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Abstract

This note considers the problem of a principal (she) who faces a privately informed

agent (he) and only knows one moment of the distribution from which his types are drawn.

Payoffs are non-linear in the allocation and the principal maximizes her worst-case expected

profits. We recast the robust design problem as a zero-sum game played by the principal and

an adversarial nature who seeks to minimize her expected payoffs. The robust mechanism

and the worst case distribution are, then, the Nash equilibrium of such game. A robustness

property of the optimal mechanism imposes restrictions on the principal’s ex-post profit

function. These restrictions then lead to the optimal mechanism. The robust mechanism

entails exclusion of low types and distortions at the intensive margin that (in a precise sense)

are larger than what those that prevail in standard Bayesian mechanism design problems.
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1 Introduction

In search for predictions for contracting models that do not rely on fine details of their primitives

– which, in practice, are unlikely to be known by real world designers – a growing literature

assumes that a principal (she) might not be fully aware of the distribution form which an

agent’s (he) private information is drawn, e.g., Bergemann and Schlag (2008), Carroll (2013),

Carrasco et al. (2015).1 One common feature of all such papers is that they consider the case

in which the agent’s and the principal’s ex-post payoffs are linear in the allocation. This is a

drawback, as, in a wide variety of applications – such as optimal taxation, screening, decision-

making and optimal regulation, among others –, its is natural to assume some curvature in

payoffs: e.g., for some insurance to be desirable in a taxation setting, marginal utilities must

decrease with consumption; the further away a decision is from an agent’s favorite one, the worse

off such agent is; effort towards cost reduction in a regulatory setting becomes costlier the more

the agent exerts it. In this paper, we fill this gap by considering a single agent mechanism design

problem in which, first, payoffs are non-linear in the allocation, and, second, the principal knows

only the first moment of the distribution from which the agent’s types is drawn. In face of such

uncertainty, maximizes her worst case expected profits. We call the mechanism that results of

such procedure the “robust mechanism”.

The environment we consider is general enough to have, as particular cases, Mussa and Rosen

(1978)’s screening setting, Laffont and Tirole (1986)’s regulation model and Mirrlees (1971)’s

taxation model. To assume that the principal has some knowledge of the distribution is key to

make the problem interesting for the cases in which leaving information rents to the agent is

costly. In fact, for such cases, if we were to assume full ignorance of the distribution from the

principal’s point of view, the robust mechanism would be trivial: probability one is assigned

to the least favorable type from the principal’s perspective, and the optimal mechanism is the

complete information one.

Finding the robust mechanism for the “curvature” case is substantially harder than for the

case of linear payoffs. However, one can still recast, as Bergemann and Schlag (2008) and

Carrasco et al. (2015) do, the robust design problem as a zero-sum game played by the de-

signer and an adversarial nature, who chooses distribution for the agent’s private information to

minimize the designer expected payoffs. A Nash equilibrium of such game is, then, the robust

mechanism and the worst case distribution.

In the zero-sum game, taking as given the mechanism chosen, nature minimizes the designer

expected payoff by choosing distributions that satisfy two constraints: first of all, the distribution

1Hurwicz and Shapiro (1978), Garrett (2014) and Frankel (2014) consider the case in which the principal is
(partially) unaware of the agent’s payoff.
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must integrate to one; second, its expected value has to equal to some constant k. Those

constraints express what the designer knows about the distribution. Once nature incorporates

those constraints in the Lagrangian functional, its problem becomes one of minimizing, by choice

of distributions, the designer’s expected payoff subtracted by inner product of the constraints

and their shadow costs (the Lagrangian multipliers). We are then able to show that will only

place positive likelihood on types θ in set support of the type set [0, 1] for which the designer’s

payoff equal ξθ − λ, where ξ is the shadow cost of the constraint that imposes that the average

of the distribution must be k, and λ is the shadow cost of the constraint that the distribution

must integrate to one. It then follows that, at a robust mechanism, the designer’s payoff is

piecewise linear in the agent’s (reported) types, so that robustness imposes restrictions on the

designer’s payoff level. Using the game theoretical interpretation of robustness, one has that,

by picking a mechanism that induces piecewise linear payoffs, the designer assures that nature

will be indifferent among all feasible distributions. Since it is indifferent, nature is willing to

choose a distribution that guarantees the designer will find it optimal to design a mechanism

that solves the ordinary differential equation (ODE). We derive such distribution and, therefore,

fully characterize the Nash equilibrium of the zero-sum game.

In general, one cannot derive a closed form solution for the ODE that defines the robust

scheme, but general properties of optimal allocation can be derived, and their implications for

the examples we consider discussed. First of all, in all design problems in which the principal

finds it costly to leave informational rents for the agent, low types are bunched in a single

allocation. In particular, for the Laffont and Tirole (1986) regulation model, this implies that

there will be an interval of types (the least efficient ones) which will face cost-plus contracts. In

the Mussa and Rosen (1978) screening setting, in turn, this amounts to exclusion of consumer’s

will low willingness to pay. Second, in a sense that we make precise in text, robust contracts are

less powerful than their Bayesian counterparts: in Laffont and Tirole (1986) context, this means

that regulation contracts will always be bounded away from fixed-price arrangements; whereas,

in Mussa and Rosen (1978), quantity discrimination will always take place.

Related literature

Our paper is part of a growing literature on mechanism design with principals with maxmin

preferences.2 Our work differs from Frankel (2014)’s and Carrasco and Moreira (2013)’s decision-

making problems because the utility is fully transferable in our setting. This, in turn, allows

for more general mechanisms than the “delegation” ones those papers derive. Garrett (2014)

2There is also a growing literature with maxmin agents. Bose et al. (2006) and Wolitsky (2014) are examples
of analysis of, respectively, optimal auctions and bilateral trade when agents have maxmin preferences.
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considers the case of a principal who does not know the producer’s disutility of effort, and shows

that a simple fixed-price-cost-reimbursement (FPCR) menu minimizes the principal’s maximum

expected payment to the agent. In Carroll (2015a), the principal only partially knows the set

of actions available to the agent; he shows that if the principal maximizes expected profits

under worst-case set of actions, the optimal contract is linear in output. We, in turn, assume

that payoffs are common knowledge, and consider the implications of uncertainty regarding the

distribution of types.

The papers that are closest to ours are the ones in robust pricing literature pioneered by

Bergemann and Schlag (2008, 2011). In their first paper, they consider the case in which the

seller designs a mechanism to minimize the maximum regret, whereas in the second they also

consider a max min procedure. In independent work, Carroll (2013) and Carrasco et al. (2015)

consider a setting in which only one moment of the distribution of willingness to pay of the

consumer is known. Our paper differs from all this by considering the case of curvature in

ex-post payoffs.

Much as Carrasco et al. (2015) do, we show that a variant of the model in which the agent’s

type evolves over time and satisfies a martingale property leads to a time-invariant robust mech-

anism: the period by period repetition of the static mechanism is optimal. This – along with

the fact that we consider maxmin design (with the restriction that expected values follows mar-

tingale3) and allow for general mechanisms – is the main difference from what is obtained by

Handel and Misra (forthcoming). They show, in a setting in which monopolist launches a new

product and, without knowledge of (the time invariant) demand, decides – restricting attention

to price posting mechanisms – on intertemporal prices to minimize maximum intertemporal

regret, that prices decrease over time if consumers are homogenous, and increase if consumers

are heterogeneous. Caldentey et al. (2015) also consider minimax intertemporal pricing for the

case in which the seller restricts attention to posting price mechanisms. However, on top of not

knowing demand, the seller does not know the arrival process of consumers in their paper. They

also establish that optimal price paths are decreasing when buyers are rational, which contrasts

to our time invariance result.

In a general additive model, Carroll (2015b) proves that the optimal multidimensional mech-

anism when an ambiguity averse designer knows the marginal distributions in each dimension,

but is uncertain about the joint distribution of types, entails full separation. Carrasco et al.

(2015) prove a separability result for the case in which a seller only knows the average of a

consumer’s multidimensional willingness to pay, but the agent’s payoff is linear. In this paper,

the separability result is a corollary of Carroll’s result.

3Again, this can be justified by an information acquisition story, since, if information is acquired over time,
at any given time the martingale property must hold.
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Organization

In addition to this introduction, this note is composed of the next section, which lays down the

model and fully derives the robust mechanism, and Section 3 with conclusions.

2 Model

There is a principal and and agent, who is is privately informed about a single dimensional

parameter θ in the interval [0, 1], that affects his payoff and the principal’s. The principal’s

payoff is

t− c (q)

whereas the agent’s is

u (q, θ)− t

with u (x, θ) satisfying a (weak) single crossing condition and t is the transfer between the

agent and principal. That is, we make the the following assumptions on the surplus function

s(q, θ) := u (q, θ)− c (q):

sq > 0 > sqq and sqθ > 0 (1)

s (0, θ) = s(q, 0) = u(0, 0), for all θ, q. Finally, let us assume that the function

q →
sqθ(q, θ)

sq(q, θ)
is strictly increasing. (2)

We denote by qFB (θ) = arg max
x≥0

s (x, θ) the first-best allocation. The necessary and suffi-

cient first-order condition of this first-best solution is given by

sq(q
FB(θ), θ) = 0

for all θ ∈ [0, 1]. By our hypothesis, qFB(·) is strictly increasing.4

The principal only knows the first moment of the distribution k ∈ [0, 1] from which types are

drawn.

From the revelation principle we restrict attention on the set of direct mechanisms, defined

4Indeed, notice that by our assumptions and applying the implicit derivative we get

dqFB

dq
(θ) = −

sqθ(qFB(θ), θ)

sqq(qFB(θ), θ)
> 0.
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as

M ≡ {m = (q, t) : [0, 1] → [0, 1]× R is θ-measurable} .

The principal trades q for transfer t and only has information about the average of the type

distribution. Formally, the set of possible distributions is

F ≡

{
F ∈ ∆ ([0, 1]) ;

ˆ

θdF (θ) = k

}
,

for some k ∈ [0, 1], where ∆ ([0, 1]) is the space of all distribution on [0, 1].

In face of such uncertainty, she maximizes her worst case expected payoffs. Noticing that

she can rely on direct mechanisms in which the agent is truthful, her problem reads:

max
m=(q,t)∈M

min
F∈F

ˆ

[t (θ)− c (q (θ))] dF (θ)

subject to
u(q(θ), θ)− t(θ) ≥ u(q(θ′), θ)− t(θ′)

u(q(θ), θ)− t(θ) ≥ 0.

As usual, incentive compatibility is equivalent to5

U(θ) = u(q(θ), θ)− t(θ) = U(0) +

ˆ θ

0

uθ(q(τ), τ)dτ

and q (θ) is non-decreasing.

Define the strategy space of the principal as:

Q = {q : [0, 1] → [0,∞) non-decreasing}.

Substituting the agent’s indirect utility in the principal’s payoff and noticing that, regardless of

distributions, it is always optimum to make U (0) = 0, her problem can be rewritten as

max
q∈Q

min
F∈F

ˆ



s (q (θ) , θ)−
θ
ˆ

0

sθ (q (τ) , τ) dτ



 dF (θ) .

5We use the subindex as an alternative notation for partial derivative. For instance, uθ represents the partial
derivative of u with respect to θ.
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2.1 Robust mechanism as a Nash equilibrium of a zero-sum game

It is useful this maxmin problem as a zero-sum game, played by the principal and an adver-

sarial nature, who chooses distributions to minimize the principal’s expected payoff. A Nash

equilibrium of such game will then deliver the robust mechanism (the equilibrium strategy of

the principal) and the worst case distribution (the equilibrium strategy of nature). To find an

equilibrium of this game, it is useful to denote the allocation by its inverse function, i.e., the

type assignment function. Abusing notation, we denote the type assignment function by θ(q).

Let us consider the following auxiliary ODE:

dθ
dq
(q) = ξ−1sq(q, θ(q)), for all q ∈ [0, q1]

θ(q1) = 1,
(3)

where q1 := qFB(1). The following result characterizes the solution of this ODE.

Lemma 2.1. For each ξ > 0, there exists a unique solution θξ(q) for the ODE 3 defined in the

maximal interval [0, q1], which is increasing in q and ξ. Moreover, lim
ξ→0

θξ(0) = 0 and lim
ξ→∞

θξ(q) = 1,

for all q ∈ [0, q1].

Proof. First notice that the conventional contraction method to prove the existence and unique-

ness of solution for the ODE readily applies in this case. We can easily show that this method

also implies the claimed monotonically results. Let q0 ≥ 0 be the lower bound of the maximal

interval of the solution of the ODE (3). First, notice that dθξ

dq
(q) = 0, then d2θξ

dq2
(q) < 0. Indeed,

taking the total derivative of (3) with respect to q we get:

d2θξ

dq2
(q) = ξ−1

[
sqq(q, θ

ξ(q)) + sqθ(q, θ
ξ(q))

dθξ

dq
(q)

]
< 0.

Therefore, dθξ

dq
(q) > 0 for all q ∈ (q0, q1]. Let (qn) be a sequence in (q0, q1] converging to q0

and let θ = lim θξ(qn) . Define θξ(q0) = θ. Notice that by the argument we just made, if
d
dq
θξ(qn) converges to zero, d2

dq2
θξ(qn) must converge to a strictly negative number. Hence, it is

not possible that q0 = 0 = θ and also q0 > 0 with θ = 0.

Finally, when ξ → ∞, dθξ

dq
(·) converges pointwisely to zero. Then, we have that lim

ξ→∞
θξ(q) = 1,

for all q ∈ [0, q1], once θξ(q1) = 1. On the other hand, when ξ → 0, dθξ

dq
(q) converges pointwisely

to infinite if θξ(q) is bounded away from the first-best frontier (the inverse function of qFB(·)),

which is a contradiction. Hence, θξ(·) converges pointwisely to the first-best frontier and, in

particular, lim
ξ→0

θξ(0) = 0.

Consider θ̃(ξ) = θξ(0) and let qξ(θ) be the inverse function of θξ(q). One then has
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dqξ

dθ
(θ)sq

(
qξ (θ) , θ

)
= ξ, (4)

for all θ ∈ [θ̃(ξ), 1]. If Πξ(·) is the profit function associated to qξ(θ), then the total derivative of

Πξ(θ) is6

dΠξ

dθ
(θ) =

dqξ

dθ
(θ)sq

(
qξ (θ) , θ

)
= ξ, (5)

for all θ ∈ [θ̃(ξ), 1]. Hence,

Πξ(θ) =

{
ξ[θ − θ̃(ξ)] if θ ∈ [θ̃(ξ), 1]

0 otherwise,
(6)

where we are implicitly defining qξ(θ) = 0 for all θ ∈ [0, θ̃(ξ)].

The principal’s expected payoff at the selling mechanism qξ(θ) satisfying (4) will be

ˆ

Πξ (θ) dF (θ) =

ˆ 1

θ̃(ξ)

ξ[θ−θ̃(ξ)]dF (θ) =

ˆ 1

0

ξ[θ−θ̃(ξ)]dF (θ)+

ˆ θ̃(ξ)

0

ξ[θ̃(ξ)−θ]dF (θ) ≥ ξ
[
k − θ̃(ξ))

]
,

for all F ∈ F . Notice that the above inequality becomes an equality if and only if the cumula-

tive distribution function (cdf) F has support on [θ̃(ξ), 1]. Therefore, we have just proved the

following:

Theorem 2.1. [Nature’s best-reply] Let ξ ≥ 0 and assume that the principal chooses qξ ∈ Q

that solves (4). Then, nature’s best-reply in F is any cdf F with support on [θ̃(ξ), 1]. In this

case, the expected profit is given by
´

Πξ(θ)dF (θ) = ξ[k − θ̃(ξ))].

The next theorem characterizes the cdf F , with support [θ̃(ξ), 1], that induces the solution

of the ODE 4 as the principal’s best-reply to F . For this, denote

γ(θ) =
sqθ(qξ(θ), θ)

sq(qξ(θ), θ)
.

6To get this expression, notice that

dΠξ(θ)
dθ = d

dθ

[

s
(
qξ (θ) , θ

)
−

θ́

0
uθ

(
qξ (τ) , τ

)
dτ

]

= sq
(
qξ (θ) , θ

)
dqξ

dθ
(θ) + uθ

(
qξ (θ) , θ

)
− uθ

(
qξ (θ) , θ

)

= sq
(
qξ (θ) , θ

)
dqξ

dθ
(θ).
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Notice that γ(θ̃(ξ)) > 0 and γ(1) = ∞. Define

F ξ(θ) = 1− e−
´ θ

θ̃(ξ)
γ(u)du, for all θ ∈ [θ̃(ξ), 1) (7)

and F ξ(1) = 1. Let a := e−
´ 1
θ̃(ξ) γ(u)du < 1 and f ξ = d

dθ
F ξ.

Theorem 2.2. [Principal’s best-reply] Fix ξ > 0. Let qξ ∈ Q be the solution of (4) and F ξ ∈ F

defined by (7) - which has absolutely continuous part given by f ξ and mass a at 1. Then, qξ is

the principal’s best-reply to F ξ.

Proof. Let q ∈ Q. Performing the usual integration by parts, we get

ˆ 1

0

[
s(q(θ), θ)−

ˆ θ

0

sθ(q(τ), τ)dτ

]
f ξ(θ)dθ =

ˆ 1

0

[

s(q(θ), θ)−
F ξ
−(1)− F ξ(θ)

f ξ(θ)
sθ(q(θ), θ)

]

f ξ(θ)dθ

and, therefore, we have

´ 1
0

[
s(q(θ), θ)−

´ θ

0 uθ(q(τ), τ)dτ
]
dF ξ(θ) =

´ 1
0

[
s(q(θ), θ)−

F ξ
−
(1)−F ξ(θ)

fξ(θ) sθ(q(θ), θ)

]
f ξ(θ)dθ

+(1− F ξ
−(1))

(
s(q(1), 1)−

´ 1
0 sθ(q(τ), τ)dτ

)

=
´ 1

0

[
s(q(θ), θ)− 1−F ξ(θ)

fξ(θ) sθ(q(θ), θ)
]
f ξ(θ)dθ

+(1− F ξ
−(1))s(q(1), 1).

Taking the pointwise derivative for each θ and imposing it is zero at q(θ) ensure that q(1) = q1

and

sq(q(θ), θ) =
1− F ξ(θ)

f ξ(θ)
sθq(q(θ), θ).

Then, by the definition of F ξ, we have that

sθq(q(θ), θ)

sq(q(θ), θ)
=

f ξ(θ)

1− F ξ(θ)
= γ(θ) =

sθq(qξ(θ), θ)

sq(qξ(θ), θ)
,

for all θ ∈ [θ̃(ξ), 1). By our hypothesis, we must have that q̃(θ) = q(θ), for all θ ∈ [0, 1].

Notice that previous theorem does not ensure that F ξ ∈ F , i.e.,
´

θdF ξ(θ) = k. The next

lemma shows that there exists ξ∗ > 0 for which the associated pair allocation-cdf, (q∗, F ∗),

constitutes a Nash equilibrium.

Lemma 2.2. Consider the cdf F ξ of the previous theorem for each ξ ≥ 0. Then, there exists

ξ∗ > 0 such that
´

θdF ∗(θ) = k, where F ∗ = F ξ∗. In particular, taking q∗ ∈ Q solution of (4)
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for ξ∗, the pair (q∗, F ∗) ∈ Q×F is a Nash equilibrium of the zero-sum game between the nature

and the principal.

Proof. Notice that
´

θdF ∗(θ) =
´

θf ∗(θ)dθ + a∗

=
´ [

F ∗
−(1)− F ∗(θ)

]
dθ + a∗

= 1−
´

F ∗(θ)dθ

=
´ 1
θ̃(ξ∗) e

−
´ θ

θ̃(ξ∗)
γ∗(u)dudθ.

The integrand of the last integral goes 1 when ξ∗ → ∞ and goes to 0 when ξ∗ → 0, because

q∗(θ) is bounded and converges to the first-best solution when ξ∗ → 0. Therefore, there must

exist ξ∗ > 0 such that
´

θdF ∗(θ) = k > 0.

We now discuss a bit the content of the results we have just proved. First of all, we have

that robustness imposes restrictions on how the designer’s payoff can vary with the agents

(reported) types. More precisely, the designer’s ex-post payoff are piecewise linear, conditional

on the allocation qξ (θ) being strictly positive. The interpretation is that, knowing only the first

moment of the distribution of types, the designer can only explore linearly higher agent’s types;

else nature could move likelihood weights in a way that reduces the designer’s expected payoffs.

The shape of the principal’s ex-post payoffs fully pins-down the robust allocation; indeed, the

allocation solves an ODE derived from the linearity of the principal’s payoff conditional on

positive qξ (θ).

The worst-case distribution is derived from a condition that is analogous the one that prevails

is standard Bayesian mechanism design. In fact, in standard mechanism design problems, the

designer equates the marginal social benefits of increasing q to the marginal cost of leaving

informational rents to the agent. The worst case distribution guarantees that this condition

holds at the allocation that induces a piecewise linear payoff to the principal. One striking

feature of a robust design is that exclusion of an interval of types. In contrast to standard

Bayesian models, this holds true regardless of the behavior of marginal social surplus at the zero

allocation, ∂θξ

∂q
(0).7 By excluding lower types, the designer forces nature, who is bounded to

choose distributions with average k, to place more weight to higher types in equilibrium. Put

differently, exclusion is the way the designer finds to curb its excessive pessimism regarding the

distribution of types it will face. Such distortion in the extensive margin allows for a mechanism

that – compared to what would prevail if positive likelihood were placed to low types – entails

less distortions at the intensive margin. In the longer version of this work that is being prepared,

we show that such exclusion of types – which has an obvious interpretation in screening and

7In fact, in Bayesian models, if ∂s
∂q

(0, θ) is sufficiently large, not types will be excluded.
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taxation models – corresponds, in a Laffont and Tirole (1986) type of setting, to the offer of

cost-plus contracts to the least efficient firms. This might suggest that, compared to Bayesian

settings, a robust mechanism yields less powerful incentives. Again, in the longer version of

this work that is being prepared, we make this suggestion precise and confirm that robustness

reduces the power of incentives with which an agent is confronted.

2.2 An example

Let u(q, θ) = θq and c(q) = q2/2b, where c > 0. The first-best solution is given by qFB(θ) = bθ.

Solving (3) we get

θξ(q) = exp (ξ−1q)

[
(bξ)−1

ˆ b

q

exp (−ξ−1x)xdx+ exp (−ξ−1b)

]

for each ξ > 0 and q ∈ [0, b]. Integrating by parts twice, we get

θξ(q) = b−1
(
q + ξ

[
1− exp (ξ−1(q − b))

])
.

Hence,

θ̃(ξ) = θξ(0) = b−1ξ
[
1− exp

(
−ξ−1b

)]
.

Notice that lim
ξ→0

θ̃(ξ) = 0 and lim
ξ→∞

θ̃(ξ) = 1. In order to find the multiplier ξ∗ > 0 we must solve

the following equation:

ˆ b

0

exp (ξ∗−1q)
[
1− exp (ξ∗−1(q − b))

]
dq = kb.

3 Conclusion

We have considered a general mechanism design problem in which a principal only knows the

first moment of the distribution of types of the agent and, in face of such uncertainty, maximizes

her worst case expected payoffs. The results and their interpretations have been discussed in the

introduction and the main text, so we conclude with extensions that we are currently working

on.

As written in the note before the Introduction, two extensions are being prepared. First, we

are working on a dynamic version of the main model in which the agent’s information evolves

over time and all is known by the principal is that types satisfy a martingale condition. We are

able to prove that the optimal dynamic robust mechanism is the period by period repetition of

the static mechanism this note derived. Second, we are working on a multidimensional, additive,
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version of the current model. We are able to combine the results of Carroll (2015b) and those

derived in this paper to show that the optimal robust multidimensional mechanism entails full

separability. Last, we are working out regulation and taxation applications of the results we

have established here.
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