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Abstract: We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse,
high-dimensional, linear time-series models. We assume that both the number of covariates in the
model and the number of candidate variables can increase with the sample size (polynomially or
geometrically). In other words, we let the number of candidate variables to be larger than the
number of observations. We show the adalLASSO consistently chooses the relevant variables as the
number of observations increases (model selection consistency) and has the oracle property, even
when the errors are non-Gaussian and conditionally heteroskedastic. This allows the adalLASSO
to be applied to a myriad of applications in empirical finance and macroeconomics. A simulation
study shows that the method performs well in very general settings with ¢-distributed and het-
eroskedastic errors as well with highly correlated regressors. Finally, we consider an application to
forecast monthly US inflation with many predictors. The model estimated by the adalLASSO de-
livers superior forecasts than traditional benchmark competitors such as autoregressive and factor
models.



1. INTRODUCTION

We consider the problem of estimating single-equation linear dynamic time-series models with
non-Gaussian and conditionally heteroskedastic errors when the number of regressors is larger than
the sample size (high-dimensionality), but only some of the explanatory variables are relevant
(sparsity). We focus on the ¢1-penalized least squares estimator and derive conditions under which
the method is model selection consistent and has the oracle property. By model selection consistency
we mean that the correct set of regressors are selected asymptotically. The oracle property means
that the penalized estimator has the same asymptotic distribution as the ordinary least squares
(OLS) estimator under the knowledge of the relevant subset of regressors (Fan and Li 2001). Since
our results are asymptotic, the high-dimension is understood as a polynomial increase in the number
of candidate variables. Finally, we also study the case where the number of candidates variables
increases exponentially with the sample size. In the latter case, stricter conditions on the error
term as well as on the regressors should be imposed. However, in most economic applications
the polynomial rate of growth does not seem to be restrictive. For example, when the candidate
variables are lags of a fixed set of covariates, the increase is linear with respect to the sample size.
Furthermore, even when other explanatory variables apart from lags are included, the number of
regressors does not grow exponentially fast (Stock and Watson 2002b, Bernanke et al. 2005).

Traditionally, one chooses the set of explanatory variables using an information criterion or
some sequential testing procedure. Although these approaches work well in small dimensions, the
total number of models to evaluate gets exponentially large as the number of candidate variables
increases. Moreover, if the number of covariates is larger than the number of observations, sequential
testing fails to recover the true model structure.

A successful approach to estimate models in large dimensions is to use shrinkage methods.
The idea is to shrink to zero the irrelevant parameters. Therefore, under some conditions, it is
possible to handle more variables than observations. Among shrinkage methods, the Least Absolute
Shrinkage and Selection Operator (LASSO), introduced by Tibshirani (1996), and the adaptive
LASSO (adalLASSO), proposed by Zou (2006), have received particular attention. It has been
shown that the LASSO can handle more variables than observations and the most parsimonious
subset of relevant variables can be selected (Efron et al. 2004, Zhao and Yu 2006, Meinshausen

and Yu 2009). As noted in Zhao and Yu (2006) and Zou (2006), for attaining model selection
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consistency, the LASSO requires a rather strong condition denoted “Irrepresentable Condition” and
does not have the oracle property. Zou (2006) proposes the adaLASSO to amend these deficiencies.
The adaLLASSO is a two-step methodology which, broadly speaking, uses a first-step estimator to
weight the relative importance of the regressors. In the original framework, the number of candidate
variables was smaller than the sample size, the number of relevant covariates was fixed, and the
results were derived for a fixed design regression with independent and identically distributed (IID)
errors. Huang et al. (2008) extended these results to a high-dimensional framework with IID errors.
Recently, Fan et al. (2012) proposed a robust version of shrinkage estimators in order to deal with
heavy tailed data. They also show that the adalLASSO is a one-step implementation of folded
concave penalized least-squares.

We demonstrate that the adaLASSO can be applied to time-series models in a framework much
more general than the one currently available in the literature. First, we allow the errors to be
non-Gaussian and conditionally heteroskedastic, which is of great importance when financial or
macroeconomic data are considered. Second, the number of variables (candidate and relevant
ones) increase with the number of observations, which means that the dimension of the model may
increase as we gather information, e.g., the number of lags in an autoregressive process (Nardi and
Rinaldo 2011). Finally, the number of candidate covariates can grow at a polynomial rate with the
sample size. Under flexible conditions, we show that the adalLASSO is model selection consistent
(asymptotically chooses the most parsimonious model) and enjoys the oracle property. These
findings allow the adaLASSO to be applied in a general time-series setup. Geometric increase in
the number of candidate variables is also achieved under stronger conditions on the errors and data
generating process of the covariates. Although very complicated at first sight, our conditions for
model selection consistency and oracle results can be simplified dramatically as long as the error
structure becomes more restrictive. Finally, in a recent paper Audrino and Camponovo (2013)
proved very useful asymptotic results for the estimates of relevant and non-relevant variables in a
very general time-series setting, which allows for much more general hypothesis tests. However,
they consider only the case where there are less variables than observations and the number of
included variables is fixed. Therefore, our results are more general and nests previous findings in

the literature.



Our theoretical results are illustrated in a simulation experiment as well as in an economic
application. In the simulation experiment we consider a model with fat-tailed GARCH errors and
highly correlated candidate regressors. The outcome of the simulations is quite promising, pointing
that the adaLASSO with properly chosen initial weights (first step) works reasonably well even
in very adverse situations which are common in macroeconomics and finance. We also consider
quarterly US inflation forecasting using many predictors. The models estimated by the adaLASSO
procedure delivered forecasts significantly superior than traditional benchmarks.

Our results render a number of possible applications. Forecasting macroeconomic variables with
many predictors as in Stock and Watson (2002a,b, 2012) and Bai and Ng (2008) is one of them.
The construction of predictive regressions for financial returns can be also considered (Rapach
et al. 2010). In this case, handling non-Gaussian conditional heteroskedastic errors is of great
importance. Other applications include the selection of factors in approximate factor models, as
in Bai and Ng (2002), Cheng and Hansen (2012), and Cheng et al. (2013); variable selection in
non-linear models (Rech et al. 2001); forecast combination of many forecasters (Issler and Lima
2009, Samuels and Sekkel 2013); time-series network models (Barigozzi and Brownlees 2013, Lam
and Souza 2014a,b); and forecasting large covariance matrices as in Callot et al. (2014). Finally,
instrumental variable estimation in a data rich environment with dependent data is also a potential
application; see Belloni et al. (2012).

Most advances in the shrinkage methods literature are valid only in the classical 11D framework,
often with fixed design. Recently, a large effort has been given to adapt LASSO-based methods to
the time-series case; see, for example, Wang et al. (2007a) and Hsu et al. (2008). These authors con-
sider only the case where the number of candidate variables is smaller than the sample size. Nardi
and Rinaldo (2011) considered the estimation of autoregressive (AR) models when the number of
regressors increases with the sample size. However, their work differs from ours in many directions.
The most significant one being that their focus is only on AR models with restrictive assumptions
on the error term. Audrino and Knaus (2012) adapted the results of Nardi and Rinaldo (2011)
to the case of realized volatility forecasting with the heterogenous AR (HAR) model proposed
by Corsi (2009). Our results are useful in this setting as realized volatility data are conditionally
heteroskedastic and non-Gaussian. Furthermore, our results allow for the inclusion of external vari-

ables as potential predictors. Wang et al. (2007b) considered regression models with autoregressive



errors. Notwithstanding, in their case the number of regressors was kept fixed. Song and Bickel
(2011) and Kock and Callot (2012) studied the estimation of vector AR (VAR) models. The former
used LASSO and group-LASSO for estimating VARs where the number of candidate variables were
a function of the sample size. However, the number of relevant variables was fixed. Kock and Callot
(2012) relaxed this assumption but assumed the errors to be independent and normally distributed.
As a direct consequence of the VAR dynamics, in Kock and Callot (2012) all the covariates were
Gaussian. Barigozzi and Brownlees (2013) also assumed normality and homoskedasticity of the
errors. Although, our model is nested in the VAR specification, we show the oracle property under
a more general setting as the above authors do not consider the inclusion of exogenous regressors.
On the other hand, Kock and Callot (2012) derive non-asymptotic oracle inequalities which are not
discussed here. All our results are asymptotic. Kock (2012) considered adaLASSO estimation in
stationary and non-stationary AR models with a fixed number of variables.

It is important to make the following remarks. First, the adaLASSO is a two-step procedure
and there is no agreement in the literature how to choose the first-step estimator. In this paper
we use the LASSO as a possible solution (Zou and Hastie 2005)!. We show that, under regularity
conditions, the LASSO can be used as an initial estimate, at a cost of possibly reducing the pool of
candidate variables. Our simulation results indicate that the LASSO works quite well. Second, all
the hyper-parameters in the estimation procedure (such as the penalty term) are selected via the
Bayesian Information Criterion (BIC) which delivers superior results, both in terms of accuracy and
computing time, than cross-validation methods. Finally, similar to other papers in the literature,
all our asymptotic results are derived under pointwise convergence as shrinkage estimators suffer
from lack of uniformity; see, for example, Leeb and P&tscher(2008, 2009).

The paper is organized as follows. In Section 2 we introduce the notation and assumptions. In
Section 3 we present the main results. The case where the number of candidate variables grows
exponentially with the sample size is discussed n Section 4. In Section 5 we discuss the selection of
the weights for the adalLASSO procedure and in Section 7 we describe how our set of assumptions
can be satisfied in some special cases. In Section 8 we present simulation results, followed by the
real data application in Section 9. Finally, Section 10 concludes. All the proofs are postponed to

the appendix. In the Appendix we also discuss how to satisfy the main assumptions of the paper.

1Other pre-estimators have been considered (Elastic-net, Ridge, OLS) but the LASSO delivered robust results.
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2. DEFINITION, NOTATION AND ASSUMPTIONS

Consider the following linear model
Y=g+ 0'xp + uy, (1)

where ®; = (z14,...,%nt) 18 @ np-vector of covariates, possibly containing lags of vy, and u; is
a martingale difference process. We are interested in estimating the parameter vector @ when np
is large, possibly larger than the sample size T', but only a small number of elements of € is non-
zero (0 is sparse). We assume, without loss of generality, that ag is zero. Model (1) encompasses
many linear specifications, such as sparse AR and AR distributed lag (ARDL) models, or simple
predictive regressions. Equation (1) may also be a reduced-form for first-stage estimation in a
two-stage least squares environment where x; includes a set of instruments and y; is an endogenous
variable. Another possibility is to consider x; as a set of individual forecasts, in which equation (1)
represents a forecast combination problem.

The number of candidate covariates is n = np, the number of non-zero parameters is s = sp
and the number of irrelevant variables is n — s. The omission of the dependence on T is just
aesthetic. For any ¢, x; = [x4(1)', 24(2)'] and X = [X (1), X (2)], where X (1) is the (T x s) matrix
with the relevant variables and X (2) is the [T' X (n — s)] matrix with the irrelevant ones. Write
0 = [6(1),0(2)) where 6(1) € R and 0(2) € R" 5. 6 is the true parameter vector, where
0o = [00(1),0"), with 8y(1) # 0. The parameters are assumed ordered to simplify the exposition.

We make the following assumption about the processes {x;}, {y:}, and {u;}:

Assumption (DGP). Write z; = (yi, @}, uy)'.

(1) {z:} is a zero-mean weakly stationary process.
(2) E(u|F) =0, t=1,2,..., where Fy = o {xy, 2¢—1, 22, - - }-
(8) With probability converging to one,
T
121%>%T_1 ; (22, —E(z3)] =0, T — oo.

(4) For some finite, positive constant ¢,, and some m > 1,

E |xju™ < em, Vi€ {1,...,n} and Vt.
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Assumptions DGP(1) and DGP(2) are standard in time series regressions. Note that DGP(2)
does not rule out conditional heteroskedasticity, such as GARCH effects. Furthermore, x; may
also contain lagged values of y;. Assumption DGP(3) defines a tail condition on the marginal
distributions of zy¢,...,xn:, and DGP(4) is a moment condition on the process {u;x;;}. The
possible number of candidate variables n depends both on DGP(3) and DGP(4), i.e., on the tail

assumptions on x; and ;.

Remark 1. DGP(3) is a condition on the concentration properties of the variances of the covariates
(recall that E(xi) = 0), and has a substantial effect on the number of candidate variables. It is
well understood in the literature that tail conditions on the error process {ui} are determinant of
the number of candidate variables. What is less understood is how the total number of candidate
variables depends on tail conditions and “memory” properties of the regressors. In Appendix A.1
we show that DGP(3) is satisfied under different sets of assumptions and how it can influence the

possible number of candidate variables.

Remark 2. Sufficient conditions for DGP(4) to be satisfied are easily derived. Let cp1 and cp 2
be two positive and finite constants. Assume that E(u?m]}}) < cmi1, Vit and E (xftm) < cm2,

Vit and Vi € {1,...,n}. Therefore, by the law of iterated expectations DGP(}) is satisfied with

Cm = Cm,1Cm2. Alternatively, assume there exist p >0 and v > 1/p such that E [u?m(ler)] < cm2,
Vit and E [a:?tm(p”)} < em1 YVt and Vi€ {1,...,n}, then DGP(4}) follows after simple application

/(1) 1/ (147)

m,1 m,2

of the Holder’s inequality with c,, = c

Assumption (DESIGN). The following conditions hold jointly.
(1) The true parameter vector Og is an element of an open subset ©,, € R™ that contains the
element 0.
(2) There exists Omin > 0 such that min;—1,__s |0 > Omin-
(3) a. Write Q11 = E[zy(1)x(1)']. There exist constants 0 < ¢min < 1 such that

inf . a'Qlla > 2¢min'

o’ o=
b. Let Qi1 = X (1Y X (1)/T denote the scaled Gram matriz of the relevant variables,

(bmin

Q11—911],_§ ;
1,] S
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with probability converging to one as T' — oo

Assumption DESIGN(1) is standard. DESIGN(2) controls the lower bound of the non-zero
parameters and is traditionally referred as beta-min condition; see, for example, Biilhmann and
van der Geer (2011). We define lower bounds on 6,;, on Theorem 1. This lower bound can
decrease with T and lower bounds on ¢ni,. DESIGN(3) imposes a lower bound, ¢pin, on the
minimal eigenvalue of the covariance matrix of the relevant variables, that may depend on T.
In practice, quantifying the rate in which ¢, decreases is difficult and problem specific and it is
frequently assumed constant, e.g., Theorems 3 and 4 in Kock and Callot (2012) assume ¢pin > ¢ > 0
in a VAR(p) model with Gaussian innovations.

Condition DESIGN(3) explicitly defines how the compatibility constant depends on the number
of variables in the true active set. In general, this dependence is implicit and appears in the oracle
bounds. DESIGN(3) part (a) is related to the restricted eigenvalue condition (Bickel et al. 2009).
If the restricted eigenvalue condition is satisfied for any constant L > 0 and S = {1,...,s} with
compatibility constant ¢(L, S, s) > 2¢min, then Lemma 6.25 in Biilhmann and van der Geer (2011)
implies that DESIGN(3) part (a) is also satisfied. Condition DESIGN(3) part (b) can be satisfied
by imposing conditions on the dependence and tail structures of the variables in the active set. In
Appendix A.2 we show sufficient conditions for satisfying DESIGN(3) part (b).

The adaLLASSO estimator of the (n x 1) parameter vector 8 is given by

n
0:argmein\|Y—X0||§+)\Z;wi|9i|, (2)
1=
where Y = (y1,...,yr), X is the (T' x n) data matrix, w; = |07,|~", 7 > 0, and 67, is an initial

parameter estimate. When w; =1 (i = 1,...,n), (2) becomes the usual LASSO.

The minimization problem in (2) is equivalent to a constrained concave minimization problem
and necessary and (almost) sufficient conditions for existence of a solution can be derived from the
Karush-Kuhn-Tucker conditions (Zhao and Yu 2006, Zou 2006). The necessary condition for the
model selection consistency for the LASSO (w; = 1,4 = 1,...,n) is denoted the “Irrepresentable
Condition” which is known to be easily violated in the presence of highly correlated covariates
(Zhao and Yu 2006, Meinshausen and Yu 2009). The adaLASSO overcomes the “Irrepresentable
Condition”, by using weighted ¢1-penalty where the weights diverge for the zero parameters and do

not diverge for the non-zero parameters. Zou (2006) suggest using the inverse of the OLS estimator
8



of the parameters as the weight. Nonetheless, such estimator is not available when the number of
candidate variables is larger than the number of observations. Huang et al. (2008) introduce the
notion of zero-consistent estimator, i.e., there exists an estimator that is arbitrarily small for the
zero parameters as 1’ increases, and converge to a non-zero constant for the non-zero parameters.

We use a similar assumption here.

Assumption (WEIGHTS). The weights wy, ... ,w, satisfy:

(1) There exist 0 < & < 1, and a sufficiently large, positive constant c,(9), such that

. _ S
min T ;> ) \/g,

with probability converging to one as T — oo.

2) There exists wmax < T such that
(

s

2 2
Z wy < SWmax»
i=1

with probability converging to one as T — oo.

Assumption WEIGHTS(1) requires that the weights associated with the non-relevant variables
{zji: j=s+1,...,n} to diverge at some rate, while WEIGHTS(2) restricts the weights associated
with the relevant variables to be bounded by above by a non-decreasing sequence wpx. This
requirement is the most difficult to be satisfied in practice. In the case when the number of
candidate variables n is smaller than the number of observations T, we can estimate the weights
using OLS.

Huang et al. (2008) show that if the variables with zero and non-zero coefficients are only weakly
correlated (partial orthogonality condition), the marginal regressions of y; on zj, i = 1,...,n,
give reasonable weights. This condition, however, is not realistig in a time series setting, in which
lags of the dependent and the independent variables are in the pool of candidate variables. If
the correlation matrix of regressors is Toeplitz, than the “Irrepresentable Condition” is valid and

LASSO may perform reasonably well (Nardi and Rinaldo 2011, Audrino and Knaus 2012)2.

2Under week regularity conditions, the “Irrepresentable Condition” yield oracle bounds (Van De Geer and Bithlmann
2009, Section 6).
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Assumption REG imposes constraints on the rate of increase of number of candidate variables
in terms of A. These bounds involve m, ¢min, &, and wpayx, defined in Assumptions DGP(4),

DESIGN(3), WEIGHTS(1) and WEIGHTS(2), respectively.

Assumption (REG). The reqularization parameter \ and the number of candidate variables n
satisfy:
1/mp(1-£)/2 1/2
-7 —0 and S Wmax A

—ne 2,
/\ gbmin \/T

as T — oco.

This assumption is satisfied if we take A VT x nl/mT_§(1/2_1/m), assume that sl/zwmax/qﬁmin =
O(n®™) for some b > 0, and impose n = o [Tf(m_Q)/z(b“)]. If we further assume an oracle
bound of the form of Proposition 1 in Section 5, we may take £ = am(b+ 1)/(m + 2b), for any
0 < a < 1-—2l0gs(s/¢min). Combining the bounds, n = o [T am(m=2)/ (2m+4b)]. Improving these
rates is possible, but have no impact on the main results of the paper.

The imposition on the number of candidate variables to be polynomial on T is a consequence of
|ugx;] having polynomially decreasing tails. When stronger bounds are imposed on z;; and wy, it
is possible to allow the number of candidate variables to grow at a faster rate. This condition only

imposes an upper-bound on the rate of increase of candidate variables, which is further retracted

by DGP(3) and DESIGN(3).

3. MAIN RESULTS

In this section we present the main results of the paper: model selection consistency and oracle
property. We follow the standard practice in the literature and show sign consistency, which implies

model selection consistency.

Definition (Sign Consistency). We say that 0 is sign consistent to 0 if

~

Pr [sign(e) = sign(@)] — 1, element-wise as T' — o0,
where sign(x) = I(x > 0) — I(x < 0), and the identity is taken element-wise.
Next theorem is the main result in the paper and shows that, under the previous assumptions,

the adaLLASSO consistently selects the correct subset of variables.
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Theorem 1. Under Assumptions DGP, DESIGN, WEIGHTS and REG, and If

A 81/2

Omin > T2 g’

then
Pr [sign(a) = sign(@o)] —1, as T — 0.

In Theorem 2 we show that the adaLASSO estimator for time-series has the oracle property, in
the sense that it converges to the same distribution as the OLS estimator as T' — oo. The relevance
of this result is that one can carry out inference about the parameters as if one had used OLS in

the model with only the relevant variables included.

Theorem 2 (Oracle Property). Let aols(l) denote the OLS estimator of @y(1). Under Assumptions
DGP, WEIGHTS, DESIGN, and REG, if Oumin > (AT 78/2) (512 ) pmmin) we have

VTa! |8(1) = 80(1)| = VTa |B5(1) = 85(1)] + 0,(1).
for any s-dimensional vector o with Euclidean norm 1.

4. EXPONENTIALLY LARGE NUMBER OF COVARIATES

Conditions in the previous section imply that the number of candidate variables n may increase
at a polynomial rate. Under stronger assumptions, n may increase sub-exponentially fast with 7.
Note that the actual rate of increase also depends on the distribution of the candidate variables

themselves. In this section we introduce new assumptions and restate the main results.

Assumption (DGP(5)). The processes {zit}, i =1,...,n, and {u} are such that
Pr(|zit] > ¢) < byjexp(—bgic) and Pr(juy| > ¢) < bgexp(—byc),

foralli=1,...,n and every t, and for positive constants c, bi;, be;, b3, and by.

Assumption DGP(5) requires that the marginal distribution of the candidate variables and error
term have exponential tails, which is more general then the IID Gaussian innovations. It is satisfied

when the dynamics of x; is driven by stationary vector autoregressions (VAR) with Gaussian
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innovations as in Kock and Callot (2012). Alternatively, if x; admits an infinite-order vector
moving average, VMA (oc), decomposition with bounded conditional variances, Lemma 9 in the
appendix shows conditions under which it has sub-exponential tails. Same arguments hold for wu;.

Assumption REG incorporates the new rate of increase in the number of irrelevant covariates.

The biggest change is that it allows n to increase sub-exponentially with 7', instead of polynomially.

Assumption (REG’). The regularization parameter X\ and the number of candidate variables n

satisfy:

I logT 5/2T(1_5)/2 1/2 max A
(logn + alog 7) 0 apd ST Wmax A
A ¢min ﬁ

as T — oo, for some v > 0.

The term «log T simplifies the calculation of finite sample bounds and can be dropped if logn >
alogT, which is often the case for T sufficiently large. The assumption is satisfied if we take
X = log T(log n 4 € log T)>2T0=/2 §120 0/ min = O [(logn + & log T)b/2] for some b > 0, and
impose logn = o [(T/ log T) %/ (b+5)}. If we further assume that an oracle bound of the form of
Proposition 1 holds than, if (s/¢min) = O {(logn)l+101=9)I/6¢3 “the rate in which n increases
remain unchanged. As in the previous case, improving the bounds has no impact on the main
results of the paper.

This rate of increase in the total number of candidate variables is only an upper bound. The
total number of variables is further constrained by DGP(3) and DESIGN(3), that depends on the

distribution of the covariates.

Theorem 3. Under Assumptions DGP(1-3), DGP(5), WEIGHTS, DESIGN and REG’, if Opin >
(A/TH2) (512 / fumin)
P [sign(a) = sign(@o)] — 1, as T — oc.

Furthermore,

VT [@(1) - 90(1)] =VTo! [5013(1) - 90(1)] +o,(1).
for some s-dimensional vector a with Euclidean norm 1.
5. INITIAL WEIGHTS

The choice of initial weights is critical and, often, the hardest condition to be satisfied. In this

section we show that under a stronger set of conditions, one can use the LASSO as the initial
12



estimator to construct the weights. Furthermore, sufficient conditions for the consistency of the
LASSO estimator also imply DESIGN(3). In this section we relate oracle bounds on the ¢; norm
of the LASSO estimates to condition WEIGHTS.

Oracle inequalities for the LASSO estimator have been derived under different assumptions on
the design matrix. Van De Geer and Bithlmann (2009) study how these different assumptions relate
to each other, in particular, they show that the restricted eigenvalue condition of Bickel et al. (2009)
imply the compatibility condition, used for deriving oracle bounds. If the scaled Gramm matrix
Q=X'X /T, is sufficiently close to its expectation, then ¢; oracle bounds follow after conditions
on the smallest eigenvalue of Q = E(x;x}).

For any vector v = (vq,...,v,) € R" and S C {1,...,n}, vg = (v;, i € S), vge = (v;, i € S),
and [[vg|l1 = Y ;cq|vi|. We say the restricted eigenvalue condition is satisfied for some 1 < s < n if

. . v'Qu
or(s) = min min ——
SC{1,..n}[S|<s veR™\{0},[|lvse[1<3[vs|1 Vs VS

First, verify that if Q is positive definite, than the restricted eigenvalue condition is satisfied.
Alternatively, it suffices to impose conditions on the population covariance matrix €2 and approxi-

mation rate between Q and €.

Lemma 1. Assume that

1 ) ) v'Qu
¢ = = min min — >0,
2 SC{1,..,n},|S|<s veR™\{0},|vse]1<3|lvs|: VS Vs
and that,
a Po
Q- Q| < —
H;?XH Jijl 165’

with probability converging to one as T — co. Then, the restricted eigenvalue condition is satisfied

with ¢7(s) = ¢o, and DESIGN(3) is satisfied with ¢min = ¢o/16.

Next result relates the restricted eigenvalue condition to the £; bounds on the estimated param-

eters using the LASSO.

Lemma 2. Denote Ep(Ng) = {Zmaxizl,m,n T-1/2 ‘Ethl :Eitut‘ < )\0}, and assume that the re-

stricted eigenvalue condition holds with probability converging to one. Then, inside Ep(Ao),

~ A s
6—-06 <4——-

13



for any X > 2/T X, with probability converging to one.
Furthermore, for a > 0, either assume:
(a) DGP(1), DGP(2), DGP(4), and let X > nt/mT(=8)/2+a/m o
(b) DGP(1), DGP(2), DGP(5), and let X\ > ¢ (logng log T)/2T'=9/2 for ¢ > 0 sufficiently
large,

then, Pr{ErNT1=9/2]} > 1 — /T2, for some c1 > 0.

Assumption WEIGHTS is intimately related to finite sample oracle inequalities for the LASSO.
Kock and Callot (2012) consider the LASSO as the initial estimator and derive finite sample, oracle
inequalities, bounding the ¢; distance between the true and estimated parameters, which is directly
applicable to our problem if we impose more restrictive assumptions. Proposition 1 shows the

relationship between ¢; oracle inequalities and assumption WEIGHTS.

Proposition 1. Let 51 = (é[’l,...,éLn), denote an initial estimate of 8¢ and let the weights
w; = \HA“\_T. Assume that w,ln/gx > 2/0min and Opin > 2¢1(N/T)(S/Pmin). Then, if

n

A A s
E 0[ i — 00 S Cl1= )
i=1 | "’ 07Z| ! T (bmin

for some c1 > 0, with probability converging to one, Assumption WEIGHTS hold whenever
. 1+1/27
e
— S 7

for some small cy < min(.25,cw(2)/cl) and all T sufficiently large.

Note that there is no contradiction is assuming that (2/0min)” < Wmax < T' €/2 and O, >
2¢1(N/T)(8/bmin), as far as 0.575/27 > 2¢1(A\/T)(5/pmin), which is satisfied by the assumption on

A. Conditions on the rate of increase in A, in REG, are not violated.

6. SELECTION OF HYPER-PARAMETERS

The selection of the regularization parameter A and the weighting parameter 7 is critical. Tradi-
tionally, one employs cross-validation and selects (A, 7) within a grid that maximizes some predictive
measure. In a time-dependent framework cross-validation is more complicated. An alternative ap-
proach that has received more attention in recent years is to choose the (A, 7) using information

criteria, such as the BIC. Zou et al. (2007), Wang et al. (2007a) and Zhang et al. (2010) study such
14



method. Zou et al. (2007) show that the number of effective parameters is a consistent estimator
of the degrees of freedom of the model. Wang et al. (2007a) show that this method works in the
AR-LASSO framework. Finally, Zhang et al. (2010) study a more general criterion (Generalized
Information Criterion) and show that the BIC is consistent in selecting the regularization param-
eter, but not asymptotically loss-efficient. We adopt the BIC to select all the hyper-parameters of
the adaLASSO procedure. Although we do not derive theoretical results for consistency of such
methods, we conjecture that the same properties derived in Zhang et al. (2010) should hold in our
framework. Furthermore, the method performs well in Monte Carlo simulations presented in the

next section.

7. EXAMPLES

7.1. Regression with exogenous variables and GARCH errors. In this section we check
under which conditions the requires assumptions hold for a linear regression model with weakly

exogenous regressors and GARCH errors defined as

yr = 0’2y + uy
Ut = ht1/26t (3)

hy = mo + mihe—1 + 7T2u§_1.

where E(u;|z;) = 0 and {e} ~ iid(0, 1), with E(e2™) < oo.

Furthermore, consider the following set of assumptions.

Assumption (EXAMPLE 1). The GARCH process is such that:

(1) The parameters of the GARCH model satisfy the restrictions: mg > 0, mp > 0, and w2 > 0;
and E [(m1 + ma€l_1)™] < o0.

(2) x; € R™ is a stable and invertible, finite-order, vector ARMA (VARMA) process
A(L)act = M(L)’Ut,

such that:
(a) The process {vi} is a martingale difference sequence, where E(viv}|Fy—1) = X and

For =0{vi_1,v4-2,...}, and E(vf{”) < 0.
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(b) The matrixz operators M (z) and A(z) are left co-prime. Moreover, det M (z) # 0 and
det A(z) #0 for z € C, |z| < 1.

(c) There exists a constant p > 0 such that p~' < pmin(E) < pmax(T) < p.

Under the specification above, x; admits a canonical VMA (c0) representation as in Appendix A
(Liitkepohl 2007, Chapter 11). The coefficients of this representation converge to zero exponentially
fast 3, i.e., log Gir X —r¢, and also x; has 2m moments. Finally, let pyax(B) and pmin(B) denote
the minimum and maximum eigenvalues of the square matrix B.

This condition implies that the eigenvalues of E(xjx)) are bounded. It implies that 0 <
Prin (Po®0) /p < pmin[E(@12)] < prmax[E(z127)] < p 32720 pmax (¥ P)) < 00. The last inequality
follows because the operator norm of ¥; decreases geometrically and the first one follows because
one can always construct the VMA decomposition with ¥y = I. The remaining inequalities follow
trivially.

Note that, if 71 + m2 < 1 and under Assumption EXAMPLE 1, Assumption DGP(1) holds. In
addition, Assumption DGP(2) is trivially satisfied. Under EXAMPLE 1(1), E (u%m) < oo by the
results in He and Terésvirta (1999) and Ling and McAleer (2002). Therefore, Assumption DGP(4)
is valid under Example 1. Assumption DESIGN(1) is satisfied by hypothesis as well as Assumption
DESIGN(2).

If conditions of Lemma 1 are satisfied, then DGP(3) and DESIGN(3) are also satisfied. It follows
from EXAMPLE 1, and the results of Appendix A.3 that setting p = 1, we can take s = o(T 3/ 2)
and n = o[T1=9)(m=1/2] for some 0 < § < 1. These conditions are sufficient to satisfy WEIGHTS,
DGP(3), and DESIGN(3). Moreover, the LASSO can be used as the initial estimator.

7.2. Autoregressive distributed lag models with GARCH errors. In Medeiros and Mendes
(2015) the authors consider the ARDL(p,q) — GARCH(1,1)

p q
ye=_ boiyi—i+ Y Boizi—i+er = 05y + uy, (4)
i=1 =0
where
iid
Ut = 1/ htEt, &t ~ N(O, 1), ht = oo + aluf_i + Blht—i- (5)

3In fact, the operator norm of ¥, the 4" MA coefficient, decreases exponentially fast.
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Under the set of assumptions below, Assumptions DGP, DESIGN and WEIGHTS are satisfied,
using the LASSO an initial estimator. Assuming that 7 = 1 and p = O(T"/%) and s = O(1), then

the number of candidate variables can be n = o[T=1/8] and ¢ < .25(m — 1)/(m — 2).

Assumption (EXAMPLE 2). The DGP is such that

(1) The roots of the polynomial 1 — 0, boiL’ are outside the unity circle.

(2) The vector of exogenous covariates admits a VARMA decomposition A(L)zy = M (L)vy,
v, € RY, satisfying EXAMPLE 1.

(3) The coefficients of the GARCH model satisfy EXAMPLE 1(1).

(4) Moreover, there exists ¢ > 0 independent of T' such that ¢~ < mineg(fo;) < maxies Op; < c,
where S ={j : 6p; #0}N{L,... ,n}.

(5) Let |B|| denote the operator norm of B and

> >
E(mlmll) _ YY YZ
vy Xzz

a. For some p >0, puin(Zyy) > p L.

b. For some 0 <v <1, |Zyz|? < v?0min(Syy)pmin(Z22)-

The discussion in the first example implies that EXAMPLE 2(1-4) satisfy Assumptions (Al)-
(A4) in Medeiros and Mendes (2015). We show that under EXAMPLE 2, ¥ xx = E(xi2))
is positive definite. Under (A1)-(A3) in Medeiros and Mendes (2015), pmin(Ezz) > p~ !, and,

by assumption, Xyy > p~ L.

It follows from Kierzkowski and Smoktunowicz (2011, Corollary
2.5) that the smallest eigenvalue of ¥ x x is bounded by below by (1 — v)/p > 0, proving the
claim. EXAMPLE 2(5) can be improved using Kierzkowski and Smoktunowicz (2011, Theorem
2.9). A simpler proof is as follows. The matrix ¥ x x is positive definite if and only if Xyy —

Sy ZE;ZZ zy > 0. The chain of inequalities follows

Poin(Byy — By zE,5382y) > pmin(Byy) — pmax (EvzE 55 E2v)
> pin(Zyy) — pmin(Bzz) v z|?
> pmin(zYY) - pmin(EZZ)_1V2pmin(2ZZ)pmin (EYY)

> (1-v%)/p>0.
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8. SIMULATION

Consider the following data generating process (DGP):

Y = dye—1 + B'ei 1 (1) + uy, (6)

U = hi/zEt, &t lfl\(/i t*(5) (7)

hy =5 x 107* +0.9h,_1 + 0.05u7_, (8)
x(1 xi—1(1 xr—q(1 --

T = () = Ay +-1(1) + Ay -alD) + v, vy 1i(}t*(5), (9)
wt(2) wt_1(2) wt_4(2)

where ¢ = 0.6 and the typical element of 3 is given by f; = %(—1)1'. (1) isa (s — 1) x 1 vector
of included (relevant) variables. The vector x; = [x;(1)",2,(2)'] € R™V, has n — s irrelevant
variables and follows a fourth-order VAR model with t-distributed errors. Apart from the error
distribution, the DGP for the vector x; is similar to the one considered in Kock and Callot (2012).
The matrices A7 and A, are block diagonal with each block of dimension 5 x 5 and typical element
0.15 and —0.1, respectively. All the errors in the model are ¢t-distributed with 5 degrees of freedom.
t*(5) denotes an standardized ¢-distribution with 5 degrees of freedom, such that all the errors have
zero mean and unit variance. The vector of candidate variables is w; = (y;—1, «,_;)’. Furthermore,
e; and v; are mutually not correlated. Note that this is a very adverse setting as the errors are
not normal, fat-tailed, conditionally heteroskedastic and moments of order higher than five do not
exist.

We simulate 7" = 50, 100, 300, 1000 observations of DGP (6)—(9) for different combinations of
candidate (n) and relevant (s) variables. We consider n = 100, 300, 1000 and s = 5,10, 15,20. The
models are estimated by the adalLASSO method with 7 and A selected by the BIC. The initial
weights are estimated using the LASSO procedure.

We start by analyzing the properties of the estimators for the parameter ¢ in (6)) Figures 1-4
illustrate the distribution of the oracle and adalLASSO estimators for different sample sizes. Several
facts emerge from the plots. Firstly, both bias and variance are very low. For T'= 50 and s = 5,
the distribution of the adalLASSO estimator is very close to the distribution of the oracle. For the
other values of s, the adaLASSO distribution presents fat-tails and multi-modality. For 7" = 100,

the adalLASSO distribution is closer to the oracle one when s = 5 or s = 10. However, there still
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outliers. When 7" = 300 the number of outliers reduces and the adalLASSO distribution gets closer

to the oracle, specially for s =5 or s = 10. For T' = 1000 the distributions are almost identical.
Table 1 shows the average absolute bias and the average mean squared error (MSE) for the

adaLASSO estimator over the Monte Carlo simulations and the candidate variables, i.e.,

1000 [

. 1 R n—1 R
Bias = 1o 2 _¢ — 0.6+ Z:; (ﬁi - 5)] and

j=

1 1000 [ N 9 n—1 R 9
MSE = T500m Z; <¢ - 0‘6> + Z; <Bi - 5") ] ‘
j=1L i=

It is clear that both variance and bias are very low. This is explained, as expected, by the large
number of zero estimates. Finally, the bias and MSE decrease with the sample size. The MSE
of the estimators increase with the number of candidate variables as well as with the number of
relevant variables. Finally, it is quite clear that the estimates are very precise in large samples.

Table 2 presents model selection results. Panel (a) presents the fraction of replications where
the correct model has been selected, i.e., all the relevant variables included and all the irrelevant
regressors excluded from the final model (correct sparsity pattern). It is clear the performance of
the adaLASSO improves with the sample size and gets worse as the number of relevant variables
increases. Furthermore, there is a slightly deterioration as the number of candidate regressors
increases. Panel (b) shows the fraction of replications where the relevant variables are all included.
For T = 300 and 7" = 1000, the true model is included almost every time. For smaller sample
sizes the performance decreases as s increases. Panel (c) presents the fraction of relevant variables
included and Panel (d) shows the fraction of irrelevant variables excluded. It is clear that the
fraction of included relevant variables is extremely high, as well as the fraction of excluded irrelevant
regressors. Panel (e) presents the average number of included variables. Finally, Panel (f) shows the
average number of included irrelevant regressors. As sample size increases, the performance of the
adaLASSO improves. Overall, the results in Table 2 show that the adalLASSO is a viable alternative
to model selection in high-dimensional time series models with non-Gaussian and conditionally
heteroskedastic errors.

Table 3 shows the MSE for one-step-ahead out-of-sample forecasts for both the adaLASSO and
oracle models. We consider a total of 100 out-of-sample observations. As expected, for low values

of s, the adalLASSO has a similar performance than the oracle. For higher values of s the results
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are reasonable only for 7" = 300 or 7" = 1000. The performance of the adaLASSO also improves as

the sample size increases.

Distribution of the AR estimates: T=50, 1=100,q=6  Distribution of the AR estimates: T=50,n=100, =10  Distribution of the AR estimates: T=50, n=100,q=15  Distribution of the AR estimates: T=50, n=100, 4=20
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FiGuRrE 1. Distribution of the adaLASSO and Oracle estimators for the parameter
¢ over 1000 Monte Carlo replications. Different combinations of candidate and
relevant variables. The sample size equals 50 observations.

TABLE 1. PARAMETER ESTIMATES: DESCRIPTIVE STATISTICS.

The table reports for each different sample size, the average absolute bias, Panel (a), and the average mean squared error (MSE),
Panel (b), over all parameter estimates and Monte Carlo simulations. n is the number of candidate variables whereas s is the number
of relevant regressors.

T =50 T =100 T = 300 T =500

s\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

Panel (a): Bias x1073

5 -0.1102 -0.2046 -0.1727 -0.0282 -0.0232 -0.0091 -0.0226 -0.0062 -0.0066 -0.0188 -0.0063 -0.0020
10  -0.3165 -0.4970 -0.2177 -0.0593 -0.0375 -0.0248 -0.0142 -0.0048 -0.0075 -0.0138 -0.0034 -0.0013
15 -1.0180 -1.0111 -0.4128 -0.0956 -0.0547 -0.1005 -0.0212 -0.0086 -0.0102 -0.0091 -0.0026 -0.0010
20 -1.3864 -0.6249 -0.2784 -0.1002 -0.1201 -0.0916 -0.0279  -0.0074 -0.0072 -0.0084 -0.0027 -0.0007

Panel (b): MSE x1073

5 0.0428  0.3666  0.4179 0.0068  0.0049  0.0029 0.0020  0.0007  0.0010 0.0010  0.0003  0.0001
10 0.8712 22258  1.1597 0.0279  0.0439  0.0620 0.0042  0.0015  0.0083 0.0018  0.0006  0.0002
15  3.8501  3.4686  1.3496 0.0477  0.2037  0.4073 0.0063  0.0024  0.0247 0.0024  0.0008  0.0002
20  6.8882  3.9529  1.4388 0.0801  0.7102  0.7621 0.0088  0.0032  0.0515 0.0029  0.0010  0.0003
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Fi1GURE 2. Distribution of the adalLASSO and Oracle estimators for the parameter
¢ over 1000 Monte Carlo replications.
sample size equals 100 observations.

relevant variables. The
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FiGURrE 3. Distribution of the adalLASSO and Oracle estimators for the parameter
¢ over 1000 Monte Carlo replications.
relevant variables. The sample size equals 300 observations.
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FI1GURE 4. Distribution of the adaLASSO and Oracle estimators for the parameter
¢ over 1000 Monte Carlo replications. Different combinations of candidate and
relevant variables. The sample size equals 1000 observations.

9. INFLATION FORECASTING

We consider monthly inflation forecasting with many predictors. The data consists of 131 macroe-
conomic variables and has been obtained from Sydney Ludvigson’s webpage®. The dataset is the
same used in Jurado et al. (2013) and is an update version of the one considered in Ludvigson and
Ng (2009). The observations start in January 1960 and end in December 2011, a total of 624 time

periods. The predictive regression is written as

M1 = Bo + By + Uy,

where 7, is the monthly inflation at time ¢ (percentage changes of the Consumer Price Index,
CPI, for all items) and x; is the vector of predictors (four lags of inflation plus four lags of 131
predictors. We also include four lagged factors computed as the first four principal components
of the 131 predictors. Apart from the price index data which have been differenced only once, all
the remaining variables were transformed according to Ludvigson and Ng (2009). We consider one
step ahead forecasts computed in a rolling window scheme with 474 observations. The forecasting
period starts in January 2000.

‘http://www.econ.nyu.edu/user /ludvigsons/
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TABLE 2. MODEL SELECTION: DESCRIPTIVE STATISTICS.

The table reports for each different sample size, several statistics concerning model selection. Panel (a) presents the fraction of
replications where the correct model has been selected, i.e., all the relevant variables included and all the irrelevant regressors
excluded from the final model. Panel (b) shows the fraction of replications where the relevant variables are all included. Panel
(c) presents the fraction of relevant variables included. Panel (d) shows the fraction of irrelevant variables excluded. Panel
(e) presents the average number of included variables. Finally, Panel (f) shows the average number of included irrelevant

regressors.
T =50 T =100 T = 300 T = 1000
s\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000
Panel (a): Correct Sparsity Pattern
5 0.8000 0.6540 0.4160 0.8720 0.9760 0.9430 0.9930 0.9900 1.0000 1.0000 1.0000 1.0000
10 0.7420 0.1790 0.0130 0.4900 0.9870 0.8510 0.9120 0.9090 1.0000 1.0000 1.0000 1.0000
15 0.2670 0.0050 0 0.2370 0.9260 0.3220 0.7530 0.7210 1.0000 0.9990 0.9990 0.9980
20 0.0210 0 0 0.0640 0.5860 0.0230 0.5560 0.5070 1.0000 0.9920 0.9870 0.9860
Panel (b): True Model Included
5 0.9990 0.8880 0.6110 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.8820 0.2370 0.0180 1.0000 0.9990 0.9050 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 0.3680 0.0050 0 1.0000 0.9460 0.3760 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 0.0330 0 0 1.0000 0.6440 0.0280 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Panel (c): Fraction of Relevant Variables Included
5 0.9994 0.9516 0.7866 1.0000 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9659 0.6678 0.3717 1.0000 0.9999 0.9736 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 0.8114 0.4340 0.2193 1.0000 0.9901 0.7737 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 0.6024 0.3243 0.1587 1.0000 0.9154 0.5193 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Panel (d): Fraction of Irrelevant Excluded
5 0.9947 0.9893 0.9907 0.9959 0.9998 0.9998 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000
10 0.9823 0.9591 0.9807 0.9697  0.9998 0.9983 0.9979 0.9991 1.0000 1.0000 1.0000 1.0000
15 0.9373 0.9444 0.9796 0.9299 0.9989 0.9892 0.9938 0.9969 1.0000 1.0000 1.0000 1.0000
20 0.8987  0.9407  0.9794 0.8852 0.9911 0.9815 0.9871 0.9948 1.0000 0.9998 0.9999 1.0000
Panel (e): Average Number of Included Variables
5 5.4970 7.9040  13.1400 5.3860 5.0470 5.1980 5.0200 5.0250 5.0000 5.0000 5.0000 5.0000
10 11.2510 18.5250 22.7770 12.7230 10.0460 11.4390 10.1920 10.2610 10.0000 10.0000  10.0000  10.0000
15  17.5040 22.3600 23.3820 20.9560 15.1740 22.2900 15.5290 15.8860 15.0000 15.0020 15.0010 15.0040
20 20.1560 23.0770 23.3580 29.1820 20.7920 28.5220 21.0320 21.4570  20.0000 20.0160 20.0270  20.0390
Panel (f): Average Number of Included Irrelevant Variables

5 0.5000 3.1460 9.2070 0.3860 0.0470 0.2020 0.0200 0.0250 0 0 0 0
10 1.5920 11.8470 19.0600 2.7230 0.0470 1.7030 0.1920 0.2610 0 0 0 0
15 5.3330  15.8500  20.0930 5.9560 0.3230  10.6840 0.5290 0.8860 0 0.0020 0.0010 0.0040
20 8.1080  16.5920 20.1850 9.1820 2.4840  18.1360 1.0320 1.4570 0 0.0160 0.0270 0.0390

The forecasting results are shown in Table 4. We consider as benchmark models a linear model
will all the regressors and estimated by reduced rank regression, an autoregressive (AR) model of
order four, and an AR(4) model augmented by four factors. As competitors we include a model with
all the variables plus the factors estimated by the LASSO procedure, the adaLASSO with LASSO

initial weights and adalLASSO with Elastic-Net initial weights. The Elastic-Net is a combination
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TABLE 3. FORECASTING: DESCRIPTIVE STATISTICS.

The table reports for each different sample size, the one-step-ahead mean squared error (MSE) for the adaLLASSO,
Panel(a), and the Oracle, Panel (b), estimators. n is the number of candidate variables whereas s is the number
of relevant regressors.

T =50 T =100 T = 300 T = 500

s\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

MSE - adaLASSO
5 0.0143 0.1299 0.6119 0.0132 0.0129 0.0128 0.0112 0.0106 0.0114 0.0103 0.0104 0.0104
10 0.1068 0.9734 1.8081 0.0140 0.0255 0.0870 0.0110 0.0110 0.0196 0.0113 0.0104 0.0109
15 0.5893 1.7082 2.2456 0.0196 0.0780 0.5545 0.0112 0.0119 0.0360 0.0104 0.0106 0.0107
20  1.0327 2.0361 2.4658 0.0268 0.2507 1.1363 0.0119 0.0118 0.0642 0.0105 0.0105 0.0105

MSE - Oracle
5 0.0122 0.0123 0.0126 0.0113 0.0118 0.0117 0.0112 0.0105 0.0106 0.0102 0.0103 0.0104
10 0.0155 0.0148 0.0145 0.0122 0.0125 0.0122 0.0109 0.0109 0.0114 0.0112 0.0103 0.0108
15 0.0180 0.0179 0.0177 0.0133 0.0134 0.0132 0.0110 0.0116 0.0113 0.0103 0.0104 0.0106
20  0.0235 0.0226 0.0219 0.0147 0.0148 0.0147 0.0116 0.0114 0.0115 0.0104 0.0104 0.0104

LASSO and Ridge regression are the parameters of the model are estimated as

[ argmin |[[Y — X053+ aX > (0] + (1 — ) 167
=1 1=1

The table displays the Median Absolute Deviation (MAD), the Mean Absolute Error (MAE), and
Root Mean Squared Error (RMSE) for the full forecasting period. From the inspection of the table
it is clear that the LASSO-based models outperform all the benchmarks, specially when the MAE
is considered.

In order to check if the differences in forecasting performance among different models are sta-
tistically significant or not we ran pairwise Giacomini-White tests for equal predictive ability. The
results are summarized in Table 5. The table shows the p-value of the tests when the column
model is compared to the row model according to the absolute forecasting errors (upper panel)
and squared forecasting errors (lower panel). It is evident from the results that the LASSO-based
models are statistically superior than the benchmark alternatives. The only case where a bench-
mark specification performs similarly to a competitor is then a factor model is compared to the
adalLASSO with respect to the squared errors.

Figure 5 reports the cumulative absolute and squared errors for different models. There is
one large error during the forecasting period (December 2008) and all models display large errors.
However, the LASSO-based models continue to deliver the lowest forecasting errors. Figure 6 shows
the number of variables selected by the LASSO and the adaLASSO. As expected the adaLASSO

delivers more parsimonious models.
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TABLE 4. Forecasting Results: Summary Statistics.

The table reports for each model the Median Absolute Deviation (MAD), the Mean
Absolute Error (MAE), the Root Mean Squared Error (RMSE) and the minimum and

the maximum of the out-of-sample errors.

MAD MAE RMSE Min Max
Benchmark Models:
All Regressors 0.0044 0.0055 0.0077 -0.0140 0.0467
AR(4) 0.0027 0.0027 0.0031 -0.0095 0.0082

AR(4) + 4 Factors 0.0027 0.0028 0.0031 -0.0081 0.0072

LASSO and adaLASSO:

LASSO 0.0016 0.0021 0.0029 -0.0110 0.0100
adaLASSO 0.0014 0.0021 0.0031 -0.0146 0.0101
flexible adalLASSO 0.0015 0.0021 0.0028 -0.0088 0.0102

TABLE 5. p-values for Giacomini-White Test of Equal Predictive Ability.

The table reports the p-value of the Giacomini-White test for equal predictive ability. The null hypoth-
esis is that the column model has the the same forecasting performance.

Absolute Errors
All Regressors AR(4) AR(4) + 4 Factors LASSO adaLASSO flex. adaLASSO

All Regressors - 0.0000 0.0000 0.0000 0.0000 0.0000
AR(4) - 0.3807 0.0113 0.0047 0.0401

AR(4) + 4 Factors - 0.0088 0.0266 0.0091
LASSO - 0.3713 0.3584
adaLASSO - 0.3248

flex. adaLASSO -

Squared Errors
All Regressors AR(4) AR(4) + 4 Factors LASSO adaLASSO flex. adaLASSO

All Regressors - 0.0003 0.0003 0.0003 0.0003 0.0003
AR(4) - 0.4181 0.0408 0.0121 0.0554

AR(4) + 4 Factors - 0.0108 0.1624 0.0054
LASSO - 0.1900 0.2518
adaLASSO - 0.1749

flex. adaLASSO -

10. CONCLUSION

We studied the asymptotic properties of the adalLASSO estimator in sparse, high-dimensional,
linear time series model when both the number of covariates in the model and candidate variables
can increase with the sample size. Furthermore, the number of candidate predictors is possibly
larger than the number of observations. The results in this paper extend the literature by providing
conditions under which the adalLASSO correctly selects the relevant variables and has the oracle
property in a time-series framework with a very general error term. As a technical by-product some

conditions in this paper are improvements on the frequently adopted in the shrinkage literature.
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FIGURE 5. Panel (a): Cumulative absolute errors. Panel (b):

The main results presented in this paper are based on the assumption that only a few number of
candidate variables are in fact relevant to explain the dynamics of the dependent variable (sparsity).
This is a key difference from the factor models literature. The estimation of factors relies on the
assumption that the loading matrix is dense, i.e., almost all variables are important for the factor
determination. When the loading matrix is sparse, the usual asymptotic results for factor estimation

do not hold anymore. Therefore, penalized estimation based on the adalLASSO and similar methods
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are of extreme importance. However, when the structure of the model is dense, then factor models

are a better alternative.

APPENDIX A. SATISFYING ASSUMPTIONS

Let {2} denote a zero mean, weakly stationary process taking values on R? (d € N), that admits

the VMA (c0) decomposition
[e.9]
zZt = Z ‘I’jet_j,
=0

where €, = (e1¢,...,€qt)s E(€t|Fei—1) = 0, E(er€)|Fei—1) = Xy, ¥ = diag(j1, -+ ,9¥ja) 5 and let

Fer = of{€t, €—1,...}. In order to ensure E[z;2]] is bounded independently of d, we also require
that the largest eigenvalue of each ¥; is bounded independently of d and that Z;‘io %2'2' < oo. It

implicitly requires that the correlation matrices 3; are not dense or, at least, that most elements
are sufficiently small, which is standard in the ¢; regularization literature. As in C, we characterize
the dependence of the series through (;» = > 322, || (i = 1,...,d), and it is assumed that they
decrease either polynomially or geometrically with r.

Assume that the set of candidate variables are @; = (z},...,2;_,)" for some p < T, usually much

smaller. To simplify the exposition, let x:(1) = (z;¢, * € S), where S denote the active set, i.e.,
5The assumption that ¥; is diagonal is only to simplify our calculations and can be relaxed, i.e., let TA = I and

1, = A€, then taking W7 = W;I" yield an equivalent representation.
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the set of all included regressors. The number of candidate variables is n = p X d and both may

increase with T'. Throughout the section, we use ¢, ¢, ¢1,c2,... as positive and finite constants.

A.1. Satisfying DGP(3). Assumption DGP(3) is equivalent to

p d T
Z Pr Z [zit_p - E(zjzl)] >Tcy =0, T— oc.
k=0 j=1 t=p+1

We use the triplex inequality (19) and results in Appendix C to find conditions that satisfy
DGP(3) in this setting.
Table 6 shows conditions to satisfy DGP(3). We impose conditions on {¢;} (i = 1,...,d), the
mixingale dependence term (; , = Z;‘;T [ij] (i =1,...,d), and the rates of increase of n and p.
TABLE 6. Conditions on the rate of increase of n and p, the mixingale dependence
terms {(;, : 4 = 1,...,n}, and the tail behaviour of ¢ (t =1,...,7,i=1,--- ,n),

for satisfying DGP(3). The conditions hold for any 0 < 6 < 1, some d > 1, and
some u > 0.

Dependence \ Tail E (\eit\2m) < 00 E [exp(ulei]) — 1 — ulei||Fe 1] < fu)o?
_ S(m—1) — 1/5
Cr =0, 7> 10 n—o{T J logn—o<T )
p=ol) p=o(T)
et | neo(r)
Ci,r o ¢ 1
- )
— o |T9m=1) logn = o (T5F
log Ci,r 8 _TC ! ’ [ 5 ] e ’ < 2 )
pzo(Tm) pzo(TW)

The derivations are mechanical and the same method is applied in each of the six combinations
of conditions. The first step is to adapt the triplex inequality to the problem in hand. Assume that
roc T2 and Cp o< T72/2 in (19),

T
Pr Z ij,t_k —E (2?1) > Te| <2672 exp

< C2E2T1_71_'\/2
t=p+1

D E
988 >+ kT + LT,

6

Dy, 7 is the dependence term of (19), and Er its tail term®. We use results in Appendix C.3 to

bound Dy 1 and Er. If p = o(r), then r—k > r—p > r/2 for T sufficiently large. If the dependence

$Dir = (6/)7 " X7 [E( il Ferr) — E(D)] and Br = (15/0)7 7 Bl|22, 4|[(s > Cr)].
28



vanishes after ro lags, i.e., Dp = 0 for r > rg, we can set 73 = 0. If the dependence decreases
polynomially with 7 then Dy < O(T~); if the dependence term decreases exponentially with
r then —log Dy < O(T<"/?). As for the tail, Ep < O [T‘Vz(m_l)] in the polynomial case, and
—log Ex < O(T?/*) in the exponential case.

We optimize the convergence rate choosing the pair (71, 72) that makes all three terms decrease
at the same rate. In the case both dependence (D 1) and tail (E7) terms decrease exponentially,
we solve the system 1 — 7 — 72 = 72/4 and 72 = 2¢7v;. The RHS of (19) is bounded by

¢
2 2
max Pr g 25, —E(z: >Tecp <cpex (—c T5<+2>
0<k<p,1<j<d . H[“ »~E()] =aepiTe ’
=p

for positive and finite constants ¢; and cy. Therefore,

p d T
Z Z Pr Z [2]2'715_;,; - E(ijl >Tep < Z Z C9 exXp ( c4 To(+2) — 0,
k=0j=1 t=p+1 k=0 j—1

as T — oo if we assume logn = o [TC/(E’C*Q)].

The remaining terms in Table 6 are derived similarly.

A.2. Satisfying DESIGN(3). Using the union bound on DESIGN(3) part (b),

T¢min
S

T .
Pr [max Z Tz — E(xpx))| > (b:m §S2Z¥I;E€1>§Pr Z ripxj — E(zyxj)| >

bies t=p+1 t=q+1
Recall that xxj1 = 21, 1—k 210 4—ko Where 1 < [j,l3 < d and 0 < Ky, kp < p. While the actual terms
l1,l2, k1, and k9 are unimportant, S may contain terms with lags up to p, which has an influence
on the dependence term as in the previous section. The RHS of the previous display is bounded by

T¢min
S

2 max Pr Z ZitZjt—k — B(Ziezje—k)| >

(10)
0<k<p,1<i,j<d
t=p+1

We use (19) and results in Appendix C to find conditions that satisfy DESIGN(3) in this setting.
The first step is to adapt the triplex inequality to the problem in hand. Assume that r o /2
and Cr oc T72/2 in (19),

. 2l=y1—"2 3 3
(10) < 2¢1 82T/ 2 exp |— C2(¢m1n/;)88 +cs—— Dy T+ > _Er,
quln ¢mln
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7. We use results in

Dy, 1 is the dependence term of the triplex inequality, and Er its tail term
Appendix C.3 to bound Dy 7 and Ep. If p = o(r), then r —k > r —p > r/2 for T sufficiently
large. If the dependence vanishes after rg lags, i.e., Dy = 0 for r > rg, we can set v; = 0. If the
dependence decreases polynomially with r then Dy < O(T _C'“); if the dependence term decreases
exponentially with 7 then —log Dy < O(T</?). As for the tail, Er < O [T_W(m_l)] in the
polynomial case, and — log Ep < O(TW/ 4) in the exponential case.

The derivation of the bounds follow the same steps as in A.1, with the further constraint that
(8/Pmin) = 0(T5/2) where 0 < § = 1—7; —vy2 < 1. If Dy, 7 = 0, the condition on s and p are already
satisfied independently of E7. If Dy, 7 and E7 are polynomial, then we need p = o (T %H(d’o> and
s=0 {T%A%[(l_‘s)H(d’o_‘ﬂ }, where H(m, () = 2/[1/(m—1)+1/(] is the harmonic average of m —1
and (. If Dy 7 and Er decrease geometrically, then the condition is satisfied for p = o [Tl/ (2+5C)].
Now, let 0 <0 <1—v <1, for some 0 < v < 1. If Dy, 7 is polynomial and Er geometric, we need
D=0 [T(l_”_5)/2] and s = O (T%/\C
then p = O(T”/2) and s = O [T%A(l_”_‘s)(d_l)}. The previous bounds hold with v = §, in which

1—v—9¢

). Finally, if Dy 7 is geometric and Er is polynomial,

case 0 < 0 < 1/2.

A.3. Satisfying condition WEIGHTS. We show that under stronger assumptions on the co-
variance matrix of the candidate variables and number of covariates, conditions on Lemma 1 are
satisfied. These conditions also imply that DGP(3) and DESIGN(3) are satisfied. Kock and Callot
(2012) show that these conditions are satisfied if the covariates are generated form a Gaussian
VAR. The approach we use here is similar. Assume that the smallest eigenvalue of the population

covariance matrix is bounded away from zero and that ¢g > 16¢ > 0 in Lemma 1. We show that
Tc
Pr max Z TitXjt — E(l‘itl‘jt) > ? — 0,

as T'— oo.

We use the triplex inequality again. The argument is the same as used in A.1 and A.2. The
arguments are as in A.2, and we bound (10) with ¢, replaced by a constant ¢, and s? replaced by
n?, because we are now dealing with the full empirical covariance matrix of the variables, instead
of only the ones that enter in the model.

7Dk,T =7t Zf:l |E(Zit2j,t—k|]:€,t77‘) — E(Zi12j1)| and Er = 71! Zf:l EHZith,tfku(Zith,tfk > OT)]
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The mechanics is the same as before. We assume that s = o(T%2) for some 1 < § < 1, and
that p = o(r). If Dy = 0 and Er is polynomial, p is not constrained and n = o [T(l_‘s)(l_m)ﬂ].
If Ep decreases geometrically, logn = o [T (1-9)/ 5]. If Dy 7 and Ep decrease geometrically, then
logn = o [TS1=9/CH] and p = o [T(1=9/CHO] | If both Dy, 1 and Er decrease polynomially,
n=o [TH(mvo(l_‘S)/‘l] and p = o [TH(m’C)(l_‘;)/(‘lo], where H(m,() = 2/[1/(m — 1) + 1/(] is the
harmonic average of m — 1 and (. Now, let 0 < § < 1 —v < 1, for some 0 < v < 1 and
assume that s = 0(T5/2). If Dy, 7 is polynomial and Er geometric, we need p = o (T(l_”_5)/2) and
n =0 [TC(I_” —9)/ 2]. Finally, if Dy p is geometric and E7 is polynomial, then p = o(T" / 2) and
n=0 [T(l_”_‘s)(m_l)m]. The previous bounds hold with v = §, in which case 0 < § < 1/2.

If we add bounded &; to the list, the tail term E7 is zero, and the number of variables would
depend only on the dependence term. In any case, the number of variables depend both on the
dependence structure of the covariates and their tail behaviour. For instance, if the tail does
not decrease geometrically, the number of candidate variables cannot increase sub-exponentially.
Similarly, when the dependence term is polynomial, n increases at most polynomially.

Hence, under the previous conditions on the increase rate of n, p, and s, and assuming the
population covariance matrix of all covariates satisfy the restricted eigenvalue condition, the LASSO

can be used as initial estimator and the condition WEIGHTS is satisfied.

APPENDIX B. PROOFS

B.1. Initial weights.

Proof of Lemma 1. The first statement follows directly from Lemma 6 in Kock and Callot (2012)
and the second one from comparing DESIGN(3) and the conditions in the lemma, in a set with

probability one. O

Proof of Lemma 2. The proof follows after Theorem 6.1 in Biilhmann and van der Geer (2011) and
the relationship between restricted eigenvalue condition and compatibility condition. The second

part follows because (a) satisfies conditions of Lemma 4 and (b) satisfies conditions of 5. O

Proof of Proposition 1. The weights are given by |67 ;|~7, which means that WEIGHTS(1) is equiv-
alent to

n
. 0. —¢/2r /T
sﬁlgéxgn\ﬂmf < '24:—1 07— 60| <T Cor(2) -
1=S8
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because 6; o = 0 for all ¢ +1 < i < n. Hence, WEIGHTS(1) is satisfied whenever

—-¢/2r,, 1/T )‘ S

which holds under assumption on A.

Let 2,y € Rand 2(z—y)? < y?, y* < 2 (2 + (z — y)?) which means that 2% > y*/2—(z—y)* > 0.
Moreover, z27 > (y2/2 — (z— y)z)T. Under the conditions on 6, and the bound on |07 ; — 0ol
07:°" > (0.5|00:[> — |01,; — 00:/*)". The left hand side of WEIGHTS(2) is upper bounded by

-7
_1210 < max 07472 < <05 mm 160, — max 0r,; — 907i|2> .

Substituting this bound on WEIGHTS(2),

—-2/T

max °

max [07; — 902]2 < 0.502;

—w
1<i<s min

It follows by assumption that (02, /2 —w i)/f)lﬂ > 20min > c1(N/T)(5/bmin). Therefore,

A s
fgfxswu Oo,i| < AT
is a sufficient condition for WEIGHTS(2), which is satisfied by the ¢; oracle bound. O

B.2. Minimal Eigenvalue. Condition DESIGN(3) imply that the smallest eigenvalue of Q, is

lower bounded by ¢min. We use this result throughout the proofs in this section.

Lemma 3. Let A and B denote two non-negative definite, r-dimensional square matrices. If

maXlSi,er |AU — BZ]| S 5, then
inf . o'Ba > /inf_l o Ao — 76.
Proof. The proof is parallel to Lemma 6.17 in Biilhmann and van der Geer (2011). Let a € R"\ {0}.
o’Aa — o'Ba < [o/(A - B)a| < |a|i|(A - B)a|y, < |al?d < raad,

where | - |; and | - | are the /1 and sup norm, respectively. Rearranging the terms,

o/Ba _ od'Aa
>

ada T dao
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The result follows by minimizing over o € R\ {0}. O

Under condition DESIGN(3), in a set with probability converging to one

inf o/Qa> inf o'Qa— s@ > Gmin-
a’a=1 o’a=1 S

B.3. Bounding the empirical process. The regularization parameter A is intrinsically connected

<)\0}.

We derive bounds for the event &p [AT~(1=9)/2] under (i) Assumptions DGP(1)-DGP(2) and
DGP(4) (case i), and (ii) Asumptions DGP(1)-DGP(2) and DGP(5). More precisely, we show that

T
E Lt Uy

i=1

to probability bounds on the event

T
g Tt Ut

Er(No) = {Z'max T—1/?
1=1

i=1,...,n

i=1,...,n

Pr< max T~ /2

A
> mTﬁ/2> <chr(n,§),

for some positive constant c¢. The sequence hp(n,§) = [nl/mT(l_f)ﬂ/)\] ™ in case (i), and hy(n, €) =
exp [logn — N/ 5] in case (ii), for some constant ¢o. Then, under conditions on the lower

bound of A\, we find that Pr {ST [)\T_(l_g)/z]} <1-—cI~%, for some o > 0.

Lemma 4. Under Assumptions DGP(1), DGP(2), DGP(3), and A > n'/mT0=8/2+a/m  for some
a >0,
27¢

Pr {ST [AT_(1‘5)/2]} >1-—, (11)

for some positive constant c.

Proof. Write Pr[€r(Xg)] = 1 — Pr[€%(Xo)]. Simple application of the union bound and the Markov

> )\0)
mn nl/m m
Ao '

inequality yield

T
E Tt U
i=1

Prigg(Ao)] < Y Pr <2T—1/2
=1

IN

n 1 T
omp 1 Z E|l— Z Tiply
i=1 VT i=1
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Under Assumption DGP(2), {utx;} is a martingale difference process with respect to ;. Appli-
cation of the Burkhoélder-Davis-Gundy inequality and the C-inequality, yield

m m/2 T

E

1 T
—= D T
VT 3

Pri&5(M\o)] < 2" Crem

for A > pl/mp=8)/2+a/m .

Lemma 5. Assume that DGP(1), DGP(2) and DGP(5) hold jointly, and that T is sufficiently
large. Let logn > (logT)? and, for any a > 0, A > ¢/(logn + alogT)>?T(=9/2 for ¢ > 0
sufficiently large, than

Pr {5T [AT—@—@/?} } >1- % (12)

for some positive constant cq.

Proof. Write Pr[Ep(X\g)] =1 — Pr[€G(Xo)]. Using the union bound and Lemma 6 gives

T
Zwitut > )\0)

i=1
The use of Lemma 6 is justified because whenever logn > (logT)?, the condition on hr is satisfied
with log(hTT_l/z)/h?p/5 > 1/logT — 0 as T — oo. Choose ¢ > [min(bs,by,1/27)/4]7%/? and
set \g = AT~(179/2 with X\ = ¢/(logn + alog T)%?T(=8/2. Then Pr(£5) < ¢1/T*. The result
follows. a

A

Pr€%(N\o)] < ipr <2T—1/2

=1

< cijexp (logn — 02)\(2)/5) .

In the proof of Lemma 5 we used the following lemma, that defines a sub-exponential bound on

the probability of the empirical process.

Lemma 6. Let {F;}>_ denote as sequence of increasing o-fields and let {xyu;}l be a dif-

—0o0
ference martingale sequence with respect to {F;}__ ., for each T. Assume that there exist pos-

itive constants by,...,by such that for any c sufficiently large, Pr(u; > ¢) < byexp(—bsc) and
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Pr(z; > ¢) < bsexp (—bsc). Then,

g

. . . 2/5
where c1 and co are positive constants, hr is a non-decreasing sequence, and log T/hT/ — 0 as

T

% Z TtUt

t=1

> hT> < c1 exp ( czh2/5> (13)

T — co.

Proof. The proof consists in applying the Triplex inequality (19) and optimizing the right hand
side. The second term on the Triplex inequality is zero because E(z,u:|F;) = 0. Take r = 1,

e = hT/\/T and Cr = h%, then

.

The expectation in the RHS is bounded by

_ 15 1
> hT> < 2exp (—h?p 2“’/288) + —\/_— ZE |zoug| I(|xpue| > hp)].

1 T
LS e
VT =

1/2
Elzyur I(|zu] > b)) < (Blag]?) " x [Pr (yut\ > h}”) +Pr (my > h}”)] .

The first term on the RHS is bounded because both Pr(xz; > ¢) and Pr(u; > ¢) decrease expo-

nentially, as for the second term
[Pr (\utl > h%ﬂ) + Pr (]a:t\ > h}m)} 2 < [bl exp (—bgh}/z) + bz exp (—b4hz/2)] 2
< bsexp <—b6h;/2/2> ,

where b2 = 2(by + b3) and bg = min(be, by).

Therefore,

g

where by > 150571 3.1, (E|aus?) /2. Choosing v = 4/5 optimizes the convergence rate and the

T
L 2-2y vT /2
= ;xtut > hT> < 2exp (—hT /288> + by Iy exp <_b6hT /2) ,

result follows from the assumption on hp and by taking ¢; = 2+ by and co = min(1/288,bg/4). O

B.4. Proof of Theorem 1. Write Q = ﬁ w, §22 = w and ﬁm = ﬁ/m =
w. Set vy = sign[@y(1)], where sign(m) =1I(z>0)—I(x <0). Let W(1) = diag(wy, . .., ws).

The Karush-Kuhn-Tucker conditions characterize the solution of the optimization problem in

equation (2). These conditions are standard in the LASSO literature and have been used in Zhao
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and Yu (2006), Huang et al. (2008), among many others, to find sufficient conditions for sign
consistency. Proposition 2 provides a lower bound on the probability that the signs of the estimated

and true parameters are equal, and follows the same construction as Zhao and Yu (2006).

Proposition 2. Let W (1) = diag(wy, ..., ws) and vy = sign[@y(1)]. Then

o~

Pr [sign(e) = sign(O)] > P (ArNBr),

where
: 1 A1 A a1
Ar = — ([, X(1)'U;| < VT|00;] — —=]| [ Wlui}, 14a
= (| @0 X 0O < VTI00] g0 W wol (140)
n 1 1 .
Br = A—=XM(WU| < —=\ |w; — |[T' X! X (1)Q;; W(1)v } 14b
r= () {2« e g womnlf o
where U =Y — X6g, M(1) = It — X(1)(X (1) X (1))~ X(1).
Proof of Proposition 2. The proof follows as in Proposition 1 of Zhao and Yu (2006). O

The sets Ar and Br and loosely interpreted as “keeping relevant variables inside the model”
and “leave irrelevant variables outside the model”. Proposition 2 provides a lower bound on the

probability of selecting the correct model:

P [sign(8) = sign(80)| = P (Ar 1 Br) = 1~ P (A7) - P (B5),
where A%, and B are the complements of A7 and Br respectively. Theorem 1 follows by showing

that A, N By 2 Ep[A\T —-(1-8)/ 2] and claim Lemma 4 to conclude.

Lemma 7. Assume DESIGN and WEIGHTS(2) hold jointly, and that Omin > (AT /%) (sY2 [ rmin).
Then Ar D 5T[/\T_(1_£)/2].

Proof. Write the event A%,

Ay = U { =100 XU} = V0w -

A Al
i=1 ﬁ”ﬂll W(l)'/o]i\}.
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Simple application of the Cauchy-Schwartz inequality to the left hand side of the inequality above

yields
T_1/2[SA21_11X(1)’U]Z- = T2 sup a/ﬁl_llX(l)'U
o’a=1
1/2
P s 2
< sup (0/9112‘1)1/2 {Z (T_l/zX;U) ]
o’a=1 j=1
1/2
2
S !Z( T7XU) ] - (15)
1
Similarly,
~—1 ~—1
@uWOwlil = 77 sup oGy W(two
s 1/2
< 2
< <a12f; aﬂlla> (ij) (16)
7=1
1/2¢/2
< ool V2 <P (le (17)
Combining (15) and (17), and under the assumption that O, > (A/T1¢/2) (52 /pmin),
A ~—1 A sU/2TE/2
\/TGZ-——‘T_WQ XUl > 2= ,
|0| 2ﬁ [11 () ]_2\/T (bmin
and
: 2 A ? A
c —1/2 y/ 1/2 —1/2 !
Ar & {Z; (T xu) 2 <2T(1—£)/2S > } < {if%?.}is2‘T Xju| > T(l—S)/2}’
‘]:
proving the claim. O

Lemma 8. Under Assumptions DGP(3), WEIGHTS and DESIGN, By 2 Er(AT~1=8/2)_ for all

T sufficiently large.

Proof. Write

’M(l)U' > %)\ [w,- - yT—lng(nﬁl‘fW(nyoy} } (18)
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We will bound the left and right hand side (LHS, RHS) of (18) separately and combine the bounds.
Recall that M (1) = I+ — X (1)[X (1)’ X (1)]7' X (1)’, which means that

X M(1)U = XU - X! X(1)[X(1)/X(1)]'X(1)U = A; + B;.

The second term on the RHS, B;, is bounded by

B = |X{X()[X1)X(1)]'X(1)U|
1/2
< 2 joxmxayxo) Tt x ol
T 1/2 s 12 %1 )2 1/2
< VT %;[:E?t_E(x?t)]+Z311aXnE(x22t) [Zz:l (T¢min j )]

s (rexio)?]

¢min

C1

where ¢; =1V \/2 max;—1_,E(z3) for all T sufficiently large from DGP(3).
Therefore, the LHS of (18) is bounded by

2
9 ‘%X; ‘ 201 sztut + —= ¢1/2 Z ( Zx]tut> .

min \ j=1

As for the RHS, it follows from the Cauchy-Schwarz inequality, WEIGHTS(2), DESIGN(3), and
DGP(3) that

[T XX OO W] = (XXX QX)W (Lp)

< WX (1) X (1) W (v x XiX;
Zj:l wi2 % 23:1 xzzt

infa/azl a’Qlla T

512762\
= 1/2
¢min

Combining the previous bound with WEIGHTS(1) yield the following bound to the RHS of (18)

IN

2 (o [ xxAi i) 223 [T
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Hence,

T

. A A s
Br < {FQ%T E;x““t 2 -9 } - {sff?fin VT & Zm””t = Ao ¢min}
2 Z e A
125 \/_ T = o [

proving the claim. O

N

Proof of Theorem 1. Combining Proposition 2 with Lemmata 7 and 8 yield
Pr |sign(6) = sign(6) | > P (A7 N Br) > Pr {8 [AT_(l_f)/ 2} } =1,

from Assumption REG and Lemma 4. O

B.5. Proof of Theorem 2. Write Q1 (8) = —2X'(Y —X0)+AW vy, where vy = [sign(6;), ... ,sign(6,)]’
and W = diag(wy,...,w,). Replacing @ by the adaLASSO estimator and writing U = Y —
X (1)0¢(1), and for any &’ax = 1,

1 ~—1 P N A Al
e o [0, X(1)U| - VT/Qy, 0120(2) + SR W (w1,

The first term on the RHS equals v/7T'o [5013(1) - 90(1)] The proof consists in showing that

VT [5(1) - 90(1)] -

the second and third term on the RHS converge to zero in probability. Since Pr[5(2) =0 -1

from Theorem 1, the second term vanishes in probability. As for the third term

\ . 2 A2 w2
( ﬁanu W(l)w(D) < Lixt 2
2 AT (infa/a:1 a’ﬂlla)

A sV 2000 ?
< _ o Thax
\/T 2Qsmin

— 0, T — oc.

The first line follows from the Cauchy-Schwarz inequality, the second from WEIGHTS(2) and
DESIGN(3), and the last one from REG.

B.6. Proof of Theorem 3. The only difference between Theorem (3) and the previous results is

that now the number of variables may increase faster.
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The proof of (a) is identical to the proof of Theorem 1 with Lemma 4 replaced by Lemma 5.
The proof of (b) is identical to the proof of Theorem 2.

APPENDIX C. AUXILIARY LEMMATA

This section we show some auxiliary results used in the previous derivation. We start with the

triplex inequality (Jiang 2009, Theorem 1) and expand on how to bound its terms.

Theorem (Triplex Inequality). Let {F:}72_. be an increasing sequence of o-fields, and x; be a
random variable that is Fi-measurable for each t. Then, for each er, Cr > 0 and positive integers
r and T, we have

pr{

T
> e — E(ay)]

t=1

> TeT} < 2rexp [—T52T/(288r20%)]

T
+(6/er)T™" Y B [E(x| Fiey) — E(zy)]
t=1

T
+(15/er)T™ 1Y Ela| I (Ja| > Cr), (19)
t=1

as long as the RHS exists and is smaller than one.

The first term in the RHS is self explanatory and depends on the dependence window m, the
upper bound Cp, and ep. The second term on the RHS is the dependence term and is described in
the framework of /1-mixingale (see, e.g., Chapter 16, Davidson 1994). When {x;} is a martingale
difference process, the dependence term vanishes. We derive bounds for the dependence term under
different dependence assumptions. Finally, the third term on the RHS captures the tail behaviour

of x; and we also derive bounds for it under different tail conditions.

C.1. Tail behaviour. Next series of results will deal with the tail behaviour of the elements x;
under different conditions. For the sake of simplicity, and without of generality, consider x; scalar
and denote it x;. Lemma 9 provides sufficient condition so that the tail decreases exponentially. We
assume that z; admits an MA(oo) representation where the innovations have bounded conditional
variances, and impose conditions on the coefficients and innovation process. Lemma 10 follows a

different direction and derives a polynomial bound assuming that |z;| has up to p moments.
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Lemma 9. Let {z;}{°_, denote a second order, stationary process that admits an MA(oo) decom-

position. Write xy = Z;‘;o Ojei—;, where {e}2_ o satisfy one of the following settings:

(1) is an independent and identically distributed sequence (i.i.d.) of random wvariables, with
mean zero, and |0]1 = 3 22 |0;] < co. Furthermore, €1 has a cumulant generating function
K(u) = logE [exp (uey)] that is continuously differentiable at zero.

(2) {et, Fer—1}>2 is a martingale difference sequence, where Fe—1 = o{et—1,€t—2,... }, |0]3 =

>0 0> < 00, and E(€}|Fei—1) = 07 < oo . Furthermore, each € satisfies
E [exp (uler]) — 1 — ule] |-7:5,t—1] < f(w)E (e?\}},t_l) ,

for any positive w and f(u).

Then there exist positive constants by and by such that Pr(|xy| > ¢) < by exp (—bac). Moreover, the

tail condition in the triplex inequality is bounded by

T
15 1561 /Bl 7,2
T E E |2 I (Jo¢| > Or) < 17’%‘552%/2,

=1 €T

Proof. The Markov inequality yield, for some u > 0,
Pr(|z¢| > ¢) = Pr[exp (u|z¢]) > exp(uc)] < exp (—uc) exp {log E[exp(u|z¢])]}

Under setting (1),

exp {log E [exp(tuz)]} = exp ZlogK(:l:HJ-u)
_‘7:0
< exp |y sup |K'(v)||ub]
j—1 WI<ulfh
<

2exp [\thu\ sup \K/(V)]],
[v|<|ul|0]1

where K'(u) = dK (u)/du, by = 2exp [|0|1|b2| SUD|y|<[bs||0]1 |K/(1/)|] and by = u.
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Under setting (2),

Elexp(u|z¢])] < E |exp UZ\szt_j]
L 7=0

= E[exp UZ\szt_j] exp {log E [exp (u|foet|) | Fer—1]}
j=1

< E|exp UZ|9th—j| exp {E [exp(ulfoec|) — 1 — ulfoer|| Fe—1] }
L ‘7:1

< exp [f(u)0307]E |exp uz 62—
j=1
< .- < exp f(u) 29]2'0-?—]' < €Xp [f(u)o-?naxwg] )
j=0
where 02, = max; 07. We may choose by = u and by = exp [ f(b2)o2,|0]3]. A tighter bound may

be obtained by minimizing the right hand side info<y<y, exp[f (v)o2,.4]0]3 — Crul.

max

The tail bound follows after the Cauchy-Schwarz inequality. U

The key assumptions are on the innovation process {¢;}. The first one requires that the cumulant
generating function of the innovations, K (u), is continuously differentiable at zero. This condition
is satisfied, for instance, by Gaussian innovations. As for the second condition, assume each ¢
satisfy the Bernstein moment condition: for all k > 2,

E (2| F,_

E ('Etmj e,t—1> < k!bk—ij

for some b > 0. Then, for all 0 < u < 1/b, E [exp (uleg]) =1 — u|6t||fe,t—1] < f(u)E(e2|Fi—1) with
flu) = u2/2(1 — ub) 8 T W

It is usually the case that the moment generating function does not exist. In such situations we

require a polynomial bound on the tail term of the triplex inequality.

Lemma 10. Assume there exist positive ¢, and p > 1 such that Elx|P < ¢, for all t. Then,

El|z:|I(Jxe| > Cy)] < cpC’;(p_l). Moreover, the tail condition in the triplex inequality is satisfied

8Under this condition a Bernstein-type bound may be derived, i.e., Pr(|z:| > ¢) < by exp [—c®/2(10)50max + cb)].
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with
15¢,
TC';I}_1 .

—T—le (2| T (|| > C7)] <
er =1

Proof. 1t follows after simple application of the Holder inequality:

ElleelI(|ze] > Ci)] < E(|lauf”)"/? Pr(ja| > C)P~D/P

E(|$t|p)1/pE(|xt|p)(p—1)/p/cf(p—l)/p

IN

= E(u)C; Y.
U

The assumption that E(|z:|P) is bounded is not restrictive and, whenever x; can be written as
an MA(oo0) process, we are only required that ||y < oo and E|es|P < oo for all s. Under these
conditions, E (|z|P) < |92~ 32520 105[Eler—j[P < |0]) max; Ele;[P.” In this case, ¢, = [0]} max; Ele;[”

in the previous lemma.

C.2. Dependence term. Bounds on the dependence term are derived under mixing and mixingale
assumptions. We further extend the results to the processes {22} _ ., and {z1 294}7°_ . where

x = (214, 22,) admits a VMA(co) decomposition.

Lemma 11. (1) Assume the pairs {x, F1}°% form an {1-mizingale sequence with mizingale

coefficients {(,}°%5 10, then

T

6
- _ < =
ST E [E@|Fer) — E@)| < =26

where ¢1 is some positive constant.

(2) Assume {x:}52_ is strong mizing with mizing coefficients {a, }°, and each E|zy|P < oco.

Then .
6 ‘ 3601 1—1
e E Tt ]:t — )| < —a, /p
er T Z: | 7" ( ) — er T ’
IMWrite >0l = X2, 10;1*=2/7(10;*/P|e;—;|) and use the Hoélder inequality to find > l0ie—; <

07~ 3 10 ler—s |7
10E|E(mt|}} 2 = E(my)| < arCry, 7= 41,42, ...
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for some positive constant cy. If, instead, {x;} is uniform mizing, the inequality holds with

oz,l»_l/p replaced by <;571~_1/p/3.

Proof. Result for mixingale follows from the definition of a mixingale process. Result for strong
(uniform) mixing follows after direct application of Theorems 14.2 (Theorem 14.4) in Davidson

(1994). 0

The terms «, and ¢, are respectively the strong and the uniform mixing coefficients. Conditions
on the rate of decrease of the mixing coefficients yield polynomial or exponential bounds on the
second term, i.e., if o, = O(e™“") then ai_l/p/eT < celP=1/PI7 /e for some positive ¢. Similarly,
a, = O(r=?) yield oz,lfl/p/sT < cr~le®=1/pl /o, Tf the process is strong (uniform) mixing with size
—a (—¢), Theorem 14.1 in Davidson (1994) shows that the process {z7} is also strong (uniform)

mixing with the same size. Similar results also hold for the mixingale case.

C.3. Processes admitting a VMA (co) decomposition. Assume x; = (Z'Lt,f]}'Q’t)/ is a second

order stationary process that admits the M A(oo) decomposition

T [ Oj€1—5 >
Ty = = Z = Z @jﬁt—j, (20)
=0

T j=0 \ 02 €2; ;

where E[e:|Fei—1] = 0, Eles€}|Fer1] = By, with [S4]; = 02 and [E]i; = pr, and Fy =
O'{Et,et_l,...}.

We may also write

o0
Tt = E 0; j€it—; 1=1,2,
j=0

which means that the marginal tail bounds on Lemmata 9 and 10 hold. It also follows that each
T 1S a mixingale process with (. = Z;’ir |6 ;| (see, e.g., Davidson 1994, Example 16.2) , which

means that the dependence term may also be bounded as in part 1 of Lemma 11.

Lemma 12. Let {z:} satisfy (20), with 3322 [0 5| < G r. Then, fori,j € {1,2},t=1,....T, and

constants ¢; j(t) < oo,

(1) [E[E(ziai| Fei—r) — E(@xy)]]; ; < ¢ij(t)GirGir,
(2) [E|E(zix)_,|Fei—r) — E(mtmg—k)ﬂi’j < ¢, (1) CirCisr—ks

(3) If E (€:*F) < cijop, then E[|zyzji||I(|zazj > Cr)] < | /ci72pcj,2p/0§_1.
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(4) IE [exp(ulea]) — 1 = uleql| Feio1] < f()o? then E [zl |11z > Or)] < byexp (~baCyl*),

for positive constants by and bs.

Proof. (1) Write ¢y = v + wy where vy = E;;é Oj€e_; and wy = E]Oir ©,€;;. Expand the

product z;x; = vv] + viw; + wv; + wyw;. The last term is measurable with respect to Fe s,

E[v¢|Fet—r] = 0, and the first term is such that E(v,vy|Fet—r) = 27, ©;%; ;0 = E(vv}). Then

E(xzix;| Fei—r) — E(xix)) = wiw) — E(w,wy)). It follows that

oo 00
E ‘wtwé — E[wtwm = E Z Z @Z (et_iet_j — Eet_iet_j) ®j
1=r j=r
oo 00
< D D IOiEler i€ — Eerier;]16;].
i=r j=r

Therefore,

[E |wew}, — Elwawy][li; < cij(t) > 105kl > 105kl < cij(t)imGir
k=r k=r

where CLJ’(ZL/) = MaXy s>r E ‘Ei,t—rej,t—s — E(ei,t—rej,t—s)’-

(2) Write ;) = vi(k) + wi(k) where vi(k) = Z;;}C O; re—j and wy(k) =322 O;_rerj. Tt

follows that for all r > k, wy(k) is F¢;—,-measurable. Applying the same rational used in the first

part of the proof, we find that for » > k

Elxix;_ | Fe ] — Elziz;_g] = wi(0)w (k) — Efw;(0)w}(k)].

Moreover,

E |w(0)w, (k) — Elw(0)w;(k)]|| < ¢(t)CirCir—r

where CLJ’(ZL/) = MaXy s>r E ‘Ei,t—rej,t—s — E(ei,t—rej,t—s)’-

(3) Follows after Lemma 10 and the Cauchy-Schwarz inequality.
(4) Write

1/2
Ellay|I(lzyl > ¢)] < (Elal'Ely|)/* [P(le] > ¢/2) + P(ly| > /)]

Now, apply this inequality with © = x;; and y = z;, and use the same arguments of Lemma 9 Part

(2). Finally, combine the exponential bounds. O
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