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Abstract

We consider the problem of a seller who faces a privately informed buyer and only knows

one moment of the distribution from which values are drawn. In face of this uncertainty,

the seller maximizes his worst-case expected profits. We show that a robustness property

of the optimal mechanism imposes restrictions on the seller’s ex-post profit function. These

restrictions are used to derive the optimal mechanism. The optimal mechanism entails

distortions at the intensive margin, e.g., except for the highest value buyer, sales will take

place with probability strictly smaller than one. The seller can implement such allocation by

committing to post prices drawn from a non-degenerate distribution, so that randomizing

over prices is an optimal robust selling mechanism. We extend the model to deal with the

case in which: (i) M goods are sold and the buyer’s private information is multidimensional

and (ii) the seller and the buyer interact for several periods. In the case of multiple goods,

there are several optimal mechanisms. With multiple goods full bundling is optimal, as

well as selling the goods in a fully separable way. In the dynamic model, we show that

repetition, period by period, of the static-optimal mechanism is optimal.

Keywords: Robust Mechanism Design, Monopolistic Pricing under Uncertainty, Price

Discrimination

J.E.L. Classifications: D82 (Asymmetric and Private Information; Mechanism Design),

D86 (Economics of Contract Theory)

∗We have also benefited from conversations with Gabriel Carroll, Nicolás Figueroa, Daniel Garrett, Renato
Gomes, Lucas Maestri, Stephen Morris, Leonardo Resende and Yuliy Sannikov and seminar audiences at the 2012
Latin American Workshop of the Econometric Society and EPGE/FGV for comments and suggestions. Moreira
gratefully acknowledges financial support from CNPq.

†Carrasco: Department of Economics, PUC-Rio, vncarrasco@gmail.com. Luz: European University Institute
and the Department of Economics, The University of British Columbia, vitor.farinha@gmail.com. Moreira:
FGV/EPGE, humberto@fgv.br.

1



Contents

1 Introduction 3

2 Model 8

3 One period and one good 9

3.1 Worst case payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Optimal mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Robust mechanism as a Nash equilibrium . . . . . . . . . . . . . . . . . . . . . 16

3.4 Arbitrary moment condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 One period and M goods 21

4.1 Worst case payoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Optimal mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Nash equilibrium in the symmetric case . . . . . . . . . . . . . . . . . . . . . . . 28

5 Multiple periods 30

6 Conclusion 36

References 37

2



1 Introduction

This paper considers the problem faced by a monopolist (he), who – except for knowing one

moment of the distribution – is unaware of the distribution from which the consumer’s (she)

value is drawn. In face of such ambiguity, he seeks to design a mechanism that is robust, in the

sense of maximizing his worst-case expected profits over all distributions satisfying the moment

condition. In its more general version, our model considers the case in which M > 1 goods are

sold (therefore, valuation is multidimensional) and the monopolist and the consumer interact for

multiple periods. Therefore, the problem we tackle is one of robust multidimensional dynamic

pricing.

For most of the exposition we consider a seller that is informed about the first moment of

the type distribution. The assumption that the seller knows at least the first moment of the

distribution of values makes the problem interesting. Under full ignorance of the distribution,

the optimal mechanism would be trivial: set a price equal to the lowest value the consumer

might attribute to the good. Moreover, it might well be the case that the seller, proceeding as an

econometrician as proposed by Segal (2003), has access to enough data to estimate (say, through

an hedonic regression) the mean of the distribution of values, but his sample falls short of data

for a non-parametric (consistent) estimation of the whole distribution. Alternatively, it might be

common knowledge that consumer expects her value to be k > 0 but, before purchase and after

the seller offers her a mechanism, might acquire relevant information about her value. In such

interpretation, due to Gabriel Carroll, if the seller is uncertain about the agent’s information

acquisition technology, all he will know is that values are drawn from a distribution with mean

k.

We start, to fix ideas, by considering a simple one-period case with single-dimensional private

information. Since the seminal paper Myerson (1981), much is known about such case when the

consumer has a unit demand, and the monopolist knows the distribution F from which this value

is drawn. Bulow and Roberts (1989) demonstrate that the optimal selling mechanism resembles

the solution of a standard monopolist’s problem. In fact, for a given price p, if one defines

“quantities” sold as the probability of sales under F – namely, 1− F (p) – total revenues can be

written as p.(1 − F (p)). A monopolist would then compute marginal revenues, p− 1−F (p)
f(p) , and

sell if and only if they are larger than costs. The rule coincides with the one derived by Myerson

(1981). Moreover, when marginal revenues are monotone, the seller can implement such optimal

mechanism by posting a single price.

Although quite simple, the solution requires full knowledge of “demand” – the distribution F

– and cannot be pursued if the monopolist only knows the expected value (denote it by k > 0)

of the consumer’s valuation. Solving for the mechanism that maximizes expected profits under

the worst case distribution involves a couple of steps. First of all, it is convenient to think of the
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robust mechanism design problem as being the seller’s best response to an adversary nature, who

seeks to minimize his expected profits by choice of distributions. This minimization problem

is constrained by the fact that the distribution must integrate to one, and, by assumption, its

expected value is k. Once one incorporates those constraints in a Lagrangian functional, nature

minimizes, by choice of distributions, the expected value of the seller’s profits subtracted by the

inner product of the constraints and their shadow costs (the Lagrangian multipliers).

In our first result, we show that nature will only place positive likelihood on values θ ∈ [0, 1]

for which the seller’s profits equal ξθ−λ, where ξ is the shadow cost of the constraint that imposes

that the average of the distribution must be k, and λ is the shadow cost of the constraint that the

distribution must integrate to one. As a corollary of such result, we show that seller’s profits are

piecewise linear: they are equal to zero over the region in which there are no sales, and is linear,

with slope ξ, when the mechanism entails sales with positive probability. It follows that the

robust mechanism imposes restrictions on the seller’s payoff levels. One interpretation is that,

knowing only the first moment of the distribution of values, the seller can only explore linearly

higher consumer’s values; else nature could move likelihood weights in a way that preserves the

shadow costs imposed by its restrictions and reduces the seller’s expected profits. Alternatively,

under the information acquisition interpretation of the model, the stage at which the consumer

obtains new information adds volatility to the seller’s (degenerate) prior. A profit function with

a call option format is then optimal.

Having established that profits are linear in values conditional on sales, finding the robust

allocation is simple. Indeed, by imposing that the derivative of the profit function with respect

to values is ξ conditional on sales, we obtain an ordinary differential equation (ODE) whose

solution yields the robust sales’ decision. As opposed to what prevails in the standard Bayesian

problem, in the robust mechanism, for a consumer with value smaller than 1, sales will not

take place with probability one. Put differently, there are distortions at the intensive margin.

The interpretation is simple. To insure against uncertainty, the seller finds desirable to sell to

a marginal consumer with a low value θ′ < 1. Nevertheless, if he were to sell with probability

one to this marginal consumer, the maximum he could charge from infra marginal consumers

(those with values θ > θ′). By distorting the consumption of lower types, the seller can charge

more from higher types: a standard discriminatory practice, although with a very different

rationale from standard price discrimination theories.1 Price discrimination is the way by which

the seller simultaneously insures against uncertainty and charges high prices from infra marginal

consumers.

There are two different ways to indirectly implement such robust allocation. Since the robust

allocation displays distortions at the intensive margin, we can use standard non-linear prices

1In particular, in a setting like ours, if the seller is a standard expected utility maximizer, he will only find it
optimal to discriminate if either the consumer’s payoff or his cost function have some curvature.
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to implement it. The second, and more interesting, way to implement the robust allocation

explicitly uses the lack of curvature in the consumer’s payoff. In fact, the seller can implement the

robust allocation by committing to pick a price from a well designed, non-degenerate, probability

distribution of prices. Therefore, randomizing over posted prices is an optimal robust mechanism.

We extend the simple model in three directions. First, we allow for the seller to have knowl-

edge of an arbitrary moment condition of the distribution of values. As we shall see, the main

features just described remain qualitatively the same; in particular, the robust allocation entails

distortions at the intensive margin. Second, we consider the case in which the monopolists sells

M goods and all he knows is that the consumer has unit demand for each of the goods, and that

her (multidimensional) value lies in [0, 1]M and has expected value of k = (k, ..., k) ∈ [0, 1]M . We

assume that the monopolist faces no technological constraints and can produce up to one unit

of each good. In Bayesian settings, not much is known about the solution of such a problem

and even standard features of single-good sales mechanisms, such as monotonicity of profits in

consumer’s values, do not extend in general to multidimensional profit maximizing mechanisms

(see Hart and Reny (forthcoming)).

In contrast, a general characterization of the robust multidimensional mechanism is not

only feasible, but follows from the same arguments used in the single-dimensional problem.

In fact, we consider the problem faced by nature in minimizing, by choice of distributions,

the seller’s expected profits subject to the constraints that the worst case distribution has to

integrate to one and lead to an expected value of k. As before, we establish, as a corollary of

nature’s problem, that the seller’s profit function is also piecewise linear in the multidimensional

case. Differentiation of this revenue function leads to a system of partial differential equations

that corresponds to a set of necessary conditions that a robust scheme must satisfy. Perhaps

surprisingly, two completely different mechanisms satisfy those necessary conditions: one in

which the monopolist sells the goods in a fully separable fashion (proceeding as if he was dealing

with M separate consumers with unit demands for each of the goods he sells), and the other in

which the seller constructs an “aggregate” value (by summing the consumer’s values for all goods)

and sells the goods in fixed proportions in a bundle. We then verify that both mechanisms are

indeed optimal by: (i) showing that, coupled with a properly chosen distribution, the mechanism

with fully separate sales is part of a Nash equilibrium of the zero sum game played by nature

and the seller; and (ii) proving that value the full bundling mechanism yields is the same as the

fully separate sale.

Third, we consider the case in which the consumer and the monopolist interact for multiple

periods and the consumer’s values might evolve over time. There are two main reasons to consider

the role of dynamics in our model. Even if the seller has little information about the buyer’s value,

extra information might become available in future periods, leading to better revenue extraction.

However ambiguity on the side of the seller regarding this additional information makes the result
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non-trivial. In our dynamic model this is incorporated by looking at pricing rules that potentially

depend on previous consumption behavior by the buyer. Also, knowledge of average valuations

is naturally connected to learning and information acquisition, as conditional expectations with

increasing information sets follow a martingale. However, information acquisition is a dynamic

phenomenon that should be discussed in a fully dynamic model.

A central part of our analysis deals with the key distinction between the case of multiple goods

and multiple periods: the sequential revelation of information. A consequence of the sequential

revelation of information is a failure of the revelation principle in the presence of ambiguity.

One methodological contribution of this paper is to present a way of dealing with dynamics in a

world with ambiguity. The seller chooses from the larger set of indirect mechanisms and, in the

face of large ambiguity, considers all possible type distribution as well the whole set of optimal

reporting strategies induced by each distribution. Our main result is the irrelevance of dynamics

in the presence of large ambiguity, i.e., repeated static optimal pricing is optimal.

We next put all those pieces together and show that the optimal dynamic multidimensional

robust mechanism involves the repetition, period by period, of the static multidimensional mech-

anism, which, in turn, can either treat each good in a fully separable way, or sell them in

proportional bundles as a function of aggregate valuations.

Related literature

Our paper is part of a growing literature on mechanism design with principals with maximin

preferences.2 Frankel (2014) and Carrasco and Moreira (2013) consider decision-making prob-

lems with non-transferable utility in which a maximin principal is unaware of the agent’s bias

(in Frankel (2014)) or the distribution of states (Carrasco and Moreira (2013)). In an otherwise

standard procurement setting à la Laffont and Tirole (1986), Garrett (2014) considers the case

of a principal who does not know the producer’s disutility of effort, and show that a simple fixed-

price-cost-reimbursement (FPCR) menu minimizes the principal’s maximum expected payment

to the agent. In Carroll (2015), the principal only partially knows the set of actions available

to the agent; he shows that if the principal maximizes expected profits under worst case set of

actions, the optimal contract is linear in output. Our work differs from those listed above by

considering a seller’s pricing decision.

There are, nevertheless, a set of papers that focus on pricing with unknown distribution of

values and posit that the seller has preferences for robustness.3 Bergemann and Schlag (2008,

2There is also a growing literature with maximin agents. Bose et al. (2006) and Wolitsky (2014) are examples
of analysis of, respectively, optimal auctions and bilateral trade when agents have maxmin preferences.

3Segal (2003) also considered the case in which a monopolist did not know the distribution from which
values were drawn. Rather than positing that the seller has preferences for robustness, he considered a seller
who proceeds as an econometrician and estimates, from the mechanisms offered to subset of consumers, the
distribution of values.
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2011) are perhaps the first to do so. In their first paper, they consider the case in which the

seller designs a mechanism to minimize the maximum regret, whereas in the second they also

consider a maximin procedure. In both cases, they work within a static and single-dimensional

case. Similar to what we find, they show that randomizing over prices is a way to insure

against uncertainty in the minimax problem. Pointing out that, without further restrictions,

the maximin problem entails the trivial solution of charging the lowest possible valuation with

probability one, they consider “local robustness”, that is, maximin pricing over neighborhoods

around a given distribution. They show that, starting at the certainty case, the charged price

decreases as uncertainty (as measured by the size of the neighborhood) increases. Instead of

considering a minimax criterion or working with neighborhoods around a given distribution,

to avoid a trivial solution for the maximin problem, we assume that a given moment of the

distribution of types is known. This complements their minimax analysis, on the one hand, and

allows for an analysis of the multidimensional and repeated cases, on the other.

In independent work, Carroll (2013) considers a setting in which a buyer knows the expected

value of its willingness to pay, but can acquire information about it before purchasing the good.

The seller, who only knows the prior from which the expected valuation is drawn, designs a

mechanism to maximize the worst case (over information acquisition technologies, which amounts

to choosing among mean preserving spreads of the prior) expected profits.4 Our single-good case

corresponds to a special case of his when the seller’s prior is degenerate. For the case of a single

good, however, we also consider the case of knowledge of an arbitrary moment by the seller. We

also extend the analysis to M > 1 goods (and multidimensional values) and repeated sales.

Handel and Misra (forthcoming) consider the problem of a monopolist who launches a new

product and, without knowledge of (the time invariant) demand, decides – restricting attention

to price posting mechanisms – on intertemporal prices to minimize maximum intertemporal

regret. They show that prices decrease over time if consumers are homogenous, and increase

if consumers are heterogeneous. Caldentey et al. (2015) also consider minimax intertemporal

pricing for the case in which seller restrict attention to posting price mechanisms. However, on

top of not knowing demand, the seller does not know the arrival process of consumers in their

paper. They also establish that optimal price paths are decreasing when buyers are rational. In

contrast to those papers, we consider maximin design (with the restriction that expected values

follows martingale5) and allow for general mechanisms. We show that the optimal dynamic

mechanism is time-invariant. Such time-invariance result can be related to the recent literature

on (Bayesian) dynamic mechanism design. In particular, Pavan et al. (2015) show that the

amount of informational rents that must be left to an agent whose private information follows

4In the introduction, we have borrowed Carroll’s story to justify why the seller might know the mean of the
distribution from which values are drawn.

5Again, this can be justified by an information acquisition story, since, if information is acquired over time,
at any given time the martingale property must hold.
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an AR(1) process depends on its the degree of persistence. It should then be no surprise that the

adversarial nature the seller faces chooses consumer’s types to be fully persistent in our model.

To the best of our knowledge, we are the first to consider multidimensional robust design. Not

much is known in general for Bayesian multidimensional design (see, for instance, Hart and Reny

(forthcoming) and references therein). By looking at worst-case selling procedures, we are able

to fully derive optimal mechanisms and show that they involve either full separation or full

bundling (in contrast, for example, to the mixed-bundling solution of McAfee et al. (1989) and

the literature that followed).

Organization

Section 2 lays down the general model. In Section 3, we derive the optimal robust mechanism for

the static setting in which the monopolist sells one good. We tackle the robust design problem

using two different approaches. In the first one, we use standard Lagrangian technique, whereas,

in the second, we recast the robust design problem in terms of a zero-sum game played by the

monopolist and an adversary nature who chooses distribution to minimize his expected profits.

This latter approach proves useful to derive the optimal robust mechanism for an arbitrary

moment condition that might be known by the monopolist. In Section 4 we consider the robust

design for the case in which the monopolist sells M goods. We move to the case of a T−period

robust design in Section 5. We draw our concluding remarks in Section 6.

2 Model

A monopolist (or seller) can produce M ≥ 1 indivisible and non-storable goods at zero cost

in each period t ∈ {1, .., T} , T ≥ 1. The seller faces a consumer who has valuation for the

good in period t denoted as θt =
(
θ1, . . . , θM

)
∈ [0, 1]M . A sequence of valuations is denoted by

θt = (θ1, ..., θt) ∈ [0, 1]Mt, for any t ≤ T . If quantity qt ∈ [0, 1]M (we use bold to represent the

vector of quantities) and transfers pt are made in each period t ∈ T , the utility obtained by the

consumer is given by
T∑

t=1

δt−1 (qt · θt − pt) ,

and the seller’s profits are
T∑

t=1

δt−1pt.

The set of direct mechanisms is defined as

M ≡
{
m = (qt, pt); (qt, pt) : [0, 1]

MT → [0, 1]× R is θt-measurable
}
.
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The set of mechanisms with arbitrary message spaces is given by M ! M. For any mechanism

m with message space A in each period, a reporting strategy is σ = (σt)
T
t=1 with function

σt : [0, 1]
MT → A which is measurable with respect to θt ∈ [0, 1]Mt. The set of all reporting

strategies is Σm and, for any direct mechanism, the truth-telling strategy is denoted as σTT .6

The realized payoff of an agent following strategy σ ∈ Σm in mechanism m ∈ M is

Um

(
σ | θT

)
≡

T∑

t=1

δt−1
[
qt

(
σ
(
θT
))

· θt − pt
(
σ
(
θT
))]

,

and the realized firm profits are given by

Πm

(
σ | θT

)
≡

T∑

t=1

δt−1pt
(
σ
(
θT
))

.

When dealing with a direct mechanism we will also use Um

(
θT
)

and Πm

(
θT
)

to denote

realized payoffs for the buyer (the rent function) and the seller (the profit function) under truth-

telling.

We assume that the type distribution F ∈ ∆
(
[0, 1]MT

)
is known by the buyers but unknown

by the seller. The seller only knows that the set of possible distributions is F ⊆ ∆
(
[0, 1]MT

)

but does not have a probability distribution over this set. Instead, the seller is ambiguity averse.

The seller’s problem amounts to designing a mechanism to maximize his worst-case expected

profits over all distributions in F . In this paper the defining property of this set it assumed to

be a set of moment conditions, which is the only market information available to the seller. The

definition of this set is presented for each case of interest studied. Over the next sections, to

build the ideas that will allow us to find the robust mechanism for the general model we just

laid out, we will consider the seller’s problem for some special cases of interest.

3 One period and one good

We start focusing on the static case where the seller holds one divisible good and only has

information about the average of the type distribution. Formally, the set of possible distributions

is

F ≡

{
F ∈ ∆ ([0, 1]) |

ˆ

θdF (θ) = k

}
,

for some k ∈ (0, 1).

The seller wants to maximize the revenue guarantee given by this moment condition alone.

6We assume that the set of allocations that are feasible for a buyer is compact, i.e.,
{(q∞, p∞) ; ∃a∞ ∈ A∞ such that (qt (a∞) , pt (a∞)) = (q∞t , p∞t ) , ∀t ∈ T } is compact in the product topology.
This is required to guarantee the buyer always has an optimal reporting strategy.
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This is done by considering the worst-case expected profits from the set of possible distributions.

Since the buyer has complete information at announcement stage, the set of optimal reporting

strategies is independent of the actual type distribution F ∈ F . As a consequence, any selection

from this set that is independent of the distribution choice can be implemented through a direct

mechanism with truthful strategies. Hence, we restrict attention to incentive compatible direct

mechanisms. The seller’s problem becomes:

max
m∈M

min
F∈F

1
ˆ

0

p (θ) dF (θ) , (1)

subject to participation and incentive compatibility constraints:

Um (θ) ≥ 0,

and

Um (θ) ≥ θq
(
θ̂
)
− p

(
θ̂
)
,

for all θ, θ̂ ∈ [0, 1].

As usual under the single crossing condition, incentive compatibility is equivalent to the

envelope condition:

Um (θ) = Um (0) +

θ
ˆ

0

q (τ) dτ, (2)

and the monotonicity condition: q (·) is non-decreasing. Substituting equation (2) in the ob-

jective and noticing that, regardless of worst-case distribution, the seller will always pick a

mechanism with Um (0) = 0, his problem can be equivalently rewritten as:

max
m∈M

min
F∈F

1
ˆ

0

Πm(θ)dF (θ)

subject to q (θ) non-decreasing and

Πm (θ) := p(θ) = θq (θ)−

θ
ˆ

0

q (τ) dτ

is the profit function associated to mechanism m = (q, p).
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We follow the classical approach in looking at the relaxed problem without monotonicity

constraints and showing that the solution to this problem indeed satisfies the ignored constraints.

3.1 Worst case payoff

We start by fixing an arbitrary incentive compatible mechanism and the associated profit function

Π (θ), i.e., any function Π(θ) that satisfies Π (0) = 0 and Π (θ) is non-decreasing7. Because of

this latter property, it is without loss of generality to assume that Π (θ) is left-continuous.

Let us relax the constraints which require that the cumulative distributions are probability

distributions that have mean k and consider the following relaxed problem of finding the worst

expected profits:
min
F∈D

´

Π (θ) dF (θ)
(3)

subject to
ˆ

dF (θ) ≤ 1,

and

k −

ˆ

θdF (θ) ≤ 0,

where D = {F : [0, 1] → R+ is non-decreasing and bounded function with right hand side limit}.

This, in turn, allows us to show:

Lemma 3.1. (Existence) There is a solution to the problem (3). At the robust mechanism, the

solution belongs to F .

Proof of Lemma 3.1. The set D is compact and the constraints of problem (3) are closed with

respect to the weak topology. It is straightforward to see that the objective function is also lower

semi-continuous with respect to the weak topology (Π(θ) is a left-continuous and non-decreasing

function). The second constraint must bind. Otherwise, using the Lagrangian approach pre-

sented below, we know that if ξ∗ = 0, then the distribution that attains the minimum would be

concentrated at θ = 0 since Π(θ) + λ∗ is a positive function for θ ∈ (0, 1]. However, this violates

the second constraint (unless k = q = λ∗ = 0, in which case the Dirac measure concentrated at

θ = 0 is the optimal distribution). Hence, ξ∗ > 0 and the second constraint being binding. In

the proof of Proposition 3.1 we argue that if ξ∗ > 0, then λ∗ > 0 and, consequently, the first

constraint should bind at the robust mechanism.

7It follows that, whenever it exists, the derivative of the profit function Π(θ) = θq (θ)−
θ́

0

q (τ) dτ associated to

the incentive compatibility allocation q(·) is a.e. Π′(θ) = q (θ) + θq′(θ)− q (θ) = θq′(θ) ≥ 0. Therefore, Π′(θ) ≥ 0
a.e. if and only q′(θ) ≥ 0 a.e.
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Let F ∗ ∈ F be a solution of the problem in (3). Standard arguments (see, for instance,

Luenberger (1969)) imply that there exists a Lagrangian functional L : D × R2
+ → R of problem

(3) defined by

L(F ;λ, ξ) =

ˆ

Π(θ)dF (θ) + λ

(
ˆ

dF (θ)− 1

)
+ ξ

(
k −

ˆ

θdF (θ)

)

so that the worst case distribution F ∗ and multipliers λ∗ ≥ 0 and ξ∗ > 0 satisfy the saddle point

condition:

L(F ∗;λ, ξ) ≤ L(F ∗;λ∗, ξ∗) ≤ L(F ;λ∗, ξ∗),

for all (F,λ, ξ) ∈ D × R2
+. Hence, ignoring constant terms,

ˆ

Π (θ) dF ∗ (θ) = min
F∈D

ˆ

[Π (θ) + λ∗ − ξ∗θ] dF (θ) .

Clearly, problem (3) is well defined only if Π (θ) + λ∗ − ξ∗θ ≥ 0, for all θ ∈ [0, 1]. In fact, if for

some θ ∈ [0, 1) such that Π (θ) + λ∗ − ξ∗θ < 0, one would have

L (N.Hθ;λ
∗, ξ∗) → −∞ when N → ∞,

where Hθ is the Heaviside function at θ, i.e., Hθ(x) = 0 for x ∈ [0, θ] and Hθ(x) = 1 for

x ∈ (θ, 1]. Since Π(θ) is left-continuous and non-decreasing, then Π(1) + λ∗ − ξ ≥ 0. We can

then define the sets of types where the profit function is the affine envelope function ξ∗θ − λ∗,

I = {θ ∈ [0, 1];Π (θ) = ξ∗θ − λ∗}, and its complement Ic = {θ ∈ [0, 1];Π (θ) > ξ∗θ − λ∗}. At the

optimal distribution F ∗, the mass of types where the profit is above the affine envelope must

be zero, i.e., dF ∗ (Ic) = 0. Otherwise, by moving weight from Ic to I, the objective of the

minimization problem could be improved by reducing expected profit.

More interestingly, at the robust mechanism the optimal distribution must spread mass for

all types above a certain cutoff type. The intuition is that the “nature”,8 who is minimizing the

objective function, has zero shadow profit Π(θ)+λ∗− ξ∗θ for all types in I and puts zero weight

for types in Ic, which have positive shadow profit. Therefore, if a top interval of types, say [θ̄, 1],

have positive positive shadow profit, the seller could reduce profit for those types such that the

shadow profit is slightly below zero but still greater than the profit obtained with types below

θ̄ (once the profit function is non-decreasing). The nature would then react putting all mass in

this top interval and the seller would ensure better expected profit.

The next proposition formally proves that, at the robust mechanism, I = [θ∗, 1], where

ξ∗θ∗ = λ∗. However, let us first state a lemma which will be important in the proof of the next

8In subsection 3.3 we will explore this interpretation to derive that the robust mechanism as a part of a Nash
equilibrium between the seller and the adversary nature in zero-sum game.
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proposition. In particular, it implies that piecewise linear lower envelope of a profit function is

also a profit function associates to an allocation whose maximum quantity is not greater than

the allocation that generates the original profit function. That is, if the original profit function

satisfies the capacity constraint, the lower envelope piecewise linear also does.

Lemma 3.2. (Auxiliary) Let q(·) be any allocation such that 0 ≤ q(θ) ≤ 1 and for some

ξ∗ > 0 and λ∗ ≥ 0

Π(θ) := θq(θ)−

ˆ θ

0

q(τ)dτ ≥ ξ∗θ − λ∗,

for all θ ∈ [0, 1]. Then,

q(θ) ≥
1

θ∗

ˆ θ∗

0

q(τ)dτ + ξ∗ ln

(
θ

θ∗

)
,

for all θ ∈ [0, 1], where ξ∗θ∗ = λ∗.

Proof of Lemma 3.2. Defining ψ(θ) =
´ θ

0 q(τ)dτ , the hypothesis of the lemma is equivalent to

θψ′(θ)− ψ(θ) ≥ ξ∗(θ − θ∗), for all θ ∈ [0, 1]. Now, notice that

ψ(θ)
θ

− ψ(θ∗)
θ∗

− λ∗
(
1
θ
− 1

θ∗

)
=
´ θ

θ∗

(
ψ(τ)
τ

)′
dτ + λ∗

´ θ

θ∗
1
τ2
dτ

=
´ θ

θ∗
τψ′(τ)−ψ(τ)

τ2
dτ + λ∗

´ θ

θ∗
1
τ2
dτ

≥
´ θ

θ∗
ξ∗(τ−θ∗)+λ∗

τ2
dτ = ξ∗ ln

(
θ
θ∗

)
.

Hence,
q(θ) ≥ ψ(θ)

θ
+ ξ∗

(
1− θ∗

θ

)

≥ ψ(θ∗)
θ∗

+ ξ∗ ln
(
θ
θ∗

)
+ ξ∗

(
1− θ∗

θ

)
+ λ∗

(
1
θ
− 1

θ∗

)

= 1
θ∗

´ θ∗

0 q(τ)dτ + ξ∗ ln
(
θ
θ∗

)
.

Proposition 3.1. (Piecewise linear envelope) Suppose that Π∗(θ) is the profit function of a

robust mechanism. Then, Π∗ (θ) = max {ξ∗θ − λ∗, 0}, for some ξ∗ > 0 and λ∗ ≥ 0 (i.e., it is

piecewise linear).

Proof of Proposition 3.1. Let m = (q, p) be any feasible mechanism and Π(θ) the associated

profit function. By Lagrangian approach above, we know that there exist ξ∗ > 0 and λ∗ ≥ 0

such that Π(θ) ≥ ξ∗θ − λ∗, for all θ. By Lemma 3.2, q(θ) ≥ 1
θ∗

´ θ∗

0 q(τ)dτ + ξ∗ ln
(
θ
θ∗

)
, for all

θ, where θ∗ = λ∗/ξ∗. In particular, since q(1) ≤ 1, we have that ξ∗ ln
(

1
θ∗

)
≤ 1. Therefore, if

q∗(θ) = max
{
ξ∗ ln

(
θ
θ∗

)
, 0
}
, then q∗(1) ≤ 1 and

Π(θ) ≥ Π∗(θ) := θq∗(θ)−

ˆ θ

0

q∗(τ)dτ = max {ξ∗(θ − θ∗), 0} ,

i.e., the allocation q∗(·) is feasible allocation and attains the lower envelope profit, which proves

13



the result. Finally, notice that the robust mechanism, the constraint ξ∗ ln
(

1
θ∗

)
≤ 1 should bind,

which implies that θ∗ > 0, once ξ∗ > 0. Hence, λ∗ > 0.

Proposition 3.1 shows that a robust mechanism imposes restrictions on the payoff levels. Only

knowing the first moment of the distribution from which the consumer’s valuation is drawn, the

best the seller can do to insure against ambiguity is to design a mechanism that induces profits

which are linear in the values conditional on sales. Under the interpretation that, ex-ante,

the seller knows the consumer’s expected willingness to pay, but the latter acquires additional

information after the mechanism is offered, the convexity (or call-option format) of the profit

function is the seller’s optimal response to the added volatility in the consumer’s valuation

stemming from the information acquisition stage.

3.2 Optimal mechanism

Letting F ∗ ∈ F be a worst case distribution, from Proposition 3.1, the seller’s expected profits

Π∗(θ) at a robust mechanism is

ˆ

Π∗ (θ) dF ∗ (θ) =

ˆ

max {ξ∗θ − λ∗, 0} dF ∗ (θ) = ξ∗ [k − θ∗] ,

where θ∗ = λ∗/ξ∗ is the marginal consumer type – i.e., the consumer type such that the mecha-

nism prescribes sales for all θ > θ∗. Moreover, at a robust mechanism q∗(·),

Π∗ (θ) ≡ θq∗ (θ)−

θ
ˆ

0

q∗ (τ) dτ = ξ∗θ − λ∗, for all θ ∈ [θ∗, 1] .

Differentiating the above condition, we get

θ
dq∗

dθ
(θ) = ξ∗, for all θ ∈ [θ∗, 1]

which implies that

q∗ (θ) = ξ∗ ln

(
θ

θ∗

)
, for all θ ∈ [θ∗, 1] .

The monopolist’s problem can then be simplified to

max
ξ∗≥0,θ∗∈[0,1]

ξ∗ [k − θ∗] (4)

subject to

ξ∗ ln

(
θ

θ∗

)
≤ 1 for all θ ∈ (0, 1]. (5)
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The solution to this problem yields:

Proposition 3.2. (Robust mechanism) Let k̃ < k be the implicit solution of k̃
(
1− ln

(
k̃
))

=

k. Then, the optimal robust allocation is given by

q∗ (θ) =

{
0, if θ ≤ k̃

1− ln (θ)

ln (k̃)
, if θ ≥ k̃

.

Proof of Proposition 3.2. Notice that, at optimal solution, the constraint (5) of problem (4)

must be binding exactly at θ = 1. The problem then simplifies to

max
θ∗∈[0,1]

ϕ(θ∗),

where ϕ(θ∗) = θ∗−k
ln θ∗

. The first order condition amounts to ϕ′(θ∗) = 1
ln θ∗

+ k−θ∗

θ∗( ln θ∗)2
= 0 which

is equivalent

θ∗(1− ln θ∗) = 1.

Since ϕ is strictly concave (ϕ′ is strictly decreasing), this last equation has a unique solution,

which we call k̃ and is the solution of our maximization problem. This concludes the proof.

While, as in standard Bayesian selling mechanisms, there are no distortions at the top

(q∗ (1) = 1), the robust mechanism entails sales with probability smaller than one for all valu-

ations θ < 1. Hence, the mechanism distorts the allocation at the intensive margin. Although

coming from a different source (uncertainty, rather than the curvature of payoffs as in Bayesian

settings), the reason for this distortion is to price discriminate different consumer types. Con-

sidering the worst-case scenario, the seller will find it desirable to sell to consumers with low

valuations. If he was, however, to sell with probability one to them, the amount he would be able

to charge from infra marginal consumers would be small. By selling with probability smaller

than one to low valuation consumers, the seller can charge more from infra marginal buyers.

Price discrimination is the way by which the seller simultaneously insures against uncertainty

and charges high prices from infra marginal consumers.

Implementation

There are many ways to implement the allocation in Proposition 3.2. A first natural one is

through a non-linear tariff. In fact, for

q∗ (θ) =

{
0, if θ ≤ k̃

1− ln (θ)

ln (k̃)
, if θ ≥ k̃

. (6)
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Let

p∗ (θ) = θq∗ (θ)−

θ
ˆ

0

q∗ (τ) dτ, (7)

we can then make use of the taxation principle to implement the robust direct mechanism

through an indirect mechanism (q, P ∗ (q)) with P ∗ (q) = p∗ (θ) for q = q∗ (θ).

A more interesting way – and that explicitly uses the fact that the consumer’s payoff is

linear – to implement the robust mechanism is, however, through a distribution of posted prices.

Indeed, notice that the direct mechanism calls for a buyer of type θ to be assigned assigned

the good with probability q∗ (θ) . At any given price p, a buyer will buy if and only if p ≤ θ.

Now, assume that the seller commits to posting a price p ∈
[
k̃, 1
]

drawn from the cumulative

distribution

q∗ (p) for all p ∈
[
k̃, 1
]
,

with q∗ (·) from equation (6). It is easy to see that, if prices are drawn from q∗ (p), the probability

that a consumer of valuation θ buys is exactly q∗ (θ). Hence, we have:

Proposition 3.3. (Implementation) Committing to posting a price drawn from the distribution

q∗ (p), for all p ∈
[
k̃, 1
]
, is a robust selling mechanism.

3.3 Robust mechanism as a Nash equilibrium

An alternative to the approach that makes use of Lagrangian techniques is to recast, as

Bergemann and Schlag (2008) do in their minimax pricing problem, the robust design prob-

lem in terms of a zero-sum game between the monopolist and an adversary nature.

In such game, the monopolist’s von-Neumann-Morgenstern utility is Π (θ) , whereas nature’s

is −Π (θ); the monopolist chooses incentive compatible mechanisms in M and nature selects

distributions in F .

As argued in Bergemann and Schlag (2008), if (m∗, F ∗) is a Nash equilibrium of such game,

then m∗ is a robust mechanism and F ∗ is a worst case distribution. Consider the density function

on [0, 1]:

f ∗ (θ) =

{
0, if θ ∈ [0, k̃)
k̃
θ2
, if θ ∈ [k̃, 1],

(8)

The following proposition shows that this density characterizes the absolutely continuous part

of the distribution F ∗:

Proposition 3.4. (Nash equilibrium) Let m∗ = (q∗, p∗) be the mechanism characterized by (6)

and (7) and the distribution F ∗ with absolutely continuous part described by (8) and singular

part characterized by the Dirac measure at θ = 1 with mass of k̃. Then, (m∗, F ∗) is the unique

Nash equilibrium of the zero-sum game played by the nature and the monopolist.
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Proof of Proposition 3.4. 1) Characterization. We start by guessing that the cumulative distri-

bution F ∗ of the worst case measure has a density f ∗, except possibly at θ = 1 where it may have

a mass point. Notice that, for any implementable allocation q(·), integration by parts yields

1
ˆ

0



θq (θ)−
θ
ˆ

0

q (τ) dτ



 f ∗ (θ) dθ =

1
ˆ

0

[
θ −

F ∗
− (1)− F ∗ (θ)

f ∗ (θ)

]
q (θ) f ∗ (θ) dθ + q (1)−

1
ˆ

0

q (τ) dτ.

Therefore,

1
ˆ

0



θq (θ)−
θ
ˆ

0

q (τ) dτ



 dF ∗ (θ)

=

1
ˆ

0

[
θ −

F ∗
− (1)− F ∗ (θ)

f ∗ (θ)

]
q (θ) f ∗ (θ) dθ +

(
1− F ∗

− (1)
)


q (1)−
1
ˆ

0

q (τ) dτ





=

1
ˆ

0

[
θ −

1− F ∗ (θ)

f ∗ (θ)

]
q (θ) f ∗ (θ) dθ +

(
1− F ∗

− (1)
)
q (1) .

By making

θ −
1− F ∗ (θ)

f ∗ (θ)
= 0, (9)

nature guarantees that the seller will be indifferent among any incentive compatible mechanism

with q (1) = 1. In particular, the one in equation (6) is a best reply by the monopolist if equation

(9) is satisfied. Solving (9) amounts to solving

d

dθ
[θF ∗ (θ)] = 1,

one then has

F ∗ (θ) = 1−
a

θ
,

and f ∗ (θ) = a
θ2
, for all θ ∈ [a, 1] , where a = 1− F ∗

− (1) . Now, we know that F ∗ ∈ F and hence

k =

1
ˆ

0

θdF ∗ (θ) =

1
ˆ

a

θf ∗ (θ) dθ +
(
1− F ∗

− (1)
)
,

which implies that k = a
1́

a

dθ
θ
+ a, or k = a (1− ln a) , which implies that a = k̃.
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The discussion that precedes Proposition 3.1 and the derivation of the mechanism in (6)

Proposition 3.2 establishes that nature is indifferent among any distribution in F ; if the monop-

olist chooses the mechanism in equations (6) and (7). Hence, F ∗ is a nature’s best response.

2) Uniqueness. Given the Nash equilibrium (m∗ = (q∗, p∗), F ∗) characterized above, for all

F ∈ F

k̃ =

ˆ

Π∗(θ)dF ∗(θ) ≤

ˆ

Π∗(θ)dF (θ),

and for all non-decreasing positive allocation q(·) such that q(1) ≤ 1

ˆ

Π(θ)dF ∗ (θ) = k̃

(

q (1)−

ˆ k̃

0

q (τ) dτ

)

≤ k̃, (10)

where Π(θ) = θq(θ)−
´ θ

0 q(τ)dτ .

Suppose that there exists another Nash equilibrium (m̄ = (q̄, p̄), F̄ ). The mechanism q∗

assures at least an expected profit of k̃ and therefore the mechanism q̄ gives

ˆ

Π̄(θ)dF̄ (θ) ≥ k̃,

where Π̄(θ) = θq̄(θ)−
´ θ

0 q(τ)dτ . On the other hand, since the nature is minimizing the expected

profit, it cannot attain a payoff lower than k̃ when deviating to distribution F ∗. Then, using

(10) we must have
ˆ

Π̄(θ)dF ∗(θ) = k̃

(

q̄ (1)−

ˆ k̃

0

q̄ (τ) dτ

)

= k̃.

We then necessary have q̄ (1) = 1 and q̄
(
k̃−
)

= 0. Hence, by continuity Π̄(k̃) = 0 and,

by Proposition 3.1, k̃ ≤ k̄, where Ī = [k̄, 1] contains the support of F̄ . This implies that

F̄
(
k̃−
)
= 0. If x

(
1− F̄ (x)

)
> k̃, then the mechanism

q (θ) =

{
0 se θ ≤ x

1 x < θ ≤ 1.

gives profit
´

(
θq (θ)−

´ θ

0 q (τ) dτ
)
dF̄ (θ) =

´ 1

x
xdF̄ (x) = x

(
1− F̄ (x)

)
> k̃. Hence, x

(
1− F̄ (x)

)
≤

k̃, for all x. Now

k =

ˆ 1

0

(
1− F̄ (x)

)
dx = k̃ +

ˆ 1

k̃

(
1− F̄ (x)

)
dx ≤ k̃ +

ˆ 1

k̃

k̃

x
dx = k̃ + k̃ ln

(
1

k̃

)
= k.

Therefore, x
(
1− F̄ (x)

)
= k̃, for all x > k̃, and hence F̄ = F ∗.

From Proposition 3.1, there exist ξ̄ > 0 and λ̄ ≥ 0 such that Π̄ (θ) ≥ ξ̄
(
θ − k̄

)
, for all θ,
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where k̄ = λ̄
ξ̄
. By Lemma 3.2, we have

q̄ (θ) ≥

´ k̄

0 q̄ (τ) dτ

k̄
+ ξ̄ ln

(
θ

k̄

)
, for all θ.

In particular, 1 ≥ ξ̄ ln
(
1
k̄

)
. Since,

ξ̄
(
k − k̄

)
≤

k − k̄

ln
(
1
k̄

) <
k − k̃

ln
(

1
k̃

) = k̃

if k̄ -= k̃ we conclude that k̄ = k̃. Hence, q̄ (θ) ≥ q∗ (θ), for all θ. Let dG = aδk̃+(1− a) δ1 where

a = 1−k

1−k̃
for
´

θdG(θ) = k and δθ is the Dirac measure at θ. Then,

ˆ

Π̄ (θ) dG(θ) = (1− a)

(
q̄ (1)−

ˆ 1

0

q̄ (x) dx

)
+ ak̃ = (1− a)

(
1−

ˆ 1

k̃

q̄ (x) dx

)
+ ak̃

≤ (1− a)

(
1−

ˆ 1

k̃

q∗ (x) dx

)
+ ak̃ =

ˆ

Π̃ (θ) dH(θ) = k̃.

Therefore, q̄ (x) = q∗ (x) almost surely and then q̄ = q∗.

3.4 Arbitrary moment condition

In this section we show that the characterization presented can be extended to more general mo-

ment conditions. The optimal pricing schedule provides a revenue guarantee that only depends

on the known moment condition. This is achieved by use of an allocation rule that generates an

ex-post profit function that is equal to an affine transformation of the moment function at the

region of positive production. Formally, this condition can be described as a differential equa-

tion defining the robust mechanism. The characterization of the robust mechanism is done by

construction of a Nash equilibrium of the zero-sum game between the seller and an adversarial

nature, as discussed in Section 3.3.

Consider an arbitrary continuously differentiable function κ : R → R satisfying κ′ (·) > 0.9

In this case, the set of feasible distribution be

F =

{
F ∈ ∆ [0, 1] ;

ˆ

κ (θ) dF (θ) = k

}
, (11)

for some fixe k ∈ (κ (0) , κ (1)).

In what follows, we derive the robust mechanism by constructing a strategy profile of the

zero sum game between nature and the monopolist then showing that it is a Nash equilibrium.

9The argument can easily be extended to the general case of bounded non-decreasing functions.
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Distribution

Define distribution F k as

F k (θ) ≡






0, if θ < k,

1− k
θ
, if θ ∈ [k, 1) ,

1, if θ = 1.

Higher k leads to a first-order stochastic increase in distribution F k and, hence, the function

that k to
´

κ (τ) dF k (τ) is continuous and strictly increasing. Also, it converges to f(i) when

k → i, for i ∈ {0, 1}. By the intermediate value theorem, there is a unique point k̃ ∈ (0, 1) that

satisfies
ˆ

κ (s) dF k̃ (s) = k.

Let us denote F ∗ = F k̃.

Mechanism

Define χa :
[
k̃, 1
]
→ R as the following10

χa (θ) ≡





0, if θ < k̃,

1− a
´ 1
θ
κ′(s)
s

ds, if θ ≥ k̃.

Simple derivations imply that the profit of the seller under production χa is given by

Πa (θ) =





0, if θ < k̃

χa
(
k̃
)
+ a

[
κ (θ)− κ

(
k̃
)]

, if θ ≥ k̃.

Define ã ≡
[
´ 1

k̃

κ′(τ)
τ

dτ
]−1

and let Π∗ ≡ Πã, q∗ = χã, transfer p∗ as

p∗ (θ) ≡ θq∗ (θ)−

ˆ θ

0

q∗ (τ) dτ,

and mechanism m∗ = (q∗, p∗). This mechanism leads to a profit function that is continuous and

satisfies

Π∗ (θ) = ã
[
κ (θ)− κ

(
k̃
)]

.

The next two Lemmas provide a characterization of a Nash equilibrium of this game.

10The function χa solves the differential equation θq′ (θ) = af ′ (θ), with final condition q (1) = 1.
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Lemma 3.3. (Nature’s problem) The robust distribution F ∗ solves the problem

min
F∈F

ˆ

Π∗(θ)dF (θ) .

Proof of Lemma 3.3. Notice that Π∗ (θ) = ã
[
κ (θ)− κ

(
k̃
)]

if θ ≥ k̃ and Π∗ (θ) > ã
[
κ (θ)− κ

(
k̃
)]

if θ < k̃. Hence, it follows that

ˆ

Π∗ (θ) dF (θ) ≥

ˆ

ã
[
f (θ)− f

(
k̃
)]

dF (θ) = ã
[
k − κ

(
k̃
)]

,

for any F ∈ F . The first inequality holds as an equality if and only if supp (F ) ⊆
[
k̃, 1
]
.

The following lemma shows that m∗ solves the seller’s problem.

Lemma 3.4. (Seller’s problem) The robust mechanism m∗ solves the problem

max
m=(q,p)∈M

ˆ

Πm (θ) dF ∗ (θ) ,

subject to p (θ) = Πm(θ) ≡ θq (θ)−
´ θ

0 q (τ) dτ and q(·) is non-decreasing.

Proof of Lemma 3.4. Notice that for any incentive compatible mechanism m = (q, p) ∈ M

p (θ) ≡ θq (θ)−

ˆ θ

0

q (τ) dτ,

which, using the distribution F ∗, leads to

ˆ

p (θ) dF ∗ (θ) = (1− F ∗ (1)) q (1) .

Any feasible mechanism with q (1) = 1 maximizes revenue.

These two results lead immediately to the following result.

Proposition 3.5. (Robust revenue - arbitrary moment) The mechanism m∗ = (q∗, p∗) solves

the robust revenue maximization problem with moment condition E
[
κ
(
θ̃
)]

= k.

4 One period and M goods

We now move to the case in which the monopolist can sell M > 1 goods. For the case in which

M > T = 1, the seller has to design a mechanism m = (q, p) ∈ M to maximize his worst-case

expected profits under all cumulative probability distributions on [0, 1]M with the vector of mean

21



k = (k1, ..., kM) ∈ [0, 1]M , i.e., the set of possible distributions is given by

F ≡

{
F ∈ ∆

(
[0, 1]M

)
|

ˆ

θidF (θ) = ki, for i = 1 . . . ,M

}
.

The seller’s problem reads

max
m∈M

min
F∈F

ˆ

p (θ) dF (θ)

subject to participation constraint

Um (θ) := θ · q (θ)− p (θ) ≥ 0,

and incentive compatibility constraint

Um (θ) ≥ θ · q
(
θ̂
)
− p

(
θ̂
)
,

for all θ, θ̂ ∈ [0, 1]M . We refer to a mechanism satisfying these as a feasible mechanism.

It is standard to show that a mechanism m = (q, p) is incentive compatible if and only if

∇Um (θ) = q (θ) for a.e. θ ∈ [0, 1]M (12)

and

Um (θ) is convex.

Using equation (12), one can write incentive compatible payments made to the seller as the

difference between total surplus and the buyer’s utility:

p (θ) = θ · q (θ)− Um (θ) = θ ·∇Um (θ)− Um (θ) . (13)

Therefore, each feasible mechanism m = (q, p) can be associated to a non-negative convex

function rent Um that satisfies (12). Reciprocally, given a non-negative convex function rent Um

that satisfies (12), then the mechanism m = (q, p) that satisfies (12) and (13) is feasible.

Plugging this is in the seller’s objective we get

max
{Um(θ)≥0 and convex}

min
F∈F

ˆ

[θ ·∇Um (θ)− Um (θ)]︸ ︷︷ ︸
Πm(θ)

dF (θ) .

4.1 Worst case payoffs

Once again, it is convenient to start by fixing an arbitrary incentive compatible profit function

Π(θ) = θ ·∇U (θ)−U (θ), where U(θ) is a rent function associated to a feasible mechanism, i.e.,
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U(θ) ≥ 0 and convex. Consider then the worst case expected profits associated with Π(θ):

min
F∈F

ˆ

Π (θ) dF (θ) . (14)

As in Lemma 3.1, we show that a solution F ∗ ∈ F to problem (14) exists. Moreover, there

are multipliers λ∗ ≥ 0 and ξ∗ ∈ RM
+ so that

min
F∈D

ˆ

Π (θ) dF (θ) + λ∗
(
ˆ

dF (θ)− 1

)
+

M∑

i=1

ξ∗i
(
ki −

ˆ

θidF (θ)

)
=

ˆ

Π (θ) dF ∗ (θ) ,

where D is the space of functions F : [0, 1]M → R+ non-decreasing and bounded function with

left hand side limit for each variable.

Ignoring constant terms in the Lagrangian functional, a worst case distribution minimizes:

L (F ;λ∗, ξ∗) =

ˆ

[Π (θ) + λ∗ − ξ∗ · θ] dF (θ) .

Similar arguments to the ones used in Section 3.1 imply that a solution F ∗ of this problem

only places positive weight on the set

I =
{
θ ∈ [0, 1]M ;Π (θ) + λ∗ − ξ∗ · θ = 0

}
.

We used this fact to prove the following result, which a weaker M-good counterpart of

Proposition 3.1 and has an analogous proof.

Proposition 4.1. (Piecewise linear envelope) Suppose that Π(θ) is a profit function. Then, Π (θ)

has a lower envelope piecewise linear function, i.e., Π (θ) ≥ max {ξ∗ · θ − λ∗, 0} with equality at

the support of F ∗, which is the solution of (14).

Unlike the one good case, we cannot guarantee the robust profit function is piecewise linear.

The next subsection derives the necessary conditions of optimality under the assumption the

profit function is piecewise linear.

4.2 Optimal mechanisms

Let us consider that a mechanism that is feasible (i.e., satisfies participation and incentive con-

straints) and the associated profit function Π(θ). Suppose that this profit function is piecewise

linear Proposition 4.1 can be used to establish a set of necessary conditions that a robust mech-
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anism has to satisfy. In fact, conditional on there being sales,

Π (θ) = ξ · θ − λ, for all θ.

Differentiating the above identity, whenever it is differentiable, one has

∇Π (θ) = ∇U (θ) +∇2U (θ) · θ−∇U (θ) = ξ.

Noticing that ∇U (θ) = q (θ) , such expression can be rewritten as ∇q (θ) ·θ = ξ or, in matrix

terms, 



∂q1(θ)
∂θ1

· · · ∂q1(θ)
∂θM

...
. . .

...
∂qM (θ)
∂θ1

· · · ∂qM (θ)
∂θM



 ·





θ1

...

θM



 =





ξ1

...

ξM



 . (15)

Equation (15) is a system of partial differential equations that a robust mechanism must

satisfy. In what follows, we describe two distinct sets of solutions to this system and later argue

they are indeed optimal robust mechanism.

Fully separable sale mechanisms

Consider a class of mechanisms m = (q, p) satisfying the following full separability condition:

∂qi
∂θj

(θ) = 0, i = 1, ...,M, i -= j. (16)

Equation (15) then boils down to

θi
dqi
dθi

(θi) = ξi, i = 1, ...,M.

Clearly, since each valuation has the same expected value, if the monopolist decides not to

“link” in any form the sales of different goods, the best he can do is to replicate, for each good

i, the mechanism in Proposition 3.2, so we have:

Proposition 4.2. (Separability) The best mechanism m = (q, p) among those that satisfy (16)

has

q∗i (θ) =

{
0, if θi ≤ k̃i

1− ln θi

ln (k̃i)
, if θi ≥ k̃i.

for i = 1, ...,M , where k̃i(1− ln (k̃i)) = ki and p is defined by (12) and (13)

Proof of Proposition 4.2. Let m = (q, p) be a feasible mechanism and the associated non-

negative convex function rent Um that satisfies (12) such that q(·) = (q1(·), ..., qM(·)) satisfies
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the capacity constraints:

0 ≤ qi(θ) ≤ 1, i = 1, ...,M.

Because of (16) and using the envelope we have

Um(θ) =
M∑

i=1

Ui(θ
i)

where Ui(θi) =
´ θi
0 qi(τ, θ−i)dτ . Define the distribution F ∗ = ×M

i=1F
∗
i ∈ F , where F ∗

i is the

robust distribution of the one good case with mean ki characterized by Proposition 3.4 when

k = ki. The expected of profit of mechanism m with respect to the distribution F ∗ is given

ˆ

Πm(θ)dF
∗(θ) =

M∑

i=1

ˆ

Πi(θ
i)dF ∗

i (θ
i),

where Πi(θi) = θiq̄i(θi)− Ui(θi), q̄i(θi) =
´

qi(θi, θ−i)dF ∗
−i(θ

−i) and F ∗
−i(θ

−i) = ×j &=iF ∗
j (θ

j). this

implies that Πi(θi) is the one good profit function associated to the feasible one good allocation

qi(·, θ−i). Since F ∗
i is the robust distribution for the one good case with mean ki, the maximum

expected attained by the seller which we denote by k̃i. Therefore,

ˆ

Πi(θ
i)dF ∗

i (θ
i) ≤ k̃i,

for all i = 1, ..,M , and
ˆ

Πm(θ)dF
∗(θ) ≤

M∑

i=1

k̃i.

This implies that the nature can limit the expected profit of the seller by
∑M

i=1 k̃i. However,

notice that this upper bound of the expected profit can be attained if the seller chooses the

mechanism m∗ = (q∗ = (q1, ..., qM), p) where q∗i and p are defined in the statement of the

proposition.

Bundled sale mechanisms

Rather than selling each good separately, the seller could bundle the goods. In fact, let θ̃ ∈ [0, 1]M

be such that λ = ξ · θ̃. It can be easily seen that the allocation

q (θ) =





0, if ξ ·

(
θ−θ̃

)
< 0

ln
(
ξ·θ

ξ·θ̃

)
.ξ, if ξ ·

(
θ−θ̃

)
≥ 0

25



satisfies (15). Under this mechanism, the worst case expected profits are

ˆ

Π (θ) dF ∗ (θ) =

ˆ

ξ·
(
θ−θ̃

)
dF ∗ (θ) = ξ·

[
k−θ̃

]

Therefore, the best among all such mechanism solves

max
ξ,θ̃≥0

ξ·
[
k−θ̃

]
(17)

subject to

ln

(
ξ · θ

ξ · θ̃

)
.ξ ≤ 1 for all θ.

We immediately have:

Proposition 4.3. (Full bundling) The solution to problem (17) entails full bundling:

qi (θ) =






0, if
M∑
j=1

ξjθj ≤
M∑
j=1

ξj θ̃j



ln




M∑

j=1

ξjθj

M∑

j=1

ξj θ̃j







 ξ, if
M∑
j=1

ξjθj >
M∑
j=1

ξj θ̃j

for i = 1, ...,M and (ξ, θ̃) solves problem (17), i.e. they are given by

ξ = −
1

ln k̃M
1 and ξ · θ̃ = θ∗,

where θ∗ = −−Mk̃M
ln k̃M

and k̃M is the unique solution k̃M(1− ln k̃M) =
∑M

i=1
ki

M
.

Proof. Defining η = ξ · 1 and θ∗ = ξ · θ̃, the problem (17) is then equivalent to

max
η,ξ,θ∗≥0

ξ · k − θ∗

s.t. 1− (ln (η)− ln (θ∗)) ξ ≥ 0

η − ξ · 1 ≥ 0.

Let a ∈ RM
+ and b ≥ 0 be the Lagrangian multipliers of the constraints. Notice that the

Lagrangian is a concave function and, therefore, the following first-order conditions are necessary
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and sufficient for optimality:






− ξ·a
η
+ b = 0

−1 + ξ·a
θ∗

= 0

k − (ln (η)− ln (θ∗)) a− b1 ≤ 0

and the usual slackness conditions.

From the first two equations we get θ∗ = ξ · a = bη. Guessing (and then verifying) that the

constraints and last first order conditions are binding, we have that

ξ =
1

ln η − ln θ∗
1 and a =

1

ln η − ln θ∗
(k − b1).

Hence,

η = ξ · 1 =
M

ln η − ln θ∗
and θ∗ = ξ · a =

∑M
i=1 ki − bM

( ln η − ln θ∗)2
= bη =

bM

ln η − ln θ∗
.

This implies that
k̄

b
− 1 = ln η − ln θ∗ =

M

η
.

Hence, θ∗ = η exp [−M/η]. However, θ∗ = bη implies that b = exp [−M/η]. Plugging this

back into the previous expression, we get

b(1− ln b) = k̄,

which gives a unique solution for b, which pins down the values of θ∗ and ξ:

θ∗ = −
Mb

ln b
and ξ = −

1

ln b
1

Notice that the optimal profit is

ξ · k − θ∗ = −
k · 1

ln b
+

Mb

ln b
= M

b− k̄

ln b
= Mb.

According to Proposition 4.3, the monopolist sells the same quantity of each of the M goods

to the consumer. The amount sold depends, in turn, on the sum of her valuations, an aggregate

measure of her willingness to pay.
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4.3 Nash equilibrium in the symmetric case

While the mechanisms in Propositions 4.2 and 4.3 satisfy a set of necessary conditions implied

by robustness, it still remains to verify whether they are indeed optimal for the monopolist. For

that, once again, it will prove useful to study Nash equilibria of the zero sum game involving

the monopolist and an adversary nature. The strategy space of the seller is the set of incentive

compatible and individually rational direct mechanisms, while the strategy space of nature is

distributions in the set F . The payoff of the seller is his expected revenue, which is equal to

minus nature’s payoff.

In this subsection, we will consider the symmetric case, i.e., ki = k, for all i = 1, ...,M .

Consider the following distribution

F ∗(θ) ≡ G( min
1≤i≤M

θi),

where

G (θ) ≡






0, if θ ∈
[
0, k̃
)
,

1− k̃
θ
, if θ ∈ [k̃, 1)

1 if θ = 1

and k̃ ∈ [0, 1] satisfies k̃
(
1− ln k̃

)
= k.

This distribution leads to perfectly correlated types. Notice, moreover, that the marginal

distribution of each coordinate is equal to the distribution derived in Proposition 3.4, for the

one dimensional case. Also define m∗ = (q∗, p∗) as the following

p∗ (θ) =
M∑

i=1

[

θiq
∗
i (θ)−

ˆ θi

0

q∗i

(
[θ, s]i

)
ds

]

, (18)

where

q∗i (θ) ≡





1− ln θi

ln k̃
, if θi ≥ k̃

0, if θi < k̃,
(19)

[θ]i ≡ (θ, . . . , θ, 0, . . . , 0) ,

and

[θ, s]i ≡ (θ, . . . , θ, s, 0, . . . , 0) .

In the following we will show that (m∗, F ∗) is a Nash equilibrium of the zero sum game

between nature and the seller.

28



Lemma 4.1. (Distribution optimality) The optimal distribution F ∗ solves

min
F∈F

ˆ

p∗ (θ) dF (θ) .

Proof of Proposition 4.1. Using (18) and (19) we have that

p∗ (θ) =
M∑

i=1

(
θi − k̃

)+

ln 1
k̃

.

Notice that, for any θ ∈ [0, 1]M

p∗ (θ) ≥
M∑

i=1

θi − k̃

ln 1
k̃

,

and the above holds as an inequality if θ /∈ ×M
i=1

[
k̃, 1
]
.

Also, for any F ∈ F we have that

ˆ

p∗(θ)dF (θ) ≥

ˆ M∑

i=1

θi − k̃

ln 1
k̃

dF (θ) =
M∑

i=1

k − k̃

ln 1
k̃

= Mk̃.

The first inequality holds as an equality if supp (F ) ⊆ ×M
i=1

[
k̃, 1
]

and as a strict inequality

otherwise. Finally, notice that F ∗ ∈ F and supp (F ∗) = ×M
i=1

[
k̃, 1
]
.

We now show that, given distribution F ∗ ∈ F , the seller finds it optimal to choose mechanism

m∗.

Lemma 4.2. (Mechanism optimality) The mechanism m∗ solves the revenue maximization prob-

lem defined by F ∗

m∗ ∈ arg max
m∈M

ˆ

p (θ) dF ∗ (θ) .

Proof of Proposition 4.2. Notice that using incentive constraints relative to types [θ]M , [θ′]M ∈

[0, 1]M , we have that

∑

i

θqi
(
θM
)
− p

(
θM
)
= −p

(
0M
)
+

ˆ θ

0

qA (s) ds,

where qA (s) ≡
∑

i qi
(
sM
)
. Hence, through standard arguments we can rewrite profits as

ˆ

[
θqA (θ) + p

(
0M
)
−

ˆ θ

0

qA (s) ds

]
dF (θ) =

ˆ

qA (θ) [θ − (1− F (θ))] dF (θ) + p
(
0M
)
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which is equal to

(1− F (1)) qA (1) + p
(
0M
)
.

Taking into account the constraint qA (1) ≤ M and p
(
0M
)
≤ 0, we have that the mechanism is

indeed optimal.

It follows from the above results that the mechanism described in Proposition 4.2 is, in fact,

an optimal robust mechanism for the case of M goods. We now show that the mechanism

in Proposition 4.3 attains the same worst case value for the monopolist as the mechanism in

Proposition 4.2. We then have:

Proposition 4.4. (Optimal full bundling) A mechanism that entails sales of all goods in the

same proportion (full bundling) attains the same worst case expected profits for the monopolist

as a mechanism that sells the goods in a fully separable fashion. Both mechanisms are optimal.

Proof of Proposition 4.4. We only have to show that the expected value of the Nash equilibrium

when the seller is restricted to bundling is the same under separability. Indeed, it is straightfor-

ward to check that the solution obtained by Proposition 4.3, as shown in the proof, is exactly

Mk̃.

5 Multiple periods

In this section we study how robust the solution in section 3 is to repeated interactions. There are

two main reasons to consider the role of dynamics in our model. First, even if the seller has little

information about the buyer’s value, extra information might become available in future periods,

leading to better revenue extraction. However, ambiguity on the side of the seller regarding this

additional information makes the result non-trivial. In our dynamic model this is incorporated

by looking at pricing rules that potentially depend on previous consumption behavior by the

buyer.

Second, knowledge of average valuations is naturally connected to learning and information

acquisition, as conditional expectations with increasing information sets follow a martingale.

However, information acquisition is a dynamic phenomenon that should be discussed in a dy-

namic model.

The dynamic mechanism design literature on revenue maximization (Courty and Li (2000);

Battaglini (2005); Pavan et al. (2015)) has described the optimal pricing schedule with repeated

interactions and known type distributions. One common feature of these papers is dependence

of the optimal dynamic pricing on fine details of the joint distribution.11

11Specially, Pavan et al. (2015) highlight the role of impulse-response functions as determinants of the optimal
distortions in the optimal contract. The calculation of these objects requires knowledge of the entire joint
distribution.
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In contrast, our mail result is the irrelevance of dynamics in the presence of large ambiguity,

i.e., repeated static optimal pricing is optimal. The intuition for our result is as follows. Optimal

static pricing provides the best revenue guarantee that only depends on knowledge of the average

valuation. By using the repetition of the static pricing rule, the seller completely separates the

multiple periods and obtains a guarantee that only depends on the ex-ante average valuation of

each period. The martingale property implies this revenue is the sum of the static revenue over

multiple periods.

Certainly the seller cannot obtain more than the repeated static revenue as long as the case

of permanent types is in the set of possible processes. For this process the optimal revenue

without ambiguity is equal to the repetition of the static revenue.

A central part of our analysis deals with the key distinction between the case of multiple

goods and multiple periods: the sequential revelation of information. We assume that the buyer

observes in each period his realized valuation. A consequence of the sequential revelation of

information is a failure of the revelation principle. For a given (indirect) mechanism, the optimal

reporting strategy is dependent on the type process. Hence, the implied direct mechanism

connected with a specific outcome is dependent on the type distribution chosen by the infimum

operator. One methodological contribution of this paper is to present a way of dealing with

dynamics in a world with ambiguity. The seller chooses from the larger set of indirect mechanisms

and, in the face of large ambiguity, considers all possible type distribution as well the whole set

of optimal reporting strategies induced by this distribution.

We now introduce the formal elements present in the dynamic analysis. Similarly to the

static model, the small information held by the seller is described by a set of type distributions

that are considered possible. Instead of treating each period independently, we consider type

processes that have the martingale property. Let F ∗ denote the critical distribution, R∗
1 denote

the robust revenue level and m∗
1 = (q∗, p∗) denote the optimal selling mechanism in the static

model with average condition k ∈ (0, 1). The set of possible type distributions is F ⊆ ∆
(
[0, 1]T

)

is assumed to have the following properties.

Assumption. The set F ⊆ ∆
(
[0, 1]T

)
satisfies:

(i) Martingale property: F ∈ F ⇒
´

θt+1dF
(
θT
)
= θt for any t satisfying T − 1 ≥ t ≥ 1.

(ii) Possibility of permanent types: F ∗,T ∈ F , where it is defined by F ∗,T
(
θT
)
= F ∗ (mint θt).

The first statement describes types that are derived from a learning process.12 The second

12In our model the buyer is not completely informed about his valuation after the first period. Our model can
incorporate the following scenario: the utility generated by consumption in each period t ≥ 1 is v + εt, where
v ∼ F and εt ∼ Gt (| v, ε1, . . . , εt−1) satisfying

´

vdF (v) = k and
´

sdGt (s | v, ε1, . . . , εt−1) = 0 for all t ≥ 1
and (v, ε1, . . . , εt−1). In the beginning of each period t the buyer observes θt ≡ v + εt. Ignorance of the joint

distribution of θT is generated by ignorance of objects
(
F, (Gt)t≥1

)
, and our optimal pricing result applies as

long as the learning process
(
F ∗, (δ0)t≥1

)
where there is no learning is a possibility for the seller. The shock
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one only states that a specific constant types distribution is contained in the feasible set. The

distribution F ∗,T has perfect correlation across periods, with valuations distributed according

to F ∗, the critical distribution in the static case. A special case of F is given by all martingale

processes with the initial type distribution satisfying the static restriction E [θ1] = k.

As discussed above, the analysis of the dynamic case cannot make use of the revelation

principle. Hence, we need to explicitly consider the optimal reporting strategies induced by a

given mechanism and a type distribution. These are defined below.

Definition 5.1. For a fixed distribution F ∈ F and mechanism m ∈ M, a reporting strategy

σ0 ∈ Σm is optimal if

E
[
Um

(
σ0 | θ̃

T
)]

≥ max
{
E
[
Um

(
σ | θ̃T

)]
, 0
}

for all σ ∈ Σm. The set of optimal strategies is denoted as Σm,F .

A direct mechanism is interim-incentive compatible, given a distribution F ∈ F , if strategyσTT ∈

Σm,F . The set of interim incentive-compatible direct mechanisms is given byMI
F . We highlight

once again that the set of optimal strategies potentially depends both on the mechanism in place

and the type distribution F .

Now we are able to describe the decision problem faced by the seller. She decides what

(potentially indirect) mechanism to offer to the agent. However, the seller does not know which

actual type distribution F ∈ F she is facing, as well as what optimal reporting strategy σ ∈ Σm,F

is followed by the buyer. On the face of this uncertainty once again the seller tries to obtain the

highest possible revenue guarantee. Formally:

R∗
T ≡ sup

m∈M

inf
(F∈F ,σ∈Σm,F )

ˆ

Πm

(
σ | θT

)
dF
(
θT
)
, (20)

where, for any indirect mechanism m = {qt, pt}t∈T , the notation m ◦ σ denotes the direct mech-

anism {q̃t, p̃t}t∈T defined as
(
q̃t
(
θT
)
, p̃t
(
θT
))

≡
(
qt
(
σT
(
θT
))

, pt
(
σT
(
θT
)))

for all θT ∈ [0, 1]T

and t ≥ 1.

We start by describing the revenue guarantee that the seller has from choosing the repetition

of the static optimal mechanism. This pricing rule guarantees at least the sum of the static

revenue period by period, which is equal to

RT ≡
1− δT+1

1− δ
R∗

1.

(εt)t determines the transitory effects that affect one’s utility from consumption. For example, the satisfaction
derived from watching a movie can be generated by the underlying taste for movies or from watching it in good
company.

32



Let m∗
T denote the independent repetition of the static mechanism m∗

1 = (q∗, p∗), i.e., it is

given by
(
q∗t
(
θT
)
, p∗t
(
θT
))

= (q∗ (θt) , p∗ (θt)) for all θT and t ≥ 1 . Independent pricing leads to

incentive constraints that are completely separable over periods. As a consequence agents have

incentives to truthfully report their types period by period for any type distribution. In fact,

we show that the buyer loses a strictly positive amount by choosing a reporting strategy that

leads to a different allocation than truth-telling. This separability leads to the following revenue

guarantee.

Lemma 5.1. (Revenue guarantee) The mechanism m∗
T guarantees revenue RT , i.e.,f

inf
(F∈F ,σ∈Σm,F )

ˆ

Πm∗

T

(
σ | θT

)
dF
(
θT
)
= RT .

Proof of Lemma 5.1. First consider any F ∈ F . Any optimal reporting strategy σ ∈ Σm∗,F has

the property that

ˆ

1
{
θT ∈ [0, 1]T |

(
qt
(
σt
(
θT
))

, pt
(
σt
(
θT
)))

=
(
qt
(
θT
)
, pt
(
θT
))

, for all t ∈ T
}
dF
(
θT
)
= 1.

This expression states that any optimal reporting strategy is equivalent to the truth-full reporting

strategy. This occurs because mechanism m∗ is ex-post incentive compatible. This means that

all agents have strict incentives to report truthfully, except when their types is in the exclusion

region and they are indifferent among several announcements that lead to the same allocation.

We start by showing this property.

Since in mechanism m∗ the allocation in period t only depends on the announcements in that

period, it is necessarily the case that for θT ∈ supp (F ):

σt
(
θT
)
∈ argmax

θ′
θtq

∗ (θ′)− p∗ (θ′) ,

where

q∗ (θ′) ≡ max

{
1−

ln θ′

ln k̃
, 0

}
, (21)

p∗ (θ′) ≡ max

{
θ′ − k̃

ln k̃
, 0

}

.

Since the objective function is strictly concave for θ′ > k̃ and constant for θ′ ∈
[
0, k̃
]
:

argmax
θ′

θtq
∗ (θ′)− p∗ (θ′) =





θt, if θt > k̃,
[
0, k̃
]
, if θt ∈

[
0, k̃
]
.

This implies that
(
qt
(
σt
(
θT
))

, pt
(
σt
(
θT
)))

=
(
qt
(
θT
)
, pt
(
θT
))

with probability one.
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As a consequence,

inf
F∈F ,σ∈Σm∗,F

ˆ

Πm∗

(
σ | θT

)
dF
(
θT
)
= inf

F∈F

ˆ

Πm∗

(
σTT | θT

)
dF
(
θT
)
.

But Πm∗

(
σTT | θT

)
is given by

∑T
t=1

[
δt max

{
θt−k̃
ln k̃

, 0
}]

. As a consequence it follows that

inf
F∈F

ˆ

Πm∗

(
σTT | θT

)
dF
(
θT
)
≥

T∑

t=1

[

δtmax

{
E [θt]− k̃

ln k̃
, 0

}]

= RT .

And this holds as an equality if the marginal distribution margtF ⊆
[
k̃, 1
]
, which is true for

distribution F ∗,T ∈ F .

A direct implication of this lemma is that the optimal robust revenue is at least equal to this

guarantee.

Corollary 5.1. (Lower bound) The optimal robust revenue is at least equal to RT , i.e.,

R∗
T ≥ RT .

Proof of Corollary 5.1. By definition the following inequality holds

R∗
T ≥ inf

F∈F ,σ∈Σm∗,F

ˆ

Πm∗◦σ

(
θT
)
dF
(
θT
)
= RT .

We now show that, in fact, the seller cannot improve upon the revenue guarantee described

above. The argument is very simple: the distribution with permanent types following the static

critical distribution F ∗ generates the revenue guarantee RT as the optimal revenue with known

type distribution. As a consequence, by considering the worst possible distribution, the seller

can only obtain lower revenue. This gives us an upper bound on the minimax value w̄.

Lemma 5.2. (Upper bound) The (known) type distribution F ∗,T leads to optimal revenue RT :

RT ≡ sup
m∈MI

F∗,T

ˆ

Πm

(
θT
)
dF ∗,T

(
θT
)
,

and hence the minimax value w̄ satisfies

w̄ ≡ inf
F∈F

sup
(m∈M,σ∈Σm,F )

ˆ

Πm

(
σ | θT

)
dF
(
θT
)
≤ RT .
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Proof of Lemma 5.2. The mechanism m∗
T is in MI

F ∗,T since it is ex-post incentive compatible.

We briefly show that it solves the revenue maximization problem with known distribution F ∗,T .

Consider an arbitrary mechanism m ∈ MI
F and define UE

m (θ1) ≡ E
[
Um

(
θ̃T
)
| θ1
]
. Any incen-

tive compatible mechanism m = (qt, pt)t∈T satisfies:

UE
m (θ1) =

T∑

t=1

δt−1
[
qt
(
[θ1]

T
)
θ1 − pt

(
[θ1]

T
)]

= max
θ′∈[0,1]

T∑

t=1

δt−1
[
qt
(
[θ′]T

)
θ1 − pt

(
[θ′]T

)]
,

which implies that, using Q (θ) ≡
∑T

t=1 δ
t−1qt

(
[θ]T

)
,

UE
m (θ1) = UE

m (0) +

ˆ θ1

0

Q (s) ds.

Then expected revenue, according to F ∗∗, satisfies

ˆ

Πm

(
θT
)
dF ∗∗

(
θT
)

=

ˆ

[
θQ (θ)−

ˆ θ1

0

Q (s) ds

]
dF ∗ (θ)− UE

m (0)

=

ˆ 1

0

Q (θ)

[
θ −

1− F ∗ (θ)

f ∗ (θ)

]
dθ + [F ∗ (1)− F ∗ (1−)]Q (1)

= [F ∗ (1)− F ∗ (1−)]Q (1)

≤ [F ∗ (1)− F ∗ (1−)]
∑

t∈T

δt−1,

where the third inequality uses the definition of F ∗ and the last inequality follows from resource

constraints qt
(
θT
)
≤ 1. The last term in this sequence of inequalities is the expected revenue

obtained by m∗
T since it always sells maximal quantity following an announcement θt = 1. This

concludes the first part of the statement.

The second part follows from

w̄ ≡ inf
F∈F

sup
(m∈M,σ∈Σm,F )

ˆ

Πm

(
σ | θT

)
dF
(
θT
)

≤ sup
(m∈M,σ∈Σm,F )

ˆ

Πm

(
σ | θT

)
dF ∗,T

(
θT
)

= sup
m∈M

ˆ

Πm

(
θT
)
dF ∗,T

(
θT
)
= RT .

Where the first inequality uses F ∗,T ∈ F and the second inequality is an application of the

revelation principle.

Concluding the argument, lemmas 5.1 and 5.2 present upper and lower bounds that coincide.

Hence the optimal revenue is equal to this level.
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Proposition 5.1. (Optimal revenue) The optimal interim robust revenue, as defined in (20), is

equal to RT and the mechanism m∗
T achieves it.

Proof of Proposition 5.1. Our proof consists of the following system of inequalities:

RT ≥ w̄ ≥ R∗
T ≥ RT .

Since the first and the third inequalities follow from lemmas 5.1 and 5.2, we only need to

show the second inequality.

Consider any F0 ∈ F then

R∗
T = sup

m∈M

[

inf
(F∈F ,σ∈Σm,F )

ˆ

Πm◦σ

(
θT
)
dF
(
θT
)
]

≤ sup
m∈M

[
inf

σ∈Σm,F0

ˆ

Πm◦σ

(
θT
)
dF0

(
θT
)]

≤ sup
m∈M

[

sup
σ∈Σm,F0

ˆ

Πm◦σ

(
θT
)
dF0

(
θT
)
]

= sup
(m∈M,σ∈Σm,F0)

ˆ

Πm◦σ

(
θT
)
dF0

(
θT
)
.

The first inequality follows from the removal of one degree of freedom in the infimum operator.

The second inequality follows by substituting an infimum by a supremum. The final equality

follows from the revelation principle. But now taking the infimum over all possible distributions

F0 ∈ F leads to the result.

The above results are easily extended to the case of multiple goods, combining the arguments

presented here with the ones in Section 4. For completeness we present here the general result,

with an omitted proof for briefness.

Proposition 5.2. The optimal dynamic, multidimensional, robust mechanism is the period by

period repetition of the static mechanism, which can either entail sales in a fully separated fash-

ion, or full bundling.

6 Conclusion

We have considered a seller’s problem in designing a worst-case mechanism when facing, for T

periods, a privately informed buyer and having knowledge, at each period, of a single moment

of the distribution from which consumer’s multidimensional values are drawn. The results and

their interpretations have been extensively discussed in the introduction and the main text, so

we conclude with avenues for future research.

In the spirit of Carroll (2013), it would be nice to consider a robust design for more general

priors. Dealing with multiple buyers would also be a natural extension of what we have done in
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this paper. The main difficulties in tackling such extensions are technical. Regarding the former,

extending the zero-sum game approach that we use to verify optimality for the case of M goods

and T periods is not straightforward. Even for the single good case with general priors (the

case considered by Carroll (2013)), it is not quite clear how to compute Nash equilibria of the

zero-sum game played by the seller and nature. The case in which there are more than one buyer

is even more challenging. In fact, if we were to use Myerson’s trick of substituting the incentive

compatible representation of the consumer’s payoff into the seller’s objective, and proceed as we

did in this paper, we would end up with a system of Partial Differential Equations (PDE), whose

solution is hard to obtain. We could, instead, assume symmetric buyers and combine Myerson’s

trick with Border (1991)’s conditions to solve for the optimal reduced form robust auction. The

difficulty is then to solve a single buyer robust selling mechanism adding the constraints implied

by Border (1991). Although challenging, we hope future research addresses these questions.
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