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ESTIMATING HIGH-DIMENSIONAL TIME SERIES MODELS

MARCELO C. MEDEIROS AND EDUARDO F. MENDES

ABSTRACT. We study the asymptotic properties of the Adaptive LASSEa(aASSO) in sparse,
high-dimensional, linear time-series models. We assuntie the number of covariates in the
model and candidate variables can increase with the nunflodrservations and the number of
candidate variables is, possibly, larger than the numbebsérvations. We show the adaLASSO
consistently chooses the relevant variables as the nurfibbservations increases (model selec-
tion consistency), and has the oracle property, even wteeertors are non-Gaussian and con-
ditionally heteroskedastic. A simulation study shows thethmod performs well in very general
settings. Finally, we consider two applications: in thetfinse the goal is to forecast quarterly
US inflation one-step ahead, and in the second we are irgdrsthe excess return of the S&P
500 index. The method used outperforms the usual benchnmettks literature.

Keywords: sparse models, shrinkage, LASSO, adaLASSO ,deries, forecasting.

1. INTRODUCTION

We consider variable selection and parameter estimatisimgie-equation linear time-series

models in high dimension and when the errors are possiblyGaumssian and conditionally

heteroskedastic. We focus on the case of penalized |leastesgestimation.

Traditionally, one chooses the set of explanatory vargbing an information criterium or

some sequential testing procedure. Although these appesagork well in small dimensions,

the total number of models to evaluate gets exponentiatyelas the number of candidate vari-

ables increases. Moreover, if the number of covariatesgetahan the number of observations,

sequential testing fails to recover the true model strigctur
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A successful approach to estimate models in large dimesssoto useshrinkagemethods.
The idea is teshrink to zerothe irrelevant parameters. Therefore, under some conditio
is possible to handle more variables than observations. ignstirinkage methods, the Least
Absolute Shrinkage and Selection Operator (LASSO), intoed by Tibshirani (1996), and the
adaptive LASSO (adaLASSO), proposed by Zou (2006), havawed particular attention. It
has been shown that the LASSO can handle more variables tisamations and the most par-
simonious subset of relevant variables can be selectedr(Efral. 2004, Zhao and Yu 2006,
Meinshausen and Yu 2009). As noted in Zhao and Yu (2006) and(Z@06), for attaining
model selection consistency, the LASSO requires a rathengtcondition denoted “Irrepre-
sentable Condition” and does not have the oracle propetheisense of Fan and Li (2001): the
method both selects the correct subset of non-negligilslables and the estimates of non-zero
parameters have the same asymptotic distribution as theapydeast squares (OLS) estima-
tor in a regression including only the relevant variablesu Z2006) proposes the adaLASSO
to amend these deficiencies. In their original framework, namber of candidate variables
is smaller than the sample size, the number of relevant iadearis fixed, and the results are
derived for a fixed design regression with independent aadtidally distributed (iid) errors.
Huang et al. (2008) extend these results to a high-dimeabkitamework with iid errors.

In this paper we demonstrate that the adaLASSO can be appli@te-series models in a
framework more general than the one currently available. mkin contribution is to allow the
errors to be non-Gaussian, conditionally heteroskedastd possibly time-dependent. This is
of great importance when financial or macroeconomic datz@mnsidered. We also allow the
number of variables (candidate and relevant ones) to iseraa a function of the sample size.
Furthermore, the number of candidate covariates can be maugér than the number of ob-
servations. We show that the adaLASSO asymptotically afethse most parsimonious model

and enjoys the oracle property. These findings allow the A88O to be applied in general
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time-series setup, which is of interest in financial and ecogtric modeling. Our theoretical
results are illustrated in a simulation experiment as w&linatwo economic applications. In
the first one we consider quarterly US inflation forecastismpng many predictors and in the
second one we apply the adaLASSO to estimate predictivessgns for the S&P500 equity
premium. The models estimated by the adaLASSO proceduneedkd forecasts significantly
superior than traditional benchmarks.

Our results render a number of possible applications. Bstaty macroeconomic variables
with many predictors as in Stock and Watson (2002a,b) ané&B&iNg (2008) is one of them.
The construction of predictive regressions for financigimes can be also considered (Rapach
et al. 2010). In this case, handling non-Gaussian conditibateroskedastic errors is of great
importance. Other applications include the selection cfdfiss in approximate factor models, as
in Bai and Ng (2002); variable selection in non-linear med&ech et al. 2001); forecast com-
bination of many forecasters (Issler and Lima 2009). Hnatistrumental variable estimation
in a data rich environment is also a potential applicatiee; Belloni et al. (2010).

Most advances in the LASSO literature are valid only in thessical iid framework, often
with fixed design. Recently, a large effort has been giverlapal ASSO-based methods to the
time-series case; see, for example, Wang et al. (2007) ancttHHd. (2008). All these authors
consider only the case where the number of candidate vasalye smaller than the sample
size (I'). Nardi and Rinaldo (2011) consider the estimation of higihensional autoregressive
(AR) models. However, their work differs from ours in manyaeditions. Firstly, they assume
an AR model that does not include exogenous variables. Setogy require a much stronger
set of assumptions that we do and some of them may be violatetime-series context. More-
over, they assume the error term to be independent and rgrdistfibuted. Song and Bickel
(2011) and Kock and Callot (2012) studied the estimationesfter AR (VAR) models. The
former paper considered LASSO and group-LASSO for estmga#ARs where the number of
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candidate variables increases with the sample size. Howtxenumber of relevant variables
is fixed. Kock and Callot (2012) relax this assumption butiassthe errors to be independent
and normally distributed. Although, our model is nestedhi@it VAR specification, we show
the oracle property with a more general error term. Fin&lbgk (2012) considered adaLASSO
estimation in stationary and non-stationary AR models wiftxed number of variables.

The paper is organized as follows. In Section 2 we introdbeenbtation and assumptions.
In Section 3 we present the main results. In Section 4 we ptegaulation results. In Section
5 the real applications are presented. Finally, Sectiom@lodes. The proofs are postponed to

the appendix.

2. DEFINITION, NOTATION AND ASSUMPTIONS

Consider the following linear model
ye = o + 0'zy + g, (1)

wherex; = (zy4,...,2.,.¢) IS @ Weak-stationary high-dimensiona}-vector of covariates,
possibly containing lags af;, andu; is a zero-mean weak-stationary error term uncorrelated
with ;. We are interested in estimating the parameter vegtathenn is large, possibly
larger than the sample siZ& but only a handful of elements éf are non-zerof is sparse).
We assume, without loss of generality, thatis zero. Model (1) encompasses many linear
specifications, such as sparse AR and AR distributed lag (3Ri@bdels, or simple predictive
regressions. Equation (1) may also be a reduced-form fassiegie estimation in a two-stage
least squares environment. Another possibility is to aberst, as a set of individual forecasts,

in which equation (1) represents a forecast combinatiohlpro.
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The adaLASSO estimator of tie x 1) parameter vectd is given by

p
52argmeinHY—X0||%+)\lej\«9j|, 2)
=
whereY = (yi,...,yr), X is the(T" x nr) data matrix,w; = |§j\*7, T >0, and@; is an
initial parameter estimate. When = 1, V j, (2) becomes the usual LASSO.

The number of candidate covariatesiiss ny, the number of non-zero parameters s ¢r
and the number of zeroessis = my. The omission of the dependence Bns just aesthetic.
For anyt, z; = [x,(1), x,(2)"] and X = [X (1), X (2)], whereX (1) is the(T" x ¢) partition
with the relevant variables anX (2) is the (7' x m) partition with the irrelevant ones. Write
0 = [6(1),0(2)) wheref(1) € R?andB8(2) € R™. 0, is thetrue parameter, wher, =
[00(1),0, with B4(1) # 0.

The minimization problem in (2) is equivalent to a consteairtoncave minimization prob-
lem and necessary and (almost) sufficient conditions fastertce of a solution can be derived
from the Karush-Kuhn-Tucker conditions (Zhao and Yu 200&y 2006). The necessary con-
dition for the consistency when eaalhy = 1 is denoted the Irrepresentable Condition which
is known to be easily violated in the presence of highly datesl covariates (Zhao and Yu
2006, Meinshausen and Yu 2009). The adaLASSO overcomesrédpdsentable Condition,
by using weighted.,-penalty where the weights diverge for the zero parametaisda not
diverge for the non-zero parameter. Zou (2006) suggesgubminverse of the ordinary least
squares estimator of the parameters as the weight. Howsweln, estimator is not available
when the number of candidate variables is larger than thebeuwf observations. Ridge re-
gression can be used as a initial estimator in this case. dHefsal. (2008) introduce the notion
of zero-consistengstimator, i.e., there exists an estimator that is arlligramall for the zero
parameters a$' increases, and converge to a non-zero constant for the eronparameters.

This assumption is weaker than the existence of the OLS a&iimrbut still too strong in a time
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series framework. In this paper we use a weaker conditiomptee\Weighted Irrepresentable
Condition(WIC) (van der Geer and Buhlmann 2011).

We make the following assumption about the procegses, {v:}, and{u;}:

Assumption (DGP). Write z; = (v, ), u;)'.
(1) {z:} is a zero-mean weak-stationary process.

(3) For some finite, positive constaftand somel > 1,

1 T
max;—y,.. K Wi Yo Ty < ca

Assumptions DGP(1) and DGP(2) are classical conditionbeénthe time series regression
framework. Assumption DGP(3) is satisfied by a large numlbeistinct data generating pro-
cesses. For instance, defing = w,xj; for j = 1,...,n and verify thatE[v;,] = 0. If each
{v;:} is a martingale difference sequence, one may apply the BidkhDavis-Gundy inequal-
ity (see, e.g., Davidson 1994, thm. 15.18) to derive the uppend

2d

for some constant. A similar upper bound can be derived if every procéss}, for j =
1,...,n, satisfy the conditions of a Marcinkiewicz-Zygmund typedgpuality for dependent
processes (see, e.g., Dedecker et al. 2007, sec. 4.3.8)lyFAssumption DGP(3) allows for
conditional heteroskedasticity such, as for example, GAR@dels.

Next assumption controls the lower bound of the non-zerarpaters.

Assumption (PARAM). The next conditions hold jointly.

(1) The true parameter vectdl, is an element of an open sub$gt € R” that contains

the elemen®.
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(2) There exists a constaét such thatmin, <<, |6o;| > 0./q.

We assume that the smallest value of a non-zero parametspsmtional tog, such that it
can be as close thasq — oo. This requirement is milder than the beta-min conditionhia t
literature in which, forallj = 1,...,¢q, 0y; > 0. > 0 for a fixedd, independent of".

~

Wl’lteﬁ = ‘X/TX, ﬁll - w, 922 = w andﬁgl - §;2 - w Set
So = sgn(@o(l)), Wherest =1if eoj > 0, S5 = 0 if (90]' =0, andSOj = —1if (90]' < 0. Let

W (1) = diag(ws, . .., w,).

Assumption (WIC). For everyj = ¢+ 1,...,n, and somé < ¢ < (1 A 1), there exists a

sufficiently small > 0 satisfying,

P ([Tf/Q\ﬁglfAanW(l)so\] < Ty, — n) 51 as t— oo, (3)

J

where[]; refers to thej* element of the vector inside brackets.

In most settings it is not straightforward to show whether WIC is satisfied. However, a

simpler set of sufficient conditions can be easily derived:

Proposition 1. Denoted, the smallest eigenvalue of .1, o, the sample standard deviation of
xj, for j = 1,...,n, andp;; the sample correlation betweern, andz;,, fori =1,...,¢ and

j=q+1,....n.If

S1. P(S* <cq ) = 0asT — oc;
S2. P(maxl-zl

.....

7777
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~ ~—1
P <|:T_§/2|921911 W(].)S()|i| ) S T_g/ij — 7])

J

T/ 2.
> P ( min — k. > T~ 2gHH 4 77*) , (4)
Jj=q+1,...,n 0j

for some constant > c,c,/cs, andn* > max;_,1_,1/0;.

Proposition 1 guarantees that undar, S2 and.S3, the condition
T—¢/2q.,;
P ( min T s g n*) 1, (5)
J=q

implies the WIC. It can be inferred from (5) that we do not naexro-consistent estimator, but
estimates for the weights that satisfy the previous comaiti Biased estimators of the redundant
parameters can satisfy this condition if the bias is smalugih. When; increases withl’, the
weights of the redundant variables may increase accosdingl|

Following Zhao and Yu (2006), model selection consistes@guivalent t@ign consistency

Definition (Sign Consistency)We say thad is sign consistent té@ if

P <sgn(§) = sgn(@)) — 1, element-wise a§" — oc.
Next proposition (equivalent to Proposition 1 in Huang e{2008)) provides a lower bound

on the probability of the adaLASSO choosing the correct rhode

Proposition 2. Let W (1) = diag(wy,...,w,), W(2) = diag(wgy1,...,w,), and s, =
sgn(0y(1)). Then

~

P <sgn(0) = sgn(@)) > P (ArNBr),
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where

AT:{%@HX( U] < VT8 - A=l W >30|}, (62)

770
1 , 1 ~ 1
Br = {21 = XMW < A (WL, - 88 W) | (@)

whereU =Y — X6y, M(1) = Iy — X(1)(X(1)X(1))"' X (1), and the previous inequal-

ities hold element-wise.

EventsA; and B follow from the Karush-Kuhn-Tucker conditions. We can ursdand the
eventAr as “including relevant variables in the model” aid as “keeping irrelevant variables
outside the model”. It is straightforward to see that the VWl&@ys a role in equation (6b),
meaning that even when this condition is violated, the ada®@ can still capture the relevant
features of the model. It is also easy to see why the WIC is asseey condition: if WIC does

not hold, thenP(Br) — 0.

3. MAIN RESULTS

In this section we present the main results of the paper: hsmlection consistency and
oracle property. We first present a set of technical assemptontrolling the order aof and

m, the size of the weights,, .. ., w,, and the regularization parameter

Assumption (REG). Let A, m, ¢, andT — oo such that

R1. [TU972 (mY?v q)] /A — 0and\/VT — 0

R2. Denote’, the smallest eigenvalue £, .. There exists a positive, non-increasing, sequence
d,, indexed by, such thatP(d, < §,) — 0 asT — oo.

R3. There exists a positive, non-decreasing, sequénaedexed by, such that

P(max wj>l>—>OaST—>oo.

J=1,....q

R4. (¢ A) ¢1%) (VT 6,) — 0asT — oo.
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Assumption R1 controls the number of candidate variabldssasimilar to the one employed
in Huang et al. (2008) and Huang et al. (2009). Assumptiondrrols the size of the smallest
eigenvalue of the estimated sample covariance métfix We allow the size of the eigenvalues
to decrease as the number of the relevant variables insieabech is weaker than thigxed
lower bound adopted in the literature. Assumption R3 defarespper bound on the weights
wy, ..., w,. Assumption R4 controls the relationship amang,, ¢ and7'. By combining the
previous restrictions, one can see that the number of nelexaiables can increase polynomi-
ally with 7', depending o in DGP3.

For instance, take = 7''/2-¢/* and, for now, assume that (i)'/? > ¢. Assumption R1
is satisfied withm = o(T9¢/2). As in proposition 1, we satisfy R2 and R3 by takifig=
¢ ' andl, = ¢". Condition R4 is satisfied if (ii)/'*1/2*" < X and (iii) 7-/2\g"+*/? —
0. Chooser > (d + 1)/2d and note that (iii) is satisfied if/(T"/*™+¢/2) — 0. Then,
substitutingr by (d + 1)/2d, we have fort = 1/2 that the choicen = O((T/log T)%*) and
q = O((T/ log T)¥*44+1)) satisfy REG. It follows trivially that (i) and (ii) hold forray d > 1.

Theorem 1. Under assumptions DGP, PARAM, WIC and REG

P (sgn(b\) = sgn(@o)) — 1, asT — oc.

In Theorem 2 we show that the adaLASSO estimator for times@ossess the oracle prop-
erty, in a sense that converges to the same distributionea®Itl$ estimator a$ — oo. The
major relevance of this result is that one can carry out érfee about the parameters as if one

had used OLS in the model with only the relevant variableliaed.

Theorem 2(Oracle Property) Let@ols(l) denote the OLS estimator 6f(1). Then, under as-
sumptions DGP, PARAM, WIC and REG, and for sgrad@mensional vectoe with Euclidean
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norml, we have
VTd/ {5(1) - 90(1)] — VT [5015(1> - 90(1)] +0,(1).

It follows from Proposition 2 that if one takés= c,,q", §, = ¢sq~*, and replace the WIC by

(5), the previous results hold. The following corollarytetathis result.

Corollary 1. Under (5) and Assumptions DGP, PARAM]-S53, R1, and R4, the results of
Theorems 1 and 2 hold.

3.1. Selection of\ and 7. The selection of the regularization parameteand the weighting
parameterr is critical. Traditionally, one employs cross-validatiand selects the pait\, 7)
within a grid that maximizes some predictive measure. Imeetdependent framework cross-
validation is more complicated. An alternative approad thas received more attention in
recent years is to choose the p@ir 7) using information criteria, such as the Bayesian Infor-
mation Criterion (BIC). Zou et al. (2007), Wang et al. (20@Ay Zhang et al. (2010) study such
method. Zou et al. (2007) show that the number of effectivampaters is a consistent estimator
of the degrees of freedom of the model. Wang et al. (2007) ghairthis method works in the
AR-LASSO framework. Finally, Zhang et al. (2010) study a engeneral criterion (General-
ized Information Criterion) and show that the BIC is cormnétin selecting the regularization
parameter, but not asymptotically loss-efficient. Althbwge do not derive theoretical results
for consistency of such methods, we conjecture that the gaoperties derived in Zhang et al.
(2010) should hold in our framework. Furthermore, the métperforms remarkably well in

Monte Carlo simulations presented in the next section.
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4, SMULATION

Consider the following data generating process (DGP):

Y = Sy + B'ei 1 (1) + uy, 7)

U = himst, e t*(5) (8)

hy =5 x 107* + 0.9k, 1 + 0.05u , (9)

T, = (L)) fi+ e, e S tH(5),and (10)
x;-1(2)

fo=08f_1+v;, v St (5), (11)

where¢ = 0.7 and3 is a vector of ones. The dependentfollows an autoregressive dis-
tributed lag (ARDL) model with non-Gaussian GARCH errarg(1) isa(q — 1) x 1 vector of
included (relevant) variables. The vector = [z,(1),z;(2)') € R™~Y, hasn — ¢ irrelevant
variables and follows a factor model with a single factore Tactor itself follows a first-order
AR process. All the errors are serially uncorrelated @addstributed with 5 degrees of freedom.
Furthermoreg,, e;, v, are mutually not correlated*(5) denotes an standardizedlistribution
with 5 degrees of freedom, such that all the errors have zeanrand unit variance. The vector
of candidate variables ®; = (y;_1, x}_;)’. Note that this is a very adverse setting as the errors
are not normal and are conditionally heteroskedastic.heantore, the candidate variables are
all highly correlated, Cofr;, z;,) = 0.83, Vi # j.

We simulateT” = 50, 100, 300, 500 observations of DGP (7)—(11) for different combina-
tions of candidater{) and relevant() variables. We consider = 100, 300, 1000 andgq =
5,10, 15, 25. The models are estimated by the adaLASSO method and theswaily andr are
selected by the BIC.
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We start by analyzing the properties of the estimators fergarametery in (7). Figures
1-4 illustrates the distribution of the bias for the oraaid adaLASSO estimators for different
sample sizes. Several facts emerge from the plots. Filstifh bias and variance are very

low. ForT = 50 andg = 5, the distribution of the adaLASSO estimator is very closéh®
distribution of the oracle. For the other valuegpthe adaLASSO distribution presents fat-tails
cause mainly by some outliers in the estimation. For 100, the adaLASSO distribution is
closer to the oracle one when= 5 or ¢ = 10. However, there still outliers. WheéR = 300 the
number of outliers reduces and the adaLASSO distributids ¢gleser to the oracle, specially
for ¢ = 5 or ¢ = 10. Forq = 15 or ¢ = 20, the bias is or orde®(1073). The same pattern is
observed whefl” = 500.

Table 1 shows the average absolute bias and the average qeaedaerror (MSE) for the
adaLASSO estimator over the Monte Carlo simulations anddnelidate variables, i.e.,

1 1000 N n—1 N
Bias — ’ _ ’ i—1)
s 1000nz<¢ 07 +Z b ) and

j:l 1=

1000

MSE = 103077,2 [(5_0‘7>2+§ @' N 1)1 '

J=1

It is clear that both variance and bias are very low. This [#ared, as expected, by the large
number of zero estimates. Finally, the bias and MSE decwiiséhe sample size.

Table 2 presents model selection results. Panel (a) pseentraction of replications where
the correct model has been selected, i.e., all the relewaatbles included and all the irrelevant
regressors excluded from the final model (correct sparsitiem). It is clear the performance
of the adaLASSO improves with the sample size and gets washeanumber of relevant
variables increases. Furthermore, there is a slightlyrideégion as the number of candidate
regressors increases. Panel (b) shows the fraction otatjoins where the relevant variables

are all included. Fof" = 300 andT" = 500, the true model is included almost every time. For
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smaller sample sizes the performance decreases dranyatisalincreases. Panel (c) presents
the fraction of relevant variables included and Panel (dj\&the fraction of irrelevant variables
excluded. It is clear that the fraction of included releveariables is extremely high, as well as
the fraction of excluded irrelevant regressors. Panelr@ents the average number of included
variables. Finally, Panel (f) shows the average number dtided irrelevant regressors. As
sample size increases, the performance of the adaLASS@wesar

Table 3 shows the MSE for one-step-ahead out-of-sampledsts for both the adaLASSO
and oracle models. We consider a total of 100 out-of-santpdeiwations. As expected, for low
values ofq, the adaLASSO has a similar performance than the oracleq Foil0 or ¢ = 15,

the results are reasonable only Br= 300 or 7' = 500. The performance of the adaLASSO

also improves as the sample size increases.

Distribution of the AR coefficient estimates (bias): T=50, n=100, q=5 Distribution of the AR coefficient estimates (bias): T=50, n=300, q=5 Distribution of the AR coefficient estimates (bias): T=50, n=1000, q=5
400
300 300 300
200 200 200
100 100 100
o et 0 0
-8 -6 -4 -2 0 2 4 6 8 -0.01 ~-0.005 0 0.005 0.01 -0.1 -0.05 0 0.05
s
X 10
Distribution of the AR coefficient estimates (bias): T=50, n=100, =10 Distribution of the AR coefficient estimates (bias): T=50, =300, g=10  Distribution of the AR coefficient estimates (bias): T=50, n=1000, 4=10
800 800 800
600 | 600 600
400 400 400
200 200 200
0 0 0
-0.05 o 0.05 015 0l 2005 0 0.05 0.1 015 0L 2005 0 0.05 0.1
Distribution of the AR coefficient estimates (bias): T=50, n=100, g=15 Distribution of the AR coefficient estimates (bias): T=50, n=300, g=15 Distribution of the AR coefficient estimates (bias): T=50, n=1000, g=15
1000 1000 1000
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0 0 0
01 0,05 o 0.05 0.1 015 01 005 0 0.05 0.1 02 015 -0l 005 ©0 005 01 015
Distribution of the AR coefficient estimates (bias): T=50, n=100, q=20 Distribution of the AR coefficient estimates (bias): T=50, n=300, G=20 Distribution of the AR coefficient estimates (bias): T=50, n=1000, g=20
1500 400 1500
1000 300 1000
200
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0 0 0
01 0.05 o 0.05 0.1 015 oL 0.05 o 0.05 0.1 02 015 01 005 O 005 01 015

FIGURE 1. Distribution of the bias of the adaLASSO and Oracle edtnsafor
the parametes over 1000 Monte Carlo replications. Different combinasiar
candidate and relevant variables. The sample size equalsssdvations.
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Distribution of the AR coefficient estimates (bias): T=100, =100, g=5 Distribution of the AR coefficient estimates (bias): T=100, n=300, g=5 Distribution of the AR coefficient estimates (bias): T=100, n=1000, ¢=5
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3 s 3
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Distribution of the AR coefficient estimates (bias): T=100, n=100, =10 Distribution of the AR coefficient estimates (bias): T=100, =300, g=10 Distribution of the AR coefficient estimates (bias): T=100, n=1000, q=10
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FIGURE 2. Distribution of the bias of the adaLASSO and Oracle estnssfor
the parametep over 1000 Monte Carlo replications. Different combinatiarf
candidate and relevant variables. The sample size equalstis@rvations.
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FIGURE 3. Distribution of the bias of the adaLASSO and Oracle edtnsafor
the parametep over 1000 Monte Carlo replications. Different combinatiarf
candidate and relevant variables. The sample size equaist&@rvations.
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FIGURE 4. Distribution of the bias of the adaLASSO and Oracle estnssfor
the parametep over 1000 Monte Carlo replications. Different combinatiarf
candidate and relevant variables. The sample size equalstiz@rvations.

TABLE 1. PARAMETER ESTIMATES: DESCRIPTIVE STATISTICS.

The table reports for each different sample size, the aeeahgolute bias, Panel (a), and the average mean squared erro
(MSE), Panel (b), over all parameter estimates and MonteGanulations.n is the number of candidate variables whereas
q is the number of relevant regressors.

T =50 T =100 T = 300 T = 500

g\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

Panel (a): Bias
5 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00m00 0.000
10 0.020 0.025 0.025 0.001 0.001 0.001 0.001 0.000 0.000 10.00000 0.000
15 0.121 0.065 0.065 0.008 0.012 0.012 0.002 0.001 0.001 20.0001 0.001
20 0.213 0.097 0.097 0.049 0.051 0.051 0.005 0.003 0.003 40.0002 0.002

Panel (b): MSE
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.000
10 0.012 0.017 0.017 0.000 0.000 0.000 0.000 0.000 0.000 00.0000 0.000
15 0.098 0.060 0.060 0.002 0.006 0.006 0.000 0.000 0.000 00.0000 0.000
20 0.218 0.111 0.111 0.025 0.035 0.035 0.000 0.000 0.000 00.0000 0.000

5. APPLICATIONS

5.1. Inflation Forecasting. We consider quarterly inflation forecasting by many premst

The dataset was obtained from the Federal Reserve Bank @idelghia and is part of the
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TABLE 2. MODEL SELECTION: DESCRIPTIVE STATISTICS.

17

The table reports for each different sample size, sevemtibits concerning model selection. Panel (a) preserts th
fraction of replications where the correct model has beéscts, i.e., all the relevant variables included and &l th
irrelevant regressors excluded from the final model. Pdnjesliows the fraction of replications where the relevant
variables are all included. Panel (c) presents the fractfaalevant variables included. Panel (d) shows the fraatio
irrelevant variables excluded. Panel (e) presents thegeatumber of included variables. Finally, Panel (f) shdves t
average number of included irrelevant regressors.

T =50 T =100 T = 300 T =500
g\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000
Panel (a): Correct Sparsity Pattern
5 0.860 0.750 0.759 1 1 1 1 1 1 1 1 1
10 0.015 0.000 0.002 0.231 0.060 0.060 0.962 0.877 0.877 00.99.966 0.966
15 0 0 0 0.009 0 0 0.623 0.239 0.239 0.914 0.784 0.784
20 0 0 0 0 0 0 0.172 0.011 0.011 0.640 0.254 0.254
Panel (b): True Model Included
5 1 1 0.985 1 1 1 1 1 1 1 1 1
10 0.754 0.246 0.017 1 0.995 0.968 1 1 1 1 1 1
15 0.046 0 0 0.927 0.648 0.122 1 1 1 1 1 1
20 0 0 0.447 0.048 0 1 1 1 1 1 1
Panel (c): Fraction of Relevant Variables Included

5 1 1 1 1 1 1 1 1 1 1 1 1

10 0.944 0.744 0.744 1 0.999 0.999 1 1 1 1 1 1
15 0.691 0431 0431 0.992 0.942 0.942 1 1 1 1 1 1
20 0.524 0.300 0.300 0.929 0.730 0.730 1 1 1 1 1 1

Panel (d): Fraction of Irrelevant Excluded
5 0.998 0.998 0.998 1 1 1 1 1 1 1 1 1
10 0.928 0.956 0.956 0.980 0.985 0.985 0.999 0.999 0.999 90.99.999 0.999
15 0.884 0.948 0.948 0.924 0.948 0.948 0.994 0.994 0.994 90.99.999  0.999
20 0.873 0945 0.944 0.871 0.926 0.926 0.975 0.978 0.978 40.99.995 0.995
Panel (e): Number of Included Variables
5 5.192 5.476 5.476 5.002 5.008 5.008 5 5 5 5 5 5
10 15.920 20.086 20.086 11.811 14.276 14.276 10.041 10.129129 10.010 10.034 10.034
15 20.237 21.271 21.271 21.359 29.087 29.087 15.510 16.630630 15.086 15.236 15.236
20 20.619 21.426 21.426 28.884 35.417 35.417 22.031 26.14614@ 20.468 21.493 21.493
Panel (f): Fraction of Included Irrelevant Variables

5 0.161 0.454 0.454 0.002 0.008 0.008 0 0 0 0 0 0
10 5.774 12.181 12.181 1598 4.150 4.150 0.037 0.121 0.121 0090. 0.033 0.033
15 9.307 14.532 14.532 6.103 14.708 14.708 0.481 1.601 1.6010.079 0.231 0.231
20 10.143 15.429 15.429 10.298 20.815 20.815 2.031 6.146 466.1 0.468 1.493 1.493

database called “Real-Time Data Set for Macroeconomistsith consists of vintages of major

macroeconomic variables. For the present work, we usedtbalyintage available at the third
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TABLE 3. FORECASTING DESCRIPTIVE STATISTICS.

The table reports for each different sample size, the oge-shead mean squared error (MSE) for the
adaLASSO, Panel(a), and the Oracle, Panel (b), estimatdssthe number of candidate variables whergas
is the number of relevant regressors.

T =50 T =100 T =300 T =500

g\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

MSE - adaLASSO
5 0.011 0.011 0.068 0.010 0.010 0.010 0.010 0.010 0.010 0.m010 0.010
10 1.333 6.233 12.510 0.012 0.028 0.163 0.010 0.011 0.011 100.@.010 0.011
15 11.516 22.391 31.890 0.237 1.988 9.843 0.013 0.015 0.024.0130 0.013 0.129
20 26.400 43.252 55.786 2.799 11.864 26.792 0.028 0.049 90.150.023 0.027 1.227

MSE - Oracle
5 0.011 0.011 o0.011 0.010 0.010 ©0.010 0.010 0.010 o0.010 0.@010 0.010
10 0.012 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 00.@010 0.010
15 0.014 0.014 0.014 0.011 0.012 0.011 0.010 0.011 0.010 00.@m010 0.010
20 0.017 0.017 0.017 0.012 0.012 0.012 0.011 0.010 0.010 00.m010 0.010

quarter of 2011, which contains data from the first quartet @9 and ends in the second
quarter of 2011, totalling 210 observations. The dependanable corresponds to the GDP
price index and can be expressed as a ratio of nominal outgutesl output. There are a total

of 69 variables plus one lag of inflation. The predictive esgion is then written as

Tl = Qo + P17 + By + Ugyq,

wherer, is the quarterly inflation at timeandx; is the vector of predictors.

All variables have been pretested for unit-roots and fiffei@nced whenever necessary. We
consider three forecasting periods starting, respegtinel 970, 1985 and 2000. An expanding
window scheme is used to estimate the models recursivelycaocompute the one-step-ahead
forecasts. We compare the adaLASSO with three differentheark alternatives: a model
with all the regressors included, a simple first-order AR glpdnd a factor model based on
the first two principal components of the predictors. Theiltssare shown in Table 4. It is

clear from the table that both the LASSO and the adaLASSO teate far superior than
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TABLE 4. INFLATION FORECASTING RESULTS. OUT-OF-SAMPLE R? (x100).

The table reports the out-of-sampk¥ multiplied by 100. Three different
forecasting periods are considered. The first one startarinaly 1970, the
second one in January 1985, and the last one starts in Ja2Q@0y

1970 1985 2000

Benchmark Models

All Regressors 25,29 19.47 29.29
AR(1) 79.54 78.09 78.60
AR(1) + PCA (two components) 76.62 69.36  73.75

LASSO and adaLASSO
LASSO (BIC) 86.92 88.01 90.42
adalLASSO (BIC) 85.87 88.01 90.42

the benchmark for all the three periods considered. Furtbe, the LASSO and adaLASSO

results are almost identical.

5.2. Equity Premium Forecasting. Excess returns prediction has attracted academics and
practitioners for many decades. In a recent paper, Goyalaich (2008) argued that none of
the conventional predictor variables proposed in theditee seems capable of systematically
predicting stock returns out-of-sample. Their empiricadence suggests that most models
were unstable or spurious, and most models are no longefisag even in-sample. However,
Campbell and Thompson (2008), on the other hand, showedrthay predictive regressions
outperform the historical average once weak restrictiorsimposed on the signs of coeffi-
cients and return forecasts. The out-of-sample explayaiivantage over the historical mean
is small and usually statistically not significant, but nihveéess economically meaningful for
mean-variance investors. Three recent papers corrobbiatesults in Campbell and Thomp-
son (2008). Rapach et al. (2010) consider combining indafidorecasts in order to attenuate
the effects of model uncertainty and instability. They showansistently over time, that sim-
ple model combination delivers statistically and econaihycsignificant out-of-sample gains

relative to the historical average. In a similar directibeg et al. (2008) proposed bagging
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estimators to reduce model instability and showed sigmficaprovements over the historical
mean. Finally, Ferreira and Santa-Clara (2011) proposet#sting separately the three com-
ponents of stock market returns: the dividend-price raaynings growth, and price-earnings
ratio growth.

Using the same dataset as in Goyal and Welch (2008) and Rapath(2010) we apply the

adaLASSO to the following monthly predictive regression:
7‘2}1 = Tip1 — Tfpp1 = Qo + 1) + 0'x;, + Upy1, (12)

wherer; represents the market returns in excess to the risk-fre¢a), =, is a set of lagged
predictors, andy; is the error term. Stock returns are measured as contingoasipounded
returns on the S&P 500 index, including dividends, and trea3ury bill rate is used to compute
the equity premium. With respect to the economic variabdesiuo predict the equity premium,
we consider, in addition tg}_,, the 14 variables from Goyal and Welch (2008): Dividend:@ri
ratio (log); dividend yield (log); earnings-price ratimgj); dividend-payout ratio (log); stock
variance; book-to-market ratio; net equity expansiorgstey bill rate; long-term yield; long-
term return; term spread; default yield spread; defaultrrespread; and inflation.

We consider three different out-of-sample forecast evelogeriods: (i) a “long” out-of-
sample period covering January 1965 to December 2008; pérend covering the last thirty
years of the full sample, January 1976 to December 2008;iana (short” forecasting period
starting in January 2000. The dataset starts in January. TR4& out-of-samplé??s for one-
step-ahead forecasts are shown in Table 5. The results aressive. The LASSO and the

adalLASSO estimators are far superior that all the competitosample periods considered.
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TABLE 5. EQUITY PREMIUM FORECASTING RESULTS. OUT-OF-SAMPLE R?
(x100).

The table reports the out-of-sample multiplied by 100. Three different
forecasting periods are considered. The first one startarinaly 1965, the
second one in January 1976, and the last one starts in Ja2Q@0y

1965 1976 2000

Unrestricted Individual Predictors

AR(1) -0.16 -0.10 0.85
All Regressors -0.07 -0.81 -1.45
Dividend Price Ratio 0.31 -0.82 3.80
Dividend Yield 0.40 -0.81 4.14
Earning Price Ratio 0.53 0.39 4.33
Dividend Payout Ratio -0.51 -1.09 -0.53
Stock Variance -0.19 0.39 4.76
Book to Market -0.82 -0.71 1.30
Net Equity Expansion -0.82 -0.66 -3.20
T-Bill Rate -0.73 -2.86 -3.03
Long Term Yield -0.76 -2.05 -0.87
Long Term Spread 0.23 -0.81  -0.93
Term Spread -0.96 -259 -3.38
Default Yield Spread -0.66 -0.66 -0.96
Default Return Spread -0.20 -0.03 1.02
Inflation 0.72 -0.09  -3.97
Forecast Combination

Mean 1.31 0.54 1.07
Median 0.92 0.11 0.24
Trimmed Mean 1.31 0.54 1.07
LASSO and AdaLASSO

LASSO 7.36 6.95 13.11
adaLASSO 7.36 6.95 13.11

6. CONCLUSION

We studied the asymptotic properties of the adaLASSO estinrasparse, high-dimensional,
linear time series model when both the number of covariatélse model and candidate vari-

ables can increase with the sample size. Furthermore, tmderuof candidate predictors is
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possibly larger than the number of observations. The resulhis paper extend the literature
by providing conditions under which the adaLASSO corres#iects the relevant features and
has the oracle property in a time-series framework with § general error term. A key in-
gredient is the WIC, which is necessary for sign consisteridiie adaLASSO. As a technical
by-product some conditions in this paper are improvementthe frequently adopted in the
shrinkage literature.

The main results presented in this paper are based on thapissa that only a few number
of candidate variables are in fact relevant to explain theadyics of the dependent variable
(sparsity). This a key difference from the factor modelsriture. The estimation of factors
relies on the key assumption that the loading matrix is deirse almost all variables are im-
portant for the factor determination. When the loading irasr sparse, the usual asymptotic
results for factor estimation do not hold anymore. Themefpenalized estimation based on the
adalLLASSO and similar methods are of extreme importance.ederwhen the structure of the

model is dense, than factor models would probably be a beteEmnative.
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APPENDIX A. PROOFS

Proof of Proposition 1.The proof consists in showing th%ﬁglﬁl_;W(l)Sd < ojc, gt
J

Write [\ﬁglﬁjfwu)so\] — [T71X X (1)Q,, W(1)so| and©y, = EDE', whereE is a

J
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matrix of eigenvectors anfd a diagonal matrix of eigenvalues. By S1, we have
q
T XX ()@ W ()50l < 52 Ipylown
=1
Combining the previous equation with S2 and S3, we have
995 i |pA~‘0‘w- < U.%quwr.
s YRR g

i=1

The result follows by taking > c,c,/cs. O

Proof of Proposition 2.The proof follows as in Proposition 1 of Zhao and Yu (2006). [

Proof of Theorem 1Proposition 2 provides a lower bound on the probability déstng the

correct model:
P <sgn(§> - sgn(00)> > P(ArNBr) > 1— P(AS) — P(BS),

where A5, and BS. are the complements od; and B respectively. Therefore, to show sign
consistency we have to show thatA5) — 0 and P(B5) — 0 asT — oo.

Note that, under WIC,

1 An
c —1/2 y/ -
B C {jlﬁ??f,n TPX M(1)U| > 2T(1§)/2}.
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Denotef(1) = [X (1)’ X (1)]" X(1)'Y the ordinary least squares estimatodgf1). We
can bound the element on the right hand side of the inequadityeen brackets by
TP M(W)U| < |T72XU|+ T2 X P(1)U|
— |T2X U + ‘TI/QX;X(l) [9(1) . 00(1)] ’
< [TEXU| 4 (T XX (1) - B [TUXX ()]} T2 [6(1) - 6(1)] |
+ ’IE XX ()] TV [8(1) - 60(1)] )

= B, + By + DBs.
Set,uij = E(ZEZ‘tht). Note that,

By = {77 XX (1)~ E [T XX ()]} T2 [8(1) — 60(1)]|

q T
Z (Tl ijtxit - Mij) Tl/Q(éi - 90i)

i=1 t=1
q

< op(1) Z
i=1

where the last line follows from the law of large numbersEas;;z;;) < oo, for every pair

T [éz - 902‘]

)

(i,7) (DGP2). Choos@, > max; ; |u;;|, then

By = B [T XX (1)] TV2(0: - 60)

q
> 1 TV?(0; = Oo:)

=1

q
< p2 Z ‘TI/Q(@‘ — O;)| -
i—1
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Therefore, by combining these bounds,
q ~
By + By < |2 + 0p(1)] Z ’Tl/Q(ei — boi)

=1

< [z + 0,(1)] sup T2 |’ [6(1) - 6o(1)]

o’'a=q

Y

which does notdepend gn= ¢+ 1,...,n. Thus,

max |72 X" M(1)U| < max By + [ + 0,(1)] sup T/
J J

o’'a=q

Define the set

C= {(,ug +0,(1)) sup T2

o’ a=q

o [9(1) - 00(1)} ) > Ayr—(-6)/2 /4} .

Then,
B°NCe = { max |T_1/2X;.U‘ > )\nT—(l—f)/Q/Zl} .
Jj=q+1,...,n

o [9(1) . 00(1)] ) .

25
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Now, Pr(B¢) < Pr(B°nC¢) + Pr(C). We shall bound both terms on the right hand side using

Markov's inequality (M), Cauchy-Schwarz inequality (C&hd the union bound (U).

Pr(C) = Pr (Sup T2 o’ [8(1) ~ 00(1)] | > A )

a’'a=q T(-9)/24 [:UQ + Op(l)]

)

TV20/ [9(1) - 90(1)]
N2 T—0-9)

) ) E {supa,a:q
< 16 [u2 +o(1)]

(©9) 16 [p2 + 0(1)] 1/2
< By 0zsgpqoc a X Zlvar [TY2(6; — 0y,)]

16 [H2 + 0(1)] 1/2
Seyrreg 0 s var [TV, — o)

T'=¢¢% 16 1 ~
_ )\Qq [,UQ _ZO( )] 1II<1a<X var |:T1/2(0Z o 001)]
7 <i<q

— 0,
asq andT — oo if g\/T1=9/2 — 0 (R1). For the first term on the right hand side we have

Pr(B°NncC°) < Pr (max \T‘1/2X9U| > )\nT—(l—E)/2/4)
J
© - —1/2 3/ —(1—£)/2
< 3 Pe(ITTEXGU| > T 0912 4
J=q+1
E|T2 XU
d
<4 Z NdpdT—d(1-¢)/2

Jj=q+1

(DGP3) gd¢, T d1—8)/2
< nd A\

— 0,

asm andT — oo if mY4T1=9/2/X — 0 (R1).

Combining these limits we haver(5¢) — 0.
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DenoteE D E' the eigen-decomposition 6f,,. Denotex agx 1 non-negative vector. Under

Conditions R2 and R3 we have

2 ~—
| < sup (@0, W(1)s0)

J o’ a<l

~—1
Qll W(l)So

max |:
q

(@5) 182 / 2
< sup &'Qy; ax sgW(l)%sg

oa’a<l

(R3)
< sup &/ ED*F'a x ql?

o’a<ll
(122) q lg

=5

~—1
Qll W(l)SQ

/27
a q
].§ PP
J

q

.....

Applying the same reasoning and by using the Jensen’s itigg{d we have

L)2 <E sup 7! <a’§111X(1)/U>2

a’a<l

sup a’ﬁl_fa X ¢ max (Tl/QX;-U)Q}
j:

(€9)
<E
o’a<l 1q

(R2)

R2
< 52 —1/2 31 772
< ¢, qE L‘H%?.)fq(T X.U) ]
() 1/d
< 572 max <E}T_1/2X/.U‘2d)

q P j
(DGP3) q1+1/dctli/d

= D
6‘1

Note that under DGP, PARAM, R2, R3, and R4, we have

VTO. /3 zq}

Ap C { 'Enlaxq [T—1/2 )ﬁl—llX(l)/UH > . \/T(Sq
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It then follows from the Markov’s inequality and R4 that

~—1 ,
0, X (1) UH >

) ()

P(AT) S P <'H%aX |:T_1/2 \/TQ*)
J=15 q

Proof of Theorem 2Write Q(0) = —2X'(Y — X6) + A\W s,, where

sg = (sgn(6y),...,sgn(6,))

andW = diag(wy,...,w,). By replacingf by the adaLASSO estimator and writidg =
(Y — X(1)6(1)) we have that

~ 1 ~—1 , 1 A1~ =~ A o~
VT(6(1) — 6y(1)) = ﬁﬂn X(1)U + —=0Qy, 91.0(2) + —=Q,, W (1) s,

The first term on the right hand size is, by definiti@fil’ (6,;(1) — 8,(1)). It follows from
the inequalitySupoé,oél(o/ﬁl_llW(l)so)2 < ¢1? /07 derived in the proof of Theorem 1 that the
third term on the right hand side can be bounded\y'?,/2v/T6,, which converges t6 by
R4. Under R4 and the results in Theorem 1, an application@fCuchy-Schwarz inequal-
ity shows that the second term on the right hand side,($), i.e., (vVTa/SY,, ©21,8(2))? <
T/, ) (B(2)020(2)) = 0,(1). O
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