also applied the Ledoit and Wolf (2008) test with circular bootstrap, and the results were very similar; therefore we only report those of the first test in this table.
The tests were always performed using the equal-weighted portfolio as benchmark. The statistics were calculated from 180 rolling windows covering the period from Jan.

2005 to Dec. 2019, and the size of the estimation window was 120 observations.

In Table 5, we analyze turnover, leverage and maximum leverage (equations (49), (50) and (51), respec-
tively) of the portfolios in Tables 3-4.

The definitions are as follows for turnover:

P
turnover = Z [tet1, — uAJtij , (49)
j=1
and leverage
P
leverage = Zmin{uﬁHLj,O} , (50)
j=1
and maximum leverage
max leverage = max{‘min{wt_,_l’j, O}}} (51)
J

It is clear that in Table 5 in terms of turnover, leverage, maximum leverage, GMV-POET annd GMV-

NW-GIC-SF do well, with the best and close to best respectively if we discount EW portfolios.
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Table 4: Empirical Results — Out-of-Sample Period from Jan. 2000 to Dec. 2019

Without TC With TC
Low Dim. High Dim. Low Dim. High Dim.

SR AVG SD  p-value SR AVG SD  p-value SR AVG SD  p-value SR AVG SD  p-value
EW 0.201  0.010 0.047 0.874 0.210  0.010 0.047  0.546 0.195 0.009 0.047  0.998 0.203 0.010 0.047  0.758
GMV-NW-GIC-SF  0.213 0.008 0.035 0.245 0.008 0.034 0.195 0.007 0.035 0.225 0.008 0.034
GMV-NW-CV-SF  0.212 0.008 0.036  0.940 0.249  0.008 0.034 0.374 0.191  0.007 0.036  0.454 0.206  0.007 0.033  0.006
GMV-NW-GIC-3F  0.193 0.007 0.034 0.424 0.224 0.007 0.031  0.498 0.171  0.006 0.034 0.382 0.192  0.006 0.032  0.260
GMV-NW-CV-3F  0.188 0.006 0.034 0.348 0.231  0.007 0.031  0.700 0.161  0.006 0.034  0.196 0.139 0.004 0.031 0.016
GMV-POET 0.185 0.006 0.033  0.282 0.222 0.007 0.032 0.416 0.169  0.006 0.033 0.316 0.204 0.007 0.032  0.430
GMV-NL-LW 0.160 0.006 0.035 0.172 0.232  0.007 0.029 0.838 0.131  0.005 0.035  0.120 0.175 0.005 0.029  0.398
GMV-SF-NL-LW 0.172  0.006 0.034  0.252 0.242 0.007 0.028 0.934 0.145 0.005 0.034  0.196 0.184 0.005 0.028 0.398
MW-NW-GIC-SF ~ 0.211  0.007 0.034 0.872 0.243  0.008 0.032 0.868 0.189  0.006 0.034 0.644 0.219  0.007 0.032  0.602
MW-NW-CV-SF 0.210  0.007 0.034 0.834 0.249 0.008 0.032  0.656 0.185 0.006 0.034  0.504 0.202 0.006 0.032 0.028
MW-NW-GIC-3F 0.191  0.006 0.034  0.442 0.226  0.007 0.031  0.584 0.165 0.006 0.034  0.338 0.190 0.006 0.031  0.326
MW-NW-CV-3F 0.184 0.006 0.034 0.324 0.228 0.007 0.031  0.652 0.153  0.005 0.034 0.162 0.132  0.004 0.031 0.038
MW-POET 0.181  0.006 0.032  0.282 0.216  0.007 0.031  0.408 0.161  0.005 0.033  0.240 0.195 0.006 0.031  0.402
MW-NL-LW 0.151  0.005 0.036 0.172 0.229 0.007 0.029 0.782 0.120  0.004 0.036  0.092 0.172  0.005 0.029 0.352
MW-SF-NL-LW 0.161  0.006 0.035  0.248 0.237  0.007 0.028 0.886 0.131  0.005 0.035  0.152 0.178 0.005 0.028 0.398
MAXSER 0.040 0.004 0.088  0.294 -0.039 -0.004 0.099  0.364

The table shows the Sharpe ratio (SR), average returns (Avg), standard deviation (SD) and p-value of the Jobson and Korkie (1981) test with Memmel (2003) correction.
We also applied the Ledoit and Wolf (2008) test with circular bootstrap, and the results were very similar; therefore we only report those of the first test in this table.
The tests were always performed using the equal-weighted portfolio as benchmark. The statistics were calculated from 240 rolling windows covering the period from Jan.

2005 to Dec. 2019, and the size of the estimation window was 120 observations.
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Table 5: Turnover and Leverage
2005-2019 Subsample

Low Dimension High Dimension

Turnover Leverage Max Leverage Turnover Leverage Max Leverage
EW 0.053 0.000 0.000 0.054 0.000 0.000
GMV-NW-GIC-SF 0.125 0.312 0.042 0.130 0.376 0.009
GMV-NW-CV-SF 0.160 0.311 0.040 0.302 0.395 0.014
GMV-NW-GIC-3F 0.148 0.380 0.048 0.186 0.528 0.013
GMV-NW-CV-3F 0.190 0.382 0.049 0.593 0.567 0.030
GMV-POET 0.096 0.288 0.043 0.096 0.299 0.007
GMV-NL-LW 0.198 0.420 0.057 0.325 0.807 0.024
GMV-SF-NL-LW 0.163 0.383 0.050 0.341 0.904 0.025
MW-NW-GIC-SF 0.154 0.331 0.046 0.150 0.382 0.009
MW-NW-CV-SF 0.191 0.329 0.044 0.322 0.402 0.014
MW-NW-GIC-3F 0.179 0.401 0.052 0.207 0.539 0.013
MW-NW-CV-3F 0.220 0.401 0.051 0.626 0.582 0.030
MW-POET 0.128 0.306 0.046 0.117 0.307 0.008
MW-NL-LW 0.220 0.440 0.064 0.327 0.814 0.024
MW-SF-NL-LW 0.184 0.400 0.052 0.344 0.912 0.025
MAXSER 1.766 0.421 0.200

2000-2019 Sub Sample

EW 0.056 0.000 0.000 0.056 0.000 0.000
GMV-NW-GIC-SF 0.120 0.283 0.049 0.127 0.342 0.011
GMV-NW-CV-SF 0.142 0.279 0.048 0.278 0.361 0.014
GMV-NW-GIC-3F 0.144 0.355 0.053 0.192 0.541 0.016
GMV-NW-CV-3F 0.181 0.353 0.053 0.557 0.572 0.030
GMV-POET 0.097 0.290 0.038 0.107 0.322 0.009
GMV-NL-LW 0.196 0.396 0.068 0.311 0.782 0.027
GMV-SF-NL-LW 0.173 0.383 0.062 0.310 0.849 0.026
MW-NW-GIC-SF 0.142 0.296 0.050 0.148 0.351 0.011
MW-NW-CV-SF 0.165 0.292 0.048 0.299 0.369 0.014
MW-NW-GIC-3F 0.165 0.368 0.054 0.209 0.548 0.016
MW-NW-CV-3F 0.203 0.364 0.054 0.582 0.581 0.030
MW-POET 0.121 0.301 0.041 0.126 0.333 0.009
MW-NL-LW 0.214 0.409 0.071 0.313 0.787 0.027
MW-SF-NL-LW 0.197 0.395 0.067 0.314 0.855 0.025
MAXSER 1.860 0.371 0.201

The table shows the average turnover, average leverage and average max leverage for all portfolios across
all out-of-sample windows. The top panel shows the results for the 2000-2019 out-of-sample period, and

the second panel shows the results for the 2005-2019 out-of-sample period.
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9 Conclusion

We provide a hybrid factor model combined with nodewise regression method that can control for risk and
obtain the maximum expected return of a large portfolio. Our result is novel and holds even when p > n. We
allow for increasing number of factors, with possible unbounded largest eigenvalue of the covariance matrix
of errors. Sparsity is assumed on the precision matrix of errors, rather than the covariance matrix of errors.
We also show that the maximum out-of-sample Sharpe ratio can be estimated consistently. Furthermore,
we also develop a formula for the maximum Sharpe ratio when the weights of the portfolio sum to one. A
consistent estimate for the constrained case is also shown. Then, we extended our results to the consistent
estimation of Sharpe ratios in two widely used portfolios in the literature. It will be important to extend

our results to more restrictions on portfolios.
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Main Appendix

The main appendix is divided into several parts. The first part has preliminary proofs, norm inequalities,
definitions, and a maximal inequality that is extended in a very minor form from the existing literature. The
second part has the proofs of lemmata that lead to proof of Theorem 1. The first two parts relate only to
the proof of Theorem 1. The third part is only related to the proof of Theorem 2. Part 4 is related to all the
remaining proofs of Theorems in this paper. Supplementary appendix contains material that are common

to all proofs.
PART 1:

We start with a lemma that provides norm inequalities. Let A; : p x K, By : K x K matrices and

x : K x 1 vector.

Lemma A.1. (3).
A1 B1] oo < K[| At ool Billoo |2 co-

A1 B1A] ||loo < K[| A2, ]| B1 |-

Proof of Lemma A.1. (i). Set Byx = z1, and let a;- be the 1 x K row vector of A;

il = s lajon| < | ma ol oo (A1)
< [l o (a2)
= [K14sle] IBule
< KAl Bl e (A9)

where we use Holder’s inequality for the first inequality, and the relation between [1, [, norms for the second
inequality, and to get the last inequality we repeat the first two inequalities.
(ii). Use Section 4.3 of van de Geer (2016)

[ A1 Br A [|se < [[At]lsc[ll B AT 1], (A4)

where ||.]|;; is the maximum absolute column sum norm of By A} matrix (i.e. I; induced matrix norm). Let

b’ be 1 x K row vector of By, and a; is the j th column of A} matrix (K X p).

K
/ o /o
1B Ay = fgfgp;\bzwl
K
< [;g;gpllajlloo][; (LAY
< Aol max |bifl1]
< [ Anfloo (K21 Br o] (A.5)

where we use Holder’s inequality for the first inequality, and l1, [, norm relation for the other inequalities.
Next use (A.5) in (A.4) to get
141 B1 Al [l < K[ Av]3 1B lloo-

Q.E.D
Next we provide a lemma that is directly from Lemma A.2 of Fan et al. (2011).
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Lemma A.2. (Fan et al. (2011)). Suppose that two random variables Z1, Z5 satisfy the following exponential
type tail condition. There exist r,,,r,, € (0,1) and b,,,b,, > 0 constant such that for all s >0

PlIZi] > 5] < exp(l — (s/b2)™7), 1=1,2,
Then for some r,, >0, and b, > 0
P|Z1Z5| > s] < exp(l — (s/bz,)"2).
We provide now the following maximal inequality due to Theorem 1 of Merlevede et al. (2011), and used

in the proof of Lemma A.3(i) and proof of Lemma B.1(ii) in Fan et al. (2011). To that effect, we provide a

general assumption on data, and then show the theorem and its proof.
Assumption L1.(3). X,,Y; are vectors of dimension d, d, respectively, fort =1,--- ,n. They are both
stationary and ergodic. Also {X;,Y:} are strong mizing with strong mizing coefficients are satisfying

a(t) < exp(—Ct"v),

with t, a positive integer, and rq,, > 0 a positive constant. (ii). We also let X,,Y; satisfy the exponential tail
condition for j1 =1, -+ ,dg,jo=1,--- ,dy

P[| X, t| > 5] < exp(—(s/ba)"™),
for positive constants b, 1, > 0, and

P, 1| > s] < exp(—(s/by)"™),
with positive constants by,r, > 0. Also we need to assume 3r;* +rypt > 1,3r, 1 +rpt > 1.
Theorem A.1. Under Assumption L1, (Fan et al. (2011)).

P | max max |2y (X1t Yio . — EXGy 1Y 1)) S s:|

IN

1<j1<dy 1<j2<dy n

dody {nexp (’(gf)7 )
s (i)

_(n8)2 (ns)wlﬂ)
+ exp ( Can exrp <C5(lnns)7>)}

Proof of Theorem A.1. This is a simple application of Lemma A.2 above with Assumption L1 for
Theorem 1 of Merlevede et al. (2011), and Bonferroni union bound. Q.E.D.

with 0 < v < 1, and v is defined as v~ := 1.5r; 1 + 1.57“;l + r;yl.

PART. 2:

We start with an important maximal inequality applied to factor models in nodewise regression setting.
Some of the results are already in Lemma A.3, Lemma B.1 of Fan et al. (2011). We show them so that
readers can see all results without referral to other literature. We also provide two new results Lemma
A.3(ii), (v) due to nodewise regression interaction with factor models.

Lemma A.3. Under Assumptions 1-3, for C > C,, > 0, with m = 1,2,3,4,5 with C,, that is used in
Theorem A.1.

(i).

1<j<pi<i<p ' m

1 — 1
P | max max |— E sy — Euggugy| > Cy/Inp/n| = O(—2)
p
t=1
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(ii). Denote U_; : p—1 x n matriz in (4), and let the | th row and t th column element U_j,;; and n;
as n x 1 vector, and the t th element as 1;,

P | i i U saanl > OV =0
(iii).
P | max max Fka tuje| > Cy/lnp/n —2

1<k<K 1<j<p n

(). Let fr, 1, fr,t Tepresent ki, ko factors (elements) of the vector fi

P | max max |*kaltfk2t_Efkltfk2t|>C\/lnn/n 7

1<k <K 1<k2<K N

P | max max |*ka ;] > C/Slnp/n —2

1<k<K 1<j<p 'm
Proof of Lemma A.3. (i). This is Lemma A.3(i) of Fan et al. (2011).
(ii). The proof follows from Theorem A.1 and Assumption 3 provides the tail probability through the
same algebra as in p.3346 of Fan et al. (2011).
(iii). This is Lemma B1(ii) of Fan et al. (2011).
(iv). This is Lemma B1(i) of Fan et al. (2011).
(v). The proof will involve several steps and this is due to interaction of factor models (fx ) and nodewise

error (n;,¢). Start with the definition of

1
Mg = e —ul = [lujeul;y] (A.6)
]
= wy, (A7)
1 . .
where Q; := p x 1 vector, and u; := [u;,u’;,] which is 1 x p row vector. Next
—v;
- = = Q
%@%%uzﬂ%” 1@%%&uzﬂw'
< — Q,
S ka e max 19
- IE%JIE&XKQZ i tujt| max ||Q 1 (A.8)
where we use (A.7) for the first equality and Hélder’s inequality for the first inequality.
Consider
max [|Q;]1 <1+ max ||7J||1, (A.9)

1<j<p

37



where we use {2; definition. Noting that ¥, _; _; is p — 1 x p — 1 submatrix of X,, consisting all rows and

columns of ¥, except the j th one. See that

Vi n g3
=== > Figmin(L, _j_;) > Eigmin(,) > ¢ > 0.
ViVi
Then -
Vj&n,—g,—57;
N2 = Ay < TR TT T o o A.10
||PyJH2 ’VJ’YJ = EngZTl(En) = 0, ( )

where we use the last inequality above for the first inequality in (A.10) and (B.48) of Caner and Kock (2018)

for the second inequality in (A.10), given our Assumption max;<;<p Euit < C < 0. Hence

max [l < V5 max [yl < VEC = O(V5), (A1)
by (A.10). So clearly by (A.9)(A.11)
ax [, = O(Vs). (A.12)

Next, use Lemma A.3(iii) and (A.12) in (A.8) to have

Vﬁ} O(1/%).

P - Z >C
e B 5 2 Fanie

This also implies that since X := (f1,--- , fn) : K x n matrix, and n; := (nj1,--- ,Mjn) nx1

s X ol = 0,50 (A1)
Q.E.D.

Now we start defining two events, and we condition the next lemma, which is /; bound on nodewise
regression estimates, on these two events. Then we relax this restriction, and show that an unconditional
result for l; norm of the nodewise regression estimates after finding that these two events converge in
probability to one. Define

- /el
Avi= {2 max ;07 /nlloe < A, (A14)

and define the population adaptive restricted eigenvalue condition, as in Caner and Kock (2018), for j =
1,---,p, and let g, represent the vector with S; indices in d;, and all the other elements than S; indices in

d; set to zero

#*(s;) := min 03%n, 5% 5 € RP — {0}, ||6se|l1 < 3./55]19s, | (A.15)
I s err1 10s,12 108l < S4/85110s;l2 ¢ )
and the empirical version of the adaptive restricted eigenvalue condition is as follows, with U_j tp—1xn
matrix
32(s,) . 84 (U_;U"; /n)s; L5 e RP — {0V, |0se |l < 3/ 105, | (A.16)
S ) = B —— S , c < . . , .
¢~ (s 6jglé£1,1 ||(5Sj||% {0}, [[0se]l1 < 3y/5510s, [|2
and the event is for each j =1,--- ,p

Asj = {9%(s;) > ¢%(s;)/2}.

We have the following /; bound result.
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Lemma A.4. Under Ay N Ayj, with A, >0 in (A.14)

24,5
N _ .
e 119 =l = Z5g = Op(nd),

We specify the formula and the rate for A, in the next Lemma.
Proof of Lemma A.4. Start with 4, definition in (24)

n p
i — UL 45017 + 220 Y 151 < Ml — U707 + 220 > . (A.17)
j=1 j=1
Use (22) to have u; — (A]',j’yj = Nzj — U/,j
side term and first right side term in (A.17) to have

(% — ;) and this last equation can be substituted into first left

P P
Inas = UL =3l + 22 Y 15l < gl + 220D 1yl (A.18)
j=1 j=1

Simplify the first term on the left and the first term on the right side of (A.18),

p / / P
A A~ A an7 A~
107535 = )%+ 2X > 1451 < 2|7jn 23 =)+ 22 > 1l (A.19)
=1 =1

Since we use A; and then Hdélder’s inequality

P P
107535 = )12 42X > 1351 < Aallds — w5l + 220 > 1l (A.20)
j=1 j=1
Use [[9;]l1 = [19s,l1 + [|9s¢ll1, on the second term on the left side of (A.20) (S; represents the indices of
nonzero cells in row j of the precision matrix, and S represents the indices of zero cells in row j of the

precision matrix).

P
107555 = A2+ 22 > sl < Aallds = il + 200 > 1l = 220 D> 1Al (A.21)
jese j=1 jJES;
Now use Zjegq |7;] = 0 in the second term on the right side of (A.21) and use reverse triangle inequality
J
107555 = )%+ 220 D 145 < Aallds = vl + 22 D 135 — - (A.22)
JESS JES;

Next by [|9; = v;lls = [I¥s; = vs;[l1 + [|9s¢[[1 for the first term on the right side of (A.22)

107555 = )2+ A D 15l <33 Y 45 — - (A.23)
jGS; JES;

Use the norm inequality [|§s, — s, [l1 < /5;l9s; —7s; 2

107585 = )l + A D 5] < 3An /551148, — s, ll2- (A.24)
JESS

Now ignoring the first term above and dividing the rest by A, > 0, provides the restricted set condition

(cone condition) in adaptive restricted eigenvalue condition
1Fsg Il < 3v/5ill9s; — s, ll2- (A.25)
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Set §; = 4; —; in the empirical adaptive restricted set condition in (A.16), then use the empirical adaptive

restricted eigenvalue condition in (A.24)

. 10235 = 7i)lln
10535 = )17 + X ZI%I<3AMF#.

jess ?(s5)

Then use 3ab < a?/2 + 9b?/2 with b = ¢(‘/S)7, a= HU (Y5 =) |ln-

07,65~ I3 | 9x3s,
107563 =)+ 2 3 gl <
by ? 202(s,)

Use Ay; in the first term on the right side and simplify

N 1825
102555 = )la + 22 D 1451 < (s )j
JESS
This implies
- 18)2s;
U (3 — )12 < =222, A.26
” j( J ])H ¢2(3j) ( )
Now to get I; bound, ignore the first term in (A.24) and add both sides A, ||¥s; — 7s; 11
A D B+ A D0 1 =l = AallAs = il < Aalldsy — vs, 1l + 30 /55114, — s, lle- (A.27)

JESS JES;
Use the norm inequality [|§s;, —vs; 1 < /551|¥s; — s, |2 for the first term on the right side of (A.27)

)‘HH%' _IVJ'”l < 4)‘71\/873'”’3'51‘ _’ijHZ'

This can be simplified as
195 = il < 4550195, — s, ll2-

and can use the empirical adaptive restricted eigenvalue condition in (A.16)

145 =l <4f|(g()»>lln'

Next use (A.26) and Ajy; to have
2U\,s; _ 24M,5

195 = il < < e
T P*(s5) — ¢*(5)
Last inequality above is true by noticing s; < 5 by 5 definition, and then by definition of population adaptive
restricted eigenvalue condition ¢?(s;) > ¢?(5).Q.E.D.

Now we evaluate two events, in the next two lemmata.

Lemma A.5. Under Assumptions 1-4

P(AY) 2 1-0(5) = O(=5),
and
Ay 1= C[KQ@ + \/?] =0 (sz/inp + @) ,
with C' > 0.
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Remark. If we add Assumption 5 we can show as in (A.51), the rate for A, simplifies to

An = O( \% lnp/n)

Proof of Lemma A.5. Start with A; definition in (A.14). Use (21)(23) and Mx = I, — X'(XX')71X

is idempotent
N , N -1
Ugnes _ U-gny (U—jX > (XX > <X77a) (A.28)

n n n n n

Next we use triangle inequality in [, norm

n., .U’ U_ina; U_jn, U X'\ ( XX\ (X
II%HOO—II#IIOKH — oo + 1l — ) lloo (A.29)

n n

Note that U is p x n matrix and U_; is the p — 1 x n submatrix, which is U without j th row. So

max | —”73 oo < C\/Inp/n, (A.30)

1<j<p

with probability at least 1 — O(1/p?) by Lemma A.3(ii). Next for the second right side term in (A.29)

v/ N\ —1 . v/ 1 )
mae | (ZX) (XX XY e e S () max 28 . (A3)
< n 1<5<p n n

n n

by Lemma A.1(i). We evaluate each term in (A.31). Note that X = (f1,--- ,fn) : K xn, U:pxn

X "
max | o < IUX /]| = max max |2ot=t"stfht
lsjsp” M 1<j<p1<k<K n

Then by Lemma A.3(iii)

P[max max |quthkt| < Cy/Inp/n] > 1 —0(1/p?). (A.32)

1<j<p1<k<K n
Then by Assumption 4 and Lemma A.3(iv)
(XX /n) o < C, (A.33)
with probability at least 1 — O(1/n?). Next, since n; : n x 1, and 7, is the ¢ th element
max ||7Hoo = max  max Iﬁ Z Framjel. (A.34)

Then by Lemma A.3(v)

slnp 9
Plmax  max |E kamgtl <C\==1=1-00/p%. (A.35)

Combine (A.30)-(A.35) in (A.29)

U_. - sl l
max || =L < ¢ [K?M + \/”p] , (A.36)
SISPp n n n

with probability at least 1 — O(1/p?) — O(1/n?).Q.E.D.

Lemma A.6. Under Assumptions 1-5, for j=1,---,p
P(As) >1— O(l/pQ) — O(l/nZ).
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Proof of Lemma A.6.
For each j = 1,--- ,p, add and subtract 0%(U—;U” ;/n)d;

U050 _ 605008  §U-UL8 | 603U,
n n n n
SU_;U" 5, |5;U_JU/ 0 5;U_jU’_j5j|
- n n n

Next add and subtract M from the right side of the above inequality

SU_;U" ;6 8 S, —j,—50; lcs;U iU 6, 5;zn,,j,,j5j|
n - n n n
6,030 ;6;  §jU_;U 5
S b b A A (A.37)
n n

Note that second right side term with absolute value in (A.37) can be bounded by using Holder’s inequality

twice

GO UL 65 SUUL 0,

—595

U0, U,U

n n

< |9,
. . 16,13

o}

By the same analysis applied to the first right side term with absolute value in (A.37) and simplifying
SLU_;U” 0, 05, —j,—j0;

n n

19511

—Jj i —Jj /—g —Jj /—j
050, U4U + Uit B N [ A.38
n n ||oo || n ,—Js J” ( )

In (A.38) we start considering by (21)

TS -1
U0, ULUL  ULX <XX’) XU, (A.30)
n n n n n
Using (A.39) Lemma A.1(ii), and (A.32)(A.33)
U_;u, U_;U, U_; X XX _
— - Lo < K*||—2 H (=)l
n n
2
< CK:”) , (A.40)

with probability at least 1 —O(1/p?) — O(1/n?). Next in (A.38) see that ¥,, _; _; is a submatrix of £,, and
U_; is a submatrix of U as described above
U_;U’ uv’

172 = Sl <

—Yullee < Cy/Inp/n, (A.41)

with probability at least 1 — O(1/p?) by Lemma A.3(i). We need to provide some simplification for ||§;[%

term in (A.38). Next since cone condition in adaptive restricted eigenvalue condition is satisfied in (A.25)

19551l < 3+/5;110s; [l2-

Then add [|0s, |1 to the left side and right side and use the norm inequality that puts an upper bound on [y

in terms of Iy

[0l + 1145, [I1 16511 < ll0s; [lx + 3+/5510s; [|2

4/5119s;l2-

IN
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So we can have

19117 < 16s; A.42
165,13 = 105 (4.42)

Now divide (A.38) by ||ds,[|3 > 0 and use (A.40) and (A.42)

SU_;U" 65/ o OTn il
165, |13 - ||5 113
!/

U_.U".
= 1655 L = Sl (A43)

X/ XX/ B
165, K2 T2 2 (R

Next using empirical and population adaptive restricted eigenvalue definitions, by minimizing over d;

U_; X' XX _
Plsg) = ¢2(s5) — 165 K2 =2 |4 () e

/

U_;U’
— 168;” n J _En,7j7fjHOO' (A44)

Note that if we have with with probability approaching one (wpal from now on)

U_;X XX’ Uu_;U’
16s; | K2 —~ || 1) oo + 1655 Jn L= Sl | < 0%(s5)/2, (A.45)
we have with wpal
$*(s5)/2 = 6°(s5)/2.
Thus we need to show that following probability goes to zero
- U_; X' XX’ U_;U!
Pl6?(s5) < ¢%(5;)/2) < P63 (K| =2 |2 [1(=) oo + 1772 = Snjimilloe) > 6%(s9)/2] (A46)

Set €, 1= 16s;[K%Inp/n + /Inp/n]. Clearly by (A.40)(A.41)

U

U_; X' XX _ U_,;U’.
PGS (K2 =L |2 () oo + |22 = By ll) > 0] < O(/5) + O(1/n%). (A7)

Since €, — 0 by Assumption 5, by (A.46)(A.47) P(¢?(s;) < ¢%(s;)/2) — 0.Q.E.D.
One crucial point is that we need to get a low bound for N?_; A;. In that respect from (A.45)

n

<168a ) X g D e 1 2 s e < ¢2<sj>/2> C (B (s5) > ¢*(5,)/2) = Aoy.

Then clearly by ¥, %, _;—; definitions and population adaptive restricted eigenvalue condition

U_; X' XX’ U_;U’,
165 [K°|| Bl (=) e+l Jn = —jllee]
vx’ o, XX’ uv’
< 165[K7|——]I5% (=)~ 1||oo+|| = X loc]
< $*(9)/2< ¢>2(8j)/2~ (A.48)

So (A.48) implies that for j =1,--- |p
[165[K2(|UX" /n|5 (X X" /1) " Hloo + [UU" /11 = Bn[loc] < ¢%(5)] C A
This means

165K UX /nll3 (X X" /n) " oo + UV /1 = Bnlleo] < ¢%(5)] € ME_1 As.
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Next by (A.33),(A.41) via Lemma A.3(iii)

IA

PQA6SK?|UX" /]2 (X X" /n) " Hloo + |UT" /1 = Balloc] > ¢*(5))
O(1/p%) + O(1/n?). (A.49)

p ((ﬂ§:1A2,j)c)

A

We analyze the A, rate here. See that by Lemma A.5

An = O(K2§1/2l%p +4/ l%p). (A.50)

But under Assumption 5

l l
K262 [T = (K252 i/ + 1)/ Inp/n
n

= [o(1) +1]y/Inp/n
= O(y/Inp/n). (A.51)

We provide the main consistency result for residual based nodewise regression result. This is new in the

literature due to its factor model.

Lemma A.7. Under Assumptions 1-5

max [|9; — il = Op(Ans) = Op(sv/Inp/n) = 0p(1).

1<j<p

Proof of Lemma A.7. Use Lemma A.5-A.6 and (A.49) to have

P(A N {NE_  Agj}) > 1 — O(1/p*) — O(1/n?).

Then combine above with Lemma A.4 to have the desired result via Assumption 5 and (A.50)(A.51) to have
An§ =0(1).Q.E.D.
Next, we provide proof of consistency for the estimates of the reciprocal of the main diagonal elements

of the precision matrix.

Lemma A.8. Under Assumptions 1-5

Inp
22 12| — si/2, 22 ) =
1rggmécp|TJ T | =0, (s - > op(1).

Proof of Lemma A.8. Start with %JZ definition in (25). For all j=1,--- ,p
7=y — UL A)/n

and 7-],2 = En]?.,t7 with 0, 1= u;; — “/—j,t7j7 and n; = <77j,17 . 777j,n)l :n x 1 vector 1,; = Mxn;. Using (22)
for @; in %].2 definition we have
77533‘771‘7‘ B n;jU/_j('%’ - %)
n n
N ViU—gtas  U—UL; (%5 — Vj).
n n

>
S
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Use triangle inequality

! . (A .
max |77 — 77| < max |m — 77| + max |nz] =50 %)|
1<ji<p 1<j<p n 1<j<p n
LU_U" (B —
+  max |’YJ J779w| ax |'Yj J ](7] ’Y])|- (A.52)
1<5<p n 1<j<p n

Consider each term in (A.52) carefully. Start with definition; My :=I,, — X’(XX’)"'X, and My being

idempotent.

/ . !y
max ‘77@,7771?J - j2| <  max |77]77J —TjZ|
1<j<p n 1<jsp n
/'X/ XX/ —1X )
+ max |77] ( ) L | (A.53)
1<j<p” 1 n n

First, exactly as in Lemma A.3(i) with Assumption 2(ii)(iv), 3r; * + ;' > 1 we have by Theorem A.1

max |w — 77| = Op(\/Inp/n). (A.54)

Then note that Xn; : K x 1 vector, and XX’ : K x K matrix

/-X/ XX, —1X ) /»X/ XX, —1X )
max | ( ) W< max 5 max ||( ) Xy
n n

1<j<p' n n 1<j<p’ m | 1<i<p n

_ n/'X/ XX/ -1 )(77
max | ]Kn( ) e e K

1<j<p n Il 1<j<p

[ X' XX\ X
ma |2 ] [Kn( o mmae 225
<ji<p n n 1<j<p ™ n

2
'~X/ N\ —1
— | K max ||”ﬂn|001 I (XX> oo (A.55)

1<j<p n

IN

IA
=
=
7

g

where we use Holder’s inequality for the first inequality, and (A.1)(A.2) for the second inequality, and the
norm inequality between [, s norms for the third inequality (i.e. ||z|1 < dim(z)||z] 0o, dim(z) : dimension
of the vector x). Next by (A.33)(A.34)(A.35), we have by (A.55)

/»X/ XX/ —1 X
max |2 ( > Ly op(K2gml). (A.56)
n n

1<j<p n n

Combine (A.54)(A.56) in (A.53) to have the first term on the right side of (A.52) by Assumption 5 to get
the last equality in (A.57)

My i M _lnp Inp Inp
121;?;7 |JTJ - 73'2\ = Op(Kst) + Op(\/ 7) = Op(\/ 7)~ (A.57)

See that by Lemma A.5 (wpal) and (A.14)
75U /nlloe < An/2. (A.58)

Then we also have by (A.51) A, = O(y/Inp/n). In (A.52) consider the second term on the right side by
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(A.58), Lemma A.7, with rate for A, in (A.51)
n;jU/ ] n;ij/—J
1<j<p n j o 1<j<p n ||°O 121?2( ||’Y] 7]”1

|
<
>
2
IN
5
<

= 0, (slnp> : (A.59)

Consider the third term on the right side of (A.52), where we use Holder’s inequality

SUEYN

IN

p I[max [|v;l2)[ max |

= 00,/ M)
_ (f l”p> (A.60)

for the rates we use (A.11)(A.58)(A.51). Last we consider the fourth term on the right side of (A.52). To get
a better rate, we start with Karush-Kuhn-Tucker (KKT) conditions in (24). The following p — 1 equations
form the KKT

U_J U, U_;i,
A g 2% g
kj + N n p—1
where &; is the sub-differrential and explained in more detail in p.160 of Caner and Kock (2018) which
replaces the gradient in non-differential penalties. Also for all j=1---,p
1#5]loe < 1. (A.61)
Use (22) for 4
U_jU’ U_]U’ U_ it
Anfj = — L =0, 1.
kj+ n Ay — n 9 n p—1
Rewrite above equations as
u_,u’ . U_ i), .
n j(Vj_rYj): ?jlxj_Anfij

Then by triangle inequality and (A.51),(A.58)

o0 -y
T A — A e < =R AR e
e | e R 1
U
< 4
n

= 0,/ + 0,0/ ™)
_ 0,,(,/“%29). (A.62)

Then the fourth term on the right side of (A.52)

LU0 U_,;U’,
pax vy — (3 — )l < max |1yl max | —"—(%; — %)l
= Inp
= O(V5)0p(y/ —)
slnp
= Op(y/ =), (A.63)



where we use Holder’s inequality, (A.11)(A.62). Clearly, (A.60)(A.63) are the slowest among the four terms
on the right side of (A.52), and we use Assumption 5 to get the desired result.Q.E.D.
Proof of Theorem 1. First, we derive some of the key results. By definition of 7']-27 forj=1,---,p,
and since Q : X1, with Assumption 1
, 1 1

T 0 2 Bigmaz(a) ~ Dlgmin(En) = : A.64
R Q;; — Eigmaz(Q) igmin(Xy) = ¢ >0 (A.64)

Note that minlgjngjQ is bounded away from zero. Next

min 77 = min |77 — 77 + 77| > min 77 — max |7} — 77| (A.65)
1<j<p 1<5i<p 1<j<p 1<j<p

is bounded away from zero wpal by Lemma A.8. Then

1 1 |72 — 72 slnp
max \A—Q - —2| = max % = 0p(4/ T) = 0,(1). (A.66)
SISP T =I= j

A c, C
max ([ — i = max =2 - =
<j<p 1<j<p T, T
1 1 A )
< max |= — —|+ max |25 - 2|y
1<j<p T; T; 1<j<p 7T; ;
11 Yo%
= max | — o[+ max |5 - 5+ 5 - 5l
<i<p T; 5 1<j<p T3 7; ; T
1 S
= max ‘Af2 - —2‘ + max M
1<j<p T; T; 1<5<p 7
+ Il max o — |
15 G 5 T

= 0,/ T 0,05/ ™2) 4 0317210,/ T2
= Op(é\/?)ﬂp(l),

where we use (A.66), Lemma A.7, (A.11) for the rates, and the last equality is by Assumption 5.Q.E.D.
Part 3:

After the proof of Theorem 1 we provide lemmata that lead to proof of Theorem 2. We start with a lemma
that is related to norm inequalities. First define generic matrices, A1 : pxX K, Ay : Kxp, D1 : KX K, Dy : pXp,

also define a row vector 2’ : 1 X p, and also define p x p matrices Az, Ds.

Lemma A.9. (i)
|A1D1 Aol < pK'2(| A i || Azllso | D1 i, -

(ii).
[A2D2 A1 ||oo < pllAzlloo | A1 [loc || D21 -
(iii).
|2’ A3Dsll1 < [[z[|l1[| Dslle.c || A3l -

(iv).
[A2D2 A1 [[oe < pl|Azllool| At [loo | D21, -
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Proof of Lemma A.9.
().

[A1D1 Az, < [|A1lli [I1D1 A2,
< Al [Pl Azllso]l D1 1o
< pllAilli |l Az)loo[K?| Dy l1,]

where we use submultiplicativity of matrix norms for the first inequality, and submultiplicativity of matrix

norms and the following for the second inequality,

A = A < A
[ Az2(li.  ax, | A5 & ll1 plgﬂixmrg?gp\ 2.k s

where Aj ;, Ag i; are the k th row of Az, and k, j element of Ay respectively. Then for the last inequality, we
use a matrix norm inequality that provides an upper bound for /., matrix norm in terms of spectral norm
in p.365 of Horn and Johnson (2013).
(ii).
[A2 D2 A1 |oc

IN

[[Azlo | D2 A1 11,
< pllAzllcollArlloo | D2lli

A

where we use section 4.3 of van de Geer (2016) for the first inequality, and the second inequality can be seen
by defining D ;s the row of Dy, and A; i, as the k th column of A; and using Holder’s inequality

p

D2 Ay, = 1g}j’L§XKZ|D23A1k|< | ax 1HD2,J
j_

|11 A1k lo

IN

p max Dzl ( max [l41k]e)

= plDalli. [| A1 co-

(ii).

A

|2’ AsDsl|y = || D3 Az [l D3 Ag]l1,
Izl 1D e, 1451,

[l D3l [[ Az licc

IN

where we use p.345 of Horn and Johnson (2013) for the first inequality, and I; matrix norm submultiplicativity
for the second inequality, and the last equality is by seeing that transpose of [; matrix norm is l,, matrix

normm.

(iv).

[A2D2A1 [0 < [|Az]lool|D2Ax |1,
< | Az2lleolI D21, | A1 lli,
< pllAzllsollDalli, [ A1 ] oo

where we use p.44 van de Geer (2016) dual norm inequality for the first inequality, then for the second
inequality we use submultiplicativity property of matrix norms,and for the last inequality we use || A1 ||;, 1=
maxi<g<K Z?:l |A1,jk| < pHAl”om where Al,jk is the 7, k th cell in Ai. Q.E.D.

48



Lemma A.10. Under Assumptions 1-6

(i)-
1B = Blii. = Op(K*\/inp/n),
(ii). )
[Blli. = Op(K),
1Blli.. = O(K).
(iv).
1Bl = 1By = O(p)-

Proof of Lemma A.10. We start with reminding X : K xn, X = [f1,-+-, ft, -+, fn], where f; : K x 1
vector, and u; : n x 1 vector, with least squares estimate Z)j —b; = (Xr)f' )’1% for j=1,---,pasin p.3347
of Fan et al. (2011).

(i).

> o Iy _ _
1B~ Bl = o 18~ 8l = mas b; ~ byl
XX _ Xu,
= e () Xy,
<j<p n
XX’ Xu;
< —1
< IEEY s 12,
XX, Xu,
< J
< 13, [Klrgag 1)
<

Xu;
1/2 -1
K[K 1= - X ||z2] 1 [ = oo

= O(K*?)0,(y/Inp/n),

where we use [, norm definition for the first equality, and for the first inequality we use p.345 of Horn and
Johnson (2013), which is ||Az||1 < ||A]li, ||z|]1 for a generic matrix A, and generic vector z, for the third
inequality we use the upper bound of /; induced matrix norm in terms of spectral norm, as in p.365 of Horn
and Johnson (2013). The rates are from (B.3)(B.4) of Fan et al. (2011), and Lemma A.3(iii).
(ii). See that
1Bl = max x (1511 = O(K), (A.67)

by Assumption 6 that |b;i| < C for a positive constant C' and uniformly over j =1,---,p, k=1, --- | K.

Next using the results above with Assumption 5, we have
IBll1.. = Op(K).

(iii). This is proved in (A.67).

(iv). The proof of (iv) is the same as in (iii) above except, with by as the &k th column of matrix B.
1Bl = max [lb[ls = O(p),

by Assumption 6. Q.E.D.
Before the next lemma, we extend two following results which is Lemma B.4 in Fan et al. (2011) to the

case of increasing maximal eigenvalue of errors.
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Lemma A.11. Under Assumptions 4,6,7(i), with ¢ > 0,C > 0, and positive finite constants (i).

cp

Eigmin(B'QB) >
CI'N

(i1).
I([Covfi] ™ + B'OB) |1, = 0<%">.

Proof of Lemma A.11. We follow the proof of Lemma B.4 in Fan et al. (2011). (i). Since Q := X1

Eigmin(B'QB) > FEigmin(Q)Eigmin(B’B)
= [Eigmax(%,)]” ' Eigmin(B'B)
> P
- C’,"n’

by Assumption 6, 7(i).
(ii). Using Assumption 4

BEigmin|([Covf;]™' + B'QB)| > Eigmin(B'QB) > L

> G (A.68)

We have the desired result by (A.68), and since for an invertible matrix A, Eigmax(A~1) = 1/Eigmin(A).
Q.E.D.

As described above in the main text, we form the symmetrized version of our feasible nodewise regression
Q&

estimator for this part of the paper: stm =

Lemma A.12. (i). Under Assumptions 1-6

| B'Qsym B — B'QB|1, = O, <pK max(s, 512 KY/2)/ l"p) :

n
A Tn
1l = O, (p) ,

Proof of Lemma A.12. (i). We start with simple adding and subtracting(B = (B — B) + B),
stm = (stm — Q)+ Q) and triangle inequality

(ii). Under Assumptions 1-4, 6-7

with G := [[covf] ™! + B'Quym B~ 1.

|B'QgymB — B'OBll < (B — B) (Quym — (B — B)l|s
+ 2[(B = B) (Qym — QBlls + [|(B - B)QB - B)||s
+ 1B (Quym — Q)B|lo + 2/|(B — B)'QB||w. (A.69)

Analyze each term in (A.69), and by Lemma A.9(ii)(iv)

1B = B Quypm — D(B—B)e < =

2
b NB - By@ -G - Bl

I(B = B)' (2= 2)(B ~ Bl

PiA - PiA -
< YB3 BIZLIO Q. + LB - BILIY -,

Kinp sv/Inp
= 20,50, (A70)
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where we use (B.14) of Fan et al (2011) which is: ||B — Blloe = O,(4/ Kflnp), and Theorem 1 with

192 = Qo = 12— 2y, = max 192 = 11, (A.71)
)P

since I; norm of transpose of ) involves rows of  (hence columns of (/).
For the second term in (A.69)

I(B = B) (Qsym = Bl < (B~ B)(Q~Q)Bll/2

+ (B - BY(@ —Q)B||w/2
p ~ A

< 2IB — Bllwl Bl - 9.
p ~ A

+ 2B = Blocl Bl - 2,

20,/ “)0(1)0, (3 D), (A72)

where we use, Qgym, Lemma A.9(ii)(iv) for the first-second inequalities, (B.14) of Fan et al. (2011), Assump-
tion 6, and Theorem 1 and (A.71) for the rates. Now consider the third term in (A.69)

I(B = BYQUB =Bl < plB-Bl%|

= 410, DO, (A7)

where we use Lemma A.9(ii) for the first inequality, (B.14) of Fan et al. (2011), and [|2[|;_, := maxi<j<p [|[1 =
max; <j<p [|Q;]]1 = O(5'/2) as in (A.12). We consider the fourth term in (A.69)

A 1 A 1 A
1B @y~ DBllos < 5IB(@~ Bl + 5B — 2Bl

p - p A
< SIBISIQ = Qe + SIBINY =,

= HOWPO, 5y "), (A7)

where we use symmetry of stm, Lemma A.9(ii)(iv) for the first and second inequality, and Assumption 6,
and Theorem 1 (A.71) for the rates. Also analyze the fifth term in (A.69)

I(B — B)Q2B]|x

IN

Pl B = Bllosl| BlloslI€1.

= 0,/ S 010G ), (A7)

where we use Lemma A.9(ii) for the inequality, and the rates are by (B.14) of Fan et al. (2011), Assumption

6, and [|Qf;.. = maxi<j<, [|[[li = maxi<j<p [|]1 = O(5Y/2) as in (A.12). Since by Assumption 5,
VKlinp/n = o(1), the slowest rate is the maximum of the rates (A.74)(A.75) above. So
¥ > ’ = <1/273-1/2 Inp
| B QsymB — B'QBlloc = O, | pmax(5,5/°K/°) - (A.76)

Then by norm inequality tying spectral norm to ||.||oc norm in p.365 of Horn and Johnson (2013), and since
B'QyymB — B'QB is K x K matrix

P P l
|B'Quym B — B'QB|1, < K| B'QuymB — B'QB||o = O, <pK max(3, 5/2K/2), | ”p> . (A.77)
n
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Q.E.D.
——1
(ii). Since covf; ,(covf;)™! does not involve precision matrix estimate, we proceed as in Fan et al.
(2011), Lemma B5(ii). Specifically (B.20) of Fan et al. (2011) provide

lcovf )™ — [covfi] M1, = Op(/Inn/n).

Using (A.77) and the equation above we develop a larger bound

(feovfi] ™ + B'QuymB) — ([covfi) ™" + B'QB)|1, = O, <pK max(s, 5'/2K"/?) W) . (AT8)
We have by (A.68)
Eigmin[[covf;)”* + B'QB] > Cc,—f, (A.79)
by Assumption 6, and since r,/p — 0. Note that
- _1/27-1/2 maz(Inp, lnn)
pK max(s, s/ K'/%)\| ———————= = o(p/rn),

n

since by Assumption 7, r, K max(s,5/2K'/2),/ w =0(1). So (A.78) has the rate

—

I([covfi) ™! + B'QynB) — ([covfi] ™ + B'QB)|l1, = 0p(p/rn)- (A.80)

Then using Lemma A.1(i) of Fan et al. (2011), with (A.79)(A.80)
Eigmin(jcovf)) ™! + B'Quym B) > Cf—p7 (A.81)
Tn

wpal with 7, << p as in Assumption 7. By (A.81), and seeing that for invertible matrix A, Eigmax(A~1!) =
1/Eigmin(A),

—

00" + By B) s = 0,(2).

Q.E.D.
We restate the definitions of major terms that are used.
A —_— 71 A A A
G:=(covfy + B’stmB)_l. (A.82)
G = (covf* + B'QB)~L. (A.83)
Next, remembering
L:=BGB' L:=BGB. (A.84)
and
b = 12 K/ max(s, 51/2 K1) | RexUng, inn) (A.85)

n
We have the next lemma which will be instrumental in proving Theorem 2.

Lemma A.13. Under Assumptions 1-4, 6-7

||i’ — L1, = Op(ln) = 0p(1).
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Proof of Lemma A.13. Start with, by adding and subtracting and triangle inequality

IL L. < I(B=B)G(B~B) i + (B~ B)GB|li.,

+ |BG(B - B)'|. +|BGB'— BGB'|;_. (A.86)
Consider the first term in (A.86)

I(B ~ B)G(B ~ B)|..

A

< pK'Y?|B = B 1G], | B — Blls
Inp Tn Kinp
= pK'20,(K*?y T)Op(;)Op( )

n

— 0, (r k2P (A.87)

n
where we use Lemma A.9(i) for the first inequality, Lemma A.10-A.12, and (B.14) of Fan et al. (2011):
|B = Blloo = O, (1/E™2) for the rates. Next in (A.86), we consider the second term on the right side

n

I(B=B)GB||l.. < pK'*|B— B |Gl Bll

Inp Tn Inp
= pKl/Qop(K?’/%/7)0,,(;)0(1) = Op(ra %/ =), (A.88)

where we use Lemma A.9(i) for the first inequality, and for the rates use Lemma A.10-A.12, and Assumption

6 which shows that factor loadings are uniformly bounded away from infinity. Analyze the third term in
(A.86).

|BGB =B < pK'?|Bli GllB - Bl
n Kl l
= PEPOK)0,(*1)0p(1] =) = Oplra K[ ZF), (A.89)

where we use Lemma A.9(i) for the first inequality, Lemma A.10-A.12, and (B.14) of Fan et al. (2011):
|B = Blloo = Op(1/ E"2) for the rates. Now we analyze the fourth term on the right side of (A.86).

n

IB(G — G)B'|li.. <pK'?||IBi..[IG ~GClli.|IBllsc (A.90)

where we use Lemma A.9(i). We have from (A.82)(A.83) and by submultiplicativity of /o matrix norm
(spectral norm)

~ ——1 A A ~
G IGlliall(covfe  + B'QgymB) = (covfi + B'QB)|i,

0,(™)0(™)0, (pK max(s, 51/2K1/2) | max(inp, nn) )
p

IG =Gz,

IN

p n

l l
_ o, <r3plf<max(g, S22 m<P>) | (A91)

where we use Lemma A.12, and ||G||;, = O(ry,/p) by Lemma A.11, (A.78). Substitute (A.91) into (A.90)

via Lemma A.10

. Inp, 1
IB(G — G)B'|i. =0, <T§K5/2 max(, 5'/2K1/2) W) . (A.92)

Since the last rate is the slowest among all on the right side of (A.86) we have the desired result.Q.E.D.
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Proof of Theorem 2. From (34), and using triangle inequality

- _ / / A/ / N T O /
wax |0y =Tyl = max [T = Tylls < max [ — @51 + max €10 — Q; L0, (A.93)

We consider second right side term in (A.93). Add and subtract Q;I:Q via triangle inequality
max [|QLQ — QL < lrgfégp (€2 — Q) L + lr%a%(p (1€ (L2 — LO) 1. (A.94)

1<j<p
We analyze the first term on the right side of (A.94) and try to simplify by adding and subtracting (€2; —
Q) L, and triangle inequality

max Q) EQh < max (@) — Y LQ - Q) + max (@ - )L (A.95)

1<j<p 1<5<p 1<j<p
Then on the first right side term in (A.95) add and subtract (€; — Q;)'L(2 — Q) via triangle inequality
max [[(Q — )’ L(Q - Q)lh < max [[(Q; - 2,)'(L - L)(Q@ - ) + ax 109 — 25)"L(Q — D)1

1<j<p <j<p
Now for the second right side term in (A.95) add and subtract (€2; — €;)' LS via triangle inequality
5. _ONT < . _ON(T _ . 0.\ )
o (0, = ;Y B < a1 — ) (£ = D)0+ mas (@~ 2,20

Substitute the last two inequalities into (A.95)
. — QN0 < 0. —Q.N(] — O _
pax [|(§ — ) LOYL < max (€ — 2;)"(L - L)(©2 — D)l

+ max [|(Q; — ;) L(Q - Q)

1<j<p

+ max [ - 2)(L - L)Q)y

1<j<p

+ max ||(QJ — Qj)/LQHI (A96)

1<j<p
Now in (A.94) we consider the second term on the right side, add and subtract Q; L) via triangle inequality

/‘AA_ ’ < /‘A_ A ’ o R ) )
max |20~ LAl < max (L - L) + max [GLQ - D (A.97)

1<y

Also add and subtract Qg(ﬁ — L)Q to the first term on the right side of (A.97) above, to have
max [|QLQ - QLO|; < max [|Q(L - L)(Q - Q)|
<p

1<55< 1<j<p
17
+ max [[(L - L)
/ A
+ 1I£1J;agp||QjL(Q D)|;. (A.98)

Combine (A.96)(A.98) into (A.94) right side to have
max [[LQ—QLO; < max [(Q; — Q)" (L— L)(Q— Q)|

1<5i<p 1<j<p
+ax (@ - Q)'LQ - Q)
+  max 16 = ;) (L — L)
+ max [[(Q - Q)L
+ ax Q5L = L)(Q = Q)
+ max [|5(L — )2l
+ max 1L — Q)1 (A.99)
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To consider all the terms in (A.99) we need to find some rates about terms. In that respect,

1L, = |[IBGB'||i,
< Bl Bl Gl
< Bl 1Bl [K2)Gl1,]
- O(K)O(p)Kl/QO(%):O(rnK3/2), (A.100)

where we use definition of L for the first equality in (A.84), G is defined in (A.83), and we use submultiplica-
tivity of I, norm for the first inequality, and the relation between spectral norm and /., norm from p.365
of Horn and Johnson (2013) for the second inequality, and the rates are from (A.67), Lemma A.10, Lemma
A.11 and G definition. Next we need the following, by using the same analysis in (B.55) of Caner and Kock
(2018) via strict stationary of the data, or (A.12) here

192]l1,. = max ||l = max [|2;]; = O(V5). (A.101)

1<j<p 1<j<p

We consider each term on the right side of (A.99).

maz1<j<pll (@ — ) (L= L) Q=) < [jmax 1€2; — IFL — L, (A.102)
= [0p(5/Inp/n))?
< Op(l), (A.103)
where we use Lemma A.9(iii), and
10— 0 = ma 10— 0 = mas [0~ 1, (-104)

for the inequality in (A.102) and use Lemma A.13, and Theorem 1 for the rates.
We consider the second term on the right side of (A.99).

maz1<j<pll (@ — )Y LQ =l < [max [|Q) — I

1<j<p

= [0y(5v/Inp/n)?

X O,(rnK3?), (A.105)

where we use Lemma A.9(iii), and (A.104) for the inequality in (A.105) and use (A.100), and Theorem 1 for
the rates. We analyze the third term on the right side of (A.99)

Joax 1€, =)' (L= D)9l < [jmax 192 = I 1L = Ll 121
= O,(5y/lnp/n)
X O0,(1,)0(3Y?), (A.106)

where we use Lemma A.9(iii) for the first inequality, and for the rates, first see that by definition and since
1 norm of a row vector is the same as {1 norm of transpose of the row vector, (which is the column version
of the row vector, not the column of the same matrix) [|Q[;, := maxi<j<p [[2]1 = maxi<j<p |21, and
the rates are by (A.101), Lemma A.13, Theorem 1. Now consider the fourth term on the right side of (A.99)
Q- Q)L < Q; — Q|1 ||L]. 1€
121]3%(17 [1(€2; ;) i < gj&gp 1162 Gl Ll (120

= 0,(5\/Inp/n)0,(r, K3/*)O(5/?), (A.107)
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where we use Lemma A.9(iii) for the inequality, and Theorem 1, (A.100)(A.101) for the rate. Now consider
the fifth term on the right side of (A.99).

max [(E - D)@~ )1 < [was [90]1E - L | - 01l
= 0(5%)0,(ln)
X Op(5+y/Inp/n), (A.108)

where we use lemma A.9(iii) for the first inequality, and Theorem 1, Lemma A.13, (A.101) for the rates.
Consider the sixth term on the right side of (A.99)
max [9(E - D)2 < (max IR - Ll

O(5)0p(ln), (A.109)

A

where we use Lemma A.9(iii) for the inequality, and use (A.101), and Lemma A.13 for the rates. Now

analyze the seventh term on the right side of (A.99)

max 2L - Q)

A

= O30, (r K*/?)0,(5/Inp/n), (A.110)

[max 1% 1] Ll 12 = 2

where we use Lemma A.9(iii) for the inequality, and for the rates we use (A.100)(A.101) Theorem 1. Note
that among all (A.103)-(A.110), the slowest rate is by (A.109) by the definition of I, in (A.85) and by
Assumption 7.

So we have by Assumption 7

max [|€/LQ — QL1 = O, (5l,) = 0, (1). (A.111)

1<5<p

This ends the proof of (i) with using Theorem 1 and (A.111) in (A.93).
(ii). Since
yr = Bfi + uy,

as in Fan et al. (2011) with y;,u; being p x 1 vector of asset returns, and errors respectively at time
t=1,---,n.

p—p= [%Z(ft Ef)] Zutv

by Assumption 1. Consider

3

N Y 0) ||oo+||fzut||oo

1
< Bl EZ Eft”ooJr”ﬁzutHoo
t=1

S

—  O(K)O,(y/Inn/n) + O,(\/Inp]n),

Clearly by the proof of Lemma A.1(i) here we have ||Az|e < [|A]li.]
matrix A. Then by Lemma A.10(iii) and Theorem A.1 we get the rate.

|z||o for a generic vector x, and a
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Q.E.D.

PART 4:

Proof of Theorem 3. (A.2) of Ao et al. (2019) shows that the squared ratio of the estimated maximum

out-of-sample Sharpe ratio to the theoretical ratio can be written as

. (WTa)? wtnl?
[SRmosnw]Q _ pTE L w' T
SR* Wl pis, P
wTp

(A.112)

The proof will consider the numerator and the denominator of the squared maximum out-of-sample

Sharpe ratio. We start with the numerator using the definition, I' := X 1

pWTi T —p'Tu
Wl Ty

+ 1.

Consider the fraction on the right-hand side. Start with the numerator in (A.113).

WL — @ Tul/p = |WTh— @' Ti+p'Th—p'Tul/p
< W@ -D)al/p+ T (i — pw)/p
< W@ =T)(a—pwl/p+ 6/ (T =Dl /p+ 1T (i — p)l/p
= K5, max(K+/In/n,\/Inp/n)) + O, (K?3l,)
n

Oy (
0,(K**5r,maz(K+/In/n,\/Inp/n))
Op(K?5ly),

(A.113)

(A.114)

where we use (SA.18)(SA.19)(SA.20) for the rates and the dominant rate in the last equality is by Assumption

8 and l,, definition (35).

Next, we analyze the denominator in (A.113). First see that

plu  Eigmin(D)||u]3
P p

Then by Assumption 6

Iul3 = IBEf:|3 > | Efel|3Bigmin(B'B) > | Ef:3ep.

By Assumption 4
K

IEfl3 =Y Efy > Ke>0.
k=1

Combine (A.116)(A.117)
lull3/p > Ke > 0.

Since I' := X! by definition, and via Assumption 8

Eigmin(T) := Eigmin(E;l)

By combining (A.118) with (A.119) in (A.115)(A.116)

T

>

(A.115)

(A.116)

(A.117)

(A.118)

(A.119)

(A.120)



Then, by (A.114)(A.120) in (A.113)

WTi/p _ Wi —w'Tpul/p )
< +1=0,(K%,) + 1. A.121
W Tn/p W Tn/p b ) (A.121)

We now attempt to show that the denominator in (A.112)

ZTY, D
M&l

— (A.122)
Wyt
In that respect, bearing in mind that I' =3 ! is symmetric
@1, i _ A8, 0 — /TS, Ty s @18, 0 — p/'TE, Tp (A.123)
WSyt wWIE,Tu - wWIE,Tp ' ’
We can write
Ti—Tpu= T -D)a+T(i—p). (A.124)
Using (A.124)
TS, T — /TS, Tl = [[(AT — pT) + pT) Sy [(AT — pl) + pl'] — p/'TS, Tyl
< 0= D)A's,[(C -4 (A.125)
+ 2|[(F =D)AL (e — p) (A.126)
+ 2[(F - D)al's, Il (A.127)
+ M = ]Sy [0 (i = w]] (A.128)
+ 20— W) S, Tul (A.129)
First, we consider (A.125).
@/ (L =T)S, (0 =T)al < Bigmax(S,)|(I - T)all3
P
= Bigmaz(S,)[)_{(0; — ;) i}’
< Bigmaxz(%,)p max [(T; —T;) )
1<j<p
< Bigmax(S,)p( max |[0; =Tyl I3
<i<p
—  PO(K)0,(3*12)0,(K?), (A.130)

where we use Holder’s inequality for the third inequality and Theorem 2 and Assumption 8, (SA.8) for the
rate. Now, consider (A.126), and by definition T' := ¥ *.

(P = T)AS,TG— ] = (- ) (P - T)
< (G- (P - T) G- ) + \(ﬂfu)(fff)ul
= plOy(maz( K\/m Vinp/n)))*
+  [PO(K)Op(5ln maxK\/W\/m)]
= pOp(Kslnmax (K /Inn/n, \/Inp/n)), (A.131)
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by (SA.16)(SA.19) for the second equality, and the dominant rate in third equality can be seen from As-
sumption 8. Next, consider (A.127), and recall that T := X!

[T~ T)Al"S, Lyl

1 (
< u(

A

Il I
S
QQ
= =
w O
:'*\"d
Q
s
3
=
=
=
%
3
~
3
a
~
S
+
Q
S
s
[Vl
B

(A.132)

where we use (SA.19)(SA.20) for the second equality, and the dominant rate in the third equality can be
seen from Assumption 8. Consider now (A.128) by the symmetry of I' = X,

[C(a = w] Sy — )| = (A= p)'T( - p)
= plO,(max(K+/In/n, \/Inp/n))|>O(5r, K3/?) (A.133)

by (SA.17). Next, analyze (A.129) by the symmetricity of T' = Z;l

[C(a = W) EyTul = [(h—p)'Tp|
= pO,(5r, K°? max(K\/Inn/n, /Inp/n)), (A.134)

by (SA.18). Combine the rates and terms (A.130)-(A.134) in (A.125)-(A.129) to obtain
T8y Dit — W TS, Tl = pOy, (Ksl,), (A.135)

by the dominant rate in (A.132), as seen in Assumption 8 K?25l,, — 0, and I,, definition in Assumption 7.
See that by ' = !, by (A.120)

TS, T T
el et (A.136)
p p ~C
Combine (A.135)(A.136), in the second right side term in (A.123) via Assumption 8

(TS, D — /TS, Tyl /p
wTELu/p
Therefore, we show (A.122) via (A.123). Then, combine (A.121)(A.122) in (A.112) to obtain the desired

result. Q.E.D.
Proof of Theorem 4. (i). Start with definition of weights, and its estimates

< 0,(K?3l,) = oy(1). (A.137)

< o/L’f‘ﬂ) e , 1/2

N/ Tp (T

A L (/f/;f) 1 (A.138)
op'Tp

(\/NTH) LR

See that
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. 1/2
Wi T )
WTh a'Ti

A 1/2
/FA /F
< |EE -1+ ) I D 1
Wl AT
/f/\ I]_’\ 1/2
pTi 1 p T _q
v AT
/f" /F 1/2
+ ‘Z’le|+ <Z’FZ> —1 (A.139)
By (A.121)
1T A~
r
Z’FZ — 1| = 0,(K23l,,). (A.140)
Next, we have
T Ty — /'
L L
jayi WT L

|WTu/p — i'Ti/p|
wTp/p—|WTia/p — w'Tu/pl

+1, (A.141)
where we divided both the numerator and denominator by p, and
fTi/p > W Tu/p— |/ Ti/p — w'Tu/pl.

By (A.120),(A.141), Lemma SA.4 in the Supplementary Appendix, simplifying the ratio of two positive

constants as ¢/C = ¢ and K?23l,, = o(1) via Assumption 8 in the denominator below in (A.142)

W < O,(K?3l,)

. 1=0,(K?3l,) + 1. A.142
[I/F/:L - C*OP(KQEZTL) + OP( 5l )+ ( )
Then,
T 1/2
Ees — 1| ={[1 + Op(K?sl,)]"/* — 1} (A.143)
WL

Now, use Assumption 8 in (A.140)(A.143) and (A.139) to obtain the desired result.
. Q.E.D

(ii). Now, we analyze the risk. See that

- L
i v
AT o

~ TN SN
A A'T's, I
i/'T's,T TGN
At - 2_ 2 H yl f _ 2 W'y
Wy 2yWoos — 0° = O (—1) =0

where we multiplied and divided by /T, which is positive by (A.120). By (A.122)(A.137), since T := X!

pT's, i

1
wWrp

= 0,(K?3l,). (A.144)
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Additionally, by Lemma SA.4 in the Supplementary Appendix and (A.120)

| ATa/p

Ty = o) (A.145)

By (A.144)(A.145) and Assumption 8,

|wooszywoos - 0—2| = Op(Kzgln) = Op(l).

Q.E.D.
Proof of Theorem 5. See that, since I' := 2517
——2 . TN _
MSR /p | _| ATa/p | |WTR/p— S, p/p|
MSR?/p Wy /p Wy tu/p

Lemma SA.4 in the Supplementary Appendix shows that
W Ta/p — 1Sy 1/l = Op(Ksl,,). (A.146)

Combining (A.120),(A.146) with Assumption 8,

Y
fiiff/p = 1| = Op(K?5ln) = 0p(1).
Wy p1/p
Q.E.D.
Proof of Theorem 6. Note that by the definition of M SR, in (40) and A, F, D terms,
MSR?
<=D- (FZ/A)v
p
and the estimate is )
M ~ ~ ~
SEe _p_ (F2/A),
p
where A = 1;f‘1p/p, F= lgfﬂ/p, D= ﬂ/fﬂ/p
Then, clearly
—_—2
MSE, PPN
p . _ |AD-F [A} . (A.147)
MSRZ AD—F?2| | A
P
We start with
|A— Al = 0,(5l,) = 0,(1), (A.148)

by Lemma SA.2 in the Supplementary Appendix. Then by I" := Z;l with Assumption 8

1 1
> FE1 ] = > — .
A > Eigmin(T) Figmaa(,) = CK (A.149)

Thus, clearly we obtain, since |A| >A-— |fl — A|, by multiplying and dividing by K

A—A - KIA-A  0,(Ksl,)
A | T K[A—|A—A|] 1/C—Oy(K5ly)

51
Z 1] =
A

which implies with 1/C > 0, and K5l, = o(1) for the denominator rate

A 3 —
15 = 1= 0p(Ksl) = 0,(1) (A.150)
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Next, Lemma SA.6 in the Supplementary Appendix establishes that
(AD — F?) — (AD — F?)| = 0,(K?3l,,) = 0,(1).

We can use the condition that AD — F2? > C; > 0, and thus we combine the results above to obtain

AD — F? 2
Since .,
| (AD - P2 A
wsez =~ (\ap—p2 1) TH |G T
p
Combine (A.150)(A.151) in (A.147) to obtain
—2 Aaoa
MSR,/p AD — F? 1 A 1
MSR2/p AD — F? A
A AD — F?
= 0,(K?3l,) = 0,(1), (A.153)

where the rate is the slowest among the three right-hand-side terms. Q.E. D
Proof of Theorem 7. Note that we define I" : Z;l. We need to start with

(MSE)fp | (MSR')?/p— (MSE")*/p
(ISR | (MSR*)?/p (159

Define the event £ = {\1;fﬂ/p — 1,5, u/p| < €}, where € > 0. We condition the proof on event Ej,
then at the end of the proof we show that P(E;) — 1.
Start with the condition 1, u/p > C > 2 > 0;

an an -1 -1
1,Ta _ Lr _1’pZy /’L_"_l;)Ey 1
p p p
-1 an -1
o LEe LUR LB
o p
-1
> 1;)23’ 'ufe
- b
> C—e>2e—e=€>0, (A.155)

where we use F; in the second inequality and the condition for the third inequality. This clearly shows that
at event E;, when the condition 1;2;1;;/1) > C > 2¢ > 0 holds, we have 1;fﬂ/p >e>0. So

—2 —2
p ' [MSR 1 (1, B0} ~ MSR*1 (1 rpz0y) = p~ ' [MSR — MSR?], (A.156)

as used in the maximum Sharpe-ratios of Theorem 5.
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We consider 1;Ey_1u/p < —C < —2¢ < 0. Assume that we use event Ej:

—1 —1 SN AN
LY _ LY L Lla
p p b
o L .
- Ll |1;Ey 1 1;1"/1‘
p p p
Ay
> 2 F_ (A.157)
p

Then, in (A.157), using the condition 1;E;1M/P < —C < —2¢ < 0 (note that this also implies 1;2;1;1/]9 <0)
—1 AN
0>—2e>-C>1,%"'u/p>1Tha/p—e,
which implies that, with C' > 2¢, adding € to all sides above yields
—e>—(C—e) = b/,

which clearly shows that when 1/,%,!/p < 0, we will have 1;f/1/p < 0, since —e < 0.
So , ,
p ' IMSR,1 (1, Fa<o} ~ MSRy,rucoy =p ' [MSR, — MSRZ], (A.158)

as in maximum Sharpe ratios in Theorem 6. Clearly under event Fy with 1,l'u/p > C > 2e > 0, (A.154) is
rewritten as
(MSR — MSR?)/p
MSR?/p

= 0,(K?3l,), (A.159)
where we use Theorem 5. Under event Ey, with 17Tu/p < —C < —2¢ <0, (A.154) is rewritten as

(MSR, — MSR2)/p

_ 25
T = 0,(K25l,), (A.160)

where we use Theorem 6.

Note that we can rewrite the event By := {|F' — F|| < ¢}, with e = O(K5l,,). Note that event E; occurs
with probability approaching one by Lemma SA.3 in the Supplementary Appendix, so we have proven the
desired result. Q.E.D.

Q.E.D.

Proof of Theorem 8. First, we start with definitions of A := 1;,1:‘11,/]97 F= 1;)12‘;1/])7 A= 1;2;11,,/]9,
Fi=1%"u/p.

— 2 N - —
SRy | _ | PO/ TL/p)7
SR P12y 1/p)? (1,55 1, /p)
A
F2A
R,
_ (KA FA) (A.161)
KF2A

where in the last step we divided and multiplied right side by K.
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Now consider the numerator in (A.161):

F?A—F?A| = |F?A—F?A+F?A—F?A
2A - F?A 2A—F?A+ F?A- F?A
< |FPA-A)|+|(F? - F?)4
< |FYA - A)|+|F - F||F + F||A] (A.162)

Analyze the first term on the right side of (A.162):

F2 —_ ‘FQ _F2 +F2|
S ‘FQ _F2| +F2
< |F—F|F+F|+F2. (A.163)

Then, by Lemma SA.3 in the Supplementary Appendix, via Assumption 8
|F — F| = 0,(K3l,) = 0,(1). (A.164)
Then,

\F+F| < |F|+]|F|

|F'— F| +2|F]|

0p(1) + O(K'/?)

= 0,(K'?), (A.165)

IN

where we use (A.164) and Lemma SA.5 in the Supplementary Appendix.
By (A.164)(A.165) and Lemma SA.5 in (A.163), we have

F? = 0,(K). (A.166)
Then, by Lemma SA.2 in the Supplementary Appendix and (A.166),
|F2(A— A)| < F?|A — Al = O,(K5l,) = 0,(1). (A.167)
Then, the second term on the right side of (A.162) is
|E — F||F + F||A| = 0,(K35l,)0,(KY*)0,(1) = 0,(K*?3l,) = 0,(1), (A.168)

by (A.164)(A.165) and Lemma SA.2, Lemma SA.5 in the Supplementary Appendix, and the last equality is
by Assumption 8. Use (A.167)(A.168) in (A.162) multiplied by K, with Assumption 8

K|F?A - F?2A| = 0,(K°?3l,) = 0,(1). (A.169)
Now consider the denominator in (A.161). Note that
KF?A=KF*A—-A)+ KF?A> KF?A - K|F%(A - A)|.
So

KF? KF?

= > > Al
Eigmaxz(X,) — CK — ¢>0 (A.170)

KF*A > KF?Eigmin(T)
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where the first inequality is by A definition, and then we use I' := X/ L in the second inequality, and for the
third inequality we use Assumption 8, and the last inequality is by condition in the statement of Theorem:
F:=1Tu/p>C > 0. Next
K|F2(A — A)| = 0,(K?3l,) = 0,(1). (A.171)

by (A.167) and Assumption 8. Combine (A.169) with (A.170)(A.171) in (A.161) to obtain the desired result.
Q.E.D.

Proof of Theorem 9. To ease the notation in the proofs, set AD — F? = 2z, Ap? —2Fp; + D = v. The
estimates will be 2 = AD — F2, 6 = Ap? — 2Fp; + D. Then,

—~ 2 PR
SRyy _1l = 2/7” _ ‘
SR3,\ z/v
_ |Ev_ 1‘
0z
S b (A.172)
0z
First, analyze the denominator of (A.172).
[0z] = (0 —v)z+wvz|
> fvz[ = |(2 - v)z]
> |vz| — |0 —vl|z|. (A.173)

Then, by Lemma SA.2-SA .4 in the Supplementary Appendix, triangle inequality and p; being bounded away

from zero and finite, by Assumption 8,
[0 — | = |(A— A)p? — 2(F — F)p1 + (D — D)| = 0,(K?3l,) = 0,(1). (A.174)

We also know that by the conditions in theorem statement z = AD—F2? > C; > 0, and v = Ap%—2Fp1+D >
C1 > 0. Then, see that by Lemma SA.5 in the Supplementary Appendix

|z| = |AD — F?| < AD = O(K). (A.175)
Thus, by (A.174)(A.175) and 2z > C7 > 0,v > C; > 0 with Assumption 8: K351, — 0 in (A.173), we have
|92 = 0,(1) + C7 > 0. (A.176)
Consider the numerator in (A.172):
|Zv — 0z] = |2v — vz + vz — Oz| < |2 — z||v] + |2]|D — v]. (A.177)
By Lemma SA.6 in the Supplementary Appendix, and Assumption 8
|2 — 2| = |(AD — F?) — (AD — F?)| = 0,(K?3l,,) = 0,(1). (A.178)
Clearly, by Lemma SA.5 in the Supplementary Appendix and triangle inequality with p; being finite,
|v| = |Ap1 — 2Fp1 + D| = O(K). (A.179)
Then, use (A.174)(A.175)(A.178)(A.179) in (A.177) by Assumption 8
|20 — 02| = O, (K?3l,) = 0,(1). (A.180)

Use (A.176)(A.180) in (A.172) to obtain the desired result. Q.E.D.
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Supplementary Appendix
Here, we provide supplemental results. We provide a matrix norm inequality. Let = be a generic vector,
which is p x 1. M is a square matrix of dimension p, where M J’ is the jth row of dimension 1 x p, and M; is

the transpose of this row vector.

Lemma SA.1.
Mz, < plrgggpllelhllxlloo-

Proof of Lemma SA.1.

Mzl = [Mjz|+ |Myx|+-- -+ |Mz]|
< IMifallzlles + 1Ml 2]l 4 - - - + [ M1 ]| ] oo
p
= D IM ]zl
j=1
< pmngMjIthllw (SA.1)

where we use Holder’s inequality to obtain each inequality. Q.E.D.

Recall the definition of A := 1)T'1,,/p and A= 1;)1A“1p/p7 and s, is the rate of convergence in Theorem
2 in main text, and defined in Assumption 7 with the property si,, — 0.

Lemma SA.2. Under Assumptions 1-4, 6-7
|A— Al = Oy(5l,) = 0p(1).

Proof of Lemma SA.2.

1 =D)1,l/p < (0= D)1l 1]l /p
< fgj.agpﬂrj =Tl
= 0p(8ly) = 0p(1), (SA.2)

where Holder’s inequality is used in the first inequality, Lemma SA.1 is used for the second inequality, and
the last equality is obtained by using Theorem 2 and imposing Assumption 7.

Q.E.D.

Before the next Lemma, we define F := 1;fg/p, and F:= 1,T'u/p.

Lemma SA.3. Under Assumptions 1-4, 6, 7(i), 8

|F — F| = 0,(K3l,) = 0,(1).

Proof of Lemma SA.3. We can decompose a by simple addition and subtraction into

FoF = [ =) - )/ (3A.3)
+ [0 =T)ul/p (SA.4)
+ [0 —w)]/p (SA.5)



Now, we analyze each of the terms above. Since i =n"1>"1" |y,

I =D)Ly lalli = plloo/p

[;gag IP5 = Tla] 7 = el

= Op(5l,)O0p(max(K+/In/n,/Inp/n)), (SA.6)

where we use Holder’s inequality in the first inequality and Lemma SA.1 with M =T — T, z = 1, in the

1, (0 =) (i — p)l/p

IA

IN

second inequality above, and the rate is from Theorem 2.

To get to the other terms, we need two extra results. Use the definition of T" in (33)

1T

IN

19211 + QL1
120 + 127 L]
O(V3) 4+ 0(5)0(r, K3/?) = O(sr, K3/?), (SA.7)

A\

where for the rates we use (A.100)(A.101) and Assumption 8 for the final rate. Note that u = Ey, = BEf,
since Bu; = 0 by Assumption 1. So with b; ) representing j, k th element of p x k: B matrix, and E f;
representing k th element of K x 1 vector Ef;

K

lulloo := max |D;Ef| = max IZbJ B forl

< s s s,
= O(K), (SA.8)
where the rate is by Assumption 4, 6.
Therefore, we consider (SA.4) above.
[15,(0 = T)ul/p = Oy (s1) O (K, (SA.9)

where we use the same analysis that leads to (SA.6), and the rate is from Theorem 2, (SA.8).
Now consider (SA.5).

A

LT —pl/p < ITL[lA = e /p

L2 {175 1a]ll7 = pelloo

O(5r3/2K) O, (max(K+\/In/n, \/Inp/n)), (SA.10)

where we use Holder’s inequality in the first inequality and Lemma SA.1 with M =T, z = 1,, in the second

IN

inequality above, and the rate is from Theorem 2, (SA.7).

Combine (SA.6)(SA.9)(SA.10) in (SA.3)-(SA.5), and note that the largest rate is coming from (SA.9) by
sl,, definition in Assumption 7. Q.E.D.

Note that D := p/T'u/p, and its estimator is D= ﬂ’f’ﬂ/p.

Lemma SA.4. Under Assumptions 1-4, 6, 7(i), 8
|D — D| = 0,(K?%3l,) = 0,(1).

67



Proof of Lemma SA.4. By simple addition and subtraction,

D-D = [(a—p'E-T)—w/p (SA11)
+ (= )T —p)]/p (SA.12)
+ [2(2 = p)'Tul/p (SA.13)
SR Y (SA.14)
+ W@ =D)ul/p (SA.15)
Consider the first right side term above
(=)@ =) —pl/p < @ =T =)l = slloo/p

< [lla- M||oo]2[m?>< 105 = Ty11]

= [Op(maz(K+/Inn/n,/Inp/n))]*0,(5l,) (SA.16)

where Holder’s inequality is used for the first inequality above, and the inequality Lemma SA.1, with M =
r— I', and & = i — p for the second inequality above, and for the rates we use Theorem 2.
We continue with (SA.12).

(e = ) (D) (o — )| /p

IN

1) (@ = mllall i = pllo /p
(12 = plloc ] [mac [ T51)1]

(maz(K/Inn/n, \/Inp/n))]20(5r, K*/?), (SA.17)

where Holder’s inequality is used for the first inequality above, and the inequality Lemma SA.1, with M =T,

IN

and x = i — p for the second inequality above, and for the rates, we use Theorem 2 and (SA.T).
Then, we consider (SA.13), using (SA.8)

(=)' @) wl/p < )= mlllple/p
< [l = plloofmax [T 1, JO(K)
= (max(K \/Inn/n, /Inp/n))0(5r, K*/?)O(K), (SA.18)

where Holder’s inequality is used for the first inequality above, and the inequality Lemma SA.1, with M =T,
and x = i — p for the second inequality above, and for the rates, we use Theorem 2 and (SA.8).
Then, we consider (SA.14).

()@ =)@ =pl/p < T =D)lhlla - pllo/p
< IIM\Ioom]afoj =Tl = plloo
< [mjaXHfj = L[l = 1)l O(K)

O, (K5l,)Op(maz(K+/Inn/n, \/Inp/n)), (SA.19)

where Holder’s inequality is used for the first inequality above, and the inequality Lemma SA.1, with M =

I-T,z= u for the second inequality above, for the third inequality above, we use (SA.8), and for the rates,

we use Theorem 2.
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Then, we consider (SA.15):

(W)@ =D)Y)l/p < 1T =Tl llull/p
< [Hulloo}Qm?XHfj =Lyl
< [Hl;lXHfj —T,[1]O(K?)

= 0,(K?%l,), (SA.20)

where Holder’s inequality is used for the first inequality above, and the inequality Lemma SA.1, with M =
I— T, « = u for the second inequality above, for the third inequality above, we use (SA.8), and for the rate,

we use Theorem 2.
Note that in (SA.11)-(SA.15) the rate in (SA.20) is the slowest due to [,, definition in (35) to obtain

|D — D| = 0,(K?%3l,) = 0,(1). (SA.21)

Q.E.D.
The following lemma establishes orders for the terms in the optimal weight, A, B, D. Note that both

A, D are positive by Assumption 2 and uniformly bounded away from zero.

Lemma SA.5. Under Assumptions 1, 4, 6

A=0(1).
|F| = O(K'/?).
D = O(K).

Proof of Lemma SA.5.

Note that A = 1T'l,,/p < Eigmaz(T'). Then by p.221 of Abadir and Magnus (2005), (Exercise 8.27.b in
Abadir and Magnus (2005)), QB[(covf;)™! + B'QB]~' B} is positive semidefinite, so we can use Exercise
12.40b of Abadir and Magnus (2005), since € is symmetric, and by (33)

Bigmax(T) := PEigmaz(Q — QB[(covf,) ' + B'QB]"'B'Q)
1 1
< Ei N)=——"—"-<- SA.22
- tgmaz($) Eigmin(%,) — ¢’ ( )
since Q := X1 and by Assumption 1 Eigmin(%,) > ¢ > 0. This last point shows that A = O(1).
Now consider D = p'T'p/p. By Theorem 5.6.2b of Horn and Johnson (2013)

ez = IBEfS < Bl I1EfS

= O()O(K) = O(pK), (SA.23)

by (6.3) of Fan and Lv (2008), || B||7, = O(p) under Assumption 6, and by Assumption 4, | Ef|5 = O(K),
since f; : K x 1 vector of factors. By (SA.22)(SA.23)

1 Tu/p < Bigmaz(D)||ull3/p = OK)/p = O(K). (SA.24)

For the term F, the proof can be obtained by using the Cauchy-Schwartz inequality first and the same
analysis as for terms A and D. Q.E.D.
Next, we need the following technical lemma, which provides the limit and the rate for the denominator

in the optimal portfolio.
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Lemma SA.6. Under Assumptions 1-4, 6, 7(i), 8
(AD — F?) — (AD — F?)| = 0,(K?3l,,) = 0,(1).

Proof of Lemma SA.6. Note that by simple addition and subtraction,

AD — F? = [(A— A) + A)[(D — D)+ D] — [(F — F) + F)?.
Then, using this last expression and simplifying, A, D being both positive,

(AD — F?)— (AD - F?)| < {|A—A||D—-D|+|A-A|D

+ A|D—-D|+ (F—F)*+2|F||F - F|}
0,(51,)0,(K?3l,,) + O, (5l,)O(K)

0(1)0,(K?3l,) 4+ 0,(5*12K?) + O(K'/?)0,(5, K)

= 0,(K?3l,) = 0,(1), (SA.25)

+

where we use (SA.2), Lemma SA.3, (SA.21), Lemma SA.5, and Assumption 8. Q.E.D.
Sufficient Conditions for Assumption 8(iii).

We propose two sufficient conditions.

CK

Eigmaz(BcovfB') < - CK > 2r, (SA.26)

See that under (SA.26)
. ) / _ , _ CK
Eigmax(X,) := Eigmaz(Bcov fB" + ¥,,) < Eigmaxz(BcovfB') + Eigmax(X,) < - +r, <CK.

Sufficient condition basically tells that common factor part dominates the noise, which is sensible. We can

also find more primitives on the marginals of B, and cov f;.
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