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Abstract

We consider a new method to estimate causal effects when a treated unit suffers a shock or
an intervention, such as a policy change, but there is not a readily available control group
or counterfactual. We propose a two-step approach where in the first stage an artificial
counterfactual is estimated from a large-dimensional set of variables from pool of untreated
units (“donors pool”) using shrinkage methods, such as the Least Absolute Shrinkage Operator
(LASSO). In the second stage, we estimate the average intervention effect on a vector of
variables belonging to the treated unit, which is consistent and asymptotically normal. Our
results are valid uniformly over a wide class of probability laws. Furthermore, we show
that these results still hold when the date of the intervention is unknown and must be
estimated from the data. Tests for multiple interventions and for contamination effects are
also derived. By a simple transformation of the variables of interest, it is also possible to test
for intervention effects on several moments (such as the mean or the variance) of the variables
of interest. Finally, we can disentangle the actual intervention effects from confounding
factors that usually bias “before-and-after” estimators. A detailed Monte Carlo experiment
evaluates the properties of the method in finite samples and compares our proposal with other
alternatives such as the differences-in-differences, factor models and the synthetic control
method. An empirical application to evaluate the effects on inflation of a new anti tax
evasion program in Brazil is considered. Our methodology is inspired by different branches
of the literature such as: the Synthetic Control method, the Global Vector Autoregressive
models, the econometrics of structural breaks, and the counterfactual analysis based on
macro-econometric and panel data models.

Keywords: counterfactual analysis, comparative studies, LASSO, ArCo, synthetic control,
policy evaluation, intervention, structural break, panel data, factor models.
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1. Introduction

We propose a method for counterfactual analysis to evaluate the impact of interventions
such as regional policy changes, the start of a new government, or outbreaks of wars, just
to name a few possible cases. Our approach is specially useful in situations where there is a
single treated unity and no available “controls”. Furthermore, it is robust to the presence of
confounding effects, such as a global shock1. The idea is to construct an artificial counterfac-
tual based on a large-dimensional panel of observed time-series data from a pool of untreated
peers. The introduced methodology shares roots with the panel factor model, hereafter PF,
of Hsiao, Ching, and Wan (2012) and Gobillon and Magnac (2016), the Synthetic Control
method, hereafter SC, pioneered by Abadie and Gardeazabal (2003) and Abadie, Diamond,
and Hainmueller (2010), as well as with the work of Pesaran and Smith (2012). Neverthe-
less, the overall proposed procedure differs from prior methods in several dimensions as will
become clear in the next paragraphs.

Causality is a research topic of major interest in empirical Economics. Usually, causal
statements with respect of the adoption of a given treatment rely on the construction of
counterfactuals based on the outcomes from a group of individuals not affected by the treat-
ment. Notwithstanding, definitive cause-and-effect statements are usually hard to formulate
given the constraints that economists face in finding sources of exogenous variation. However,
in micro-econometrics there has been major advances in the literature and the estimation of
treatment effects is part of the toolbox of applied economists; see Angrist and Imbens (1994),
Angrist, Imbens, and Rubin (1996), Abadie and Gardeazabal (2003), Heckman and Vytlacil
(2005), Conley and Taber (2011), Belloni, Chernozhukov, and Hansen (2014), Ferman and
Pinto (2015), and Belloni, Chernozhukov, Fernández-Val, and Hansen (2016).

On the other hand, when there is not a natural control group which is usually the case
when handling aggregated (macro) data, the econometric tools have evolved in a slower pace
and much of the work has focused on simulating counterfactuals from structural models.
However, in recent years, some authors have proposed new techniques inspired partially by
the developments in micro-econometrics that are able, under some assumptions, to conduct
counterfactual analysis with aggregate data; see, for instance, Hsiao, Ching, and Wan (2012),
Pesaran and Smith (2012), and Gobillon and Magnac (2016).

1.1. Contributions of the Paper. This paper fits into the literature of dynamic treat-
ment effects and counterfactual analysis when a control group is not available. We propose a
two-step approach called the Artificial Counterfactual (ArCo) method to estimate the
average treatment (intervention) effect on the treated (ATET). In the first step, we propose
a model and use the data before the intervention to estimate it. Then, we combine the
estimated model with the data after the intervention to create the artificial counterfactual.

1Although the results in the paper are derived under the assumption of single treated unit, they can be easily
generalized to the case of multiple units suffering the treatment.
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Our proxy control unit is built as a function of a high-dimensional set of observed vari-
ables from a pool of untreated peers and without any stringent assumption about the actual
Data Generating Process (DGP). High-dimensionality is relevant as the dimension of the
estimation problem in the first-step can grow very fast when the number of peers is large
and/or the number of variables for each peer increases. We use the Least Absolute Selection
and Shrinkage Operator (LASSO) put forward by Tibshirani (1996) to estimate the model
parameters. Nonlinearities can be handled by including in the first-stage model some trans-
formations of the explanatory variables, such as polynomials or splines. The method is able
to simultaneously test for effects in different variables as well as in multiple moments of a
set of variables such as the mean and the variance. Furthermore, we propose a test of no
intervention effects with a standard limiting distribution uniformly in a wide class of DGPs.

In addition, we propose extensions of the basic estimator. First, we accommodate sit-
uations when the exact time of the intervention is unknown. This is of importance in the
presence of anticipation effects, for instance. We propose (and tabulate for some values) a Lp
test inspired by the literature on structural breaks (Bai, 1997; Bai and Perron, 1998; Hansen,
2000). Inspired by the same literature we derive a test for the case of multiple interventions.
Finally, we construct a test to check for contamination effects among units.

The identification of the average intervention effect relies on the assumption of inde-
pendence between the intervention and the treated peers but we allow for heterogeneous
common, possibly nonlinear, deterministic time trends among units. Our results are derived
under asymptotic limits on the time dimension (T ). However, we allow the number of peers
(n) and the number of observed variables for each peer to grow as a function of T .

A thorough Monte Carlo experiment is conducted in order to evaluate the small sample
performance of the ArCo methodology and to compare it to well-established alternatives,
namely: the before-and-after (BA) estimator, the differences-in-differences (DiD) estimator
assuming each peer to be an individual in the control group, the PF approach of Gobillon
and Magnac (2016), hereafter PF-GM, and the SC method. We show that the bias of the
ArCo method is, in general, negligible and much smaller than competing alternatives.

Finally, we apply the ArCo methodology to evaluate the impacts on inflation of an anti
tax-evasion program implemented in October 2007 by the state government of São Paulo,
the large city in Brazil. The mechanism works by giving monetary incentives (tax rebates)
for consumers who ask for sales receipts. Additionally, the registered sales receipts give the
consumer the right to participate in monthly lotteries promoted by the government. Similar
initiatives relying on consumer auditing schemes were proposed in the European Union and
in China. Under the premisses that (i) a certain degree of tax evasion was occurring before
the intervention, (ii) the sellers has some degree of market power and (iii) the penalty for
tax-evasion is large enough to alter the seller behaviour, one is expected to see an upwards
movements in prices due to an increase in marginal cost. Therefore, our goal is to investigate
whether the program had an impact on consumer prices.



4 ARCO

1.2. Connections to the literature. The paper most similar to ours is Hsiao, Ching,
and Wan (2012). The authors considered a two-step method where in their first step the
counterfactual for a single treated variable of interest is constructed as a linear combination
of a low-dimensional set of observed covariates from pre-selected elements from a pool of
peers. The model is estimated using data from the pre-intervention period. Their theoretical
results have been derived under the hypothesis of correct specification of a linear panel data
model with common factors and no covariates. The selection of the included peers in the
linear combination is carried out by information criteria. Recently, several extensions of the
above methods have been proposed. Ouyang and Peng (2015) relaxed the linear conditional
expectation assumption by introducing a semi-parametric estimator. Du and Zhang (2015)
made improvements on the selection mechanism for the constituents of the donors pool.

Contrary to Hsiao, Ching, and Wan (2012), Gobillon and Magnac (2016) consider directly
the estimation of a correctly specified linear panel model with interactive fixed effects, strictly
exogenous regressors and known number of common factors. The model is an extension of
the usual DiD specification augmented by a known number of common factors and the
estimation is carried out in the whole sample. Their theoretical results rely on double
asymptotics when both T and n go to infinity. The number of untreated units must grow in
order to guarantee the identification of the common factors. The authors allow the common
confounding factors to have nonlinear deterministic trends with heterogenous loadings, which
is an utmost generalization of the common linear parallel trend hypothesis assumed when
DiD estimation is considered.

The ArCo method differs from the above mentioned works in several directions. First, we
do not restrict the analysis to a single treated variable. We can, for instance, measure the
impact of interventions in several variables of the treated unit simultaneously. We also allow
for tests on several moments of the variable of interest. Second, contrary to Hsiao, Ching,
and Wan (2012) and Gobillon and Magnac (2016), all our theoretical results are derived
under no stringent assumptions about the DGP, which we assume to be unknown. We do
not need to estimate either the common factors or the true conditional expectation. This
is a nice feature of the ArCo methodology, as usually models are misspecified and, even
more important, consistent estimation of factors needs that both the time-series and the
cross-section dynamics diverge to infinity. On the other hand, we consider a flexible linear-
in-parameters high-dimensional model and our asymptotic results holds uniformly on a wide
class of probability laws when the first step is estimated by the LASSO and the number of
parameters to be estimated diverge. Furthermore, we show how to construct asymptotically
honest confidence intervals to the average intervention effect. Third, we also demonstrate
that our methodology can still be applied when the intervention time is unknown. Finally,
we also develop tests for multiple interventions and contamination effects.

When compared to DiD estimators, the advantages of the ArCo methodology are three-
fold. First, we do not need the number of treated units to grow. In fact, the workhorse
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situation is when there is a single treated unit. The second, and most important difference,
is that the ArCo methodology has been developed to situations where the n − 1 untreated
units differ substantially from the treated one and can not form a control group even after
conditioning on a set of observables. Finally, the ArCo methodology works even without
the parallel trends hypothesis. The first difference can be attenuated in light of the recent
results of Conley and Taber (2011) and Ferman and Pinto (2015) who put forward inferential
procedures when the number of treated groups is small.

Although, both the ArCo and the SC methods construct an artificial counterfactual as a
function of observed variables from a pool of peers (untreated units), the two approaches are
different in several dimensions. First, the SC method relies on a convex combination of peers
to construct the counterfactual. The ArCo solution is a general, possibly nonlinear, function.
Even in the case of linearity, the method does not impose any restriction on the parameters
of the linear combination. Furthermore, the weights in the SC method are usually estimated
using time averages of the observed variables for each peer. Therefore, all the time-series
dynamics is removed and the weights are determined in a pure cross-sectional setting. In
some applications of the SC method, the number of observations to estimate the weights is
much lower than the number of parameters to be determined. For example, in Abadie and
Gardeazabal (2003) the authors have 13 observations to estimate 16 parameters. A similar
issue also appears in Abadie, Diamond, and Hainmueller (2010, 2014). In addition, the SC
method was designed to evaluate the effects of the intervention in a single variable. In order
to evaluate the effects in a vector of variables, the method has to be applied several times.
The ArCo methodology can be directly applied to a vector of variables of interest. Finally,
our inferential procedure is not based on permutation tests.

With respect to the methodology by Pesaran and Smith (2012), the major difference is
that the authors construct the counterfactual based on variables that belong to the treated
unit and they do not rely on a pool of untreated peers. Their key assumption is that a subset
of variables of the treated unit is invariant to the intervention. Although, in some specific
cases this could be a reasonable hypothesis, in a general framework this is quite restrictive.

Recently, Angrist, Jordá, and Kuersteiner (2013) propose a semiparametric method to
evaluate the effects of monetary policy based on the so called policy propensity score. Similar
to Pesaran and Smith (2012), the authors only rely on information on the treated unit and no
donor pool is available. As before, this is a major difference from our approach. Furthermore,
their methodology seems to be particularly appealing to monetary economics but hard to be
applied in other settings without major modifications.

Finally, it is important to compare the ArCo methodology with the work of Belloni,
Chernozhukov, and Hansen (2014) and Belloni, Chernozhukov, Fernández-Val, and Hansen
(2016). Both papers consider the estimation of intervention effects in large dimensions.
First, Belloni, Chernozhukov, and Hansen (2014) consider a pure cross-section setting where
the intervention is correlated to a large set of regressors and the approach is to consider
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an instrumental variable estimator to recover the intervention effect, as there is no control
group available. In the ArCo framework, on the other hand, the intervention is assumed to
be exogenous with respect to the peers. Notwithstanding, the intervention may not be (and
probably is not) independent of variables belonging to the treated unit. This key assumption
enables us to construct honest confidence bands by using the LASSO in the first step to
estimate the conditional model. Belloni, Chernozhukov, Fernández-Val, and Hansen (2016)
proposed a general and flexible approach for program evaluation in high dimensions. They
provide efficient estimators and honest confidence bands for a large number of treatment
effects. However, they do not consider the case where there is no control group available.

1.3. Potential Applications. There has been a large body of studies that require the
estimation of intervention effects with no group of controls.

Measuring the impacts of regional policies is a potential application. For example, Hsiao,
Ching, and Wan (2012) measure the impact of economic and political integration of Hong
Kong with mainland China on Hong Kong’s economy whereas Abadie, Diamond, and Hain-
mueller (2014) estimate spillovers of the 1990 German reunification in West Germany. Pe-
saran, Smith, and Smith (2007) used the Global Vector Autoregressive (GVAR) framework
of Pesaran, Schuermann, and Weiner (2004) and Dees, Mauro, Pesaran, and Smith (2007) to
study the effects of the launching of the Euro. Gobillon and Magnac (2016) considered the
impact on unemployment of a new police implemented in France in the 1990s. The effects of
trade agreements and liberalization have been discussed in Billmeier and Nannicini (2013),
and Jordan, Vivian, and Wohar (2014). The rise of a new government or new political regime
are, as well, a relevant “intervention” to be studied. For example, Grier and Maynard (2013)
considered the economic impacts of the Chavez era.

Other potential applications are new regulation on housing prices as in Bai, Li, and Ouyang
(2014) and Du and Zhang (2015), new labor laws as considered in Du, Yin, and Zhang (2013),
and macroeconomic effects of economic stimulus programs Ouyang and Peng (2015). The
effects of different monetary policies have been discussed in Pesaran and Smith (2012) and
Angrist, Jordá, and Kuersteiner (2013). Estimating the economic consequences of natural
disasters, as in Belasen and Polachek (2008), Cavallo, Galiani, Noy, and Pantano (2013),
Fujiki and Hsiao (2015), and Caruso and Miller (2015), is also a promising area of research.

The effects of market regulation or the introduction of new financial instruments on the risk
and returns of stock markets has been considered in Chen, Han, and Li (2013) and Xie and
Mo (2013). Testing the intervention effects in multiple moments of the data can be of special
interest in Finance, where the goal could be the effects of different corporate governance
policies in the returns and risk of the firms (Johnson, Boone, Breach, and Friedmand, 2000).

1.4. Plan of the paper. Apart from this introduction, the paper is organized as follows.
In Section 2 we present the ArCo method and discuss the conditional model used in the
first step of the methodology. In Section 3 we derive the asymptotic properties of the ArCo
estimator and state our main result. Sub-section 3.3 deals with the test for the null hypothesis
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of no causal effect. Extensions for unknown intervention time, multiple interventions and
possible contamination effects are described in Section 4. In Section 5 we discuss some
potential sources of bias in the ArCo method. A detailed Monte Carlo study together with
a horse race among competitor estimators is conducted in Section 6. Section 7 deals with
the empirical exercise. Finally, Section 8 concludes. Tables and Figures together with all
proofs are relegated to the Appendix.

2. The Artificial Counterfactual Estimator

2.1. Definitions and Main Idea. Suppose we have n units (countries, states, municipali-
ties, firms, etc) indexed by i = 1, . . . , n. For each unit and for every time period t = 1, . . . , T ,
we observe a realization of zit = (z1

it, . . . , z
qi
it )
′ ∈ Rqi , qi ≥ 1. Furthermore, assume that an

intervention took place in unit i = 1, and only in unit 1, at time T0 = bλ0T c, where
λ0 ∈ (0, 1).

Let Dt be a binary variable flagging the periods when the intervention was in place. We
can express the observable variables of unit 1 as

z1t = Dtz(1)
1t + (1−Dt)z(0)

1t ,

where Dt = I(t ≥ T0), I(A) is an indicator function that equals 1 if the event A is true,
and z(1)

1t denotes the outcome when the unit 1 is exposed to the intervention and z(0)
1t is the

potential outcome of unit 1 when there is no intervention.
We are ultimately concerned in testing hypothesis on the effects of the intervention in unit

1 for t ≥ T0. In particular, we consider interventions of the form

(1) y
(1)
t =

y
(0)
t , t = 1, . . . , T0 − 1,

δt + y
(0)
t , t = T0 . . . , T,

where y(j)
t ≡ h(z

(j)
1t ) for j ∈ {0, 1}, h : Rq1 7→ Rq is a measurable function of z1t that will be

defined latter, and {δt}Tt=T0 is a deterministic sequence. Due to the flexibility of the mapping
h(·), interventions modeled as (1) are quite general. It includes, for instance, interventions
affecting the mean, variance, covariances or any combination of moments of z1t. The null
hypothesis of interest is

(2) H0 : ∆T =
1

T − T0 + 1

T∑
t=T0

δt = 0.

The quantity ∆T in (2) is quite similar to the traditional average treatment effect on
the treated (ATET) vastly discussed in the literature. Furthermore, the null hypothesis (2)
encompasses the case where the intervention is a sequence {δt}Tt=T0 under the alternative,
which obviously is a special case of uniform treatments by setting δt = δ,∀t ≥ T0.

The particular choice of the transformation h(·) will depend on which moments of the data
the econometrician is interested in testing for effects of the intervention. In other words, the
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goal will be to test for a break in a set of unconditional moments of the data and check if
this break is solely due to the intervention or has other (global) causes (confounding effects).
Typical choices for h(·) are presented as examples below.

Example 1. For the univariate case (q1 = 1), we can use the identity function h(a) = a for
testing changes in the mean. In fact, provided that the p-th moment of the data is finite, we
can use h(a) = ap to test any change in the unconditional p-th moment.

Example 2. In the multivariate case (q1 > 1) we can consider

h(z1t) =

{
z1t for testing changes in the mean,
vech (z1t, z

′
1t) for testing changes in the second moments.

Example 3. We can also conduct joint tests by combining the different choices for h. For
example, for testing simultaneously a change in the mean and variance we can set h(a) =

(a, a2)′. In the multivariate we can set yt = diag (z1t, z
′
1t).

Set yt = Dty(1)
t + (1 − Dt)y(0)

yt . The exact dimension of yt depends on the chosen h(·).
However, regardless of the choice of h(·), we will consider, without loss of generality, that
yt ∈ Y ⊂ Rq, q > 0, and that we have a sample {yt}Tt=1, being the first T0 − 1 observations
before the intervention and the T − T0 + 1 remaining observations after the intervention.

Clearly we do not observe y(0)
t after T0 − 1. For that reason, we call thereafter the

counterfactual, i.e., what would yt have been like had there been no intervention (potential
outcome). In order to construct the counterfactual, let z0t = (z′2t, . . . ,z

′
nt)
′ and Z0t =(

z′0t, . . . ,z
′
0t−p
)′ be the collection of all the untreated units observables up to an arbitrary

lag p ≥ 0. The exact dimension of Z0t depends upon the number of peers (n − 1), the
number of variables per peer, qi, i = 2, . . . , n, and the choice of p. However, without loss of
generality, we assume that Z0t ∈ Z0 ⊆ Rd, d > 0.

Consider the following model

(3) y
(0)
t =Mt + νt, t = 1, . . . , T,

whereMt ≡M(Z0t),M : Z0 → Y is a measurable mapping, and E(νt) = 0.2

Set T1 ≡ T0 − 1 and T2 ≡ T − T0 + 1 as the number of observations before and after the
intervention, respectively. One can estimate the model above using the first T1 observations
since, in that case, y(0)

t = yt. Then, the estimate M̂t,T1 ≡ M̂T1(Z0t) can be used to construct
the estimated counterfactual as:

(4) ŷ
(0)
t =

y
(0)
t , t = 1, . . . , T0 − 1,

M̂t,T1 , t = T0, . . . , T.

Consequently, we can define:

2Which can be ensured by either including a constant in the model M or by centering the variables in a
linear specification.
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Definition 1. The Artificial Counterfactual (ArCo) estimator is

(5) ∆̂T =
1

T − T0 + 1

T∑
t=T0

δ̂t,

where δ̂t ≡ yt − ŷ
(0)
t , for t = T0, . . . , T .

Therefore, the ArCo is a two-stage estimator where in the first stage we choose and
estimate the modelM using the pre-intervention sample and in the second we compute ∆̂T

defined by (5). At this point the following remarks are in order.

Remark 1. The ArCo estimator in (5) is defined under the assumption that λ0 (consequently
T0) is known. However, in some cases the exact time of the intervention might be unknown
due to, for example, anticipation effects. On the other hand, the effects of a policy change
may take some time to be noticed. Although the main results are derived under the assumption
of known λ0, we later show they are still valid when λ0 is unknown.

Remark 2. In most applications the intervention exists for sure (the outbreak of a war, a
new government, a different policy, a new law, etc) and, differently from comparative studies
with micro data, it is usually an idiosyncratic change in unit 1. For example, only in unit 1
the new law was enforced or a new government began.

2.2. A Key Assumption and Motivations. In order to recover the effects of the inter-
vention by the ArCo we need the following key assumption.

Assumption 1. z0t |= Ds, for all t, s.

Roughly speaking the assumption above is sufficient for the peers to be unaffected by
intervention on the unit of interest. The independence is actually stronger than necessary.
Technically, what is necessary for the results is the mean independence of the chosen model
as in E(Mt|Dt) = E(Mt). Nevertheless, the latter is implied by Assumption 1 regardless of
the choice of M. It is worth mentioning that since we allow E(z1t|Dt) 6= E(z1t) we might
have some sort of selection on observables and/or non-observables belonging to the treated
unit. Of course, selection on features of the untreated units is ruled out by Assumption 1.

Even though we do not impose any specific DGP, the link between the treated unit and
its peers can be easily motivated by a very simple, but general, common factor model:

z
(0)
it = µi + Ψ∞,i(L)εit, i = 1, . . . , n; t ≥ 1(6)

εit = Λif t + ηit,(7)

where f t ∈ Rf is a vector of common unobserved factors such that supt E(f tf
′
t) < ∞ and

Λi, is a (qi× f) matrix of factor loadings. Therefore, we allow for heterogeneous determinist
trends of the form ζ(t/T ), where ζ is a integrable function on [0, 1] as in Bai (2009). {ηit},i =

1, . . . , n, t = 1, . . . , T , is a sequence of uncorrelated zero mean random variables. Finally, L
is the lag operator and the polynomial matrix Ψ∞,i(L) = (Iqi +ψ1iL+ψ2iL

2 + · · · ) is such
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that
∑∞

j=0ψ
2
ji < ∞ for all i = 1, . . . , n. I is the identity matrix. Usually we have f < n

thus, as long as we have a “truly common” factor in the sense of having some rows of Λi non
zero, we expect correlation among the units.

The DGP originated by (6) is fairly general and nests several models as by the multivariate
Wold decomposition and under mild conditions, any second-order stationary vector process
can be written as an infinite order vector moving average process; see Niemi (1979). Further-
more, under a modern macroeconomics perspective, reduced-forms for Dynamic Stochastic
General Equilibrium (DSGE) models are written as vector autoregressive moving average
(VARMA) processes, which, in turn, are nested in the general specification in (6) (Fernández-
Villaverde, Rubio-Ramírez, Sargent, and Watson, 2007; An and Schorfheide, 2007). Gobillon
and Magnac (2016) is a special case of the general model described above.

In case of Gaussian errors, the above model will imply that E[y
(0)
t |Z0t] = ΠZ0t. Otherwise,

we can choose model M to be a linear approximation of the conditional expectation. The
strategy is to define xt as a set of transformations of Z0t, such as, for instance, polynomials
or splines, and write y(0)

t as a linear function of xt.
There are at least two major advantages of applying the ArCo estimator instead of just

computing a simple difference in the mean of yt before and after the intervention as a
estimator for the intervention effect. The first is an efficiency argument. Note that the

“before and after” estimator defined as ∆̂
BA

T ≡ 1
T−T0+1

T∑
t=T0

yt − 1
T0−1

T0−1∑
t=1

yt is a particular

case of our estimator when you have “bad peers”, in the sense they are uncorrelated to the
unit of interest. In this case, M(·) = constant and ∆̂T = ∆̂

BA

T . In fact, the additional
information provided by the peers helps to reduce the ArCo estimator variance.

The second, and more important, argument in favor of the ArCo method is related to its
capability of isolate the intervention of interest from aggregated shocks. When attempting
to measure the effect of a particular intervention we are usually in a scenario that other
aggregated shocks took place at the same time. The ability to disentangle these two effects
is vital if one intends to provide a meaningful estimation of the intervention effect. A simple
mental experiment illustrates the point: suppose all units at time T0 are hit by a (aggregated)
shock that changes all the means by the same amount. If we apply the BA estimator we will
eventually encounter this mean break and would erroneously attribute it to the intervention
of interest3. On the other hand, if we use the ArCo approach, since all the units have changed
equally, the estimated effect will probably be insignificant.

Finally, it is important to stress that the validity of the ArCo procedure does not rely on the
traditional parallel trend assumption such as the one usually considered in DiD techniques
nor does it assume the trend to be the same for all the units at a given time, as for instance
in the SC framework. The necessary assumption for our methodology to work properly is
some sort of combination of peers (modelM) that can generate an artificial counterfactual

3Unless the intervention of interest is the aggregated shock but in that case we have invalid peers since they
were treated.
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whose difference from the real counterfactual is well behaved (in the sense of admitting a Law
of Large Numbers and Central Limit theorems). This is usually possible with deterministic
trends that do not dominate the stationary stochastic component asymptotically as well as
when there is some common structure among units.

3. Asymptotic Properties and Inference

3.1. Choice of the Pre-intervention Model and a General Result. The first stage
of the ArCo method requires the choice of the modelM. One should aim for a model that
captures most of the information from the available peers. Once the choice is made, the
model must be estimated using the pre-intervention sample.

It is important to recognise that we do not consider that the model choice is actually the
true model. We can consider that the zit is generated by a DGP such as (6) irrespective
of the choice ofM. Ideally, in the mean square error sense, we would like to setM as the
conditional expectation model m(a) = E(yt|Z0t = a).

Motivated by the fact the dimension of Z0t can grow quite fast in any simple application
(by either including more peers, more covariates, or by simply considering more lags) we
propose a fully parametric specification in order to approximate m(·) as opposed to try to
estimate it non-parametrically. In particular, we approximate it by a linear model (q linear
models to be precise) of some transformation of Z0t. Consequently, the model is linear
in xt = hx(Z0t), where in xt we include a constant term. In particular, hx could be a
dictionary of functions such as polynomials, splines, interactions, dummies or any another
family of elementary transformations the Z0t, in the spirit of sieve estimation (Chen, 2007).
The same approach has been adopted in Belloni, Chernozhukov, and Hansen (2014) and
Belloni, Chernozhukov, Fernández-Val, and Hansen (2016).

Hence,Mt = diag (θ′0,1, . . . ,θ
′
0,q)xt, where both xt and θ0,j, j = 1, . . . , q, are d-dimensional

vectors for j = 1, . . . , q. We allow d to be a function of T . Hence, xt and θ0,j depend on T
but the subscript T will be omitted in what follows. Set rt ≡mt−Mt as the approximation
error and εt ≡ yt −mt as the projection error. We can write the model as in (3), with
νt = rt + εt. The model is then compromised of q linear regressions:

(8) y
(0)
jt = x′tθ0,j + νjt, j = 1, . . . , q,

where θ0,j are the best (in the MSE sense) linear projection parameters which are properly
identified as long as we rule out multicollinearity among xt (Assumption 2).

We consider the sample (in the absence of intervention) as a single realization of the
random process {z(0)

t }Tt=1 defined on a common measurable space (Ω,F) with a probability
law (joint distribution) PT ∈ PT , where PT is (for now) an arbitrary class of probability
laws. The subscript T makes it explicit the dependence of the joint distribution on the
sample size T , but we omit it in what follows. We write PP and EP to denote the probability
and expectation with respect to the probability law P ∈ P , respectively.
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We establish the asymptotic properties of the ArCo estimator by considering the whole
sample increasing, while the proportion between the pre-intervention to the post-intervention
sample size is constant. The limits of the summations are from 1 to T whenever left un-
specified. Recall that T1 ≡ T0 − 1 and T2 ≡ T − T0 + 1 are the number of pre and post
intervention periods, respectively and T0 = bλ0T c. Hence, for fixed λ0 ∈ (0, 1) we have
T0 ≡ T0(T ). Consequently, T1 ≡ T1(T ) and T2 ≡ T2(T ). All the asymptotics are taken
as T → ∞. We denote convergence in probability and in distribution by “ p−→” and “ d−→”,
respectively.

First, we state a general result under very high level assumptions from which all the other
subsequent results rely on. Let M̂t,T1 = (x′tθ̂1,T1 , . . . ,xt

′θ̂q,T1)
′, for t ≥ T0, where θ̂j,T1 ,

j = 1, . . . , q, is estimated with only the first T1 pre-intervention observations, and define
ηt,T1 ≡ M̂t,T1 −Mt, t ≥ T0.

Proposition 1. Under Assumption 1, consider further that, uniformly in P ∈ P (an arbi-
trary class of probability laws):

(a)
√
T
(

1
T2

∑
t≥T0 ηt,T1 −

1
T1

∑
t≤T1 νt

)
p−→ 0

(b) 1√
T1

Γ
−1/2
T1

∑
t≤T1 νt

d−→ N (0, Iq), where ΓT1 = EP
[

1
T1

(
∑

t≤T1 νt)(
∑

t≤T1 ν
′
t)
]
.

(c) 1√
T2

Γ
−1/2
T2

∑
t≥T0 νt

d−→ N (0, Iq), where ΓT2 = EP
[

1
T2

(
∑

t≥T0 νt)(
∑

t≥T0 ν
′
t)
]
.

Then, uniformly in P ∈ P,
√
TΩ

−1/2
T

(
∆̂T −∆T

)
d−→ N (0, Iq), where N (·, ·) is the multi-

variate normal distribution and ΩT ≡
ΓT1
T1/T

+
ΓT2
T2/T

.

Condition (a) above sets a limit for the estimation error to be asymptotic negligible,
ensuring the

√
T rate of convergence of the estimator. Under condition (a) we can write:

∆̂T −∆T =
1

T2

∑
t≥T0

νt −
1

T1

∑
t≤T1

νt + op(T
−1/2).

Finally, conditions (b) and (c) ensure the asymptotic normality of the terms above af-
ter appropriate normalization. From the asymptotic variance ΩT it becomes evident that
an intervention at the middle of the sample, λ0 = 0.5, is desirable when limT→∞ ΓT1 =

limT→∞ ΓT2 ≡ Γ, which happens for instance when {νt} is a stationary process. In this case,
limT→∞ΩT = Γ/λ0(1− λ0).

Recall that if M = α0, the estimator is equivalent to the BA estimator. Therefore, one
advantage of the ArCo is to provide a systematic way to extract as most information as
possible from the peers in order to reduce the asymptotic variance of the prediction error.
We can make more explicit the peers’ contribution in reducing the asymptotic variance of the
average ArCo estimator by the following matrix inequality (in term of positive definiteness)

0 ≤ lim
T→∞

ΩT ≡ Ω ≤ lim
T→∞

TV

(
1
T2

∑
t≥T0

y
(0)
t − 1

T1

∑
t≤T1

y
(0)
t

)
≡ Ω̃,
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where V is the variance operator defined for any random vector v as V(v) = E(vv′) −
E(v)E(v′).

The upper bound Ω̃ is the long run variance of the variables of the unit of interest (unit 1)
weighted by the intervention fraction time λ0. As a consequence, our estimator variance for
any given λ0, lies in between those two polar cases. One polar case is when there is a perfect
artificial counterfactual and the other one is when the peers contribute with no information.
Thus, the peer’s contribution in reducing the ArCo estimator asymptotic variance could
be represented by a R2-type statistic measuring the “ratio” between the explained long-run
variance Ω to the total long-run variance Ω̃.

3.2. Assumptions and Asymptotic Theory in High-Dimensions. The dimension d of
xt can be potentially very large, even larger than the sample size T , whenever the number
of peers and/or the number of variables per peer is large. In these cases it is standard to
allow d, and consequently θj, j = 1 . . . , q, to be function of the sample size, such that d ≡ dT

and θj = θj,T . In order to make estimation feasible, regularization (shrinkage) is usually
adopted, which is justified by some sparsity assumption on the vector θ0,j, j = 1 . . . , q, in
the sense that only a small portion of its entries are different from zero.

We propose the estimation of (8), equation by equation, by the LASSO approach proposed
by Tibshirani (1996) and we allow that dimension d > T to grow faster than the sample
size4. Also, since each equation in the model is the same, we drop the subscript j from now
on to focus on a generic equation. Therefore, we estimate θ0 via

(9) θ̂ = argmin

{
1

T0 − 1

∑
t<T0

(yt − x′tθ)2 + ς‖θ‖1

}
,

where ς > 0 is a penalty term and ‖ · ‖1 denotes the `1 norm.
Let θ[A] denote the vector of parameters indexed by A and S0 the index set of the non-zero

(relevant) parameters S0 = {i : θ0,i 6= 0} with cardinality s0. We consider the following set
of assumptions.5

Assumption 2. (DESIGN) Let Σ ≡ 1
T1

∑T1
t=1 E(xtx

′
t). There exists a constant ψ0 > 0 such

that
‖θ[S0]‖2

1 ≤
θΣθs0

ψ2
0

,

for all ‖θ[Sc0]‖1 ≤ 3‖θ[S0]‖1.

Assumption 3. (HETEROGENEITY AND DEPENDENCY) Let wt ≡ (νt,x
′
t)
′, then:

(a) {wt} is strong mixing with α(m) = exp(−cm) for some c ≥ c > 0

(b) E|wit|2γ+δ ≤ cγ for some γ > 2 and δ > 0 for all 1 ≤ i ≤ d, 1 ≤ t ≤ T and T ≥ 1,

4Some efficiency gain could be potentially obtain by a joint estimation, for instance, a SUR (seemly unrelated
regression) setting if the regressors of each equation are the not the same. We do not pursue this route in
here.
5Recall that since we drop the equation subscript j, the assumptions below must understood for each equation
j = 1, . . . , q separately.
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(c) E(ν2
t ) ≥ ε > 0, for all 1 ≤ t ≤ T and T ≥ 1.

Assumption 4. (REGULARITY)

(a) ς = O
(
d1/γ√
T

)
(b) s0

d2/γ√
T

= o(1)

Assumption 2 is known as the compatibility condition, which is extensively discussed on
Bülhmann and van der Geer (2011). It is quite similar to the restriction of the smallest
eigenvalue of Σ, when one replace ‖θ[S0]‖2

1 by its upper bound s0‖θ[S0]‖2
2. Notice that we

make no compatibility assumption regarding the sample counterpart Σ̂ ≡ 1
T1

∑T1
t=1 xtx

′
t.

Assumption 3 controls for the heterogeneity and the dependence structure of the process
that generates the sample. In particular Assumption 3(a) requires {wt} to be an α-mixing
process with exponential decay. It could be replaced by more flexible forms of dependence
such as near epoch dependence or Lp-approximability on an α-mixing process as long as
we control for the approximation error term. Assumption 3(b) bounds uniformly some
higher moment which ensures an appropriate Law of Large Numbers, and Assumption 3(c)
is sufficient for the Central Limit Theorem. The latter bounds the variance of the regression
error away from zero, which is plausible if we consider that the fit will never be perfect
regardless of how much relevant variables we have in (8).

Assumption 4(a) and (b) are regularity conditions on the growth rate of the penalty
parameter and the number of (relevant/total) parameters, respectively. They are obviously
smaller than the analogous results found in the literature for the case of fix design and
normality of the error term.6

We can now define P as the class of probability law that satisfies Assumptions 2,3 and
4(b). However, for convenience we explicitly state all those assumptions underlying the
results that follows. Here is our main result.

Theorem 1. (MAIN) Let M be the model defined by (8), whose parameters are estimated
by (9), then under Assumptions 1-4:

sup
P∈P

sup
a∈Rq

∣∣∣PP [√TΩ
−1/2
T (∆̂T −∆T ) ≤ a

]
− Φ(a)

∣∣∣→ 0, as T →∞,

where ΩT is defined in Proposition 1,the event {a ≤ b} ≡ {ai ≤ bi,∀i} and Φ(·) is the
cumulative distribution function of a zero-mean identity covariance normal random vector.

The results above are uniform with respect to the class of probability laws P , which
we believe to be large enough to be of some interest. Notice that we do not require any
strong separation of the parameters away from zero, which is usually accomplished in the
literature by imposing a θmin which is uniformly bounded away from zero. The uniformity
convergence above is possible, in our case, as consequence of Assumption 1, which translate
into the treatment Dt be uncorrelated to the regressors xt. In other words, the potential

6Under those condition, 4(a) and (b) become ς = O

(√
log d
T

)
and s0 log d√

T
= o(1), respectively.
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non-uniformity issues regarding the estimation of the parameters of θ0 do not contaminate
the estimation of ∆T , even if the coefficients of the conditional model are of order O(T−1/2)

as discussed in Leeb and Pötscher (2005,2008,2009).
In a different set-up, Belloni, Chernozhukov, and Hansen (2014) consider the case where

the treatment is correlated with the set of regressors. Consequently, they propose the esti-
mation via a moment condition with the so called orthogonality property in order to achieve
uniform convergence. Further, Belloni, Chernozhukov, Chetverikov, and Wei (2016) general-
ize this idea to conduct uniform inference in a broad class of Z-estimators. As a parallel, our
framework ensures a moment condition with the orthogonality property as a consequence of
Assumption 1.

3.3. Hypothesis Testing under Asymptotic Results. Given the asymptotic normality
of ∆̂T , it is straightforward to conduct hypothesis testing. It is important, however, to
remember the dependence of the results upon knowing the exact point of a possible break
and the assurance that the peers are in fact untreated. Fortunately, both conditions can be
tested which is the topic of the next sections. For now will we consider that the unit 1 is the
only one potentially treated and the moment of the intervention, T0, is known for certain.

First we need a consistent estimator for the variance ΩT . More precisely, we need es-
timators for both ΓT1 and ΓT2 . If we expect to have uncorrelated residuals and given the
consistency of θ̂, we can simply estimate it by the average of the sum of squares of residuals
in the pre-intervention model. A popular choice for serial correlated residuals are presented
in Andrews (1991) and Newey and West (1987). Both have a similar structure given by the
weighted autocovariance estimator as

(10) Γ̂Ti = Γ̂0i +
M∑
k=1

φ(k)
(
Γ̂ki + Γ̂

′
ki

)
, i = {1, 2},

where Γ̂k1 ≡ 1
T1−k

∑T1−k
t=1 ν̂tν̂

′
t+k, Γ̂k2 ≡ 1

T2−k
∑T−k

t=T0
ν̂tν̂

′
t+k, k = 0, . . . ,M , and ν̂t = yt −

M̂T0(xt)− ∆̂T I(t ≥ T0).
In practice, we still need to specify the maximum number of lags/bandwidth to consider

and the weight function. Usually, the later is a kernel function centered at zero. A common
choice is a Bartlett kernel where the weights are given simply by φ(k) = 1− k

M+1
. Theorem

2 of Newey and West (1987) and Proposition 1 of Andrews (1991) give general conditions
under which the estimator is consistent. Moreover, Andrews (1991) discusses what kind of
kernels are allowed and present a sizeable list of options. It also describes a data-driven
procedure for bandwidth selection.

Therefore, if we replace ΩT by Ω̂T ≡
Γ̂T1
T1/T

+
Γ̂T2
T2/T

, we can construct honest (uniform)
asymptotic confidence intervals and hypothesis testing as follows:

Proposition 2. (Uniform Confidence Interval) Let Ω̂T be a consistent estimator for ΩT

uniformly in P ∈ P. Under the same conditions of Theorem 1, for any given significance
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level α:
Iα ≡

[
∆̂j,T ±

ω̂j√
T

Φ−1(1− α/2)

]
for each j = 1, . . . , q, where ω̂j =

√
[Ω̂]jj and Φ−1(·) is the quantile function of a standard

normal distribution. The confidence interval Iα is uniformly valid (honest) in the sense that
for a given ε > 0, there exists a Tε such that for all T > Tε:

sup
P∈P
|PP (∆j,T ∈ Iα)− (1− α)| < ε,

Proposition 3. (Uniform Hypothesis Test) Let Ω̂T be a consistent estimator for ΩT uni-
formly in P ∈ P. Under the same conditions of Theorem 1, for a given ε > 0, there exists a
Tε such that for all T > Tε:

sup
P∈P
|PP (WT ≤ cα)− (1− α)| < ε,

where WT ≡ T∆̂
′
T Ω̂
−1

T ∆̂T , P(χ2
q ≤ cα) = 1 − α and χ2

q is a chi-square distributed random
variable with q degrees of freedom.

4. Extensions

We consider extensions of the framework developed previously. In Section 4.1 we deal
with the problem of an unknown intervention time and propose a procedure to account for
that and develop a consistent estimator for the most likely intervention time. The case of
multiple intervention points is treated in Section 4.2 and, finally, Section 4.3 investigates
the presence of treated unit among the controls, which is particularly useful for testing for
spillover effects.

4.1. Unknown Intervention Timing. There are reasons why the intervention timing
might not be known for certainty. It could be due to anticipation effects related to rational
expectations regarding an announced change in future policy. Or, on the other hand, a sim-
ple delay in the response of the variable of interest. Regardless of the cause of uncertainty,
we propose a way to apply the methodology even when T0 is unknown.

We start by reinterpreting our estimator as a function of λ (or Tλ ≡ bλT c), where λ ∈ Λ,
a compact subset of (0, 1):

∆̂T (λ) =
1

T − Tλ + 1

∑
t≥Tλ

δ̂t,T (λ), ∀λ ∈ Λ(11)

where δ̂t,T (λ) = yt−M̂T (λ)(xt), for t = Tλ, . . . , T , and M̂T (λ) is the estimate of the model
M based on the first Tλ−1 observations. Also, consider a λ-dependent version of our average
treatment effect, given by

∆T (λ) =
1

T − Tλ + 1

T∑
t=Tλ

δt.
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For fix λ provided that the condition of Proposition 1 are satisfied for Tλ (as opposed to
just T0 ≡ Tλ0) we have the convergence in distribution to a Gaussian. Hence, it is sufficient
to consider the following extra assumption.

Assumption 5. {(y′t,x′t)′} is a strictly stationary process.

Assumption 5 above is clearly stronger than necessary. For instance, it would be enough
to have {νt} as a weakly stationary process. However, in order to avoid assumptions that
are model dependent (via the choice of M) we state Assumption 5 as it is. It follows for
instance if the process that generates the observable data in the absence of the intervention
{z(0)

t } is strictly stationary and both transformations h(·) and hx(·) are measurable.
In order to analize the properties of the estimator (11) it is convenient to define the

stochastic process {ST} index by λ ∈ Λ, such that for each λ ∈ Λ, we have ST (λ) ≡√
TΓ
−1/2
T [∆T (λ)−∆T (λ)]. Note that unlike the notation used in Proposition 1, we do not

include the factors T1/T and T2/T inside the asymptotic variance term also since all the
results will be under stationarity (Assumption 5) we replace ΓT1 and ΓT2 by its asymptotic
equivalent ΓT , which is independent of λ ∈ Λ.

Therefore, the convergence in distribution of ST (λ) to a Gaussian for any finite dimension
λ = (λ1, . . . , λk)

′ follows directly from Theorem 1 combined with Assumption 5 and the
Cramèr-Wold device. Furthermore the next theorem shows that ST converges uniformly in
λ ∈ Λ.

Theorem 2. Under the conditions of Proposition 1 and Assumption 5:

ST (λ) ≡
√
TΓ
−1/2
T [∆T (λ)−∆T (λ)]

d−→ S ∼ N (0,ΣΛ),

where ΣΛ(λ, λ′) = Iq
(λ∨λ′)(1−λ∧λ′) , ∀(λ, λ

′) ∈ Λ2. For p ∈ [1,∞], ‖ST‖p
d−→ ‖S‖p, where

‖f‖p =
(∫
|f(x)|pdx

)1/p if 1 ≤ p ≤ ∞ and ‖f‖∞ = supx∈X |f(x)|.

The second part of Theorem 2 gives us a direct approach to conduct inference in the
case of unknown intervention time. We can replace ΓT by a consistent estimator Γ̂T (as for
instance the one discussed in in Section 3.3) and conduct inference on ‖ŜT‖p under a slightly
stronger version of H0, (which clearly implies H0):

Hλ
0 : δt = 0, ∀t ≥ 1.

In practice, as it is the case for the structural breaks tests, we trim the sample to avoid
finite sample bias close to the boundaries and select Λ = [λ, λ̄]. Table 1 presents the critical
values for common choices of p = {1, 2,∞} and trimming values.

The procedure above suggests a natural estimator for the unknown intervention time,
which might be useful in situations such as the one discussed in Section 4.2 where we treat
multiple unknown intervention times.

We assume a constant intervention such as

Assumption 6. δt = ∆, for t = T0, . . . , T , where ∆ ∈ Rq is non-random.
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Remark 3. Recall that Assumption 6 is not overly restrictive due to the flexibility provided
by the transformation h(.). The mean of yt might as well represent the variance, covariances
or any other moment of interest of the original z1t variable.

Remark 4. Assumption 6 implies an instantaneous treatment effect (step function) at t =

T0. In most cases, however, we might encounter a continuous intervention effect, possibly
reaching a distinguishable new steady state value. We could accommodate these cases by
trimming this transitory part of the sample, provided we have enough data, and then apply
the methodology in the trimmed sample where the Assumption 6 holds.

Proposition 4. Under the conditions of Proposition 1 and Assumptions 5 and 6, ∆̂T (λ)
p−→

φ(λ)∆, where

φ(λ) =

{
1−λ0
1−λ if λ ≤ λ0,
λ0
λ

if λ > λ0.

Since both 1−λ0
1−λ and λ0

λ
are bounded between 0 and 1, we have that ‖plim ∆̂T (λ)‖p ≤ ‖∆‖p

for all λ ∈ Λ, where ‖·‖p denotes the `p norm. Under the maintained hypothesis that ∆ 6= 0,
we can establish the identification result that plim ∆̂T (λ) = ∆ if and only if λ = λ0. The
result above naturally suggests an estimator for λ0:

(12) λ̂0,p = argmax
λ∈Λ

JT,p(λ) and JT,p(λ) ≡ ‖∆̂T (λ)‖p.

Theorem 3. Let p ∈ [1,∞]. Under the conditions of Proposition 1 and Assumptions 5 and
6, for ∆ 6= 0, λ̂0,p = λ0 + op(1). If ∆ = 0, λ̂0,p converges in probability to any λ ∈ Λ with
equal probability.

4.2. Multiple Intervention Points. We can readily extend our analysis to the case of
more than one intervention taking place in the unit of interest as long as, in each of them,
Assumption 6 is valid. Suppose that we have S ordered known intervention points corre-
sponding to the fractions of the sample given by λ0 ≡ 0 < λ1 < · · · < λS < 1 ≡ λS+1.

For each of the intervention points s = {1, . . . , S} we can define the time of each inter-
vention by Ts ≡ bλsT c and construct our estimator the same way we did for the single
intervention case. To simplify notation we define the set of all periods after intervention s
but before the intervention s+1 by τs = {Ts, Ts+1, . . . , Ts+1−1} and set #{A} the number
of elements in the set A. Then we have S estimators given by:

∆̂
s

T ≡ ∆̂T (λs, θ̂s) =
1

#{τs}
∑
t∈τs

[
yt −Mp(xt, θ̂s,T )

]
, s = 1, . . . , S,

where once again θ̂s,T is the LASSO estimator using the sample index by t ∈ τs−1. Note
that we could allow the linear model to depend on s, i.e., differ from one intervention point
to another. However, a much more parsimonious estimation could be obtained by choosing
the same model to all intervention periods.
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Under the same set of assumptions for the single intervention case plus Assumption 6, we
have the sequence of estimators {∆̂

s

T}Ss=1 consistent to their respective intervention effects
{∆s}Ss=1 and also asymptotically normal. However, we need to make a minor adjustment in
the asymptotic covariance matrix to reflect the intervention timing as:

√
TΓ
−1/2
T

(
∆̂

s

T −∆s
)

d−→ N
[
0,

1

(λs − λs−1)(λs+1 − λs)

]
, s = 1, . . . , S.

Since under Assumption 6 all the interventions are constant, we have that the asymptotic
variance Γ is the same across all intervention points. Therefore, we can apply the inference
for each breaking point as we have described for the single intervention case.

On the other hand, if the intervention points are unknown, we need to first estimate their
location as in the single intervention case. Since the intervention points are assumed to be
distinct, i.e. λi 6= λj, ∀i, j, it follows from Proposition 4 that there exists an interval of size
ε > 0 around every intervention point such that

∆̂
p

T (λ)
p−→

{
1−λp
1−λ ∆ if λ ∈ [λp − ε/2, λp],
λp
λ

∆ if λ ∈ (λp, λp + ε/2].

Nonetheless, in contrast to the single intervention scenario, in the case of multiple inter-
vention points we need first to estimate how many are they and their respective location
to construct {∆̂

p

T}Pp=1. One approach is to start with the null hypothesis of no intervention
(s = 0) against the alternative of a single one. We can then compute λ̂1 as in (12) and test
the null using ∆̂

0

T (λ̂1). In case we are able to reject the null, we split the sample at λ̂1 and
repeat the procedure in each of the two subsample. Every time we reject the null we split the
sample in λ̂s and proceed sequentially until we no longer reject the null in any subsample.

The sequential procedure described above was advocated by Bai and Perron (1998). It
in based on the observation that given a non-zero number of true intervention points, the
first loop will encounter the most significant one (in terms of SSR reduction) and proceed
sequentially until it finds the last one of them. In case we have multiple intervention points
with the same magnitude the method would converge to any of them with equal probability.

Formally, starting from an arbitrary number of s ≥ 0 intervention points and for a given
significance level α we test for each of the s+ 1 subsamples as:

H(s)
0 : ∆ = 0 for all λ ∈ [λj, λj+1)sj=0 ,

H(s+1)
1 : ∆ 6= 0 for any λ ∈ [λj, λj+1)sj=0 .

Note that the overall significance level of the test is no longer the individual significance level
and it has to be adjusted to account for the sequential nature of the procedure.

4.3. Testing for the unknown treated unit/Untreated peers. All the analysis carried
on so far relies on the knowledge of which unit is the treated one an also, more importantly, on
the premisses that the remaining are in fact untreated during the sample period (Assumption
1). Yet, there might be cases where we are either unsure or would like to test for those
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conditions. Given any finite subset I of the available units we would like to test the following
hypothesis

Hn
0 : ∆

(i)
T = 0 ∀i ∈ I ⊆ {1, . . . , n}

Hn
1 : ∆

(i)
T 6= 0 for some i ∈ I

Nothing prevent us from running the same procedure considering each unit i ∈ I to be
the treated one to obtain ∆̂

(i)

T as in (5) for i = 1, . . . , nI , where nI < ∞ is the cardinality

of the set I. We can then stack all of them in a vector as Π̂T (I) ≡
(
∆̂

(1)′

T . . . ∆̂
(nI)′

T

)′
as an

average estimator for the true average intervention effect vector ΠT (I) ≡
(
∆

(1)′

T . . .∆
((I))′

T

)′
where ∆

(i)
T is defined for each unit. Hence,

Proposition 5. Under the conditions of Proposition 1, for any finite subset I ⊆ {1, . . . , n}
√
TΣ

−1/2
I

[
Π̂T (I)−ΠT (I)

]
d−→ N (0, I),

where ΣI is a covariance matrix with typical (matrix) element (i, j) ∈ I2 given by:

Ωij
T ≡ TE

[(
∆̂

(i)

T −∆
(i)
T

)(
∆̂

(j)

T −∆
(j)
T

)′]
,

with Ωij
T =

ΓijT1
T1/T

+
ΓijT2
T2/T

, Γij
T1

= E
[

(
∑
t≤T1

νit)(
∑
t≤T1

νjt
′
)

T1

]
, and Γij

T2
= E

[
(
∑
t≥T0

νit)(
∑
t≥T0

νjt
′
)

T2

]
.

Therefore, for a given consistent estimator Σ̂ we have under Hn
0 :

W π
T ≡ T Π̂

′
T Σ̂
−1

I Π̂T
d−→ χ2

nq.

We can obtain a consistent estimator for ΣI repeating the same procedure described in
Section 3.3 for each pair (ij) ∈ I2 to obtain Ω̂

ij
and finally construct the matrix Σ̂I . Hence

for a desirable significance level, we can then use W π
T to test Hn

0 . Once you remove the
(likely) treated unit and re-test it again with the remanning units (peers) the test becomes
yet more useful. In case we fail to reject the null, we can interpreted this result as a direct
evidence in favour of the hypothesis that the peers are in fact untreated considering the
sample at hand. Which ultimately provides support to our key Assumption 1.

5. Selection Bias, Contamination, Nonstationarity and Other Issues

In this section we discuss some possible sources of bias in the ArCo method. In particular,
we consider the potential effects when the intervention does not affect only the outcome of the
variable of the unit 1. Equivalently, we investigate the consequences whenever Assumption
1(b) fails and we expect to have E(z0t|Dt) 6= 0.

We consider without loss of generality a simpler version of the DGP described in Section
2. Each unit i = 1, . . . , n under no intervention is represented by z(0)

it = lift+ηit, where ηit is
an zero mean independent and identically distributed (iid) idiosyncratic shock with variance
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σ2
ηi
. Furthermore, E(ηitηjt) = 0, for all i 6= j. Also, the common factor vector ft is an iid

random variables with zero mean and variance σ2
f .

Set yt = z1t, xt = (z2t, . . . , znt)
′, l0 = (l2, . . . , ln)′ and σ2

η0
= (σ2

η2
, . . . , σ2

ηn)′. In this setup
we can write (

yt
xt

)
∼

[
0, σ2

f

(
l21 + r1 l1l

′
0

l1l0 l0l
′
0 + diag (r0)

)]
,

where ri ≡
σ2
ηi

σ2
f
is the noise to signal ratio of unit i = 1, . . . , n and r0 = (r2, . . . , rn)′.

As a consequence, the best linear projection model is given by L(yt|xt) = x′tβ0, where
β0 = [l0l

′
0 + diag (r0)]

−1
(l1l0). Furthermore, yt = x′tβ0+νt, where E(xtνt) = 0 by definition,

and σ2
ν ≡ E(ν2

t ) = σ2
f (l21 + r1 − β′0l1l0).

Therefore, we have that β0 ≡ β0(l, r) and σ2
ν ≡ σ2

ν(l, r, σ
2
f ), where r = (r1, r

′
0)′ and

l = (l1, . . . , ln)′.
Suppose now that we have an intervention affecting all units from T0 onwards, i.e. Assump-

tion 1(b) does not hold. We consider both situations, where the intervention is change in the
common factor given by a deterministic sequence {cft }t≥T0 and one completely idiosyncratic
{cit}t≥T0 for i = 1, . . . , n, z(1)

it = z
(0)
it + 1{t ≥ T0}

(
cit + lic

f
t

)
.

Consequently, for t = T0, . . . , T :

δt = yt − x′tβ0 = y
(0)
t + c1

t + l1c
f
t −

(
x

(0)
t + c0

t + l0c
f
t

)′
β0 = c1

t + νt − c0
t
′
β0 + (l1 − l′0β0) cft .

Clearly, under Assumption 1(b), we have that c(0)
t = cft = 0, ∀t, thus E(δt) = c1

t and,
ignoring the sampling error of estimating β0, the ArCo estimator will be unbiased for the
average of c1

t for the post intervention period. On the other hand, without those assumptions
we have the following bias in normalized statistic

(13) bt ≡ E
(
δt − c1

t

σν

)
=

(
l1 − l′0β0

σν

)
︸ ︷︷ ︸

≡φf

cft −
c0
t
′
β0

σν

The factor in the first term of the bias φf = φf (l, r, σ
2
f ) is a non-linear expression which

is hard to express in closed form. However, regardless of the choice of the factor loads l
and idiosyncratic shock variances σ2

η = (σ2
η1
, . . . , σ2

ηn)′, we have that as σ2
f →∞, r → 0 and

consequently R2 → 1. Hence we write φf = φf (R
2). Moreover, φf (R2) is strictly decreasing

in R2 and approach zero quite fast as it can be seen in the left scale of Figure 1. Also
φf = φ(s0) is also decreasing in the number of relevant variables s0 for fix R2.

Hence, if c0
t = 0 but cft 6= 0, even with moderate R2, we have a reasonable small bias

which cause the inference to be valid with minor overejection. This is in contrast to the case
where we do not include relevant peers in our analysis . In fact, as mention previous in the
Introduction, that is the main motivation for using the present methodology as oppose to
an alternative that does not involve peers (a simple before-and-after estimation of averages
for instance). ArCo can effectively isolate the intervention of interest even in the case of
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partially fulfilment of Assumption 1. In the limit of a perfect counterfactual, the bias is zero
and the higher is the correlation among the treated unit and the peers, the smaller is the
bias.

The second bias term in (13) can be seen as a result for instance of global shock that
induce breaks in peers in non-systematic way, which makes this source of bias difficult to
handle. To get a better sense, consider for instance the case where idiosyncratic shock is a
fix proportion of the standard deviation of each unit, i.e. cit = kσi,∀i for some k ∈ R. In
that case, φg = (σ′β0/σν)k, where σ = (σ1, . . . , σn)′. Here the opposite happens, namely
φg(R

2) is zero when R2 = 0 and increases in the overall fit of the model. The bias increase
is quite sharp as can been seen in the right scale of Figure 1.

Therefore, whenever one expect c0
t 6= 0, the ArCo methodology does not work properly

but the BA estimator does as it can be seen as a particular case of the ArCo estimator with
R2 = 0 (for instance by not including any peers) and hence the bias is zero. In general, the
ArCo estimator gives the difference between the actual break in the treated unit and what is
expected from the peers. A standard solution is to assume that the “treatment assignment” is
independent of z0t = (z2t, . . . , znt)

′, which is our Assumption 1 and the ArCo approach is not
subject to selection bias. However, it is important to stress that the “treatment assignment”
might be dependent on z1t and our approach is still valid.7 One way to check if there is no
“treatment contamination” is to test the peers for possible breaks after T0 as discussed in
Section 4.3.

Other possible source of problems is the use of "non-stationary" processes, leading to
spurious results. In this paper we focus solely in the case the variables of interest have some
sort of “fading memory” behaviour. Thus, if one or more variables are found to be integrated,
they must be differenced first in order to achieve stationarity. A full discussion of integrated
process of order 1 can be seen in Masini and Medeiros (2016).

6. Monte Carlo Simulation

We conducted two sets of Monte Carlo simulations. First, we conduct size and power
simulations in order to investigate the finite sample properties of the test. We consider a
broad range of cases by combining different innovation distributions, sample sizes, number
of peers, number of relevant peers, dependence structure, trends and intervention types.
Second, a “horse race” is proposed in order to compare the ArCo estimator with potential
alternatives. We consider the SC method of Abadie and Gardeazabal (2003) and Abadie,
Diamond, and Hainmueller (2010), the PF estimator suggested in Gobillon and Magnac
(2016) and the DiD and BA estimators.

6.1. Size and Power Simulations. The DGP considered is a version of the common factor
model (6) with the following baseline scenario: T = 100 observations, n = 100 units, q = 1

7The result is analogous to the average treatment effect on the treated not being biased by selection on
(un)observables
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one variable per unit, λ0 = 0.5 (intervention at the middle of the sample), s0 = 5 relevant
(non-zero) parameters with loading factor equal to 1 and f = 1 common factor. The common
factor and all idiosyncratic shocks are independent and identically normally distributed with
zero mean and unit variance. We perform 10,000 simulations.

First, we analyze the influence of the underlying distribution on the test size by holding all
the other parameters above fixed and performing the simulation for a chi-square distribution
with 1 degree of freedom for asymmetry issues, t-Student distribution with 3 degrees of
freedom for fat-tails and a mixed normal distribution for bimodality.8 As shown in first
panel of Table 2, little influence in the overall size of the test is perceived.

Next we analyze the influence of the number of observations in the test size. We con-
sider T = {25, 50, 75, 100}. Surprisingly, the size distortions are small even with only 50
observations as shown in the second panel of Table 2. We stress that since we deal with the
intervention at the middle of the sample we have less than T/2 observations to fit the high
dimensional model.

We now investigate the influence of increasing the number of covariates (by increasing
either the number of lags or the number of peers)9. We set d = {100, 200, 500, 1000}. The
third panel of Table 2 shows that the test size seems to be unaffected by the increase in the
model complexity. This should come with no surprise since consistent model selection is not
an issue for the methodology to work.

We consider a change of relevant (non-zero) covariates (units) in the pre-intervention
model. We consider a case where all the regressors are irrelevant, which reduces (asymptot-
ically) the ArCo to the BA estimator, and we further increase s0. In the last scenario we
consider all regressors non-zero but with decreasing magnitude 1/

√
j, j = 1, . . . , 100. In all

cases the LASSO do not overfit the pre-intervention data and the size distortions are small
as displayed in Table 2.

Finally, we consider the case where each unit follows a first-order autoregressive process
in order to investigate issues that arise in the presence of serial correlation. In this scenario
we include lags of the relevant covariates instead of new peers. The results are shown in the
last panel of Table 2. We note a persistent oversized test, which is more pronounced as the
autoregressive coefficient (ρ) becomes closer to 1. The empirical distribution of the estimator
(not shown) is, however, very close to normal, and the distortion is a sole consequence of
the poor finite sample properties of the variance estimator . In particular it underestimate
Ω. We tried several alternatives for Ω̂T , including Newey and West (1987), Andrews (1991),
Andrews and Monahan (1992), and Haan and Levin (1996). We obtain the best results (last
panel of Table 2) using the procedure proposed in Andrews and Monahan (1992).

It is worth mention that the slightly oversized test are a direct consequence of the per-
sistence of {νt} and not necessarily from the persistence of {(yt,x′t)} per se. The problem

8All innovations are standardized to zero mean and unit variance.
9The difference is not completely innocuous since we loose one observation to each included lag. Therefore,
we include new (uncorrelated) peers and deal with the lag inclusion in the serial correlation scenario
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is attenuated, for instance, when enough lags are included to make {νt} closer to a white
noise process, or when a linear combination of (potentially highly persistent) {(yt,x′t)} is
almost uncorrelated. For pure finite MA process the usual kernel HAC estimator are known
to perform well and the tests are not oversized.

6.2. Estimator Comparison. In order to conduct the “horse race” among competitors for
counterfactual analysis we consider the following DGP:

(14) z
(0)
it = ρAiz

(0)
it−1 + εit, i = 1, . . . , n, ; t = 1, . . . , T,

where εit = Λif t + ηit, f t = [1, (t/T )ϕ, vt], zit ∈ Rq, ρ ∈ [0, 1), ϕ > 0, Ai(q × q) is a
diagonal matrix with diagonal elements strictly between −1 and 1, {vt} is a sequence of iid
standardized normal random variables, {ηit} is a sequence of iid normal random vectors with
zero mean and covariance matrix r2

fInq where rf > 0 can be interpreted as the noise-to-signal
ratio which controls the overall correlation among the units, and Λi is a (q × 3) matrix of
factor loadings.

Let zt be the nq dimensional vector obtaining by stacking all the z(0)
it and Λ is the (nq×3)

matrix after stacking all the Λi. Similarly, define εt by stacking εit and A is the (nq × nq)
diagonal matrix composed by the block diagonalsAi. We use the notation Λ(j) to denote the
jth column of Λ, thus µε,t ≡ E(εt) = Λ(1) + Λ(2)(t/T )ϕ, Ω ≡ V(εt) = Λ(3)Λ(3)′ + r2

fInq,
µt ≡ E(zt) = (Inq − ρA)−1µε,t, and vec (Σ) ≡ vec [(Vzt)] = [I(nq)2 − ρ2A⊗A]−1vec (Ω).

We set y(1)
it = y

(0)
it + δt1{t ≥ T0 and i = 1}, for simplicity we set δt = δ constant and equal

to one standard deviation from the unit of interest (unit 1). We are interested in estimating
the average treatment effect

∆ =
1

T − T0 + 1

T∑
t=T0

δt = δ.

We now briefly state the estimators considered in the Monte Carlo study. Whenever is
convenient we use the following partition scheme: zit = (yit,x

′
it)
′ and z0t = (z′2t, . . . z

′
nt).

Before-and-After (BA). The difference between the average of the y1t before and after the
intervention:

∆̂BA =
1

T − T0 + 1

T∑
t=T0

y1t −
1

T0 − 1

T0−1∑
t=1

y1t.

Differences-in-Differences (DiD). The ordinary least squares (OLS) estimator of the dummy
coefficient in the following regression models. For the case with covariates,

yit = α0 + x′itβ + α1I(i = 1) + α2I(t ≥ T0) + ∆DD∗I(i = 1, t ≥ T0) + εit,

or, for the case without covariates,

yit = α0 + α1I(i = 1) + α2I(t ≥ T0) + ∆DDI(i = 1, t ≥ T0) + εit.
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Gobillon and Magnac (GM). The estimator is defined as per Gobillon and Magnac (2016):

∆̂GM =
1

T − T0 + 1

T∑
t=T0

(y1t − ŷ1t) ,

where ŷ∗1t = x1tβ̂ + f̂tΛ̂1 or without including the covariates ŷ1t = f̂tΛ̂1. Ee choose r the
number of factors to be 2 (or 3 if a trend is included).

Synthetic Control (SC). For the simulation purposes we use the algorithm Synth10. We
choose on top of all covariates (xit), the average of the dependent variable (yit) during the
pre-intervention period as a matching variables.

∆̂SC = 1
T−T0+1

T∑
t=T0

(y1t − ŷ1t) ,

where ŷ1t = w∗′y0t. The weight vector w must be non-negative entries that sum to one. It
comes from a minimization process involving only values of the selected variables prior to the
intervention. In our particular case, we take the pre-intervention average z̄ = 1

T0−1

∑T0−1
t=1 zt,

partition as z̄ = (z̄1, z̄0
′)′ and reshape z̄0 to a matrix Z̄0(n− 1× q) where each row are the

variables of each of the remaining n− 1 units

w∗(V ) = argmin
w≥0,‖w‖1=1

‖z̄1 −w′z̄0‖V ,

where ‖ · ‖V is the norm induced by a positive definite matrix V .
Finally, V is chosen as

(15) V ∗ = argmin
1

T0 − 1

T0−1∑
t=1

[y1t −w∗(V )′y0t]
2
,

and we set w∗ ≡ w∗(V ∗).
The results are presented in Table 4. The smoothed histograms can be found in Figures 2–

7. Overall, the SC and the GM are heavily biased in most cases considered. For the former,
this might well be a consequence of the instability of algorithm to find the minimizer of (15),
since the bias persist even in the absence of time trends, where any fix linear combination of
the peers should give us an unbiased estimator. For the former it is most likely a consequence
of the poor finite sample properties of common factor estimator. It is well understood from
Bai (2009) that the consistency depends on the double asymptotics on n and T . On the
other hand, BA, DiD and the ArCo seems to have comparable small bias at least in absence
of deterministic trends regardless of the presence of serial correlation. The ArCo seems to
have better MSE performance. This comes with no surprise since by definition our estimator
in the first stage searches for the linear combination that minimizes the MSE.

For the trended cases, first note the BA estimator is severely biased since since without
using the information of the peers it cannot take into account the time trend effect. For

10R package maintained by Jens Hainmueller
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the common trend cases, the DiD estimators have relatively small bias for both the linear
and quadratic term. For the former it is excepted since a common linear time trend the
exactly the kind of DGP that the DiD estimator was designed for. Once again, the ArCo
estimators have comparable bias to the DD estimators for the common trend cases but with
significant smaller variance (ranging from 6-16 times smaller). The clear advantage of the
ArCo estimation can be seem in the idiosyncratic time trend cases. Even though some small
(in finite sample) bias start to show up, it is clear much smaller than all other alternatives.

7. The Effects of an Anti Tax Evasion Program on Inflation

In this section we apply the ArCo methodology to estimate the effects of an anti tax
evasion program in Brazil on inflation. Although, the causes of business non-compliance
and tax evasion has been extensively studied in the literature, see, for example, Slemrod
(2010), little attention has been devoted to measure the indirect effects from enforcing tax
compliance.

In Brazil, tax evasion is a major fiscal concern and both the federal and local governments
have been proposing new strategies to reduce evasion. Early in 1996, the federal government
introduced the SIMPLES11 system which drastically simplified the tax payments process
and helped in reducing the tax burden on small enterprises. Later in 2005, the federal
government launched the electronic sales receipt program (Nota Fiscal Eletrônica), to further
reduce compliance costs to firms and, even more important, to standardize the disclosure of
taxable.

In October 2007, the state government of São Paulo in Brazil implemented an anti tax
evasion scheme called Nota Fiscal Paulista (NFP) program. The NFP program consists of a
tax rebate from a state tax named ICMS (tax on circulation of products and services). ICMS
is similar to the European VAT and the Canadian GST. However, unlike VAT and GST,
ICMS does not apply to services other than those corresponding to interstate and intercity
transportation and communication services. The NFP program works as an incentive to the
consumer to ask for electronic sales receipts. The registered sales receipts give the consumer
the right to participate in monthly lotteries promoted by the government. Furthermore,
according to the rules of the program, registered consumers have the right to receive part of
the ICMS paid by the seller, as tax rebate, when their security numbers (CPF) are included
in the electronic sales receipts. Similar initiatives relying on consumer auditing schemes
were proposed in the European Union and in China; see, for example, Wan (2010). The
effectiveness of such programs have been discussed in Fatas, Nosenzo, Sefton, and Zizzo
(2015) and Brockmann, Genschel, and Seelkopf (2016). In the Brazilian state of São Paulo,
the NFP program has received extensive support from the population. In January 2008,
413 thousand people were registered in program while in October 2013 there were more
than 15 million participants. The amount in Brazilian Reais distributed as rebates also grew

11Integrated System of Tax Payments for Micro and Small Enterprises
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rapidly from 44 thousand Reais in January 2008 to an average of 70 million Reais distributed
monthly by the end of the same year. Figure 8 illustrates the NFP participation as well as
the value distributed as tax rebates.

Souza (2014) was the first author to discuss whether retailers increased prices in response
to the NFP program and consequently whether the program impacted negatively consumers’
purchasing power. By using the SC method to construct a counterfactual to the State of
São Paulo, Souza (2014) showed that one year after the launching of the NFP program,
the accumulated inflation on food outside home (FOH) was 5% higher in the state of São
Paulo when compared to the synthetic control. In September 2009, the differences raised to
6.5%. We extend the analysis of Souza (2014) by considering the ArCo methodology as an
alternative to the SC method. We also consider the BA, GM, and DiD estimators.

Under the premisses that (i) a certain degree of tax evasion was occurring before the inter-
vention, (ii) the sellers has some degree of market power and (iii) the penalty for tax evasion
is large enough to alter the seller behaviour, one is expected to see an upwards movements in
prices due to an increase in marginal cost. Therefore, we would like to investigate whether
the NFP had an impact on consumer prices in São Paulo. We test this hypothesis below
as an empirical illustration of the ArCo methodology. The answer to this kind of question
has important implications regarding social welfare effects that are usually neglected in the
fiscal debate whenever the aim is to enforce tax compliance

The NFP was not implemented throughout the sectors in the economy at once. The first
sector were restaurants, followed by bakeries, bars and other food service retailers. We do
not possess a perfect match for a general consumer price index (IPCA - IBGE) and the
sector where the NFP was implemented. However, we can take the IPCA component of
food outside home (FOH) as a good indicator for price levels in those sectors. The sample
then consists of monthly FOH index for 10 metropolitan areas12 including São Paulo from
January 1995 to September 2009. As a matter of comparison, Souza (2014) estimated a
counterfactual by the SC method with assigning the following weights to Belo Horizonte,
Recife, Goiânia, and Porto Alegre, respectively: 0.40, 0.27, 0.19, and 0.14. All other donors
were assigned zero weights.

In order to compute the counterfactual by the ArCo methodology we consider the fol-
lowing variables from the pool of donors: monthly inflation (FOH), monthly GDP growth,
monthly retail sales growth and monthly credit growth. All variables are stationary and no
lags or additional transformations are considered. The conditional model is linear and is
estimated by LASSO, where the penalty parameter is selected by the Hannan and Quinn
(HQ) criterium. The choice of the HQ instead of the BIC, for example, is that the latter
delivers conditional models with no variables in most of the cases. The in-sample period
(pre-intervention) consists of 33 observations while the size of the out-of-sample period is 23.

12Goiânia-GO, Fortaleza-CE, Recife-PE, Salvador-BA, Rio de Janeiro-RJ, São Paulo-SP, Porto Alegre-RS,
Curitiba-PR, Belém-PA, Belo Horizonte-MG
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The factor in the GM methodology is computed from the monthly growth in GDP, retail
sales and credit by principal component methods. The number of factors are selected as to
explain 80% of the total variance in the data. The BA estimator considers only variables
from the treated unit.

The results are depicted in Table 5. The upper panel in the table reports, for different
choices of conditioning variables, the estimated ATET after the adoption of the NFP. The
standard errors are reported between parenthesis. Diagnostic tests do not evidence any
residual autocorrelation and the standard errors are computed without any correction. The
table also shows the R-squared of the first stage estimation, the number of included regressors
in each case as well as the number of selected regressors by the LASSO. In all cases, the ATET
is significant at the 1% level. The highest R-squared is achieved when inflation and GDP are
used as conditioning variables, followed by a model with inflation, GDP and retail sales. In
the first case, column (5) of Table 5, the monthly ATET is 0.4478%. The aggregated effect
during the out-of-sample period is 10.72%. In the second case, column (6) of Table 5, the
monthly ATET is 0.3796% and the aggregated effect is 9.04%. Two facts worth discussion.
The first one is the much higher estimated effect when only credit variables are included.
This is due to huge outliers (huge increase) observed in credit series in the out-of-sample
period for the states of Pernambuco and Rio de Janeiro. If these two states are removed
from the donors pool, the monthly ATET drops to 0.5768%. The second point that deserves
attention is the much lower effect when only inflation is considered, although the in-sample
fit is reasonably good.

Figure 9 and 10 show the actual and counterfactual data, both in-sample and out-of-
sample. Figure 9 considers the case where only inflation and GDP growth are considered
as conditioning variables while the plots in Figure 10 consider the case where retail sales
growth are also included as a potential regressor in the first stage model.

The lower panel of Table 5 presents some alternative measures of the ATET, namely the
BA, GM and DiD estimators. In all cases the estimated effects are smaller than the ones
estimated with the ArCo. The DiD estimators are closer to the SC. The GM falls somehow
in between the SC/DiD and the ArCo.

We also run a placebo ArCo estimator to check the robustness of the method. When we
do this we find that Porto Alegre seems to have nontrivial breaks after October 2007; see
Table 6. For this reason we re-run the analysis without Porto Alegre in the donor pool. The
results are reported in Table 7. The overall picture seems unchanged.

8. Conclusions and Future Research

In this paper we proposed a new method to conduct counterfactual analysis with aggre-
gated data, specially in situations where there is a single treatedunit and not “controls” are
readily available. Our proposal called the Artificial Control (ArCo) share some common roots
to Hsiao, Ching, and Wan (2012), the synthetic control method of Abadie and Gardeazabal
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(2003) and Abadie, Diamond, and Hainmueller (2010). Comparing to other alternatives to
conduct counterfactual analysis, we believe the ArCo method has several advantages: (1) It
accommodates both high-dimensional covariates and multivariate unit of interest; (2) Pos-
sess a complete asymptotic theory which can be used to jointly test for intervention effects in
a group of variables; (3) The counterfactual model can be written as a misspecified nonlinear
function of observed variables for peers (untreated units); (4) The methodology can be ap-
plied even if the time of the intervention is not known for certain, which gives us a consistent
estimator for the time of the intervention; (5) Multiple interventions can be handled; (6) We
also propose a test for the presence of spillover effects among the units.

The current research can be extended in several directions as, for example, the case where
the variables are nonstationary (either with cointegrated or not). A non-parametric or
semiparametric estimation in the pre-intervention model. A Bayesian approach can also
be easily accommodated in the present framework with the advantage of incorporating any
pre-knowledge of the researcher about the pre-intervention model directly as priors.
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Appendix A: Proofs

We begin by proving an uniform version for the Continuous Mapping Theorem (UCMT)
and the Slutsky Theorem (UST). For the next 2 Lemmas, XT , Y T , X and Y are random
elements taking values on a subset D of the Euclidean space (real-valued scalar, vector or
matrix) defined over the same probabilistic space with distribution P index by P .

Lemma 1. (Uniform Continuous Mapping Theorem) Let g : D → E be uniformly
continuous at every point of a set C ⊆ D where PP (X ∈ C) = 1 for all P ∈ P.
(a) If XT

p−→X uniformly in P ∈ P, then g(XT )
p−→ g(X) uniformly in P ∈ P.

(b) If XT
d−→X uniformly in P ∈ P, then g(XT )

d−→ g(X) uniformly in P ∈ P.

Proof. The proof is similar to the classical Continuous Mapping Theorem proof but with
continuity replaced by uniform continuity. For (a), by the definition of uniform continuity,
for any ε > 0, there is a δ > 0 such that for all x,y ∈ C if dD(x,y) ≤ δ ⇒ dE [g(x), g(y)] ≤ ε

for some metric dD and dE , defined on D and E respectively. Therefore,

PP {dE [g(XT ), g(X)] > ε} ≤ PP [dD(XT ,X) > δ] + PP (X /∈ C).

The result follows since the first term on the right hand side converges to zero uniformly
in P ∈ P by assumption and the second is zero for all P ∈ P also by assumption.

For (b), given a set E ∈ E we have the preimage of g denoted by g−1(E) ≡ {x ∈ D :

g(x) ∈ E}. For close F ∈ E we have that g−1(F ) ⊂ g−1(F ) ⊂ g−1(F ) ∪ Cc due to the
continuity of g on C. Clearly, the event {g(XT ) ∈ F} is the same of {XT ∈ g−1(F )}, then
we can write

lim sup sup
P∈P

P[XT ∈ g−1(F )] ≤ lim sup sup
P∈P

P[XT ∈ g−1(F )]

≤ sup
P∈P

P[X ∈ g−1(F )] ≤ sup
P∈P

P[X ∈ g−1(F )] + sup
P∈P

P(X /∈ C}︸ ︷︷ ︸
=0

,

where the second inequality is a consequence of the uniform convergence in distribution of
XT toX and the Portmanteau Lemma (Lemma 2.2 Van der Vaart, 2000). The result follows
again by the Portmanteau Lemma in the other direction. �

Lemma 2. (Uniform Slutsky Theorem) Let XT
p−→ C uniformly in P ∈ P, where

C ≡ C(P ) is a non random conformable matrix and Y T
d−→ Y uniformly in P ∈ P, then

(a) XT + Y T
d−→ C + Y uniformly in P ∈ P

(b) XTY T
d−→ CY uniformly in P ∈ P, if C is bounded uniformly in P ∈ P.

(c) X−1
T Y T

d−→ C−1Y uniformly in P ∈ P, if det(C) is bounded away from zero uniformly
in P ∈ P.

Proof. If XT
p−→ C uniformly in P ∈ P , then XT

d−→ C uniformly in P ∈ P Let ZT ≡
(vecXT , vecY T )′, then ZT

d−→ Z ≡ (vecC ′, vecY ′)′ uniformly in P ∈ P . Now the sum of
two real number seen as the mapping (x, y) 7→ x + y is uniformly continuous. The product
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mapping (x, y) 7→ x.y is also uniformly continuous provided that the domain of one of the
arguments is bounded. The inverse mapping x 7→ 1/x can also be made uniformly continuous
if the argument is bounded away for zero. Since all the transformations above applied to ZT

are (entrywise) compositions of uniform continuous mapping (hence uniformly continuous),
the results follow from Lemma 1(b). �

Proof of Proposition 1.

Proof. Recall thatMt ≡M(xt), νt ≡ y(0)
t −Mt for t ≥ 1 and ηt,T ≡ M̂t −Mt for t ≥ T0.

From the definition of our estimator we have:

∆̂T −∆T =
1

T2

∑
t≥T0

[
yt −∆T − M̂(xt)

]
=

1

T2

∑
t≥T0

[
y

(0)
t − M̂(xt)

]
=

1

T2

∑
t≥T0

[
νt − ηt,T

]
.

After multiplying the last expression by
√
T we can rewrite it as:

√
T
(
∆̂T −∆T

)
=

√
T

T2

∑
t≥T0

νt︸ ︷︷ ︸
≡V 2,T

−
√
T

T1

∑
t≤T1

νt︸ ︷︷ ︸
≡V 1,T

−
√
T

(
1
T2

∑
t≥T0

ηt,T − 1
T1

∑
t≤T1

νt

)
(16)

By condition (a) in the proposition, the last term in the right hand side converges to
zero uniformly in P ∈ P . Under condition (b), each one of the first two terms individually
converges in distribution to a Gaussian random variable uniformly in P ∈ P , which is not
enough to ensure that the joint distribution is also Gaussian. However, notice that both V 1,T

and V 2,T are defined with respect to the same random sequence. Hence, not only they are
jointly Gaussian but also they are also asymptotically independent since they are summed
over non-overlapping intervals:

V T ≡ (V 1,T ,V 2,T )′
d−→ (Z1,Z2)′ ≡ Z ∼ N

{
0,

[
λ−1

0 Γ 0

0 (1− λ0)−1Γ

]}
,

uniformly in P ∈ P , where Γ ≡ limT→∞ ΓT .
It follows from Lemma 1(a) that V 2,T − V 1,T

d−→ Z2 − Z1, uniformly in P ∈ P . By
Lemma 2(a),

√
T
(
∆̂T −∆T

)
d−→ N

[
0, Γ

λ0(1−λ0)

]
, uniformly in P ∈ P . �

We now state some auxiliary lemmas that will provide bounds in probability used through-
out the proof of the main theorem:

Lemma 3. Let {ut}t∈N be strong mixing sequence of centered random variables with mixing
coefficient with exponential decay. Also for some real r > 2, supt E|ut|r+δ < ∞ for some
δ > 0, then there exist a positive constant Cr (not depending on n) such that

E|u1 + · · ·+ uT |r ≤ CrT
r/2.

Proof. See Doukhan and Louhichi (1999) and Rio (1994). �

Lemma 4. Under Assumptions 2-4, ‖θ̂ − θ0‖1 = OP

(
s0

d1/γ√
T

)
.
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Proof. For real a, b > 0 define:

A (a) =

{∥∥∥∥∥ 2

T1

T1∑
t=1

xtνt

∥∥∥∥∥
max

≤ a

}
, pt(d× 1) ≡ xtνt;

B(b) =

{∥∥∥∥∥ 1

T1

T1∑
t=1

M t

∥∥∥∥∥
max

≤ b

}
, M t(d× d) ≡ xtx′t − E(xtx

′
t),

where ‖ · ‖max is the maximum entry-wise norm.
Following Corollary 6.10 of Bülhmann and van der Geer (2011) on A (a)∩B(b), we have

that ‖θ̂ − θ0‖1 ≤ 32ςs0
ψ2
0
, provided that ς ≥ 8a, b ≤ ψ2

0

32s0
and the compatibility constraint is

satisfied for Σ ≡ E
(

1
T1

∑T1
t=1 xtx

′
t

)
with constant ψ0 > 0 (Assumption 2). For convenience

set a = ς
8
and b =

ψ2
0

32s0
. Then, we can write

P
(
‖θ̂ − θ0‖1 >

32ςs0

ψ2
0

)
≤ P

(∥∥∥∥∥ 2

T

T1∑
t=1

pt

∥∥∥∥∥
max

>
ς

8

)
+ P

(∥∥∥∥∥ 1

T1

T1∑
t=1

M t

∥∥∥∥∥
max

>
ψ2

0

32s0

)

≤ d max
1≤i≤d

P

(∣∣∣∣∣
T1∑
t=1

pi,t

∣∣∣∣∣ > ςT1

16

)
+ d2 max

1≤i,j≤d
P

(∣∣∣∣∣
T1∑
t=1

mij,t

∣∣∣∣∣ > ψ2
0T1

32s0

)

≤ d

(
16

ςT1

)γ
max
1≤i≤d

E

∣∣∣∣∣
T1∑
t=1

pi,t

∣∣∣∣∣
γ

+ d2

(
32s0

ψ2
0T1

)γ
max

1≤i,j≤d
E

∣∣∣∣∣
T1∑
t=1

mij,t

∣∣∣∣∣
γ

≤ C1(γ)
d

T
γ/2
1 ςγ

+ C2(γ, ψ0)
d2sγ0

T
γ/2
1

,

where the second inequality follows from the union bound. The third inequality follows
from the Markov inequality applied for some γ > 2. The last inequality is a consequence of
Lemma 3, since (i) by Assumption 3(a) both {pt} and {M t} are strong mixing sequences with
exponential decay as measurable functions of {wt}; and (ii) by Cauchy-Schwartz inequality
combined with Assumption 3(b) we have for some δ > 0:

E|pj,t|γ+δ/2 ≤
(
E|xj,t|2γ+δE|νt|2γ+δ

) γ+δ/2
2γ+δ ≤ cγ, 1 ≤ i ≤ d; t ≥ 1

E|mij,t − E(xi,txj,t)|γ+δ/2 ≤
(
E|xi,t|2γ+δE|xj,tt|2γ+δ

) γ+δ/2
2γ+δ ≤ cγ, 1 ≤ i, j ≤ d; t ≥ 1.

The result follows since, by Assumption 4(a) ς = O
(
d1/γ√
T

)
and by Assumption 4(b),

s0
d2/γ√
T

= oP (1). �

Lemma 5. Let ST ≡
∑T

t=1 ut where ut = (u1t, . . . , udt)
′ ∈ U ⊂ Rd is a zero mean random

vector, such that the process (uj,t) fulfils the conditions of Lemma 3 for some real r > 2 for
all j ∈ {1, . . . , d}. Then, ‖ST‖max = OP (d1/r

√
T ).

Proof. For a given ε > 0, By the union bound, followed by Markov inequality we have:

P
(
‖ST‖max

d1/r
√
T

> ε

)
≤ d max

1≤i≤d
P
(
|Si,T |
d1/r
√
T
> ε

)
≤ max1≤i≤d E|Si,T |r

T r/2εr
≤ Cr

εr
,
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where the last inequality follows from Lemma 3. �

Proof of Theorem 1.

Proof. Recall that ηt,T = x′t(θ̂ − θ0) for t ≥ T0, and let θ0 = (α0,β
′
0)′, where α is the

parameter of the intercept while β is the vector of remaining parameters. Similar, let xt =

(1, x̃t). From the definition of the estimator, α̂−α0 = 1
T1

∑
t≤T1 νt−

1
T1

∑
t≤T1 x̃t

(
β̂ − β0

)
.

Combining the last two expressions we can rewrite the estimation error as

ηt,T =
1

T1

∑
s≤T1

νs −
1

T1

∑
s≤T1

x̃s

(
β̂ − β0

)
+ x̃t

(
β̂ − β0

)

=
1

T1

∑
s≤T1

νs −

[
1

T1

∑
s≤T1

x̃s − x̃t

](
β̂ − β0

)
.

Taking the average over t = T0, . . . , T , multiplying by
√
T and rearranging yields:

√
T

(
1

T2

∑
t≥T0

ηt,T −
1

T1

∑
t≤T1

νt

)
=

(√
T

T2

∑
t≥T0

x̃t −
√
T

T1

∑
t≤T1

x̃t

)(
β̂ − β0

)
.

We now show that the last expression is oP (1) uniformly in P ∈ P . First, we bound it in
absolute term by: ∥∥∥∥∥

√
T

T2

∑
t≥T0

x̃t −
√
T

T1

∑
t≤T1

x̃t

∥∥∥∥∥
max

∥∥∥β̂ − β0

∥∥∥
1
.

Adding and subtracting the mean, the first term is the sum of two OP

(
d1/γ

)
terms by Lemma

5 combined with Assumption 3(a)-(b). The second term is OP

(
s0

d1/γ√
T

)
by Lemma 4. Hence,

the last term in the above display is OP

(
s0

d2/γ√
T

)
= oP (1) by Assumption 4(b), which verifies

condition (a) of Proposition 1.
Now {νt} is a strong mixing process with mixing coefficient with exponential decay and

supt E|νt|r <∞ for some r > 4 by Assumption 3(a) and (b). Also, E(ν2
t ) is bounded by below

uniformly by Assumption 3(c). Hence, we have a Central Limit Theorem as per Theorem
10.2 of Pötscher and Prucha (1997). Therefore, conditions (b) and (c) of Proposition 1 are
verified and the result follows directly from Proposition 1.

�

Proof of Propositions 2 and 3.

Proof. Both follows directly from Theorem 1 combined with Lemma 2(c) �

Proof of Theorem 2.

Proof. From (16) in the Proof of Proposition 1, we have for Tλ = bλT c, λ ∈ Λ

Γ1/2ST (λ) =

√
T

T − Tλ + 1

∑
t≥Tλ

νt −
√
T

Tλ − 1

∑
t<Tλ

νt −
√
T

T − Tλ + 1

∑
t≥Tλ

ηt,T +

√
T

Tλ − 1

∑
t<Tλ

ηt,T .
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The last two terms are op(1) uniformly in λ ∈ Λ, under the conditions of Proposition 1,
Assumption 5 and the fact that Λ is compact.

For fix λ ∈ Λ the pointwise convergence in distribution follows under the conditions
of from Proposition 1 (for instance under the assumptions of Theorem 1). The uniform
convergence result then follows from the invariance principle in McLeish (1974) applied to
V T (λ) ≡ 1√

T

∑
t≥Tλ νt and the Continuous Mapping Theorem.

To obtain the covariance structure let Γs−t = E(νtν
′
s) for all s, t and note that for any

pair (λ, λ′) ∈ Λ2 we have that

1

T

∑
t≥Tλ

∑
s≥Tλ′

Γs−t =
T − Tλ∨λ′ + 1

T

 1

T − Tλ∨λ′ + 1

∑
t≥Tλ

∑
s≥Tλ′

Γs−t

 = (1−λ∨λ′) Γ

λ ∨ λ
+op(1),

where λ ∨ λ′ = max(λ, λ′) and λ ∧ λ′ = min(λ, λ′). Finally, we have

E[ST (λ)S′t(λ
′)] = Γ−1/2

 T 2

(T − Tλ + 1)(T − Tλ′ + 1)

1

T

∑
t≤Tλ

∑
s≤Tλ′

Γs−t

Γ−1/2 + op(1)

=

[
1

(1− λ)(1− λ′)

]
(1− λ ∨ λ′)

λ ∨ λ
+ op(1)

=
1

(λ ∨ λ)(1− λ ∧ λ′)
+ op(1) ≡ Σλ + op(1)

�

Proof of Proposition 4.

Proof. Below we write Tλ we mean bλT c. All the convergence in probability are a direct
consequence of the Weak Law of Large Numbers ensured by the conditions of Proposition 1
combined with Assumption 5: Let λ ≤ λ0:

∆̂T (λ) ≡ 1

T − Tλ + 1

T∑
t=Tλ

δ̂t(λ) =

(
T0 − Tλ

T − Tλ + 1

) T0−1∑
t=Tλ

∆̂t(λ)

T0 − Tλ
+

(
T − T0 + 1

T − Tλ + 1

) T∑
t=T0

δ̂t(λ)

T − T0 + 1

= op(1) +

(
1− λ0

1− λ

)
∆.

Similarly, consider a guess after the true value, λ > λ0. Then:

∆̂T (λ) ≡ 1

T − Tλ + 1

T∑
t=Tλ

δ̂t(λ) =
1

T − Tλ + 1

T∑
t=Tλ

[
yt − M̂(xt)

]

=
1

T − Tλ + 1

T∑
t=Tλ

[yt −M(xt)]−
λ− λ0

λ
∆ + op(1)

=
1

T − Tλ + 1

T∑
t=Tλ

[
y

(0)
t −α0 − g(θ0)

]
+
λ0

λ
∆ + op(1) =

λ0

λ
∆ + op(1),
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where the second equality follows from Assumption 6, since a step intervention will only
affect (asymptotically) the constant regressor estimation of the modelM by a factor of λ−λ0

λ0

times the intervention size ∆. To see this let α0 be the constant and β0 the remaining
parameters. Then,

α̂ =
1

Tλ

∑
t≤Tλ

y
(0)
t +

1

Tλ

∑
t≤Tλ

∆I(t ≥ T0)− 1

Tλ

∑
t≤Tλ

M̃(β̂),

whereM(xt;θ0) ≡ α0 +M̃(xt;β0). Since the estimation of β0 is asymptotically unaffected
by a step intervention, under the conditions of Proposition 1, β̂ p−→ β0. Consequently,
α̂(λ)

p−→ α+ λ−λ0
λ

∆, ∀λ ∈ (0, 1). �

Proof of Theorem 3.

Proof. Note that: (i) The limiting function Jp,0(λ) ≡ φ(λ)‖∆‖p is uniquely maximized at
λ = λ0 under the assumption that ∆T 6= 0, (ii) The parametric space Λ is compact; (iii)
J0,p(·) is a continuous function as consequence of the continuity of φ(·), (iv) Jp,T (λ) converges
uniformly in probability to Jp,0(λ) (shown below). Therefore, from Theorem 2.1 of Newey
and McFadden (1994) we have that λ̂0,p

p−→ λ0.
In Theorem 2 we show that ST converges in distribution to ST . Hence, ST is uniformly

tight (in particular with respect to λ). Therefore, 1√
T
ST (λ) is op(1) uniformly in λ. Or

equivalently, ∆̂T (λ)
p−→∆T (λ), uniformly in λ ∈ Λ.

Now consider any real valued function f(·) that is continuous on a compact set K ⊂ Rk.
In that case f(·) is uniformly continuous on K as every continuous function on a compact
domain. By definition then, for a given ε > 0, there is a δ > 0 such that for every (x,y) ∈ K2,
{|f(x) − f(y)| > ε} ⇒ {‖x − y‖ > δ}. Therefore, P(|‖x‖p − ‖y‖p| > ε) ≤ P(‖x − y‖ >
δ) + P(Kc).

Finally, note that ‖ · ‖p is a a continuous function on Rq so given any ε > 0, we can take
a arbitrary large compact Kε ⊂ Rq such that P (Kc) ≤ ε. The result then follows since the
first term above converges uniformly to zero in probability. �

Proof of Proposition 5.

Proof. Follows directly from Theorem 1 applied to each unit of I individually combined with
the Cramèr-Wold device device. �
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Appendix B: Figures and Tables

Table 1. Critical Vales for Unknown Intervention Time Inference: P(‖S‖p > c) =
1− α

Confidence Level

Λ = [λ, λ̄] α = 0.2 0.15 0.1 0.05 0.0025 0.001

p = 1 [0.5, 0.95] 2.5679 2.7824 3.0732 3.5457 3.9844 4.5346
[0.1, 0.9] 2.4332 2.6569 2.9550 3.4530 3.9218 4.4805

[0.15, 0.85] 2.3786 2.6164 2.9375 3.4482 3.9138 4.4728
[0.2, 0.8] 2.3366 2.5833 2.9167 3.4399 3.9115 4.4655

p = 2 [0.5, 0.95] 3.0633 3.2814 3.5706 4.0228 4.4378 4.9674
[0.1, 0.9] 2.8230 3.0441 3.3340 3.8138 4.2602 4.7792

[0.15, 0.85] 2.7052 2.9400 3.2448 3.7391 4.1859 4.7235
[0.2, 0.8] 2.6169 2.8579 3.1795 3.6787 4.1466 4.7159

p =∞ [0.5, 0.95] 8.6192 9.1867 9.9400 11.1562 12.2190 13.5604
[0.1, 0.9] 6.4807 6.8974 7.4353 8.2781 9.0400 10.0020

[0.15, 0.85] 5.6000 5.9506 6.4041 7.1014 7.7328 8.5187
[0.2, 0.8] 5.0630 5.3815 5.7957 6.4303 7.0047 7.7473

NB: All critical values were obtained as the quantile of the empirical distribution using 100,000
draws from a multivariate normal distribution with covariance ΣΛ via a grid of 500 points
between λ and λ̄ inclusive.
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Table 2. Rejection Rates under the Null (Test Size)

Bias Vara ŝ0 α = 0.1 0.05 0.01

Innovation Distribution b

Normal 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
χ2(1) -0.0014 1.1004 5.9287 0.1227 0.0652 0.0154

t-stud(3) 0.0035 1.1026 5.6437 0.1077 0.0543 0.0103
Mixed-Normal 0.0069 1.1267 5.5457 0.1134 0.0607 0.0136

Sample Size

T = 100 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
75 -0.0030 1.1449 6.3992 0.1075 0.0546 0.0124
50 0.0021 1.1747 6.1219 0.1092 0.0626 0.0155
25 -0.0050 0.8324 3.2463 0.1330 0.0763 0.0226

Number of Total Covariates

d = 100 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
200 -0.0016 1.1655 5.7314 0.1102 0.0565 0.0135
500 -0.0043 1.2112 5.6625 0.1119 0.0556 0.0114
1000 0.0012 1.2477 5.5275 0.1054 0.0566 0.0115

Number of Relevant (non-zero) Covariates

s0 = 0 0.0038 1.0981 0.6105 0.1059 0.0550 0.0136
5 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
10 0.0003 1.0373 9.5813 0.1103 0.0581 0.0120
100 0.0003 - 20.1624 0.1114 0.0574 0.0145

Determinist Trend (t/T )ϕ

ϕ = 0 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
0.5 0.0142 1.1245 5.6285 0.1101 0.0598 0.0199
1 0.0183 1.1313 5.5030 0.1188 0.0613 0.0168
2 0.0221 1.1398 5.4259 0.1273 0.0675 0.0261

Serial Correlationc

ρ = 0.2 -0.0001 1.4109 5.5246 0.1160 0.0640 0.0158
0.4 0.0002 1.6909 5.9276 0.1223 0.0678 0.0184
0.6 0.0031 1.8895 6.9012 0.1440 0.0871 0.0283
0.8 0.0033 1.9977 7.9464 0.1546 0.0927 0.0329

Baseline DGP: (6) with T = 100, iid normally distributed innovations; T0 = 50; n = 100 units; d = n =
100 covariates (including the constant); s0 = 5, q = 1; 10, 000 Monte-Carlo simulations per case. The
penalization parameter is chosen via Bayesian Information Criteria (BIC). We set the maximum number
of included variables to be T 0.8 in the glmnet package in R.

a Relative to the variance of the oracle/OLS estimator in the fist stage knowing the relevant regressors.
b All distributions are standardized (zero mean and unit variance); Mixed normal equal to 2 Normal
distributions with probability (0.3, 0.7), mean (−10, 10) and variance (2, 1).

c All units are simulated as AR(1) processes. The variance estimator is computed as Andrews and Mona-
han (1992) with an AR(1) pre-whitening followed by a standard HAC estimator with Quadratic Spectral
Kernel on the residuals. Optimal bandwidth selection for AR(1) as per Andrews (1991).
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Table 3. Rejection Rates under the Alternative (Test Power)

α = 0.1 0.075 0.05 0.025 0.01

Step Intervention1 δt = c σ11{t ≥ T0}
c = 0.15 0.2045 0.1695 0.1287 0.0805 0.0436

0.25 0.3783 0.3266 0.2686 0.1890 0.1108
0.35 0.5769 0.5235 0.4545 0.3465 0.2414
0.5 0.8314 0.7945 0.7440 0.6478 0.5227
0.75 0.9876 0.9831 0.9741 0.9520 0.9094
1 0.9998 0.9995 0.9992 0.9983 0.9943

Linear Increasing δt = c σ1
t−T0+1
T−T0+1

1{t ≥ T0}

c = 1 0.8318 0.7938 0.7379 0.6397 0.5121
1.25 0.9877 0.9813 0.9717 0.9459 0.8948
1.5 0.9997 0.9997 0.9990 0.9969 0.9922

Linear Decreasing δt = c σ1
T−t+1
T−T0+1

1{t ≥ T0}

c = 1 0.8298 0.7956 0.7434 0.6492 0.5107
1.25 0.9868 0.9818 0.9720 0.9490 0.8985
1.5 0.9995 0.9994 0.9989 0.9968 0.9933

All simulations above as per DGP in (6) with the parameters in the baseline scenario as
described in the footnote of Table 2.

1 All interventions intensity are measured as a factor c > 0 of the standard deviation of unit of
interest, σ1.
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Table 4. Estimators Comparison

BA SC DiD* DiD GM* GM ArCo* ArCo

No Time Trend (ϕ = 0) and No Serial Correlation (ρ = 0)

Bias1 -0.001 -0.678 0.005 0.008 -0.280 -0.273 0.000 0.000
Var 3.151 50.555 17.870 51.444 0.544 0.510 1.001 1.000
MSE 3.152 86.075 17.871 51.449 6.601 6.255 1.001 1.000

No Time Trend (ϕ = 0)

Bias -0.003 -0.596 0.000 0.000 -0.353 -0.294 -0.002 -0.002
Var 2.997 12.293 7.215 18.506 3.057 0.705 0.998 1.000
MSE 2.996 27.634 7.214 18.502 8.438 4.427 0.998 1.000

Common Linear Time Trend (ϕ = 1)

Bias 0.218 -0.579 0.034 0.033 -0.128 -0.195 0.028 0.029
Var 2.900 19.590 6.741 17.720 0.522 0.499 1.007 1.000
MSE 4.677 32.165 6.558 17.159 1.151 1.985 1.004 1.000

Idiosyncratic Linear Time Trend (ϕ = 1)

Bias 0.744 1.391 0.597 0.577 0.766 0.766 0.161 0.158
Var 0.288 0.564 0.392 1.720 1.499 1.113 0.996 1.000
MSE 2.270 7.544 1.651 2.771 3.493 3.142 0.999 1.000

Common Quadratic Time Trend (ϕ = 2)

Bias 0.288 -0.562 0.051 0.053 -0.170 -0.170 0.049 0.048
Var 2.809 18.486 6.571 17.199 0.512 0.488 1.007 1.000
MSE 5.583 28.407 6.105 15.837 1.520 1.498 1.010 1.000

Idiosyncratic Quadratic Time Trend (ϕ = 2)

Bias 0.994 -0.179 0.780 0.758 0.465 0.465 0.154 0.153
Var 1.443 0.377 3.499 8.878 0.282 0.274 0.992 1.000
MSE 14.786 0.701 10.868 14.002 3.216 3.210 0.998 1.000

S = 10, 000 simulations from DGP (14); T = 100 observations; Intervention at T0 = 50 only on the first
variable of the first unit of intensity one standard deviation; rf chosen such that R2 = 0.5; n = 5 units;
q = 3 variables per unit; innovations are iid normally distributed; ρ = 0.5 and diag (A) are independent
draws from uniform [−1, 1]; All the loads (for the constant, the time trend and the stochastic factor) are
independent draws from uniform distribution [−5, 5], except for the common trend cases where the time
trend loads are equal to unit for all variables of all units and for the cases with no time trend where they
are all set to zero.

* Estimators using the q − 1 covariates of unit 1. Hence, unfeasible if we expect the intervention to affect
all the variables in unit 1

1 Bias measured as a ratio to the intervention intensity, defined by one standard deviation of the first
variable of the first unit; Variance and MSE measured as a ratio to the ArCo Variance and MSE,
respectively.
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Figure 1. Bias Factor defined on (13) for li = σηi = 1 for all i = 1, . . . , n.
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Figure 2. Kernel Density - Estimator Comparison with no Trend and no
Serial Correlation
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Figure 3. Kernel Density - Estimator Comparison with no Trend
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Figure 4. Kernel Density - Estimator Comparison with Common Linear Trend
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Figure 5. Kernel Density - Estimator Comparison with Idiosyncratic Linear
Trend
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Figure 6. Kernel Density - Estimator Comparison with Common Quadratic
Trend

−0.1 0.0 0.1 0.2

BA

N = 10000   Bandwidth = 0.008015

Kernel

Normal

−1.5 −1.0 −0.5 0.0

SC

N = 10000   Bandwidth = 0.003058
D

en
si

ty

−0.2 0.0 0.2 0.4

DiD*

N = 10000   Bandwidth = 0.01217

−0.4 −0.2 0.0 0.2 0.4 0.6

DiD

N = 10000   Bandwidth = 0.01988

D
en

si
ty

−0.15 −0.10 −0.05 0.00 0.05

GM*

N = 10000   Bandwidth = 0.003422

−0.10 −0.05 0.00 0.05

GM

N = 10000   Bandwidth = 0.003337

D
en

si
ty

−0.10 −0.05 0.00 0.05 0.10 0.15

ArCo*

−0.10 −0.05 0.00 0.05 0.10 0.15

ArCo

D
en

si
ty



52 ARCO

Figure 7. Kernel Density - Estimator Comparison with Idiosyncratic Qua-
dratic Trend
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Figure 8. NFP Participation (left) and Value distributed (right)
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Figure 9. Actual and counterfactual data. The conditioning variables are
inflation and DGP growth. Panel (a) monthly inflation. Panel (b) accu-
mulated monthly inflation.
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Figure 10. Actual and counterfactual data without RS. The conditioning
variables are inflation, DGP growth, and retail sales growth. Panel (a)
monthly inflation. Panel (b) accumulated monthly inflation.
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