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Abstract: In this paper we show the validity of the adaptive LASSO procedure in estimating sta-
tionary ARDL(p,q) models with innovations in a broad class of conditionally heteroskedastic models. We
show that the adaptive Lasso selects the relevant variables with probability converging to one and that
the estimator is oracle efficient, meaning that its distribution converges to the same distribution of the
oracle assisted least squares, i.e., the least squares estimator calculated as if we knew the set of relevant
variables beforehand. Finally, we show that the LASSO estimator can be used to construct the initial
weights. The performance of the method in finite samples is illustrated using Monte Carlo simulation.

1. INTRODUCTION

We consider the problem of estimating linear autoregressive distributed lag (ARDL) models with non-
Gaussian GARCH errors when the number of regressors is possibly larger than the sample size, but only
a finite and small number of regressors is relevant (sparsity). We focus on the adaptive Least Absolute
Shrinkage and Selection Operator (adaLLASSO) proposed by Zou (2006) as a generalization of the LASSO
procedure pioneered by Tibshirani (1996).

Medeiros and Mendes (2016) put forward a number of sufficient high-level conditions for the adaLASSO
to be model selection consistent and oracle efficient in linear time-series models with heteroskedastic and
non-Gaussian errors. In this paper, we adapt the Medeiros and Mendes’(2015) conditions to the case
of ARDL models with non-Gaussian GARCH errors. By model selection consistency we mean that the
correct set of regressors are selected as the number of observations diverges to infinity. The oracle property
means that the adaLASSO estimator has the same asymptotic distribution as the ordinary least squares
(OLS) estimator under the knowledge of the correct set of relevant regressors (Fan and Li, 2001). Since our
results are asymptotic, the high-dimension is understood as the number of candidate covariates increases

polynomially with the sample size.



Estimation procedures that rely on shrinking the parameters towards zero have been receiving increasing
attention in the times-series literature; see, for example, Nardi and Rinaldo (2011), Kock and Callot
(2015), Liao and Phillips (2015), Basu and Michailidis (2015), among many others. The reason for the
recent popularity of such methods is mainly due their ability to handle situations where the number of
parameters to be estimated is larger than the available sample size.

The paper is organized as follows. In Section 2 we present the model and the assumptions. The key
results of the paper are shown in Section 3. A Monte Carlo simulation is presented in Section 4. Finally,

Section 5 concludes the paper. All mathematical proofs are relegated to the appendix.

2. MODEL AND MAIN ASSUMPTIONS

We consider a stochastic process {y;} generated from
P q
ye=Y_ boyeit+ Y Onzi+e=PBm+ e, (1)
i=1 i=0

where only a fraction of the elements of 3 is non-zero, i.e., B is sparse. Consider the following assumption

about the data generating process (DGP).

Assumption (Data Generating Process). The DGP is such that:

(A1) The roots of the polynomial 1 — >0, boi L’ lie outside the unity circle.
(A2) zi is an infinite-order vector moving average process, VMA(co), z¢ = 3 2 ¥ m,_;, where
a. {n}52_ is a zero mean, strictly stationary, uncorrelated, strong mizing process taking values

on R%, d, € N. The strong mizing coefficients {c, }5o_ decrease geometrically with m,

—0
i.e. am = O(a™) for some |a| < 1.
b. For some d > 1, E(n%fli) < o0, 4 =1,...,d,. There erists a positive constant oy max, such
that maxypy—; [[6'Mgll2a < o, masx-!
c. 2521 15| < kg, where Ky, is some non-negative, decreasing sequence satisfying ry, = O(K")
for some 0 < k <1, and | ¥,|| denotes the operator norm of ;.

(A3) The strictly stationary, strong mizing innovation process {e:}52_ ., is a difference martingale se-
quence with respect to the o-algebra generated by {m,_;,et—1-i};°,. The strong mizing coeffi-
cients {am, }50__ decrease geometrically with m, i.e., ay, = O(a™) for some |a| < 1. For some
d € [1,00), E(e3?) < 00, and E(e3) = o2.

(A4) {m}2_ o and {e1}52_ o are such that E(n,ei—;) depends only on i, i = 1,2, ..., for any t.

(A5) By = [Bo(1), By(2)] € RPT9%: s sparse, in a sense that it By(1) # 0, By(2) = 0 and By(1) € R?,
s € N. Moreover, minj<i<s |Boi| > Bmin > 0 and Y ;2 |00 < 0 < oco.

A6) The smallest eigenvalue of X = E (xzox))) is bounded away from zero.
0

IWe write [[b'v]|2q = (E[b'v[?4)1/2d = (E[b'vo'b|?) 2, and || - || = || - |-
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Under Assumptions (A1)-(A4), y admits an MA(co) expansion such that y = >°2%,vjs¢—j, where
Z;’;k 11 17l £ G, G is a geometrically decreasing sequence, and s; = Sl 0 00;zi—i + ¢ is weakly sta-
tionary. The conditions also imply that y; and z; have 2d moments. Assumption (A5) requires that the
smallest coefficient that enters the model is lower bounded by Bunin > 0 that may decrease as the number
of variables, s, increases. It also requires that the parameters 8g;, 7 = 0,1, ..., are not too large, which is
required to show that E|yy|?? does not increase as ¢ and the dimension of z increase. Finally, Assumption
(A6) restricts our result to processes where X, is positive definite.

Assumption (A2) covers a large range of cases. For instance, if we assume that A(L)z; = B(L)n,
where A(L) and B(L) are polynomials with finite degree, L is the lag operator, and the innovations
n; " N(0,X,), Assumption (A2) part b is satisfied. If the largest eigenvalue of the companion matrix of
the system is less than one in absolute value, Assumption (A2) parts a and ¢ are also satisfied. Assumption
(A4) is valid if i, is a martingale difference process with respect to the o-algebra generated by {n,_;,c¢—; :
i=1,2,..}

Assumption (A3) is satisfied by a number of conditionally heteroskedastic error specifications. In the

following examples we consider two cases of interest.

2.1. ARDL(p,q)-GARCH(l,m) model. Consider model (1) with the error defined as

l m
gt =V hy, v I'I\si (0, 1), hy = ag + Z Oéié:?_i + Z mihi—;. (2)
i=1 i=1
Under this GARCH specification we may replace Assumption (A3) by:

Assumption ((A3) for GARCH(l,m)). The coefficients of the GARCH(l,m ) innovations satisfy, for some
del,00),

a. Zﬁ:l o+ m <1
! ) d
b. Elvg|?? < 0o and (Lﬁ) E|vo|?? < 1

1-> 0 m

c. The distribution of vg is absolutely continuous with respect to the Lebesque measure, being strictly

positive in a neighbourhood of zero.

These conditions ensure that the GARCH innovations are strictly stationary, strong mixing with geo-

metrically decreasing rate, and have 2d moments (Lindner, 2009).

2.2. ARDL(p,q) with Meitz and Saikkonen’s (2008) GARCH family. Consider model (1) with

the error defined as

e = f(he)ve, v s (0,1), he = g1(he=1) + g2(et—1, he—1). (3)

This specification is discussed in Meitz and Saikkonen (2008). It nests a number of first order GARCH

specifications such as the Hentschel’s family of GARCH models (Hentschel, 1995). The authors derived
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general conditions for stationarity, strong-mixingness and the existence of moments for this family of

models. We replace (A3) by the following set of assumptions.

Assumption ((A3) for Meitz and Saikkonen GARCH family). a. vy has a probability density func-
tion ¢y () supported on R and bounded away from zero on compact subsets of R.
b. The functions g1 : Ry — R4 and g2 : RXxR — R are bounded on bounded subsets of their domains
and, for some g > 0, infyer, uer [g1(h) + g2(u, h)] = g.
c. There exists a real number a € [0,00) such that gi(h) < ah + o(h) as h — oo.
d. The function go satisfies the following three conditions.
di. There exists an unbounded interval of Ry that is, for all h > 0, contained in the image set
g2[(—=00,00), h].
dy. For all h > 0, the function ga2(-, h) is continuous from the right (or alternatively, continuous
from the left).
ds. There exists a real number R > 0 such that, for u > R and all h > 0, ga(u, h) is continuous
and monotonically increasing and the inverse function gy *(v,h) is such that dgy ' (v, h)/dv
1s bounded away from zero on compact subsets of its domain.
e. The exist a Borel measurable function b : R — Ry, nonconstant and continuous on some open
set, and a real number ¢ € [0,00) such that ga(f(h)v,h) < hb(v) + ¢ for all h € Ry. Furthermore,

E[b(vg)?] < 0o for some d € Ry.

The reader is referred to the original paper for a detailed discussion of the assumptions along with

examples of conditional variance specifications.

3. RESuULTS

The adalLASSO estimator of 3 used in this paper is given by

. T 9 p+qd
B3 = arg min Z (ye — B'xy)” + A Z wj|Bjl, (4)
peB t=max(p,q)+1 1=j

where w; = 1/ B, 75171 are the initial weights constructed from the LASSO initial estimates, B 7 of By, and
B C RPT94: is an open ball around {0} that satisfy the constraints in Assumptions (A1) and (A5). When
B 1; = 0, we remove the predictor from the equation.

Recently, Fan et al. (2014) showed that the adalLASSO is just an one-step implementation of the family
of folded concave penalized least-squares of Fan and Li (2001). Furthermore, using the LASSO as initial
estimator can be regarded as the two-step implementation of the local linear approximation in Fan et al.
(2014) with a zero initial estimate.

We show that, under Assumptions (Al) — (A6), and further conditions on A and Suyin, the LASSO

can indeed be used as an initial estimator, the adalLASSO consistently selects the correct set of relevant
4



variables, and that the asymptotic distribution of the estimator is the same as the oracle assisted least
squares. The number of candidate variables can be larger than the number of observations, but it depends
on the moment Assumptions (A2) and (A3).

The next theorem summarises the main results of this paper. We use the concept of sign consistency

that implies model selection consistency. We define sign(z) = I(z > 0) — I(z < 0).

Theorem 1. Assume (A1)-(A6) hold with Bmin > sz, for all T sufficiently large and some con-
stant ¢ > 0. For some 0 < £ < 1, p=gq = 0<T%>, s = O(T%>, sY2pd, = o [T%(ké)}, and the

11 3

reqularization parameter \r of the initial LASSO estimator satisfies (}%dzg\ijTQ — 0 and T/\{_‘ZQ — 0.
1 1-¢

Furthermore, if the adalLASSO regularization parameter A\ satisfies (pdz)# — 0 and T/\lfQ — 0,

then Pr [Sign([g’) = sign(ﬂo)} — 1, as T — oo, where the equality should be taken elementwise. De-

note Bols(l) the OLS estimator of By(1). For any s-dimensional vector & with Euclidean norm 1,
VTS [B(1) = By(1)] = VT6 [Bas(1) = Bo(1)] + 0p(1):

The rate in which n and s increase is controlled by ¢ and d, in Assumptions (A2) and (A3). The
constant ¢ is related to the number of candidate variables and variables in the model. Larger values of &
means that s can be larger at a cost of less candidate variables in the pool, on the other hand, a small
¢ allows for a larger number of candidate variables at the cost of stronger conditions on s. We derive
the rates of increase in (p + 1)d, and s under two scenarios: s = O(1) and s = O [(pdz)2/(d_1)]. In the
first scenario, since s is constant, the number of candidate variables is (p + 1)d, = o [T%(ké)] In the

(d—1)2 - Td— ¢
second scenario pd, = o [T ad (1_5)} ,and s =o0 {Tmm[%(l_@@] } In all cases, increasing the number

of moments is essential to increase the number of candidate and relevant variables. Different specifications
of s may also be considered and the respective rates derived. Both regularization parameters A and Aj
are constrained by the number of candidate variables, the number of variables in the model, and number
of moments d.

The selection of the regularization parameter A is critical. Traditionally, one employs cross-validation
and selects A within a grid that maximizes some predictive measure. In a time-dependent framework
cross-validation is more complicated. An alternative approach that has received more attention in recent
years is to choose A using information criteria, such as the BIC; see Zou et al. (2007). We adopt the BIC

to select both Ay and .

4. SIMULATION
Consider the following DGP:

id . ~
v =dyr—1 + 0 ze1 (1) +up, w= ht1/2€t, er ot (5), hi=5x10"  +mh 1+ oqu?

zZy = = A + Ay + vy, Uti’igN(OJ)a



where the typical element of 8 is given by 6; = ﬁ(—l)". zi(1)is a (s—1) x 1 vector of included (relevant)
variables. The vector z; = [2¢(1)’, z;(2)'] € RV, has n — s irrelevant variables and follows a fourth-
order VAR model with Gaussian errors as in Kock and Callot (2015). The matrices A; and A4 are
block diagonals with each block of dimension 5 x 5 and typical element 0.15 and —0.1, respectively. The
errors of the VAR have a covariance matrix equal to the identity. The error term of the ARDL model
is t-distributed with 5 degrees of freedom. t*(5) denotes an standardized t¢-distribution with 5 degrees of
freedom, such that all the errors have zero mean and unit variance. The vector of candidate variables
is ¢y = (y—1,2;_,). Finally, ¢ = 0.5, 0.8, or 0.9 and the GARCH parameters («1,71) can be either
(0.1,0.8) or (0.5,0.9). The two GARCH processes induce different moment structure for the error term
in the model.

We simulate 7' = 100, 500, 1000 observations of DGP (5) for different combinations of n, s, and values
for ¢, m, and a1 . We consider n = 101, 301,501 and s = 5, 10, 15.

We start by analyzing the properties of the estimators for ¢. Figures 1-3 illustrate the distribution
of oracle and the adalLASSO estimators. For T = 100 the adalLASSO estimator is biased downwards as
expected but the bias reduces as T increases. The bias is also more severe for ¢ = 0.8 or ¢ = 0.9 as
compared to case where ¢ = 0.5. The differences in performance among the two GARCH specifications
are minor. It is also clear that when ¢ = 0.5 or ¢ = 0.8 the adaLASSO distribution gets closer to the
oracle as the sample size increases. For ¢ = 0.9 there is still a small bias even when T" = 1000.

Table 1 shows the average bias and the average mean squared error (MSE) for the adaLASSO estimator
over the Monte Carlo simulations and the candidate variables, i.e.,

1000 1000

Bias—loéonj [$—¢+:§<§i—5i>] and MSE—10(1)0712;[<$—¢>2+§(@—&>1.

=1 j=

It is clear that both variance and bias are very low. This is explained, as expected, by the large number
of zero estimates. There are not much difference between the two GARCH specifications. On the other
hand, the higher is the persistence of the model, the higher is the bias.

Table 2 presents model selection results. Panel (a) shows the fraction of replications where the correct
model has been selected, i.e., all the relevant variables included and all the irrelevant regressors excluded
from the final model (correct sparsity pattern). It is clear the performance of the adaLASSO improves
as T — oo and gets worse as ¢ increases. Furthermore, there is a slightly deterioration as n increases.
Finally, the higher the persistence the worse the results, specially in small samples. Panel (b) shows the
fraction of replications where the relevant variables are all included. For T' = 300 and T = 1000, the true
model is included almost every time. For smaller sample sizes the performance decreases dramatically
as s and ¢ increase. Panel (c) presents the fraction of relevant variables included and Panel (d) shows
the fraction of irrelevant variables excluded. It is clear that the fraction of included relevant variables is

extremely high, as well as the fraction of excluded irrelevant regressors.
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Table 3 shows the MSE ratio (adaLASSO over the oracle) for one-step-ahead out-of-sample forecasts.
We consider a total of 100 out-of-sample observations. As expected, for low values of ¢, the adaLASSO
has a similar performance than the oracle. For ¢ = 10 or ¢ = 15, the results are reasonable only for

T =500 or T'= 1000. The performance of the adalLASSO also improves as 1" increases.

5. CONCLUSIONS

We consider the estimation of ARDL model with non-Gaussian and GARCH errors in high-dimensions.
We advocate the use of the adaLASSO procedure to estimate the parameters and we show that the

adaLLASSO is model selection consistent and possesses the oracle property under some set of conditions.

APPENDIX A. PROOF OF THEOREM 1

We show that the conditions in Theorem 1 satisfies conditions DGP, DESIGN, WEIGHTS, and REG
in Medeiros and Mendes (2016).

Assumption DGP(1) follows because E(z;) = 0, E(¢;) = 0 and the results in Lemmas 1 and 2. DGP(2)
follows from Assumption (A3). DGP(3) is satisfied by Lemma 8 along with the constraints on pd, and
s. It follows from the Cauchy-Schwarz inequality that |eizit||a < ||et]l2dl|zit||2a- Lemma 1 ensures that
|lyt—jll2a and ||2i¢—;||24 are bounded independently of 7. Assumptions DESIGN(1) and DESIGN(2) are
satisfied by Assumption (A5).

In Section 5 of Medeiros and Mendes (2016), the authors show that, under regularity conditions, the
LASSO initial estimator satisfies conditions WEIGHTS(1) and WEIGHTS(2) in their paper. In summary,
we require that, with probability converging to one: (1) maxi<; j<ptqd. |[f3alc — 3zlijl < po/16s, where

po > 0 is the smallest eigenvalue of X; (2) The LASSO parameter estimates satisfy [|8; — Bo|l1 < 42

Tpo’
. . . e . . 1/d71/2 3/2
where A; is the regularization parameter of the initial estimator; (3)% — 0 and 7;‘1{; 73 0;
-1 AIS Wmax A/ $Wmax s —1 2
and (4) Bmin > 2wmax max (L 4 ITpo * a8T1—5/2p0 )7 where Zi:l |91,i| < SWhax-

We assume that p = ¢ and s/2pd, = o [T%(l_g)}, making v = £/4. It then follows from Lemma 8
that
Po

P |[f} E}.4‘<7 > 1 ﬂ—)l
"icigepier. T TRl =06, ) = T Ap@na-oz
Hence, it follows from Medeiros and Mendes (2016, Lemma 1) that the restricted eigenvalue condition

holds with bound pg, and DGP(3) is satisfied with bound py/16.
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Suppose that {u;z;;} is a martingale difference sequence with max; E|usz;¢|? < co. Then, applying the

Burkholder-Davis-Gundy and C, inequalities, E|T' —1/2 Zthl uprig|? < emaxy Elugzy]|? < oo and

T T
2
Pr (2 i >VTA | >1— =E T—1/2 :
r( =1 tad ;ut% VT 0) - o (il?%}iqdz ;uw”
T
2(p + gd.) /¢ 1
[ L2 - -
B Ao i:l,r.r}%)iqdz TZUtxlt
t=1 d
d 1/dg1/2
21—402(p+q;) S,
I

where we take 2\g = T~/2)\; and use DGP(4) to show that |luiz;;

4 < 0o. It follows from Biilhmann
and van der Geer (2011, Theorem 6.1) that ||3; — Byl < 4%—:}3 with probability converging to one. The
conditions on the regularization parameter for the LASSO initial estimator, A7, are assumed.

3/2
AL sTlZg“ax x )"; — 0 and

Finally, we take wmax = 25% /cs, for some constant ¢z > 0. It means that

Av/SWmax x s
T17§/2p0 Tl—§/2

— 0, from assumptions on A\; and A. Therefore, for all T sufficiently large it is enough
to assume By > 0357%.

It follows from Medeiros and Mendes (2016, Proposition 1) that there exists 0 < & < 1 satisfying
condition WEIGHTS(1) and (2), as far as 235/03 < T2, for sufficiently large T. Hence, the LASSO
estimates can be used to construct the initial weights. Therefore, the result follows from Theorem 1 and

2 in Medeiros and Mendes (2016).

APPENDIX B. PROPERTIES OF y; AND S;

Lemma 1. Under Assumptions (A1)-(A5), (1) |8'ztll2a < oymaxiolld], for any § € R\ {0}; (2)

|stlleqd < cq, where cq = 2(07771]03@(/@'09~ V 1)(|leoll2a vV 1); and (3) ||yt|l2a = Coca-

Proof. For any 6 € R%, the triangle inequality and sub-multiplicative property of the operator norm

yields
o0 oo
||6/zt||2d < Z ||5/‘I’j77t—j\|2d < Z H&'\Ile t?};a—)i Hb/nt—jH2d
=0 =0 =
1/2d 00
< |mE@mme| 181 Y 1951 < a3l
7=0

(2) is proved in two steps. Let Ay = Y7 ,00,z,—; and B; = ¢;,. Hence,

q
I Adll2a <) 1160:zt—ill2a < Koopmax b, | Btll2a = lleoll2a, and
i=0

2d 2d 2d 2d
i »2d—7 ] 2d—17
Elsi* =3 ( j )EwBt <3 <j ) LA 1B 222
§=0 j=0

<92 1 Al 1B |12 < |2 ov1 ]
< ax || Ael[54ll Bellog ™ < |2(K00,max0 V 1)([|oll2a V 1)
1<j<2d
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(3) is proved by induction by applying Holder’s inequality d times:
o0

00 2d 00 2d 2d 00 2d
Bl = & <Zv> <3 3 [k B T s < ms s (z mr) < e
i=0 j=1 i=0

i1=0  inq=0j=1

where we use the fact that E| H‘;Zl zi| < H;lzl i, la- O

Lemma 2. Under Assumptions (A1)-(A5), (1) {z:} is weakly stationary; (2) {s:} is weakly stationary;

and (3) the vector process {yt, z¢,€+} is weakly stationary.

Proof. The existence of second moments is established on Lemma 1. Hence, we have to show that the
covariances and autocorrelations of y;, z; and €; do not depend on ¢.
Under Assumption (A2), z; = ;2 ¥in,_,;, where E(n;n;) = 0. Therefore,

!/

o oo o
E(zizi) =B (D ®m; | | Domeiy | | =D T ¥ = F.(i), (6)
j=0 j=0 =0

where F',(i) is a matrix that depends on i. Hence, since E(z;) = 0, {z;} is weakly stationary.

Assumption (A3) requires that e, is strictly stationary and is a martingale difference process with

respect to the information F; = o{n;_;,e1—i—1 : 4 =0,1,...}. Hence,

q
E(ersi—i) =B | [ > 0020 +ei | Eled Fo)| = 0. (7)
j=0

Define E(e;—;2z¢—j) = F..(i — 7). Under Assumption (A3) E(e;2—;) = F..(—i) =0, for i = 0,1, ....

Assumption (A4) together with E(e;n,_;) =0, ¢=0,1,..., implies that

0 i—1 i—1
E(zicis) = S WEMm, e0) = S WEm, e0) = Y WiF(i—1) = F..(i). (8)
=0 =0 =0

Since g8 are uncorrelated, it follows that

q q q
E(ster—i) =E Z 00;2t—j +et | eri| = Z 00, (zi—jet—i) = Z 00, Fzc(i —j) = Fse(i,q),  (9)
7=0 7=0 7=0

that is a function of F..(7) and q.

Finally, since z; is weakly stationary, r¢(¢) = Y7, 0,z is also weakly stationary, with autocorre-
lation E[ri(q)r:—i(q)] = F(4,¢q). Combining the previous results we show that s; is weakly stationary,
ie., E(sisi—i) = Fse(i,q) + F.(i,q) = Fs(i,q). Since E(s;) = 0 for all ¢, we conclude that s; is weakly
stationary. Furthermore y; is also weakly stationary.

To prove the last claim we have to show that the individual processes y;, z; and €; are weakly stationary,
and show that expected values of their lagged cross-products do not depend on t. We have already shown

that the individual processes are weakly stationary. The expected value E(z;—je;—;) = F..(i — j) does
9



not depend on ¢ for any ,j. Since y;_; = Z]o-io VjSt—i—j, it follows from (7) and (9) that E(e¢—jy;—;) is
a function of ¢ and j, but not ¢. Finally, it follows from (6), (8), and the fact that e; is a martingale

difference process, that E(z;—;y;—) is a function of only i and j. O

Lemma 3. For somek € N, lety; . = Z?:o VjSt.k, where sg = Z;]:O 96¢Zt,k+€t and zy ), = Z?:o Wi,
Under Assumptions (A1)-(A5), for i € N, (1) ys_ix is a measurable function of (M ;.- sMi—i—g—k>
Et—iy -1 Et—i—k); (2) Zi—jk is a measurable function of (n;_j,...,nt_j_k); (3) llyt—ikllea < Coca; (4)
16" 21— kll2d < o maxrol|6]], for & € REN{O}; (5) |y1—i—vi—ikll2a < caCor1: and (6) |6 (zi—i—2z1—ig)|l2a <

O—'r],maxH(sH REk+1, fOT‘ S Rdz \ {0}

Proof. Parts (1) and (2) follow from the definition of y, ; and z;; (3) and (4) follow as in Lemma 1 and
the derivation will be omitted. It suffices to prove (5) for i = 0. Write |ly; — yei| = HZ;’;,C_H VjStinQd <
maxy ||s¢ k|24 Z;’;kﬂ 17j| < caCrt1, where ||s i]|2q < cqf follows after the same arguments used in Lemma

1. Similarly, for (6), we have ||6'(zi—i — 2i—i k)| < onmax]||O]| K1 O
APPENDIX C. A PROBABILITY BOUND

Proposition 1 (Triplex Inequality, Jiang (2009, Theorem 1)). Let {F:}2_., be an increasing sequence
of o-fields, and p; be a random variable that is Fy-measurable for each t. Then, for each er, Cr > 0 and
positive integers m and T, we have

Pr{

T
> e —E(pr)]

t=1

> TsT} < 2mexp [-Te7/(288m>C})]

T
+ (6/er)T~ ZE [E(pt| Ft—m) — E(pt)] (10)
t=1

T
+(15/er) T S E ol I (el > O],
t=1

as long as the RHS exists and is smaller than one.

The first term in the RHS depends on the dependence window m, the upper bound Cr, and 7. The
second term on the RHS is called the dependence term and is described in the framework of ¢;-mixingales

(see, e.g., Chapter 16, Davidson, 1994). The third term on the RHS captures the tail behaviour of p;.

Lemma 4. Assume there exist cqg > 0 and d > 1 such that E|ps|* < cq for allt. Then, E[|ps|I(|p¢| > Ct)] <
(=1 4nd the tail condition in (10) is satisfied with gT_l ST Ellpe I(|pe] > Cr)] < 22

ETC,LI{71 ’

caCp

Proof. 1t follows after application of Hélder and Markov inequalities that E[|p|I(|p:] > Ci)] < E (|p|?) 1/d

Pr(|pe| > Ct)(d—l)/d < E(|Pt|d)1/dE(|pt|d)(d_1)/p/0td(d71)/d _ E(|pt|d)0;(d71). -

Bounds on the dependence term are more involved and we shall focus on processes that can be arbitrarily

approximated by a strong mixing sequence.
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Lemma 5. Let {e:}>° denote a strong mizing sequence with mizing coefficients {caum, }oo— and let

—00
Fie = olet,ee—1,..- }. If pr = ples—1,...,e1—k) is Fr-measurable, for finite k, then pyj is also strong

mizing with coefficients {aum—k}oo—_oo. Furthermore, any positive d > 1, E|E(ps x| Fi—m) — E(per)| <

6o l/d as far as the RHS exists.

Proof. The proof follows directly from Theorems 14.1 and 14.2 in Davidson (1994). O

Lemma 6. Let {p:}i2_., denote a F; measurable process that can be arbitrarily approximated by a strong

mizing process {pt g} _ oo, With mizing coefficients {oun_k}ov—_~o, in a sense that there exist finite con-

stants c; > 0 and a decreasing sequence {vy}32, such that E|p; — pr¢| < civy (approzimation assumption).

Then,

l/d

E [E(pe|Fom) — E(pr)] < 605 Ipeilla + 2. (11)

Proof. 1t follows from the triangle inequality, Lemma 5, and the approximation assumption that

E[E(pe| Fim) — E(pe)| < E[E(prr|Frm) = E(prp)] + B [E(pe| From) — E( )+ [E(pr) = E(pe.r)]

< E|E(pel Fimm) — E(pep)| + 2E |or — peil < 60t LN pella + 2ee.

g

(1) (2)

Our goal is to use the triplex inequality to bound ZZT L Texy —E(xox) element-wise, where x; is defined
in (1). We consider p; (i) = wyi—i, p; (j) = 8124052,_; and pt (z,j)

_i64z,_j, where 1 < i < p,
0 < j < q and §; and d2 are r-dimensional vectors of the form e; = (0, .. ,...,0)’ that have zeros in

all positions except for 1 < s < d,.

Lemma 7. Under Assumptions (A1)-(A5), for m > p+q+ k: (1) IE‘IE [,ot )| Fm ] [pt ” <
6(Coca)?an L%y 1 +26063Cks1; () E[E [ (1)1Fm] — B [0 (1)]| < 6 (nmaxko)” a4 202 o

(3) E ‘E [ng)(i,jﬂfm} - [pg i.j } ‘ < 0y, max [GCoCd%oa:n_li/qu + (eakio + cao) (Fr41 V Ck-l—l)] :

Proof. The proof consists on applying Lemma 6 to each pgi), using the approximation pEZI)C that has y;
(1)

replaced by y; . and z; replaced by z., e.g., p, k( ©) = Yt kYt—i k-

We bound the first term on the RHS of equation (11). It follows from Lemmas 3 (1)—(2) and 5 that pglk) (1)
(2)

is strong mixing with coefficients o, —;—¢—r, Py, . (J) is strong mixing with coefficients a,,—j_j and pi k) (4,7)

is strong mixing with coefficients o, —;_q—j. It also follows from Lemma 3 (3)-(4) and the Cauchy-Schwarz

. . 1), 2), .

inequality that [|p{})(1)l¢ < lyekllZg < (Goca)?, 1070 ()l < (g maxrio)?, and (o4 (i, 5)lla < Cocaommaso-
We use the following basic inequality to bound the second term on the RHS of equation (11). For any

random variables XY X’ and Y’, | XY — X'Y'||; < || X|]2]]Y = Y'|l2 + ||[Y]]2]| X — X'||2. Applying this
11



inequality to ||p§1)(i) - p§1k)

)

(4)||1, and using Lemmas 1 and 3 we have

— ikl < 2602 X calr1 < 2¢ocaCk+1-

1 1) ,.
1o ) = 2@ < Nlyellllye—i —

)

3),. .
Similarly, [0 () ~ p{2 () 1 < 202 axkorisr and %G5, )~ (6, )1 < 0ma(eario +calo) (ka1 V

Ck+1)- The result follows by combining the bounds. (|

Lemma 8. Let (A1)-(A4) hold and T be sufficiently large. Suppose that oy, = ™ (0 < a < 1), Ky = K™
(0 <k <1), and (yn =C¢™ (0 < ¢ < 1). Then, for constants aj,as > 0, p = ¢, and s the number of
non-zero coefficients in model (1),
T 272
/ / ai sp*d;
_ ST\ w8 T2
P 1 . LZ o E(wtmt)] =15 (= @ na-me (12)
i?j

where 0 < v < 1/4, sV p=0o(T"), and d is at most polynomial in T.?

Proof. We use W i=1,2 ..., as arbitrary constants that do not depend on p, g, d., or T'. Despite the
bound being derived for each T, it is of asymptotic nature in a sense that it is not our goal to provide
optimal constants, and that some steps will hold only “for all T' > Ty sufficiently large”.

The proof consists in applying the triplex inequality to the processes {[zle Tixy — E(wow’o)]ij}
for 1 <4,7 < p+ g xd,. We shall split the terms into three blocks. The first one involves the tern;s iII;
Y—19p—1 where ;1 = (Yi—1,...,%—p)’, the second block has terms 2,2, where 2; = (2}, ...,2;_,)’, and
the third block involves terms g, 4 Z;.

Using the union bound on the first block, we have

~/
123§p Z;yt 1yt 1 (ytlyt—l)] >T4—S

i?j

< p“ max Pr (13)

- 1<4,5<p

ai
Zyt iYe—i — E(yoyi-j)| > T

The dependence term is bounded using Lemma 7 (1). Let 7 = —(loga V1og ¢ V1og k) and m = TV, for

some 0 < v < 1/4 and p+ g = o(T"). Then, the dependence term is bounded by

T
2 -1 1), 2. —c@rTv/2
p’s max T ZE’E(yt—iyt—j’ft—m) — E(yr—iy—j)| < cWp?se 7 7T/2,

First we choose k = [(d—1)/(2d — 1)](m —p — q) and set e(1 =1/ (m=—p=g=k)loga < o—[(d=1)/2d=D)]r(m—p—q)

then use the fact that, for T sufficiently large, p + ¢ < m/2, to reach the result.

2We use the notation [A]; ; to denote the (i,7)"" element of matrix A.
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In the tail term, we use lemmas 1 and 4. Let Cp = T1~4)/2,

2 1 a (3),2 st/(@=D) o
p Slgl%épT ;;E yt—iye—i | (lye—iye—j| > Cr)] < p TO—1)/2 :

First we use the Cauchy-Schwarz inequality to find Ely;—;y:—;|? < Elyo|?? < ((oca)??, then we plug this
value in Lemma 4 and reach the result.
The first term in the triplex inequality involves T/C’%m2 = T1-2v=(1-4) — T2V Then,

d—1

v

2 2/(d=1) g1/(d—1)
(13) < 2T”p26_6(4)(%) + (Wp2se=eTT/2 4 ((3) b i

T(1—4v)/2

The second block is treated similarly. We first apply the union bound

T
- -~ - ai
Pr (Jmax 2z, — E(z2})| > T4—s
i’j
T a
2 52 > 3 > 3 1
< g7d; lglgljz%);dz Pr [ ;zmzm —E(2¢,i25)| > T@ . (14)
Using the same arguments as before, we find
v 2 —c(5>(ﬂ)2 (6) 2 —cMrTv/2 | (8) (gd)?/ (=D 1/ldD) !
(14) < 2T%(qd,)%e s/ 4+ (qdy)"se +c 1))
The third block is treated in the same way of the previous two. We first apply the union bound
4 a
N U 1
Pr 1§i§;{1122<j§qd2 Zytqzt —E(g121)| = TZS
t=q ij
T a
< pqd P iz —Blyizy) | >T—|. (1
spgds_ max  Pr [ ;yt izt — E(ye—iZe;)| > s (15)

Using the same arguments as before, we find

rald

—c(9) ? v z
(15) < 2T"pqd e e ( s ) + c(lo)dezse’c(u)TT 12 4 2,02) [(pqd

)1/ g1/(d-1)] 7!
T(—4v)/2

The last term is the dominant one in each inequality. Using the fact that p = ¢, that all terms are

sp2d?

positive, and choosing as = ¢1?) sufficiently large: (13) + (14) + (15) < 0(12)m.

The right-hand side of this probability inequality converges to zero if s = O [pdg/ (d=1) } and pd, =
O{T[(d_1)2/4d](1_4”)}. In this case, pd, is superlinear whenever d > 1+ 2(1 + /2 —4v)/(1 — 4v). If
s = 0(1) and pd, = o(TI4=D/4(0-4)) "the right-hand side also converges to zero and pd. is superlinear

whenever d > 1+ 4/(1 — 4v).
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TABLE 1. PARAMETER ESTIMATES: DESCRIPTIVE STATISTICS FOR MODEL (5) WITH
GARCH PARAMETERS.

The table reports the average absolute bias, Panels (a) and (c), and the average mean squared error (MSE),
Panels (b) and (d), over all parameter estimates and Monte Carlo simulations. n is the number of candidate
variables whereas ¢ is the number of relevant regressors.
T =100 T =300 T = 1000
¢ q\n 100 300 500 100 300 500 100 300 500

ap=5x%x10"% on =0.1 and 71 = 0.8
Panel (a): Bias (x107%)
5 -1.0207 -0.3498 -0.2125 -1.0219 -0.3400 -0.2104 -1.0192  -0.3391 -0.2036
0.5 10 -1.0224 -0.3612 -0.2170 -1.0125 -0.3374 -0.2113 -1.0091 -0.3362 -0.2017
15 -1.0228 -0.3711 -0.2442 -1.0080 -0.3352 -0.2132 -1.0048 -0.3345 -0.2011
5 ~1.9840 0.6324 0.3802 1.9862 0.6615 0.3824 1.9881 0.6634 0.3977
0.8 10 1.9993 0.6439 0.3873 1.9958  0.6655  0.3944 1.9972  0.6656  0.3991
15 1.9889 0.6000 0.3572 1.9991  0.6647  0.3777 1.9963  0.6661  0.3990
5 ~2.9817 0.9584 0.5741 2.9867 0.9956 0.5797 2.9889 0.9960 0.5976
0.9 10 29919 0.9837 0.5951 2.9980 0.9998  0.6018 3.0001  1.0005 0.5999
15 29816 0.9096 0.5366 2.9936  0.9962 0.5708 2.9952  0.9978  0.5991

Panel (b): MSE (x1072)
5 0.1073 0.0394 0.0239 0.1054  0.0351  0.0230 0.1045  0.0348  0.0209
0.5 10 0.1097 0.0603 0.0423 0.1046  0.0349  0.0306 0.1029  0.0343  0.0206
15  0.1154 0.1261 0.1872 0.1047  0.0349  0.0456 0.1026  0.0341  0.0205
5 0.3963 0.1383 0.0838 0.3966 0.1320  0.0835 0.3960 0.1324  0.0793
0.8 10 0.4053 0.2871 0.1798 0.4002  0.1335  0.1459 0.3996  0.1331  0.0799
15 0.4102 0.7195 0.5328 0.4026  0.1342  0.2865 0.4011  0.1336  0.0802
5 0.8976 0.3264 0.1953 0.8955 0.2986  0.1998 0.8959 0.2987 0.1791
0.9 10 0.9079 0.6892  0.4367 0.9045 0.3016  0.3710 0.9034 0.3011  0.1806
15 09174 14300 0.9744 0.9097  0.3032  0.7424 0.9071  0.3023 0.1814

ag =5 X 1074, a1 = 0.05 and 1 = 0.9
Panel (c): Bias (x1077)
5 -1.0244 -0.3522 -0.2107 -1.0192 -0.3410 -0.2100 -1.0193 -0.3391 -0.2037
0.5 10 -1.0173 -0.3572 -0.2195 -1.0074 -0.3364 -0.2112 -1.0091 -0.3367 -0.2019
15 -1.0227 -0.3749 -0.2634 -1.0097 -0.3366 -0.2144 -1.0044 -0.3350 -0.2012
5 1.9749 0.6321  0.3802 1.9855 0.6628  0.3820 1.9893 0.6632 0.3973
0.8 10 1.9868 0.6451 0.3876 1.9977  0.6641  0.3921 1.9969 0.6656 0.3993
15 2.0192 0.5991 0.3402 1.9953 0.6639 0.3757 1.9968 0.6655 0.3991
5 2.9719 0.9558 0.5744 29876  0.9953 0.5793 2.9884 0.9959 0.5979
0.9 10 29980 0.9858 0.6002 2.9966 0.9995 0.5985 2.9984 0.9988 0.6002
15 29912 0.8977 0.5383 2.9931 0.9983 0.5761 2.9978 0.9989 0.5992

Panel (d): MSE (x107%)
5 01132 0.0403 0.0240 0.1063  0.0354  0.0231 0.1047  0.0348  0.0209
0.5 10 0.1196 0.0620 0.0500 0.1056  0.0353  0.0311 0.1036  0.0345  0.0207
15  0.1642 0.1435 0.2494 0.1072  0.0358  0.0472 0.1034  0.0344  0.0206
5 03957 0.1387 0.0847 0.3965 0.1327 0.0834 0.3964 0.1323  0.0792
0.8 10 0.4093 0.2973 0.1955 0.4012  0.1337  0.1493 0.3998 0.1333  0.0800
15 0.4580 0.7473  0.5945 0.4049 0.1345 0.2923 0.4008 0.1339  0.0803
5 08927 0.3280 0.1994 0.8953  0.2987 0.2006 0.8959 0.2983 0.1792
0.9 10 0.9077 0.7055 0.4330 0.9010  0.3004 0.3778 0.8999  0.3001  0.1799
15 0.9351 1.4828 0.9913 0.9050 0.3016  0.7543 0.9020  0.3006  0.1804
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TABLE 3. FORECASTING: RATIO OF THE MEAN SQUARED ERRORS (MSE) FOR MODEL (5).

The table reports the ratio of the one-step-ahead mean squared error (MSE) for the adaLASSO
over the oracle. n is the number of candidate variables whereas ¢ is the number of relevant

regressors.
T =100 T = 300 T = 1000
¢ q\n 100 300 500 100 300 500 100 300 500
ap=5x%x10"% a; =0.1 and 7; = 0.8
5 1.0116 1.0810  1.0808 1.0101 1.0087 1.0726 1.0093 1.0087 1.0104
0.5 10 1.0443 2.0360 2.6073 1.0160 1.0156 1.7135 1.0164 1.0153 1.0169
15 1.1458 5.0896 16.1101 1.0209 1.0205 3.0673 1.0187 1.0180 1.0199
5 1.0219 1.9611  2.0077 1.0190 1.0181 1.9998 1.0198 1.0186 1.0203
0.8 10 1.0784 9.3232 10.3846 1.0349 1.0344 7.6378 1.0287 1.0326 1.0276
15 1.1216 30.8723 41.3265 1.0497 1.0472 21.4417 1.0350 1.0374 1.0359
5 ~1.1147 3.4576  3.6502 1.0673 1.0724 3.9863 1.0513 1.0522 1.0534

0.9 10 1.2201 22.3899 23.5280 1.1768 1.1818 19.8754 1.1448 1.1427 1.1407
15  1.3263 59.1769 71.7225 1.2300 1.2218 53.5847 1.2080 1.1848 1.2017

oo =5x%10"% a3 =0.05 and 71 = 0.9

5 1.0337  1.0413 1.0379 1.0074 1.0046 1.0384 1.0047 1.0046 1.0039
0.5 10 1.0733 1.5114  2.0495 1.0082 1.0072  1.3803 1.0078 1.0081 1.0069
15 1.7215 3.3597  11.6598 1.0110 1.0110 2.0726 1.0096 1.0103 1.0081
5 1.0176  1.4773 1.5535 1.0095 1.0099  1.4911 1.0082 1.0096 1.0102
0.8 10 1.0613 5.5934  6.2592 1.0162 1.0143  4.5985 1.0152 1.0160 1.0143
15 1.5607 16.7974 23.0624 1.0177 1.0181 10.6860 1.0154 1.0178 1.0168
5 1.0256  2.4542  2.5230 1.0177 1.0189  2.6059 1.0175 1.0164 1.0173

0.9 10 1.0579 12.1933 12.4650 1.0302 1.0280 10.9742 1.0241 1.0252 1.0245
15  1.2584 32.2624 35.9492 1.0339 1.0339 27.9254 1.0260 1.0303 1.0294
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