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Abstract

Recently, there has been a growing interest in developing econometric tools to con-
duct counterfactual analysis with aggregate data when a “treated” unit suffers an
intervention, such as a policy change, and there is no obvious control group. Usually,
the proposed methods are based on the construction of an artificial counterfactual
from a pool of “untreated” peers, organized in a panel data structure. In this paper,
we investigate the consequences of applying such methodologies when the data are
formed by integrated process of order 1. We find that without a cointegration relation
(spurious case) the intervention estimator diverges resulting in the rejection of the
hypothesis of no intervention effect regardless of its existence. Whereas, for the case
when at least one cointegration relation exists, we have a

√
T -consistent estimator

for the intervention effect albeit with a non-standard distribution. However, even in
this case, the test of no intervention effect is extremely oversized if nonstationarity is
ignored. When a drift is present in the data generating processes, the estimator for
both cases (cointegrated and spurious) either diverges or is not well defined asymp-
totically. As a final recommendation we suggest to work in first-differences to avoid
spurious results.
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Keywords: counterfactual analysis, comparative studies, panel data, ArCo, syn-
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1 Introduction

The goal of this paper is to investigate the consequences of applying popular econometric
methods for counterfactual analysis when the data are non-stationary. The econometric
framework considered in the paper nests the panel factor (PF) method by Hsiao, Ching,
and Wan (2012), the Artificial Counterfactual (ArCo) of Carvalho, Masini, and Medeiros
(2016), and extensions of the Synthetic Control (SC) originally proposed by Abadie and
Gardeazabal (2003) and Abadie, Diamond, and Hainmueller (2010) as discussed in Doud-
chenko and Imbens (2016). Most of the literature on counterfactual analysis for panel data
do not take into account the possibility of non-stationarity. For example, in the SC set-
ting, the econometric estimation is viewed as a cross-section problem and the time-series
nature of the data is ignored. On the other hand, the PF and the ArCo methods explicitly
explore the time dimension. However, Carvalho, Masini, and Medeiros (2016) assume that
the data is stationary while Hsiao, Ching, and Wan (2012) conjecture that if the data are
cointegrated, their results will still hold. This conjecture is wrong as we demonstrate in
this paper.

Over the last few years, there has been a growing interest in the literature in developing
econometric tools to conduct counterfactual analysis with aggregate data when a “treated”
unit suffers an intervention, such as a policy change, and there is not a clear control
group available. In these situations, the proposed solution is to construct an artificial
counterfactual from a pool of “untreated” peers (“donors pool”). For example, in Hsiao,
Ching, and Wan (2012) the counterfactual for the treated variable of interest is constructed
from a linear combination of observed variables from selected peers given by the conditional
expectation model. In the SC framework, the counterfactual variable is build as a convex
combination of peers where the weights of the combination are estimated from time-series
averages of several variables from the donor pool and is inspired by the matching literature.
Although, the above methods seem similar they differ remarkably in the way the linear
combination of peers is constructed. For instance, in the SC method the weights in the
linear combination of peers are positive and sum to one. On the other hand, Hsiao, Ching,
and Wan (2012) do not impose any restrictions. The SC method is now a key ingredient
in the toolbox of applied researchers interested in policy evaluation; see, for a example,
Athey and Imbens (2016) for a recent review.

More recently, there has been several extensions of the above methods being proposed
in the literature. Ouyang and Peng (2015) extended the PF method by relaxing the
linear conditional expectation assumption and introducing a semi-parametric estimator to
construct the artificial counterfactual. Du and Zhang (2015) and Gao, Long, and Wang
(2015) made improvements on the selection mechanism for the constituents of the donors
pool in the PF method. Fujiki and Hsiao (2015) considered the case of multiple treatments.
Carvalho, Masini, and Medeiros (2016), proposed the ArCo, which is a major extension
of the PF method and considered, as well, the case of high-dimensional data. Finally, the
SC method has been generalized by Xu (2015) and Doudchenko and Imbens (2016). As in
Hsiao, Ching, and Wan (2012) and Carvalho, Masini, and Medeiros (2016), Doudchenko
and Imbens (2016) relax the restrictions on the weights of the SC method and, similarly to
Carvalho, Masini, and Medeiros (2016) advocate the use of shrinkage methods to estimate
the linear combination of peers.

As far as we know this is the first paper to give a full treatment of counterfactual
methods when the data is nonstationary. One key exception is Bai, Li, and Ouyang (2014)
where the authors show, under some assumptions, consistency of the panel approach when
the data are integrated of first order. However, the paper does not provide the asymptotic
distribution of the estimator nor propose a test of hypothesis.
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We consider two very distinct scenarios: (i) the cointegrated case, where there is at
least one cointegration relation among the units and; (ii) the spurious case, where no
integration relation exists. We show that in the first case we have a consistent, but not
asymptotically normal estimator for the average intervention effect. The distribution of
the test for the null of no effect is nonstandard even when the distribution of the estimator
for the cointegration vector is mixed normal. This leads to strong over-rejection of the null
hypothesis when the non-stationary nature of the data is ignored. Case (ii) - the spurious
case - is even more troublesome. We demonstrate that the treatment effect estimator
diverges. The lack of cointegration relation makes the construction of the artificial control
using the pre-intervention period invalid, due to harmless effects from spurious regressions
as discussed in Phillips (1986a). As a consequence, the t-statistic for the null of no effect
diverges. The solution is consider the data in first-differences.

A detailed simulation study corroborates our theoretical findings and evaluates the
asymptotic approximation in finite samples. We consider samples as small as 100 observa-
tions. We also study the effects of imposing restrictions on the linear combination of peers
as in the original SC method as well as the use of shrinkage estimators as in Carvalho,
Masini, and Medeiros (2016) and Doudchenko and Imbens (2016). As expected none of
these approaches mitigate the harmful effects of nonstationarity.

The rest of the paper is organized as follows. Section 2 presents the setup considered
while Section 3 delivers the theoretical results except for the asymptotic inference proce-
dure which is presented in 4. The simulation experiment is shown in Section 5. Section 6
concludes the paper. Finally, all proofs and figures are presented in the Appendix.

2 Setup and Estimators

2.1 Basic Setup

Suppose we have n units (countries, states, municipalities, firms, etc) indexed by i =
1, . . . , n. For each unit and for every time period t = 1, . . . , T , we observe a realization of
a variable yit. We consider a scalar variable just for the sake of simplicity and the results
in the paper can be easily extended to the multivariate case. Furthermore, we assume
that an intervention took place in unit i = 1, and only in unit 1, at time T0 + 1, where
T0 = bλ0T c and λ0 ∈ (0, 1).

Let Dt be a binary variable flagging the periods after the intervention. As a result, we
can express the observed y1t as

y1t = Dty(1)1t + (1−Dt)y(0)1t ,

where

Dt =

{
1 if t > T0

0 otherwise,

and y
(1)
1t denotes the outcome when the unit 1 is exposed to the intervention and y

(0)
1t is

the potential outcome of unit 1 when it is not exposed to the intervention.
We are ultimately concerned in testing hypothesis on the potential effects of the inter-

vention in the unit of interest (unit 1) for the post-intervention period. In particular, we
consider interventions of the form

y
(1)
1t = δt + y

(0)
1t , t = T0 + 1 . . . , T, (1)

where {δt}Tt=T0+1 is a deterministic sequence.
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The null hypothesis becomes

H0 : ∆T =
1

T − T0

T∑
t=T0+1

δt = 0. (2)

The quantity ∆T in (2) is quite similar to the traditional average treatment effect on

the treated (ATET) vastly discussed in the literature. It is clear that y
(0)
1t is not observed

from t = T0 + 1 onwards. For this reason, we call thereafter the counterfactual, i.e., what
would y1t have been like had there been no intervention (potential outcome).

In order to construct the counterfactual let y0t ≡ (y2t, . . . , ynt)
′ be the collection of all

untreated variables.2 Panel based methods, such as the PF and ArCo methodologies, as
well as the SC extensions discussed in Doudchenko and Imbens (2016), construct an arti-
ficial counterfactual by considering the following model in the absence of an intervention:

y
(0)
1t =M(y0t) + νt, t = 1, . . . , T, (3)

where M : Y0 ×Θ→ R measurable mapping index by the θ ∈ Θ.

The main idea is to estimate (3) using just the pre-intervention sample (t = 1, . . . , T0),

since in this case y
(0)
1t = y1t. Consequently, the estimated counterfactual is given as:

ŷ
(0)
1t =

{
y1t if t = 1, . . . , T0,

M̂(y0t) if t = T0 + 1, . . . , T,
(4)

where M̂(·) ≡M(·; θ̂).

Let y
(0)
t ≡

(
y
(0)
1t ,y

(0)′

0t

)′
denote all the units in the absence of the intervention. Under

stationarity of y
(0)
t and additional mild assumptions, Hsiao, Ching, and Wan (2012) and

Carvalho, Masini, and Medeiros (2016) show that δ̂t ≡ yt − ŷ(0)t is an unbiased estimator
for δt, t = T0 + 1, . . . , T as the pre-intervention sample size grows to infinity and

∆̂ =
1

T − T0

T∑
t=T0+1

δ̂t, (5)

is
√
T -consistent for ∆T and asymptotically normal.

2.2 Non-stationarity

Suppose now that {y(0)
t } is integrated process of order 1, I(1), defined on some probability

space (Ω,F ,P) and assume for notational convenience that:3{
y
(0)
t = y

(0)
t−1 + µ+ εt, t ≥ 1

y
(0)
0 = 0,

(6)

2We could also have included lags of the variables and/or exogenous regressors into y0t but again to
keep the argument simple, we have considered just contemporaneous variables; see Carvalho, Masini, and
Medeiros (2016) for more general specifications.

3We assume y
(0)
0 = 0 without loss of generality. We could either assume y

(0)
0 to be a any constant or

even a random vector with a specific distribution. In that case a constant regressor must appear in both
specification but the results will be unaffected.
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where µ ∈ Rn is a drift and εt is a zero mean covariance stationary process (Assumption
2) with a Wold Representation given by C(L)vt. L denotes the lag operator, C(L) is a
(n× n) matrix polynomial with C(0) = In, and vt is a white noise vector such that

E(vtv
′
s) =

{
Λ, if t = s,
0, otherwise,

where Λ is a positive definite symmetric covariance matrix.

3 Theoretical Results

3.1 Notation and Definitions

For any zero mean vector process {vt} define on a common probability space, we define
the following matrices:

Ω0(v) ≡ lim
T→∞

1

T

T∑
t=1

E(vtv
′
t),

Ωj(v) ≡ lim
T→∞

1

T

T∑
t=1

t−j∑
s=1

E(vsv
′
t), j = 1, 2, . . .

Ω(v) ≡ lim
T→∞

1

T
E

(
T∑
t=1

vt

T∑
t=1

v′t

)
,

if the limits exist.
Also for any pair (λ, λ′) ∈ [0, 1]2 with λ < λ′ and % = 0, 1, ..., we define the following

(n× n) random matrices:

A(%, λ, λ′,v) ≡ Ω(v)
1
2

[∫ λ′

λ

WW ′dr − ϑ(%, λ, λ′)

∫ λ′

λ

r%Wdr

∫ λ′

λ

r%W ′dr

]
Ω(v)

1
2

B(%, λ, λ′,v) ≡ Ω(v)
1
2

[∫ λ′

λ

WdW ′ − ϑ(%, λ, λ′)

∫ λ′

λ

r%Wdr

∫ λ′

λ

r%dW

]
Ω(v)

1
2

+ (λ′ − λ) [Ω1(v) + Ω0(v)]

and (n× 1) random vectors:

a(%, λ, λ′,v) ≡ ϑ(%, λ, λ′)Ω(v)
1
2

∫ λ′

λ

r%Wdr

b(%, λ, λ′,v) ≡ ϑ(%, λ, λ′)Ω(v)
1
2

∫ λ′

λ

r%dW ,

where

ϑ(%, λ, λ′) ≡ 1 + 2%

λ′1+2% − λ1+2%
,

and W ≡W (r), r ∈ [0, 1], denotes a standard vector Wiener process on [0, 1]n.
Finally, for any given (random) matrix M ∈ Rn×n and (random) vector m ∈ Rn we

use the following partition scheme:

M =

( 1 n− 1

1 M 11 M 10

n− 1 M 01 M 00

)
and m =

(
1 m1

n− 1 m0

)
.
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Whenever the vector or matrix has additional arguments, we use the alternative, but
equivalent, notation [M ]10 ≡ M 10, or [m]1 ≡ m1 to make the same partition scheme
above without polluting the notation.

All the summations are from period 1 to T whenever the limits are left unspecified.
We establish the asymptotic properties of the estimator by considering the whole sam-
ple increasing, while the proportion between the pre-intervention to the post-intervention
sample size is constant. For convenience set T2 ≡ T − T0 as the number post intervention
periods. Recall that T0 = bλ0T c. Hence, for fixed λ0 ∈ (0, 1) we have T0 ≡ T0(T ). Conse-
quently, T2 ≡ T2(T ). All the asymptotics are taken as T →∞. We denote convergence in

probability and weak converge by “
p−→ ” and “⇒ ”, respectively.

3.2 Main Assumptions

In order to recover the effects of the intervention we need the following key assumption.

Assumption 1. E(Mt|Dt) = E(Mt), where Mt ≡M(y0t).

Roughly speaking, the assumption above is sufficient for the peers to be unaffected
by intervention on the unit of interest, i.e., the peers are actually untreated4. It is worth
mentioning that since we allow E(y1t|Dt) 6= E(y1t) we might have some sort of selection
on observables and/or non-observables belonging to the treated unit. Of course, selection
on features of the untreated units is ruled out by Assumption 1.

Assumption 2. Let {zt}∞t=1 be a sequence of (n× 1) random vectors such that

(a) {zt}∞t=1 is zero mean weakly (covariance) stationary;

(b) E|zi1|ξ <∞ for i = 1, . . . , n and some 2 ≤ ξ <∞;

(c) {zt}∞t=1 is mixing with mixing coefficients satisfying either
∑∞

m=1 α
1−1/ξ
m < ∞ or∑∞

m=1 φ
1−2/ξ
m <∞.

Assumption 2 state general conditions under which the multivariate invariance princi-
ple is valid for the process {zt}∞t=1. Assumption 2(a) limits the heterogeneity in the process
(at least up to the second moment). Assumption 2(b) is just a standard higher moment
existence condition for all the n coordinates of the random vector which guarantees, along
with Assumption 2(c), bounded covariances. Finally, 2(c) restrains the temporal depen-
dence requiring the sequence to be either strong mixing with size − ξ

ξ−2 or uniform mixing

with size − ξ
2ξ−2 .

The following result is well-known and it will be stated here just for the sake of clarity
of the developments in the forthcoming sections.

Proposition 1. Let St =
∑t

j=1 zj be the partial sum of the sequence {zt}∞t=1 of (n × 1)
random vectors. Then, under Assumption 2,

(a) Σ = limT→∞ T
−1E(STS

′
T ) exists and is positive definite,

(b) ZT (r) ≡ T−1/2S[rT ] ⇒ Σ1/2W (r),

where [·] denotes the integer part and W (·) is a vector Wiener process on [0, 1]n.

4For a throughout discussion on Assumption 1, including the potential bias resulting from its failure
in the stationary setup refer to Carvalho, Masini, and Medeiros (2016).
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The implied convergence in Proposition 1(a) is a direct consequence of the stationarity
assumption together with the mixing condition as shown by Ibragimov and Linnik (1971).
Finally, Proposition 1(b) is a multivariate generalization of the univariate invariance prin-
ciple (Durlauf and Phillips, 1985).

Let r denotes the rank of C(1). As shown in Engle and Granger (1987), a necessary

condition for y
(0)
t to have r ∈ {1, . . . , n − 1} cointegration relations is that the rank of

C(1) be n− r, i.e., rank deficient. When r = 0 there is no cointegration and when r = n

the vector y
(0)
t is stationary in levels. Therefore, we consider datasets that are generated,

in the absence of a intervention, either by a cointegrated system of order 1 or that are just
a collection of unrelated I(1) processes.

3.3 The Cointegrated Case

If we have r cointegration relations, then there exists a (n× r) matrix Γ with rank r such

that Γ′(y
(0)
t −tµ) is I(0), where. Since every linear combination of the columns of Γ is also

a cointegration vector for y
(0)
t . We can define (1,−β′0)′ = Γχ for some χ 6= 0 ∈ Rr such

that (1,−β′0)(y
(0)
t − tµ) ≡ νt ∼ I(0). Note that even after the normalization of the first

element the resulting linear combination is not the only possible stationary process (unless
r = 1). However, as we will show below, the least squares procedure will give consistent
estimators for the combination that give the stationary process with the smallest variance.

Therefore, the “cointegrated regression” can be written as

y
(0)
1t = γ0t+ β′0y

(0)
0t + νt, for t ≥ 1

where γ0 ≡ µ1 − β′0µ0.

Since for the pre-intervention period, t = 1, . . . , T0, we have the observable yt = y
(0)
t we

can use the pre-intervention sample to estimate the unknown parameters. We will consider
two distinct specifications for the pre-intervention period: (i) the correct specification with
a time trend included and (ii) the misspecified case with no time trend.

y1t = γ0t+ β′0y0t + νt (7)

y1t = α0 + π′0y0t + ζt (8)

Clearly, α0 = 0 and ζt = νt + γ0t. Thus, ζt is non-stationary unless γ0 = 0.

We can apply the results of the Lemma 5 together with the continuous mapping theo-
rem to show the following convergence in distribution:

Lemma 1. Let the process {y(0)
t } be defined by (6) have at least one cointegration relation

(0 < r < n). Also assume that {ηt ≡ (νt, ε
′
0)
′} satisfies Assumption 2. Then, for the least

squares estimator of the parameters appearing in (7)–(8) using only the pre intervention
sample (t = 1, . . . , T0), as T →∞:

(a) For µ = 0,

T
(
β̂ − β0

)
⇒ P−100Q01 ≡ h̃

T 3/2 (γ̂ − γ0)⇒ [b(1, 0, λ0,η)]1 − h̃
′
[a(1, 0, λ0,η)]0

T (π̂ − β0)⇒ R−100 V 01 ≡ p̃√
T (α̂− α0)⇒ [b(0, 0, λ0,η)]1 − p̃

′ [a(0, 0, λ0,η)]0 .
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(b) For µ0 6= 0 and n = 2,

π̂ − β0
p−→ γ0

µ0

;
1

T
(α̂− α0)

p−→ 0.

In case of µ 6= 0 for either, specification (7) or n > 2, the least squares estimators
are not defined asymptotically.

P ≡ A(1, 0, λ0,η); R ≡ A(0, 0, λ0,η); Q ≡ B(1, 0, λ0,η); V ≡ B(0, 0, λ0,η) as defined
in Section 3.1.

Remark 1. Whenever there is a drift among the peers and n > 2 we have a multi-
collinearity issue in the least squares estimators, since the drift component dominates the
other terms asymptotically. In case of specification (7), since we are fitting the trend
term tγ, the multicollinearity appears even for n = 2 (only one control). Note that, for

specification (8), if we replace γ0 by its definition µ1 − β0µ0, then, as expected, π̂
p−→ µ1

µ0
.

Remark 2. In fact the estimators (5) is of little usage whenever we expect to have inte-
grated process with drift. Not only the estimator is not well in large samples, but a simple
fitted trend regressor makes a reasonable counterfactual for the unit of interest. Therefore
we treat for now on only the the case without drift (µ = 0).

Similar results to Lemma 1(a) appear in Durlauf and Phillips (1985).
We now consider the estimation for the intervention effect in two specifications de-

scribed above: (i) The true model as in (7); and (ii) a model that would naturally arise
if we choose to ignore (or be unaware of) the non-stationarity in the data. As shown
above, the distribution of the regression estimators is dependent on the presence of a drift
term. As a consequence, the intervention effect estimator is defined, for each specification
j = {1, 2}, as:

∆̂j =
1

T2

∑
t>T0

y1t − ŷ(j)1t where ŷ
(j)
1t =

{
γ̂t+ β̂

′
y0t if j = 1

α̂ + π̂′y0t if j = 2
(9)

where γ̂, β̂, α̂ and π̂ are the least squares estimators of the parameters appearing in (7)–(8)
using only pre-intervention sample.

Theorem 1. Under Assumption 1, let the process {y(0)
t } be defined by (6) have at least one

cointegration relation (0 < r < n). Also assume that {ηt ≡ (νt, ε
′
0)
′} satisfies Assumption

2. Then, for the estimators defined in (9) as T →∞:
√
T
(

∆̂1 −∆T

)
⇒ h′c,

√
T
(

∆̂2 −∆T

)
⇒ p′d,

where the (n× 1) random vectors above are defined as:

c ≡ c(λ0) =

([
b(0, λ0, 1,η)− 1+λ0

2
b(1, 0, λ0,η)

]
1[

a(0, λ0, 1,η)− 1+λ0
2
a(1, 0, λ0,η)

]
0

)
d ≡ d(λ0) =

(
[b(0, λ0, 1,η)− b(0, 0, λ0,η)]1
[a(0, λ0, 1,η)− a(0, 0, λ0,η)]0

)
,

with a(·, ·, ·, ·), b(·, ·, ·, ·) defined in Section 3.1, h ≡ (1,−h̃
′
)′, p ≡ (1,−p̃′)′, with h̃ and

p̃ as defined in Lemma 1.

Therefore, both estimators above are
√
T -consistent for ∆, however with a non-standard

limiting distribution. Even though the results above rule out common inference proce-
dures, in Section 4 we investigate the results of using a conventional t-statistic.
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3.4 The Spurious Case

We now turn to the case where no cointegration relation exists among yt prior to the
intervention, hence C(1) is full rank. We consider for the pre-intervention period the
same specification, (7) and (8), that were used in the cointegrated case. However, since
the “true parameters” no longer exist5, we cannot express least-squares estimators as
differences from their “true parameters”. Hence we have the following result:

Lemma 2. Let the process {y(0)
t } be defined by (6) have no cointegration relation (r = 0).

Also assume that {εt} satisfies Assumption 2. Then, for the least squares estimator of the
parameters appearing in (7)–(8), as T →∞:

(a) For µ = 0

β̂ ⇒ P−100 P 01 ≡ f̃ ,
√
T γ̂ ⇒ f ′a(1, 0, λ0, ε), where f ≡ (1,−f̃

′
)′

π̂ ⇒ R−100R01 ≡ g̃,
1√
T
α̂⇒ g′a(0, 0, λ0, ε), where g ≡ (1,−g̃′)′

(b) For µ0 6= 0 and n = 2,

π̂
p−→ µ1

µ0

;
1

T
α̂

p−→ 0.

In case of µ 6= 0 for either, specification (7) or n > 2, the least squares estimators
are not defined asymptotically.

The random matrices P ,R are defined in Lemma 1 but with η replaced by ε and with
a(·, ·, ·, ·), b(·, ·, ·, ·) defined in Section 3.1.

The limiting distribution of π̂ and α̂ are well known from the spurious regression case
discussed in Phillips (1986a). For β̂ and γ̂, the result is analogous but with a different
limiting distribution. In both cases, when r = 0 and consequently yt does not cointegrate,

we have a spurious regression and both β̂ and π̂ converges, as T →∞, not to a constant
but to a functional of a multivariate Brownian motion. While α̂ diverges, γ̂ converges to
zero (which is the value of the parameter γ0 when µ = 0).

Once again we consider the scenario where the researcher conduct the estimation using
the estimators defined in (9) with yt in levels.

Theorem 2. Under Assumption 1, let the process {y(0)
t } be defined by (6) have no cointe-

gration relation (r = 0). Also assume {εt} satisfies Assumption 2. Then for the estimators
defined in (9), as T →∞:

1√
T

(
∆̂1 −∆

)
⇒ f ′e,

1√
T

(
∆̂2 −∆

)
⇒ g′l,

where the (n× 1) random vectors above are defined as:

e ≡ e(λ0) = a(0, λ0, 1, ε)−
1 + λ0

2
a(1, 0, λ0, ε),

l ≡ l(λ0) = a(0, λ0, 1, ε)− a(0, 0, λ0, ε),

with a(·, ·, ·, ·), b(·, ·, ·, ·) defined in Section 3.1; Also f and g as defined in Lemma 2.

5In the sense that no (linear) combination of the units result in a stationary process.
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From the theorem above, it is clear that, unlike in the cointegrated case, ∆̂j diverges
as T →∞ for both specifications. As for the cointegration case we investigate the limiting
distribution of a conventional t-statistic in following section.

4 Inference

Given the asymptotic results from the last section we would like to further investigate
the consequences of conducting usual inference. In particular, we investigate the limiting
distribution of a conventional t-statistic such as

τj ≡
∆̂j√
V̂(∆̂j)

, j = {1, 2}, (10)

where the denominator is supposed to be a an estimator for the standard deviation of
∆̂j. For that, define the centred residuals for the post intervention regression period,
t = T0 + 1, . . . , T , as

ν̂1t = y1t − γ̂t− β̂
′
yt0 − ∆̂1

ν̂2t = y1t − α̂− π̂′yt0 − ∆̂2.

Then, for each j = 1, 2, we have the following covariance estimators for ρ2k ≡ E(νtνt+k),
where k = {−T + T0 + 1, . . . , T − T0 − 1}:

ρ̂2jk =

{
1

T−T0

∑T−k
t=T0+1 ν̂jtν̂jt+k if k ≥ 0,

1
T−T0

∑T+k
t=T0+1 ν̂jtν̂jt−k if k < 0.

Therefore, for some choice of a kernel function φ(·) and bandwidth JT such that JT →∞
as T →∞, we have

σ̂2
j ≡ σ̂2

j (JT ) =
∑
|k|<T

φ(k/JT )ρ̂2jk. (11)

Finally, our estimator for the variance of ∆̂j becomes

V̂(∆̂j) ≡
σ̂2
j

T − T0
.

4.1 Inference on the Cointegrated case

Consider now the following stronger version of Assumption 2.

Assumption 3. Let {zt}∞t=1 be a sequence of random vectors (n× 1) such that

( a) {zt}∞t=1 is zero-mean fourth-order stationary process;

( b) E|z1|4ξ <∞ and some ξ > 1;

( c) {zt}∞t=1 is strong mixing with the mixing coefficients such that
∑∞

m=1m
2α

1−2/ξ
m <∞.

Clearly, Assumption 3 implies Assumption 2. The fourth-order stationarity require-
ment on {νt} translates into weak stationarity of {w(k)

t ≡ νtνt+k} for any k ∈ Z. Assump-
tions 3(a)-(c) are sufficient for Assumption A of Andrews (1991) which translate in the

summability of the covariances of w
(k)
t , i.e.

lim
T→∞

T−1V

∑
|k|<T

T−|k|∑
t=1

νtνt+|k|

 <∞.
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Thus, we have a weak law of large number by Chebyshev’s Inequality applied for each k
which is result (a) in the following lemma.

Lemma 3. If the sequence {νt} satisfies Assumption 3, then for each j ∈ {1, 2},

(a) ρ̂2jk
p−→ ρ2k, ∀k.

If in addition,
∫∞
−∞ |φ(x)|dx <∞ and J2

T/T → 0 as T →∞, then

(b) |σ̂2
jT −

∑
|k|<T ρ

2
k|

p−→ 0.

Lemma 3(b) follows from arguments similar to Newey and West (1987) and Andrews
(1991).

Theorem 3. Under the same conditions of Theorem 1, but with Assumption 2 replaced
by 3:

(a) Under the null H0 : ∆T = 0,

τ1 ⇒
√

1− λ0
ω

h′c

τ2 ⇒
√

1− λ0
ω

p′d

(b) Under the alternative, H1 : ∆T = δ 6= 0, both estimators (j = 1, 2) diverge as

1√
T
τj

p−→
√

1− λ0
δ

ω
,

where the (n× 1) vectors above are defined in Theorem 1 and ω2 ≡ Ω11.

Remark 3. Under H0 we have a
√
T -consistent estimator for the intervention average

effect ∆T albeit with a non-standard asymptotic distribution. In fact, by the presence of
the second term we can conclude that we systematically over reject asymptotically.

Remark 4. The t-test is also asymptotically consistent as the test statistic diverges under
the alternative. Recall that our null hypothesis was defined in (2), hence the natural al-
ternative would be ∆T 6= 0, but since ∆T could potentially approach zero arbitrally fast as
T grows, we restrict the ∆T to be a non-zero constant. We get similar results by allowing
a more flexible intervention profile as long as it does not approach zero faster than T−1/2,
for instance, by imposing that {δt} is such that

√
T∆T →∞.

4.2 Inference on the Spurious case

Since hypothesis testing is not carried directly on ∆̂j, it is useful to derive an expression for
the limiting distribution of a common t-stat such as the one considered in the cointegrated
case. First we need the following result

Lemma 4. Consider the same conditions of Theorem 2, but with Assumption 2 replaced
by 3. Then, under both H0 or H1, as T →∞:

(a) 1
T
ρ̂21k ⇒ 1

1−λ0f
′Lf , ∀k ∈ Z,

(b) 1
T
ρ̂22k ⇒ 1

1−λ0g
′Hg, ∀k ∈ Z.

11



If in addition,
∫∞
−∞ |φ(x)|dx <∞ and J2

T/T → 0 as T →∞, then

(c) 1
JTT

σ̂2
1T ⇒

cφ
1−λ0f

′Lf ,

(d) 1
JTT

σ̂2
2T ⇒

cφ
1−λ0g

′Hg,

for j ∈ {1, 2}, where H ≡ A(0, λ0, 1, ε), L ≡H−2qs′+ς(λ0)ss
′, q ≡ 1−λ30

3
a(1, λ0, 1, ε)−

1−λ20
2
a(0, λ0, 1, ε), s ≡ a(1, 0, λ0, ε); ς(λ) ≡ 1−λ3

12
− λ(1−λ)

4
, cφ ≡

∫∞
−∞ φ(x)dx; f and g are

defined in Lemma 2, and a(·, ·, ·, ·), and A(·, ·, ·, ·) defined in Section 3.1.

Notice that the limiting distribution in (a) and (b) above is independent of k. In fact,
it is the same distribution derived in Lemma 1 when we consider k = 0. It follows from
the fact that the additional term

∑T
t=1 vt

∑k
i=1 ε

′
i is OP (T ). Result (b) for k = 0 is similar

to the one appering in Phillips (1986a). It turns out it is valid for all fixed k and also
for specification (7) albeit with a different limiting distribution. Using a HAC covariance
estimator as proposed by Newey and West (1987) and Andrews (1991), we have an even
weaker convergence rate as it goes from T−1 to (JTT )−1 as stated in Lemma 6(c)-(d).

Now combining Theorem 2 with Lemma 4 together with the continuous mapping the-
orem we have the following result.

Theorem 4. Consider the same conditions of Theorem 2, but with Assumption 2 replaced
by 3. Then, under both H0 : ∆T = 0 and H1 = δ 6= 0.√

JT
T
τ1 ⇒

1− λ0√
cφ

f ′e√
f ′Lf√

JT
T
τ2 ⇒

1− λ0√
cφ

g′l√
g′Hg

,

where the (n× 1) random vectors f , g, e, and l are defined in Theorem 2; and the (n× n)
random matrices L, H and the constant cφ are defined in Lemma 4.

Remark 5. When conducting a t-test one draws inference on the premises that τj ⇒
N (0, 1) under H0. However, as Theorem 4 shows, τj actually diverges under the assump-
tion that JT = o(T 1/2). Therefore, ignoring the non-stationarity of the data we end up
rejecting the null hypothesis too often. In fact, as the sample size increases, the probability
of rejection the null approaches 1 regardless of the existence of the treatment.

Remark 6. Notice that the result above is not dependent on the choice of the variance
estimator bandwidth. If we use simple variance estimator such as σ̂jT = ρ̂j0 (for the case
of iid data), we still have τj = OP (

√
T ). In fact, in this particular case, the t-test diverges

in a even faster rate.

In summary, for the spurious case, we end up rejecting theH0 regardless of the existence
of an intervention effect when panel based methods for counterfactual analysis are applied
in levels. The result is similar in spirit of the one found by Phillips (1986a). However,
in the spurious regression case we are usually interested in the t-stat related to the β
coefficients of the regression. In the present case, the interest lies in average of the error
of the predicted model ∆̂j.
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4.3 First-Difference

A simple alternative approach would be to work with the first difference zt ≡ yt − yt−1,
and have, by definition, a stationary dataset either in the cointegrated case or in the
spurious one. Hence:

z
(0)
t = µ+ εt

The difference would be that for the cointegrated case the covariance matrix of Γ ≡ V(εt)
is rank deficient (n − r) and for the spurious case is full rank since r = 0. Nevertheless,
we can apply the panel-based methodologies for stationary process unaltered. The pre
intervention model becomes

z1t = λ0 + θ′0z0t + ωt t = 2, . . . , T0

where θ0 = Γ−100 Γ01 and λ0 = µ1−β′µ0. For the post -intervention period t = T0+2, . . . T ,

we can take the average of the ẑ1t = λ̂+θ̂
′
z0t as the estimator for E(z1) ≡ µ∗1 and construct

the following estimator for the difference in the drifts ∆µ = µ1 − µ∗1

∆̂F =
1

T − T0 − 1

T∑
t=T0+2

(
z1t − λ̂− θ̂

′
z0t

)

θ̂ =

(
T0∑
t=2

ż0tż
′
0t

)−1 T0∑
t=2

ż0tż1t

λ̂ = z̄1 − θ̂z̄0.

From Theorem 1 of Carvalho, Masini, and Medeiros (2016) for the particular case of a
linear specification we have

√
T

(
∆̂F −∆

)
σ̂F [λ0(1− λ0)]−1/2

⇒ N (0, 1) ,

where σ̂2
F is a consistent estimator for σ2

F ≡ limT→∞ T
−1V(

∑T
t=1 ωt), defined in (11) for

the post intervention residuals.

Remark 7. The approach above also give us
√
T -consistent estimator for the difference

in drifts. However, in contrast to the cointegrated estimator, it is asymptotically normal
hence more practical for conducting inference.

Remark 8. The limiting distribution in first difference is independent of both the prior
knowledge of the true values of µ and the true hypothesis (H0 or H1).

Remark 9. Working in first difference we avoid a true spurious regression since if the
integrated process is truly uncorrelated we will end up having θ̂ ≈ 0 for the pre-intervention
period.

5 Simulations

In order to evaluate the asymptotic approximation in finite samples as well as to evidence
the harmful effects of neglecting non-stationarity when conducting counterfactual infer-
ence, we simulate two different scenarios. In the first one, the treated unit and the peers
are cointegrated while in the second case the data are formed by a set of independent
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random walks. In this later case, the counterfactual is spurious. In both cases we eval-
uate the distribution of the estimator for the average intervention effect as well as the
t-statistics under the null hypothesis of no intervention at T0 = T/2. We consider T = 100
and 1, 000, and n = 5. The number of Monte Carlo simulations is set to 2,000. For each
scenario and different sample sizes, we report the finite sample distributions of ∆̂j as in
(9) and τj as in (10) for j = 1, 2, in comparison to the asymptotic distributions as well
as the rejection frequencies, at different significance levels, of the null hypothesis of no
intervention effects when nonstationarity is neglected and the test is carried out under
standard normal approximation for the t-statistic.

As a complement we also report the empirical rejection rates for the t-test of no inter-
vention effect when the parameters are estimated either by restricted least squares or by
the Least Absolute Shrinkage and Selection Operator (LASSO) of Tibshirani (1996). In
the first approach the parameters of the linear combination are restricted to be positive
and sum one as in the original SC method, while the LASSO approach was advocated by
Carvalho, Masini, and Medeiros (2016) and Doudchenko and Imbens (2016). We report
only the case where the linear trend is not included in the regression function.

5.1 Cointegration

The data generating process (DGP) is defined as

y1t =
n∑
i=2

yit + ut, (12)

where

yit = yit−1 + eit, (13)

yi0 = 0, i = 2, . . . , n, and {ut}Tt=1 and {eit}Tt=1 are sequences of independent and normally
distributed zero-mean random variables with unit variance. Furthermore, E(uteis) = 0
and E(eitejs) = 0 for all t = 1, . . . , T , s = 1, . . . , T , i = 1, . . . , n, j = 1, . . . , n, and t 6= s.

The simulation results are shown in Figures 1–4. Figure 1 shows the empirical versus
the theoretical distributions of the scaled coefficients estimates as in Lemma 1. The
distribution of ∆̂j, j = 1, 2, is presented in Figure 2 and is compared to the asymptotic
results of Theorem 1. The empirical distribution of the t-statistic (10) is presented in
Figure 3 and is as well compared to the asymptotic approximation as in Theorem 3.
Finally, Figure 4 compares the size distortions when the normal approximation is used,
neglecting nonstationarity, with the case when the correct asymptotic critical values are
used.

Two conclusions emerge from the results. First, the simulation corroborates de asymp-
totic approximation even in small samples. Second, it is clear that neglecting cointegration
introduces strong over-rejection of the null hypothesis, leading the researcher to find spu-
rious intervention effects.

Finally, it is clear from Figure 5 that restricting the coefficients does not mitigate the
over-rejections is nonstationarity is not taken carefully into account.

5.2 Spurious Counterfactual

In this case the DGP is a vector of independent random walks as follows:

yit = yit−1 + eit, (14)
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where yi0 = 0 and {eit}Tt=1 is a sequence of independent and normally distributed zero-mean
random variables with unit variance and E(eitejs) = 0 for all t = 1, . . . , T , s = 1, . . . , T ,
i = 1, . . . , n, j = 1, . . . , n, and t 6= s.

The simulation results for the spurious case are depicted in Figures 6–9. Figure 6
presents the empirical versus the theoretical distributions of the coefficients estimates
as in Lemma 2. The distribution of the average intervention effects, ∆̂j, j = 1, 2, is
presented in Figure 7 and is confronted to the asymptotic results of Theorem 2. The
empirical distribution of the t-statistic (10) is presented in Figure 8 and is compared to the
asymptotic approximation as in Theorem 4. Finally, Figure 9 compares the size distortions
of the scaled t-test when the normal approximation is used, neglecting nonstationarity,
with the case when the correct asymptotic critical values are used. Note that this is not a
valid test as the t-stat, without normalization, diverges. The size distortions are presented
just for illustrative purposes.

It is clear from the figures that the finite sample distribution can be well approximated
by the asymptotic counterpart. Furthermore, the distribution of the scaled t-stat is highly
bimodal. Finally, conducting inference in the spurious case is extremely misleading even
when restricted estimators are considered as displayed in Figure 10.

6 Conclusions

In this paper we considered the asymptotic properties of popular counterfactual estima-
tors when the data are of nonstationary. More specifically, our econometric framework
encapsulates the panel based methods of Hsiao, Ching, and Wan (2012), the artificial
counterfactual approach of Carvalho, Masini, and Medeiros (2016) and the synthetic con-
trol and its extensions Abadie and Gardeazabal (2003); Abadie, Diamond, and Hainmueller
(2010); Doudchenko and Imbens (2016).

Two cases are considered. In the first case there is at least one cointegration relation in
the data while in the second one the data are formed by a set of independent random walks.
The results in the paper either show that the estimators diverge or have non-standard
asymptotic distributions. We show a strong over-rejection of the null hypothesis of the
null of no intervention effect when the non-stationary nature of the data is ignored. Out
theoretical results are corroborated by a simulation experiment. The main prescription
of the paper is that practitioners should work in first-differences when the data are non-
stationary.
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Techincal Appendix

In what follows use the auxiliary process {ut} defined as

ut = ut−1 + ηt, t ≥ 1

u0 = 0.

For (λ, λ′) ∈ [0, 1]2 with λ < λ′, we denote the summation
∑

Tλ<t≤Tλ′
by
∑

(λ,λ′] where

Tλ = bλT c and we adopt the following notation for % = 0, 1, . . . :

∑
(λ,λ′]

u̇t(%) ≡
∑
(λ,λ′]

[ut − t%ū(%)] , ū(%) ≡

∑
(λ,λ′]

t2%

−1 ∑
(λ,λ′]

t%ut. (15)

Notice that ū(0) is a simple average. Hence, u̇t(0) is the deviation from the mean.
First we state and prove in the Lemma below several convergence results that will be

applied the the subsequent proofs. Some of these results have been shown elsewhere; see
for instance Durlauf and Phillips (1985) and Phillips (1986a,b).

Lemma 5. Let the sequence {ut}Tt=1 be defined as above. If the process {ηt} satisfies
Assumption 2, then as T →∞:

( a) 1
T 1/2+%

∑
(λ,λ′]

t%ηt ⇒ Ω1/2
∫ λ′
λ
r%dW

( b) 1
T 3/2+%

∑
(λ,λ′]

t%ut ⇒ Ω1/2
∫ λ′
λ
r%Wdr

( c) 1
T

∑
(λ,λ′]

utη
′
t+j ⇒ Ω1/2

[∫ λ′
λ
WdW

]
Ω1/2 + (λ′ − λ)Ωj, j > 0

( d) 1
T 2

∑
(λ,λ′]

utu
′
t+k ⇒ Ω1/2

[∫ λ′
λ
WW ′dr

]
Ω1/2, k ∈ Z

( e) T %−1/2ū(%, λ, λ′)⇒
(

1+2%
λ′1+2%−λ1+2%

)
Ω1/2

∫ λ′
λ
r%Wdr ≡ a(%, λ, λ′,η)

( f) T %+1/2η̄(%, λ, λ′)⇒
(

1+2%
λ′1+2%−λ1+2%

)
Ω1/2

∫ λ′
λ
r%dW ≡ b(%, λ, λ′,η)

( g) 1
T 2

∑
(λ,λ′]

u̇t(%)u̇t(%)′ ⇒ Ω1/2
[∫ λ′

λ
WW ′dr −

(
1+2%

λ′1+2%−λ1+2%

) ∫ λ′
λ
r%Wdr

∫ λ′
λ
r%W ′dr

]
Ω1/2 ≡

A(%, λ, λ′,η)

( h) 1
T

∑
(λ,λ′]

u̇t(%)η′t ⇒ Ω1/2
[∫ λ′

λ
WdW ′ −

(
1+2%

λ′1+2%−λ1+2%

) ∫ λ′
λ
r%Wdr

∫ λ′
λ
r%dW

]
Ω1/2+(λ′−

λ)(Ω1 + Ω0) ≡ B(%, λ, λ′,η).

Also, if we include a drift such that vt ≡ µt+ ut, t ≥ 1, then:

( i) T %−1v̄(%, 0, 1)
p−→ 2%+1

%+2
µ

( j) 1
T 3

∑T
t=1 v̇t(%)v̇t(%)′

p−→ 1
3

(
%−1
%+2

)2
µµ′

( k) 1
T 3/2

∑T
t=1 v̇t(%)η̇t(%)′ ⇒ µ

∫ 1

0

[
r −

(
2%+1
%+2

)
r%
]

dW ′Ω1/2
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Finally, if we include a linear tendency in process {ηt} such that ξt ≡ ηt + γt, then:

( l) T %−1ξ̄(%)
p−→ 2%+1

%+2
γ

( m) 1
T 3

∑T
t=1 v̇t(%)ξ̇t(%)′

p−→ 1
3

(
%−1
%+2

)2
µγ ′,

where Ω = Ω(η) and Ωj ≡ Ωj(η).

Proof. Let UT (r) ≡ 1√
T

∑brT c
t=1 ηt with sample path on the Skorohod space D[0, 1]. Then,

as a consequence of Proposition 1, UT ⇒ Ω1/2W .

For (a) write 1√
T
ηt = UT

(
t
T

)
−UT

(
t−1
T

)
≡
∫ t
T
t−1
T

dUT (r), then:

1

T 1/2+%

∑
(λ,λ′]

t%ηt =
∑
(λ,λ′]

(
t

T

)% ∫ t
T

t−1
T

dUT (r) =

∫ Tλ′
T

Tλ
T

(
brT c
T

)%
dUT ⇒ Ω1/2

∫ λ′

λ

r%dW ,

where the convergence in distribution follows from Theorem 2.2 of Kurtz and Protter
(1991).

For (b), note that ut−1 =
√
TUT

(
t−1
T
≤ r < t

T

)
. Consequently, ut−1 = T 3/2

∫ t
T
t−1
T

UT (r)dr.

Then,

1

T 3/2+%

∑
(λ,λ′]

t%ut =
1

T 3/2

∑
(λ,λ′]

(
t

T

)%
(ut−1 + ηt) =

∑
(λ,λ′]

∫ t
T

t−1
T

(
brT c
T

)%
UT (r)dr + oP (1)

=

∫ Tλ′
T

Tλ
T

(
brT c
T

)%
UT (r)dr + oP (1)

⇒ Ω1/2

∫ λ′

λ

r%W (r)dr.

For (c), define U j
T (r) ≡

(
1
T

)1/2∑[rT ]
t=1 ηt+j for any positive integer j. Hence:

1

T

∑
(λ,λ′]

yt−1η
′
t−1+j =

∑
(λ,λ′]

U 0
T

(
t− 1

T

)∫ t
T

t−1
T

dU j
T (r) =

∫ Tλ′
T

Tλ
T

U 0
T (r)dU j

T (r).

Let Σj ≡ limT→∞ T
−1E

(∑T
t=1 ηt

∑T
t=1 η

′
t+j

)
. It is straightforward to show that[

U 0
T

U j
T

]
⇒ Σ̃

1/2

j W ≡
[
U 0

U j

]
, where Σ̃j(n

2 × n2) ≡
[
Σ0 Σj

Σ′j Σ0

]
.

Note that Σ0 = Ω.
Therefore, it is possible to apply a generalization of Theorem 2.2 of Kurtz and Protter

(1991). See, for instance, Theorem 30.13 in Davidson (1994) or Hansen (1992) for the case
of j = 1. Consequently,∫ Tλ′

T

Tλ
T

U 0
T (r)dU j

T (r)⇒ Ω1/2

[∫ λ′

λ

WdW

]
Ω1/2 + (λ′ − λ)Ωj.

Also the stochastic integral above for the case of j = 1 is the same one appearing in
Phillips (1986b).
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For (d), we start by considering k = 0:

utu
′
t = (ut−1 + ηt) (ut−1 + ηt)

′ = ut−1u
′
t−1 + ut−1η

′
t + ηtu

′
t−1 + ηtη

′
t.

Summing over and rearranging we are left with

1

T

T∑
t=1

(
ut−1η

′
t + ηtu

′
t−1 + ηtη

′
t

)
=

1

T

T∑
t=1

(
utu

′
t − ut−1u′t−1

)
=

1

T
(uTu

′
T − u0u

′
0)

⇒ Ω1/2W (1)W (1)′Ω1/2.

Therefore, T−2
∑T

t=1

(
ut−1η

′
t + ηtu

′
t−1 + ηtη

′
t

)
= oP (1).

Finally,

1

T 2

∑
(λ,λ′]

utu
′
t =

1

T 2

∑
(λ,λ′]

ut−1u
′
t−1 +

1

T 2

∑
(λ,λ′]

(
ut−1η

′
t + ηty

′
t−1 + ηtη

′
t

)
=

∫ Tλ′
T

Tλ
T

UT (r)U ′T (r)dr + oP (1)

⇒ Ω1/2

∫ λ′

λ

W (r)W (r)′drΩ1/2.

For k ∈ Z we have that ut+k = ut + sgn(k)
∑|k|

i=1 ηt+i. Then,

1

T 2

∑
(λ,λ′]

utu
′
t+k =

1

T 2

∑
(λ,λ′]

utu
′
t + sgn(k)

1

T 2

∑
(λ,λ′]

ut

|k|∑
i=1

η′t+i.

We have show in (c) that 1
T

∑T
t=1 utη

′
t+i = OP (1) for every i ∈ {1, . . . , |k|}. Thus, we have

the desired result as the second term is a finite sum of oP (1) terms.
To prove (e) and (f) we use the following result from power series

T∑
t=1

tk =
1

k + 1
T k+1 + o(T k+1), k = 0, 1, 2..

to show that

T 1+2%∑
(λ,λ′]

t2%
=

1 + 2%(
Tλ′
T

)1+2%

−
(
Tλ
T

)1+2%
+ o(1)

−→ 1 + 2%

λ′1+2% − λ1+2%
.

Then, for (e):

T %−1/2ū(%, λ, λ′) =

 T 1+2%∑
(λ,λ′]

t2%


 1

T 3/2+%

∑
(λ,λ′]

t%ut


⇒
(

1 + 2%

λ′1+2% − λ1+2%

)
Ω1/2

∫ λ′

λ

r%Wdr,
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and for (f):

T %+1/2η̄(%, λ, λ′) =

 T 1+2%∑
(λ,λ′]

t2%


 1

T 1/2+%

∑
(λ,λ′]

t%ηt


⇒
(

1 + 2%

λ′1+2% − λ1+2%

)
Ω1/2

∫ λ′

λ

r%dW

To show (g), we omit the (%, λ, λ′) argument in what follows:

1

T 2

∑
(λ,λ′]

u̇tu̇
′
t ≡

1

T 2

∑
(λ,λ′]

(ut − t%ū) (ut − t%ū)′

=
1

T 2

∑
(λ,λ′]

utu
′
t −

∑
(λ,λ′]

t%utū
′ − ū

∑
(λ,λ′]

t%u′t +
∑
(λ,λ′]

t2%ūū′


=

1

T 2

∑
(λ,λ′]

utu
′
t −

∑
(λ,λ′]

t2%

 ūū′


=
1

T 2

∑
(λ,λ′]

utut −

(∑
(λ,λ′] t

2%

T 2%+1

)(
T %−1/2ū

) (
T %−1/2ū

)′
⇒ Ω1/2

[∫ λ′

λ

WW ′dr −
(

1 + 2%

λ′1+2% − λ1+2%

)∫ λ′

λ

r%Wdr

∫ λ′

λ

r%W ′dr

]
Ω1/2

To prove (h), we first use the result (c) to show that

1

T

∑
(λ,λ′]

utη
′
t =

1

T

∑
(λ,λ′]

ut−1η
′
t +

Tλ′ − Tλ
T

 1

Tλ′ − Tλ

∑
(λ,λ′]

ηtη
′
t


⇒ Ω1/2

∫ λ′

λ

W (r)dW ′(r)Ω1/2 + (λ′ − λ)(Ω0 + Ω1).

Finally, we have:

1

T

∑
(λ,λ′]

u̇t(%)η′t =
1

T

∑
(λ,λ′]

utη
′
t − ū(%)

∑
(λ,λ′]

t%η′t


=

1

T

∑
(λ,λ′]

utη
′
t −

∑
(λ,λ′]

t2%

 ū(%)η̄(%)′


=

1

T

∑
(λ,λ′]

utη
′
t −

(∑
(λ,λ′] t

2%

T 2%+1

)(
T %−1/2ū(%)

) (
T %+1/2η̄(%)

)′
⇒ Ω1/2

[∫ λ′

λ

WdW ′ −
(

1 + 2%

λ′1+2% − λ1+2%

)∫ λ′

λ

r%Wdr

∫ λ′

λ

r%dW

]
Ω1/2

+ (λ′ − λ)(Ω0 + Ω1).
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Now for (i), take v̄(%) ≡ v̄(%, 0, 1) then:

T %−1v̄(%) = µT %−1

(
T∑
t=1

t2%

)−1 T∑
t=1

t%+1 + T %−1ū(%)

= µT %−1
(
T 2%+1

2%+ 1

)−1
T %+2

%+ 2
+

1√
T

(
T %−1/2ū(%)

)
+ o(1)

=
2%+ 1

%+ 2
µ+ oP (1).

For (j), first note that

1

T 3

T∑
t=1

vtv
′
t =

1

T 3

T∑
t=1

(µt+ ut) (µt+ ut)
′ = µµ′

1

T 3

T∑
t=1

t2 + oP (1)

= µµ′
T (T + 1)(2T + 1)

6T 3
+ oP (1) =

1

3
µµ′ + oP (1),

then taking from (f) we can write:

1

T 3

T∑
t=1

v̇t(%)v̇t(%)′ =
1

T 3

T∑
t=1

vtvt −

(∑T
t=1 t

2%

T 2%+1

)(
T %−1v̄

) (
T %−1v̄

)′
=

1

3
µµ′ − 1

2%+ 1

(
2%+ 1

%+ 2

)2

µµ′ + oP (1)

=
(%− 1)2

3(%+ 2)2
µµ′ + oP (1).

To prove (k) first we show that

1
T 3/2

T∑
t=1

vtη
′
t = 1

T 3/2

T∑
t=1

(ut + µt)η′t = 1
T 3/2

T∑
t=1

utη
′
t + µ 1

T 3/2

T∑
t=1

tη′t ⇒ µ

∫ 1

0

rdW ′Ω1/2,

then we can use the latter result combined with result (f) and (i) to conclude that:

1
T 3/2

T∑
t=1

v̇t(%)η̇t(%)′ = 1
T 3/2

T∑
t=1

v̇t(%)η′t = 1
T 3/2

T∑
t=1

vtη
′
t −

∑T
t=1 t

2%

T 2%+1 (T %−1v̄(%))(T %+1/2η̄(%)′)

⇒ µ

∫ 1

0

rdW ′Ω1/2 −
(

1
2%+1

)(
2%+1
%+2

µ
)(

2%+1
1

∫ 1

0

r%dW ′Ω1/2

)
= µ

∫ 1

0

[
r −

(
2%+1
%+2

)
r%
]

dW ′Ω1/2.

For (l), we expand as in the proof (i) to obtain:

T %−1ξ̄(%) = γT %−1

(
T∑
t=1

t2%

)−1 T∑
t=1

t%+1 + T %−1η̄(%)

= γT %−1
(
T 2%+1

2%+1

)−1
T %+2

%+2
+ 1

T 3/2

(
T %+1/2η̄(%)

)
+ o(1)

= 2%+1
%+2

γ + oP (1).
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Finally, for (m) we have using the result (i) and (l):

1
T 3

T∑
t=1

v̇(%)ξ̇(%)′ =
(∑T

t=1 t
2

T 3

)
µγ ′ −

(∑T
t=1 t

2%

T 2ε+1

)
(T %−1v̄(%))(T %+1/2η̄(%)′) + oP (1)

= 1
3
µγ ′ − 2%+1

(%+2)2
µγ ′ + oP (1)

= 1
3

(
%−1
%+2

)2
µγ ′ + oP (1).

Proof of Lemma 1

Proof. Using notation (15) we can express the least-squares estimator as the difference to
the true parameter value as:

β̂ − β0 =

∑
(0,λ0]

ẏ0t(1)ẏ0t(1)′

−1 ∑
(0,λ0]

ẏ0t(1)ν̇t(1),

γ̂ − γ0 = ν̄(1)−
(
β̂ − β0

)′
ȳ0(1),

π̂ − β0 =

∑
(0,λ0]

ẏ0t(0)ẏ0t(0)′

−1 ∑
(0,λ0]

ẏ0t(0)ζ̇t(0),

α̂− α0 = ζ̄(0)− (π̂ − β0)
′ ȳ0(0).

For the case of µ = 0 (no drift), consequently γ0 = 0, we have ζt = νt and we can apply
the limiting distributions in Lemma 5 together with the continuous mapping theorem to
conclude:

T
(
β̂ − β0

)
=

 1

T 2

∑
(0,λ0]

ẏ0t(1)ẏ0t(1)′

−1  1

T

∑
(0,λ0]

ẏ0t(1)ν̇t(1)

⇒ P−100Q01 ≡ h̃,

T 3/2 (γ̂ − γ0) = T 3/2ν̄(1)− T
(
β̂ − β0

)′√
T ȳ0(1)⇒ [b(1, 0, λ0,η)]1 − h̃

′
[a(1, 0, λ0,η)]0 ,

T (π̂ − β0) =

 1

T 2

∑
(0,λ0]

ẏ0t(0)ẏ0t(0)′

−1  1

T

∑
(0,λ0]

ẏ0t(0)ζ̇t(0)

⇒ R−100 V 01 ≡ p̃,

√
T (α̂− α0) =

√
T ζ̄(0)− T (π̂ − β0)

′ 1√
T
ȳ0(0)⇒ [b(0, 0, λ0,η)]1 − p̃

′ [a(0, 0, λ0,η)]0 .

For µ 6= 0 note that both 1
T 3
0

∑T0
t=1 ẏ0t(1)ẏ0t(1)′ and 1

T 3
0

∑T0
t=1 ẏ0t(0)ẏ0t(0)′ converge

to singular matrices according to Lemma 5(m). Hence, unless y0t is a scalar the OLS
estimators are not well defined asymptotically. Moreover, for the first specfication even
for the scalar case the OLS estimator is not defined since if we set % = 1 we get that
1
T 3
0

∑T0
t=1 ẏ0t(1)ẏ0t(1)′

p−→ 0. For the case of unique regressor in the second specification

we are left with:

π̂ − β0 =

 1

T 3
0

∑
(0,λ0]

ẏ0t(0)ẏ0t(0)′

−1  1

T 3
0

∑
(0,λ0]

ẏ0t(0)ζ̇t(0)

 p−→
(
µ2
0

12

)−1
µ0γ0
12

=
γ0
µ0

,

1

T
(α̂− α0) =

T0
T

[
1

T0
ζ̄(0)− (π̂ − β0)′

1

T0
ȳ0(0)

]
p−→ λ0

[
γ0
2
− γ0
µ0

µ0

2

]
= 0.
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Proof of Theorem 1

Proof. For the post intervention period t = T0 + 1, . . . , T we can write:

δ̂1t − δt = y1t − γ̂t− β̂
′
y0t − δt = νt − (γ̂ − γ0) t−

(
β̂ − β0

)′
y0t

δ̂2t − δt = y1t − α̂− π̂′y0t − δt = νt − α̂− (π̂ − β0)
′ y0t.

Therefore for the first specification:

√
T
(

∆̂1 −∆
)

=

√
T

T2

∑
t>T0

(
δ̂1t − δt

)
=
√
T ν̄(0, λ0, 1)− T + T0 + 1

2T
T 3/2(γ̂ − γ0)− T

(
β̂ − β0

)′ 1√
T
ȳ0(0, λ0, 1)

⇒ [b(0, λ0, 1,η)]1 −
1 + λ0

2

(
[b(1, 0, λ0,η)]1 − h̃

′
[a(1, 0, λ0,η)]0

)
− h̃

′
[a(0, λ0, 1,η)]0 ≡ h′c.

Similarly, for the second specification:

√
T
(

∆̂2 −∆
)

=

√
T

T2

T∑
t=T0

(
δ̂2t − δt

)
=
√
T ν̄(0, λ0, 1)−

√
T (α̂− α0)− T (π̂ − β0)

′ 1√
T
ȳ0(0, λ0, 1)

⇒ [b(0, λ0, 1,η)]1 −
(
[b(0, 0, λ0,η)]1 − p̃

′ [a(0, 0, λ0,η)]0
)

− p̃′[a(0, λ0, 1,η)]0 ≡ p′d.

Proof of Lemma 2

Proof. Using notation (15) we can express the least-squares estimator for the spurious case
as:

β̂ =

∑
(0,λ0]

ẏ0t(1)ẏ0t(1)′

−1 ∑
(0,λ0]

ẏ0t(1)ẏ1t(1),

γ̂ = ȳ1(1)− β̂
′
ȳ0(1) = (1,−β̂

′
)ȳ(1),

π̂ =

∑
(0,λ0]

ẏ0t(0)ẏ0t(0)′

−1 ∑
(0,λ0]

ẏ0t(0)ẏ1t(0),

α̂ = ȳ1(0)− π̂′ȳ0(0) = (1,−π̂′)ȳ(0).

For the case of µ = 0 (no drift) we can apply the limiting distributions in Lemma 5
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together with the continuous mapping theorem to conclude:

β̂ =

 1

T 2

∑
(0,λ0]

ẏ0t(1)ẏ0t(1)′

−1 1

T 2

∑
(0,λ0]

ẏ0t(1)ẏ1t(1)

⇒ P−100 P 01 ≡ f̃ ,

√
T γ̂ = (1,−β̂

′
)
√
T ȳ(1)⇒ (1,−f̃

′
)a(1, 0, λ0, ε) ≡ f ′a(1, 0, λ0, ε),

π̂ =

 1

T 2

∑
(0,λ0]

ẏ0t(0)ẏ0t(0)′

−1  1

T 2

∑
(0,λ0]

ẏ0t(0)ẏ1t(0)

⇒ R−100R01 ≡ g̃,

1√
T
α̂ = (1,−π̂′) 1√

T
ȳ(0)⇒ (1,−g̃′)a(0, 0, λ0, ε) ≡ g′a(0, 0, λ0, ε).

For the case of µ = 0, as shown in the proof of Lemma 1, the estimators are not well
defined except for the no trend specification with only one regressor, in the case:

π̂ =

 1

T 3
0

∑
(0,λ0]

ẏ0t(0)ẏ0t(0)′

−1  1

T 3
0

∑
(0,λ0]

ẏ0t(0)ẏ1t(0)

 p−→
(
µ2
0

12

)−1
µ0µ1

12
=
µ1

µ0

,

1

T
α̂ =

T0
T

(1,−π̂′) 1

T0
ȳ(0)

p−→ λ0(1,−µ1/µ0)
µ

2
= 0.

Proof of Theorem 2

Proof. For the post intervention period t = T0 + 1, . . . , T we have:

δ̂1t − δt = y1t − γ̂t− β̂
′
y0t − δt = y

(0)
1t − γ̂t− β̂

′
y0t

δ̂2t − δt = y1t − α̂− π̂′y0t − δt = y
(0)
1t − α̂− π̂

′y0t.

Therefore, for the first specification:

1√
T

(
∆̂1 −∆

)
=

1√
TT2

∑
t>T0

(
δ̂1t − δt

)
=

1√
T
ȳ1(0, λ0, 1)− T + T0 + 1

2T

√
T γ̂ − β̂

′ 1√
T
ȳ0(0, λ0, 1)

= (1,−β̂
′
)

1√
T
ȳ(0, λ0, 1)− T + T0 + 1

2T

√
T γ̂

⇒ f ′a(0, λ0, 1, ε)−
1 + λ0

2
f ′a(1, 0, λ0, ε) ≡ f ′e.

Similarly, for the second specification:

1√
T

(
∆̂2 −∆

)
=

1√
TT2

∑
t>T0

(
δ̂2t − δt

)
=

1√
T
ȳ1(0, λ0, 1)− 1√

T
α̂− π̂′ 1√

T
ȳ0(0, λ0, 1)

= (1,−π̂′) 1√
T
ȳ(0, λ0, 1)− 1√

T
α̂

⇒ g′a(0, λ0, 1, ε)− g′a(0, 0, λ0, ε) ≡ g′l.
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Proof of Lemma 3

Proof. For the post intervention period t = T0 + 1, . . . , T :

ν̂1t = ν̇t − (γ̂ − γ0)
(
t− T + T0 + 1

2

)
− (β̂ − β0)

′ẏ0t + δ̇t

ν̂2t = ν̇t − (π̂ − β0)
′ẏ0t + δ̇t.

Since either under H0 or H1, δ̇ = 0, we have for k = {0, 1, . . . , T − 1}

ν̂1tν̂1t+k = ν̇tν̇t+k − ν̇t(β̂ − β0)
′ẏ0t+k − (β̂ − β0)

′ẏ0tν̇t+k + (β̂ − β0)
′ẏ0tẏ

′
0t+k(β̂ − β0)

ν̂2tν̂2t+k = ν̇tν̇t+k − ν̇t(π̂ − β0)
′ẏ0t+k − (π̂ − β0)

′ẏ0tν̇t+k + (π̂ − β0)
′ẏ0tẏ

′
0t+k(π̂ − β0).

Both
(
β̂ − β0

)
and (π̂ − β0) are OP ( 1

T
) by Lemma 1. Also,

∑
ẏ0tẏ

′
0t+k = OP (T 2) and∑

ν̇tẏ0t+k = OP (T ) all as a consequence of Lemma 5. Thus for j ∈ {1, 2}, we have:

T−k∑
t=T0+1

ν̂jtν̂jt+k =
T−k∑

t=T0+1

ν̇tν̇t+k +OP (1) =
T−k∑

t=T0+1

νtνt+k +OP (1),

where the last equality involves no more than some algebraic manipulation using the
definition of ν̇t and ν̈t and neglecting the oP (1) terms. Therefore, by the Law Large
Numbers, which is ensured under Assumption 3,

ρ̂2jk ≡
1

T2

T−k∑
t=T0+1

ν̂1tν̂1t+k
p−→ E (νtνt+k) ≡ ρ2k, ∀k.

For part (b), the result follows from an argument parallel to one presented in Andrews
(1991). Let σ̃2 be the pseudo-estimator analogous to the estimator σ̂2

j but with sequence
ν̂jt replaced by the unobservable sequence {νt} and let σ2 =

∑
|k|<T ρ

2
k. Hence by the

triangle inequality we have

|σ̂2
j − σ2| ≤ |σ̂2

j − σ̃2|+ |σ̃2 − σ2|.

Under Assumption A of Andrews (1991), which is implied by Assumption 3, the second
term is oP (1). Assumption B of Andrews (1991), which ensures the first term to be oP (1)
is not fulfilled directly by specification (7) due to the trend regressor. However, what is
really necessary for the result is to bound the mean value expansion of the first term,
which in our case, is simply given by

√
T

JT
(σ̂2

j − σ̃2) =
1

JT

∑
|k|<T

κ(
k

Jt
)

1

T2

∑
t>T0+|k|

∂s(γ̃, β̃)

∂γ
(γ̂ − γ0) +

∂s(γ̃, β̃)

∂β′
(β̂ − β0).

Since by Lemma γ̂ − γ0 = OP (T−3/2), a sufficient condition to bound the first term

becomes supt≥1 E
∥∥∥T−1 ∂ν∂γ∥∥∥2 ≤ ∞, which is clearly satisfied by our specification. The final

requirement are the same that appears in Theorem 1 of Andrews (1991) and is fulfilled by
most of the kernel functions used in the literature.

24



Proof of Theorem 3

Proof. We can decompose the t-statistic as:

τj ≡
√
T2

∆̂j

σ̂j
=
√
T2

[
(∆̂j −∆T )

σ̂j
+

∆T

σ̂j

]
=

√
T2
T

(√
T (∆̂j −∆T )

σ̂j

)
+

√
T2∆T

σ̂j

Under H0 the second term is zero and the first term converges in distribution by
the Slutsky Theorem since the numerator of the term between parentheses converges
in distribution according to Theorem 1, and the denominator converges in probability
according to the Lemma 3, hence

τ1 ⇒
√

1− λ0
ω

h′c,

τ2 ⇒
√

1− λ0
ω

p′d,

whereas, under H1 the second term diverges at rate
√
T since

1√
T
τj =

√
T2
T

δ

σ̂j

p−→
√

1− λ0
δ

ω
.

Proof of Lemma 4

Proof. Let θ̂1 ≡ (1, β̂
′
)′ and θ̂2 ≡ (1, π̂′)′, then we can write the post intervention centered

residuals for the first specification as:

ν̂1t ≡ y1t − tγ̂ − β̂
′
y0t − ∆̂1

=

(
y
(0)
1t −

1

T2

∑
t>T0

y1t

)
− β̂

′
(
y0t −

1

T2

∑
t>T0

y0t

)
− γ̂

(
t− 1

T2

∑
t>T0

t

)
+

(
δt −

1

T2

∑
t>T0

δt

)

= ẏ
(0)
1t − β̂

′
ẏ0t − γ̂

(
t− T + T0 + 1

2

)
+ δ̇t

= (1,−β̂
′
)ẏ

(0)
t − γ̂

(
t− T + T0 + 1

2

)
+ δ̇t

≡ θ̂
′
1ẏ

(0)
t − γ̂

(
t− T + T0 + 1

2

)
+ δ̇t,

where u̇ ≡ u̇(0, λ0, 1). Similarly for the specification 2:

ν̂2t ≡ y1t − α̂− π̂′y0t − ∆̂2

=

(
y
(0)
1t −

1

T2

∑
t>T0

y1t

)
− π̂′

(
y0t −

1

T2

∑
t>T0

y0t

)
+

(
δt −

1

T2

∑
t>T0

δt

)
= ẏ

(0)
1t − π̂

′ẏ0t + δ̇t

= (1,−π̂)ẏ
(0)
t + δ̇t

≡ θ̂
′
2ẏ

(0)
t + δ̇t

Note that ẏ
(0)
t+k = ẏ

(0)
t +

∑k
i=1 εt+i, for t ≥ T0 and k ≥ 0 and under H0 or H1, δ̇t = 0,

thus:
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ν̂1t+k = ν̂1t + θ̂
′
1

k∑
i=1

εt+i − γ̂k,

ν̂2t+k = ν̂2t + θ̂
′
2

k∑
i=1

εt+i,

Therefore, for j ∈ {1, 2}:

1

T
ρ̂2jk =

1

T
ρ̂2j0 +

T

T2
θ̂
′
jM jkθ̂

′
j,

where

M 1k ≡

(
1

T 2

T−k∑
t=T0+1

ẏt

k∑
i=1

ε′t+i

)
− (
√
T y̌)

[
1

T 5/2

T−k∑
t=T0+1

(
t− T + T0 + 1

2

) k∑
i=1

ε′t+i

]

− k

(
1

T 5/2

T−k∑
t=T0+1

ẏt

)
(
√
T y̌)′ + k

[
1

T 3

T−k∑
t=T0+1

(
t− T + T0 + 1

2

)]
(
√
T y̌)(

√
T y̌)′

−

(
1

T 2

T∑
t=T−k+1

ẏtẏ
′
t

)

M 2k ≡

(
1

T 2

T−k∑
t=T0+1

ẏt

k∑
i=1

ε′t+i

)
−

(
1

T 2

T∑
t=T−k+1

ẏtẏ
′
t

)

Hence, to show that 1
T
ρ̂2j0 and 1

T
ρ̂2jk for j = {1, 2}, share the same limiting distribution

for any k is sufficient to show that 1
T
ρ̂2j0 converges in distribution and thatM jk = oP (1),∀k,

since θ̂j are shown to be OP (1). For the first case:

1

T
ρ̂210 =

1

TT2

∑
t>T0

ν̂21t

=
1

TT2

[
θ̂
′
1

(∑
t>T0

ẏtẏ
′
t

)
θ̂1 − 2γ̂θ̂

′
1

∑
t>T0

(
t− T + T0 + 1

2

)
ẏt + γ̂2

∑
t>T0

(
t− T + T0 + 1

2

)2
]

=
T

T2

[
θ̂
′
1

(
1

T 2

∑
t>T0

ẏtẏ
′
t

)
θ̂1 − 2θ̂

′
1

(
1

T 5/2

∑
t>T0

tẏt

)
(
√
T γ̂) +

1

T 3

∑
t>T0

(
t− T + T0 + 1

2

)2

(
√
T γ̂)2

]
.

We have from Lemmas 2 and 5 that:
√
T γ̂ ⇒ f ′a(1, 0, λ0, ε) ≡ f ′s

1

T 5/2

∑
t>T0

tẏt ⇒
1− λ30

3
a(1, λ0, 1, ε)−

1− λ20
2

a(0, λ0, 1, ε) ≡ q

1

T 3

∑
t>T0

(
t− T + T0 + 1

2

)2

→ 1− λ30
12

− λ0(1− λ0)
4

≡ ς(λ0).

Then, by the continuous mapping theorem

1

T
ρ̂210 ⇒

1

1− λ0
f ′ [H − 2qs′ + ς(λ0)ss

′]f .
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Similarly, for the second specification we have:

1

T
ρ̂220 =

1

TT2

∑
t>T0

ν̂22t

=
T

T2
θ̂
′
2

(
1

T 2

∑
t>T0

ẏtẏ
′
t

)
θ̂2

⇒ 1

1− λ0
g′Hg.

Now we show that M jk = oP (1),∀k, j ∈ {1, 2}. Clearly the last term of both expres-
sions vanishes in probability as T → ∞. As for the first term in both expressions, note
that for each i ∈ {1, . . . , k}:

1

T 2

T−k∑
t=T0+1

ẏtε
′
t+i =

1

T

[
1

T

T−k∑
t=T0+1

ytε
′
t+i −

T

T2

(
1

T 3/2

T∑
t=T0+1

yt

)(
1√
T

T−k∑
t=T0+1

ε′t+i

)]
,

and we have shown that the first, second and third terms inside the brackets of the
expressions above are OP (1) by Lemma 5 result (c),(b) and (a), respectively. Finally, the
remainder terms ofM 1k are all oP (1) simply by applying the convergence results presented
in Lemma 5. Therefore, we have proved part (a) and (b).

For parts (c) and (d), since ρ̂jk = ρ̂j−k and the covariance kernels are normalized such
that φ(0) = 1, we write:

1

JTT
σ̂2
j ≡

1

JTT
ρ̂2j0 + 2

1

JT

T−1∑
k=1

φ

(
k

JT

)
1

T
ρ̂2jk

=
1

JTT
ρ̂2j0 + 2

1

JT

T−1∑
k=1

φ

(
k

JT

)(
1

T
ρ̂2j0 +

T

T2
θ̂
′
jM jkθ̂

′
j

)

=

(
1

T
ρ̂2j0

) 1

JT

∑
|k|<T

φ

(
k

JT

)+ 2
T

T2
θ̂
′
j

[
1

JT

T−1∑
k=1

φ

(
k

JT

)
M jk

]
θ̂j,

The first term in parentheses converges in distribution as shown above, the second
converges to Cφ by Assumption, hence it is left to show that the term in brackets of the

expression above are oP (1) since θ̂j is OP (1). We show that convergence in probability
using the Markov’s inequality and the fact that E‖M j,k‖ can be bounded by a positive
decreasing sequence. We show for the second specification (j = 2), the argument is entirely
analogous to the first one. First, we need the following bounds

E‖P jt,T‖ ≤ bp <∞ ∀j, t ≤ T, T, P jt,T ≡
1

T
ẏtẏ

′
t,

E‖Rjt,T (i)‖ ≤ b̄T <∞ ∀j, t ≤ T, i, Rjt,T ≡
1

T
ẏtε

′
t.

Assuming y0 = 0 we can write

ẏt =
t∑

s=1

(
s− 1

T

)
εs ≡

t∑
s=1

g1(s, T )εs
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Since the function g1(·, ·) is bounded between 0 and 1 we can write

E‖P jt,T‖ = E‖T−1ẏtẏ′t‖ = E

∥∥∥∥∥T−1
T∑
s=1

g1(s, T )εs

T∑
s=1

g1(s, T )ε′s

∥∥∥∥∥
= E

∥∥∥∥∥T−1
t∑

s=1

t∑
l=1

g1(s, T )g1(l, T )εsε
′
l

∥∥∥∥∥
≤ T−1

t∑
s=1

t∑
l=1

g1(s, T )g1(l, T )E ‖εsε′l‖

≤ T−1
t∑

s=1

t∑
l=1

E ‖εsε′l‖

≤ T−1
T∑
s=1

T∑
l=1

E ‖εsε′l‖

≤ lim
T→∞

T−1
T∑
s=1

T∑
l=1

E ‖εsε′l‖ ≡ bp,

where the last limit exists under Assumptions (a)-(c) of Lemma 3. For the second bound
we have

E‖Rjt,T (i)‖ = E‖T−1ÿtε′t+i‖ = E

∥∥∥∥∥T−1
T∑
s=1

g1(s, T )εsε
′
t+i

∥∥∥∥∥
≤ T−1

t∑
s=1

g1(s, T )E
∥∥εsε′t+i∥∥

≤ T−1
t∑

s=1

E
∥∥εsε′t+i∥∥

≤ T−1
T∑
s=1

E
∥∥εsε′T+i∥∥ .

Note that the last term above is oP (1) because the summation is finite due to Assump-
tions (a)-(c) of Lemma 3. Thus, for a fixed T and i there exist a bound bT (i) such that
E‖Rjt,T (i)‖ ≤ bT (i) < ∞ for every t ≤ T and bT (i) → ∞. Moreover, due to the mixing
condition (Lemma 3(c)) we know that when i = 1 we have the largest bounds over all i
for a given T so we define b̄T ≡ bT (1).

Now we show Lp convergence so for any ε > 0. Let

AT =

{
ω ∈ Ω :

∥∥∥∥∥ 1

T − T0

T−1∑
k=1

φ

(
k

JT

) T∑
t=T−k+1

P jt,T (ω)

∥∥∥∥∥ > ε

}
and

BT =

{
ω ∈ Ω :

∥∥∥∥∥ 1

T − T0

T−1∑
k=1

φ

(
k

JT

) T−k∑
t=T0+1

k∑
i=1

Rjt,T (i)(ω)

∥∥∥∥∥ > ε

}
.
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For AT by the Markov’s inequality

P(AT ) ≤ 1

ε
E

∥∥∥∥∥ 1

T − T0

T−1∑
k=1

φ

(
k

JT

) T∑
t=T−k+1

P jt,T

∥∥∥∥∥
≤ 1

(T − T0)ε

T−1∑
k=1

∣∣∣∣φ( k

JT

)∣∣∣∣ T∑
t=T−k+1

E ‖P jt,T‖

≤ 1

(T − T0)ε

T−1∑
k=1

∣∣∣∣φ( k

JT

)∣∣∣∣ T∑
t=T−k+1

bp

≤ bp
(T − T0)ε

T−1∑
k=1

k

∣∣∣∣φ( k

JT

)∣∣∣∣ .
Note that the kernels are uniformly bounded such that for non-negative integer h:

lim
T→∞

1

Jh+1
T

∑
|k|<T

∣∣∣∣φ( k

JT

)∣∣∣∣ = Ch where Ch ≡
∫ ∞
−∞

xh |φ (x)| dx.

As a result, as long as JT = o(T 1/2) we have

P(AT ) ≤ bp
ε

T

T − T0
J2
T

T

[
J−2T

T−1∑
k=1

k

∣∣∣∣φ( k

JT

)∣∣∣∣
]
→ 0.

For BT , by the Markov’s inequality

AT =

{
ω ∈ Ω :

∥∥∥∥∥ 1

T − T0

T−1∑
k=1

φ

(
k

JT

) T∑
t=T−k+1

P jt,T (ω)

∥∥∥∥∥ > ε

}
and

BT =

{
ω ∈ Ω :

∥∥∥∥∥ 1

T − T0

T−1∑
k=1

φ

(
k

JT

) T−k∑
t=T0+1

k∑
i=1

Rjt,T (i)(ω)

∥∥∥∥∥ > ε

}

For AT , by the Markov’s inequality

P(BT ) ≤ 1

ε
E

∥∥∥∥∥ 1

T − T0

T−1∑
k=1

φ

(
k

JT

) T−k∑
t=T0+1

k∑
i=1

Rjt,T (i)

∥∥∥∥∥
≤ 1

(T − T0)ε

T−1∑
k=1

∣∣∣∣φ( k

JT

)∣∣∣∣ T−k∑
t=T0+1

k∑
i=1

E ‖Rjt,T (i)‖

≤ b̄T
ε

T−1∑
k=1

k

∣∣∣∣φ( k

JT

)∣∣∣∣
≤ 1

ε
(T b̄T )

J2
T

T

(
1

J2
T

T−1∑
k=1

k

∣∣∣∣φ( k

JT

)∣∣∣∣
)
→ 0.

The last inequality holds because by definition limT→∞ T b̄T = limT→∞
∑T

t=1 E‖εt, εT+1‖ <
∞ and under assumption that JT = o(T 1/2).
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Proof of Theorem 4

For both specification j = {1, 2}, we have:√
JT
T
τj ≡

√
JTT2
T

∆̂j

σ̂j
=

√
T2
T

[
1√
T

(∆̂j −∆T )
1√
TJT

σ̂j

]
+

1√
T

∆T

1√
TJT

σ̂j
.

As long as ∆T = o(
√
T ), we have that the second term in last expression is oP (1). The

result than follows from Theorem 2, Lemma 4 and the continuous mapping theorem.
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Figure 2: Empirical (bars) and asymptotic (solid line) distributions of the counterfactual
effects in the cointegration case as stated in Theorem 1 for T = 100 and T = 1000. The
distributions are scaled as in the Theorem. Panel (a): trend included in the estimated
equation and T = 100; Panel (b): trend included in the estimated equation and T = 1000;
Panel (c): trend excluded from the estimated equation and T = 100; Panel (d): trend
excluded from the estimated equation and T = 1000.
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Figure 3: Empirical (bars) and asymptotic (solid line) distributions of the t-statistics in
the cointegration case as stated in Theorem 3 for T = 100 and T = 1000. Panel (a):
trend included in the estimated equation and T = 100; Panel (b): trend included in the
estimated equation and T = 1000; Panel (c): trend excluded from the estimated equation
and T = 100; Panel (d): trend excluded from the estimated equation and T = 1000.
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(a) T = 100, with trend
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(b) T = 1000, with trend
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(c) T = 100, without trend
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(d) T = 1000, without trend

Figure 4: Size distortion plots of the t-test in the cointegration case for T = 100 and
T = 1000 under the asymptotic approximation for the t-statistic distribution (lines with
triangles) and the normal approximation (lines with squares). Panel (a): trend included in
the estimated equation and T = 100; Panel (b): trend included in the estimated equation
and T = 1000; Panel (c): trend excluded from the estimated equation and T = 100;
Panel (d): trend excluded from the estimated equation and T = 1000. The horizontal axis
represents the nominal size and the vertical axis represents the empirical size.
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Figure 5: Empirical rejection rates (size) in the cointegration case when the coefficients
of the linear combination of peers is restricted. Two different sample sizes are considered:
T = 100 (panel (a)) and T = 1000 (panel (b)).
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Figure 7: Empirical (bars) and asymptotic (solid line) distributions of the counterfactual
effects in the spurious case as stated in Theorem 2 for T = 100 and T = 1000. The
distributions are scaled as in the Theorem. Panel (a): trend included in the estimated
equation and T = 100; Panel (b): trend included in the estimated equation and T = 1000;
Panel (c): trend excluded from the estimated equation and T = 100; Panel (d): trend
excluded from the estimated equation and T = 1000.
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Figure 8: Empirical (bars) and asymptotic (solid line) distributions of the t-statistics in
the spurious case as stated in Theorem 4 for T = 100 and T = 1000. The distributions
are scaled as in the Theorem. Panel (a): trend included in the estimated equation and
T = 100; Panel (b): trend included in the estimated equation and T = 1000; Panel (c):
trend excluded from the estimated equation and T = 100; Panel (d): trend excluded from
the estimated equation and T = 1000.
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(a) T = 100, with trend
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(b) T = 1000, with trend
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(c) T = 100, without trend
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(d) T = 1000, without trend

Figure 9: Size distortion plots of the scaled t-test in the cointegration case for T = 100
and T = 1000 under the asymptotic approximation for the scaled t-statistic distribution
(lines with triangles) and the normal approximation (lines with squares). Panel (a): trend
included in the estimated equation and T = 100; Panel (b): trend included in the estimated
equation and T = 1000; Panel (c): trend excluded from the estimated equation and
T = 100; Panel (d): trend excluded from the estimated equation and T = 1000. The
horizontal axis represents the nominal size and the vertical axis represents the empirical
size.
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(a) T = 100, with trend
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Figure 10: Empirical rejection rates (size) in the spurious case when the coefficients of
the linear combination of peers is restricted. Two different sample sizes are considered:
T = 100 (panel (a)) and T = 1000 (panel (b)).
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