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A NOTE ON NONLINEAR COINTEGRATION, MISSPECIFICATION AND
BIMODALITY

MARCELO C. MEDEIROS, EDUARDO MENDES, AND LES OXLEY

ABSTRACT. We derive the asymptotic distribution of the ordinary least squares estimator in a regres-

sion with cointegrated variables under misspecification and/or nonlinearity in the regressors. We show

that, under some circumstances, the order of convergence ofthe estimator changes and the asymptotic

distribution is non-standard. The t-statistic might also diverge. A simple case arises when the intercept

is erroneously omitted from the estimated model or in nonlinear-in-variables models with endogenous

regressors. In the latter case, a solution is to use an instrumental variable estimator. The core results in

this paper also generalise to more complicated nonlinear models involving integrated time series.
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1. INTRODUCTION

In this paper we discuss a few interesting issues that can emerge in nonlinear and misspecified

cointegration models. More precisely, we show that under certain conditions, the classical Ordinary

Least Squares (OLS) estimator has a non-standard, possiblybimodal, distribution. Furthermore, the

OLS estimator does not converge at usual rateT and this may have a harmful effect on hypothesis

testing. To overcome this problem we propose a Two Stage Least Square (2SLS) estimator which is

both consistent and has the classical distribution found inthe cointegration literature. Although the
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results in the paper are simple and trivially obtained from standard cointegration asymptotics1, the

implications for statistical inference are significant andshould be investigated.

Slower rates of convergence and atypical distributions, possibly bimodal, are not rare in the coin-

tegration literature. Hansen (1992) showed that the OLS estimator in heteroskedastic cointegration

models converges at
√
T rate, while Park and Phillips (1999, 2001) found slower rates of convergence

than the usualT when nonlinear regressions with integrated variables are considered. Hansen (1992)

and Chang and Park (2011) also found that under endogeneity,the distribution of the parameter of

interest has an unusual form and might even be bimodal. We show that these phenomena can also

happen in other classes of cointegration models.

All the results in this paper are derived for a simple, but interesting, nonlinear-in-variables frame-

work. However, the results found for this trivial model can be straightforwardly generalised to more

complex ones, such as smooth transition cointegration as inChoi and Saikkonnen (2004a,b) when

the transition variable is stationary (Medeiros, Mendes, and Oxley, 2011), and functional coefficient

cointegration models as in Xiao (2009), where the coefficients are allowed to vary according to some

stationary variable.

Nonstandard distributions can also arise in even simpler situations. We show that when an intercept

is erroneously omitted from a linear regression with cointegrated variables, the distribution of the OLS

estimator of the slope parameter is not mixed normal anymore. This omission changes the converge

rate of the estimator as well as the distribution of the t-statistic. This result also extends to other linear

estimators such as the dynamic OLS (DOLS). Although is quiteunusual to have the omission of the

constant term in a standard regression, in cointegration analysis there are several applications where

the intercept is naturally omitted. When testing for the purchasing power parity (PPP) or unbiased

forward rate hypotheses (where the intercept is zero by definition), consumption function theory, or

synchronous dynamics among commodity prices, for example,it is not rare to find empirical models

omitting the intercept. Furthermore, due to the super-consistency property of the OLS estimator when

the variables are cointegrated, is reasonable to imagine that the omission of the intercept will not cause

1For references on classical results in cointegration theory see e.g. Park and Phillips (1988) and Chapters 17, 18 and 19 in
Hamilton (1994).
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any harm. We show that this statement is wrong. The estimatorwill still be consistent, however, this

simple misspecification will have serious consequences in terms of inference.

The rest of the paper is organised as follows. Section 2 present the classical OLS results for cointe-

grating regression, with focus on the issue we deal in the next sections. Section 3 presents the simplest

case arising from the erroneous omission of the intercept inthe cointegrating relationship. Section 4

presents the general result which permits nonlinearity andpotential endogeneity. We also discuss the

IV estimator of the model. Section 5 presents the simulationresults and Section 6 concludes.

2. OVERVIEW

Consider a random vectorY t = (y1t, . . . , ykt)
′ ∈ R

k, which consists of possibly non-stationary

and cointegrated variables and write a expression for the OLS estimator̂βOLS ∈ R
q:

(1) β̂OLS = [A(Y )]−1
H(Y ),

whereY = (Y ′
1, . . . ,Y

′
T )

′, T is the sample size, andA(Y ) andH(Y ) areq×q andq×1 matrices,

respectively. The usual cointegration theory postulates that, under certain regularity conditions, the

estimator in (1) converges to a mixed normal random vector atrateT .

In this note, we show that under some circumstances, such as simple misspecification or nonlin-

earity, this convergence rate does not hold. More specifically, some components of the random vector

H(Y ) will be written as
∑T

t=1 yitvt, whereyit is an integrated variable andvt is a weakly stationary

random term with mean different from zero. Hence, writing a Brownian motion asB(r),
∑T

t=1 yitvt

will converge to
∫ 1
0 B(r)dr at rateT 3/2 instead of

∫ 1
0 B(r)dB(r) at rateT , which is the case when

E(vt) = 0.2 These terms may reduce the order of converge of the estimator, change the respective

asymptotic distribution, and make the t-statistic divergent.

We consider two specific cases of the above mentioned phenomenon. In the first one,E(vt) 6= 0

due to the omission of an intercept in a linear cointegrationmodel. In the second case, the model

is a correctly specified nonlinear-in-variables equation which consists of integrated and stationary

variables. In this situation, the source of the problem is different:E(vt) 6= 0 whenever the stationary

variable is endogenous. This is an interesting case to be analysed as usual corrections for cointegration

2See Hamilton (1994, p. 486)
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models with endogenous regressors, such as DOLS, will not work, and an IV estimator must be

considered instead.

3. A SIMPLE RESULT

In this section we report the consequence of a simple misspecification problem: the omission of an

intercept in a regression with cointegrated variables. Although it is quite rare to have the omission of

the intercept in a linear regression with stationary variables, this is not the case when the variables are

cointegrated. It is not unfrequent to see applications of two-step-estimators, as in the Engle-Granger

methodology, where the first step consists in estimating a cointegration relation without an intercept.

In the latter, the intercept is usually included in the error-correction model.

Consider the following assumption about the data generating process.

ASSUMPTION 1. Let xt = xt−1 + vt, wherext ∈ R
kx andvt ∼ IID(0,Ω). Furthermore,yt =

α + β′xt + ut, whereα 6= 0, ut ∼ IID(0, σ2
u), andE(vtuτ ) = 0, ∀ t, τ . Assume that the processes

Sv,T (r) =
1
T

∑[Tr]
i=1 vi andSu,T (r) =

1
T

∑[Tr]
i=1 ui, r ∈ [0, 1], satisfy3:

(2) Xv,T (r) ≡
√
TSv,T (r) ⇒ Bv(r), andXu,T (r) ≡

√
TSu,T (r) ⇒ σ2

uWu(r), asT → ∞,

whereBv(r) ∈ R
kx is a multivariate Brownian motion with covariance matrixΩ andWu(r) is a

standard Brownian motion. Finally, assume thatWu(r) is independent ofBv(r).
4

Now, suppose that an econometrician estimates the regression described in Assumption 1 by OLS

ommiting the intercept. In this case, the following trivialresult holds.

PROPOSITION 1. Define β̂ =
(∑T

t=1 xtx
′
t

)−1∑T
t=1 xtyt, which is the OLS estimator when the

intercept is erroneously omitted from the estimated equation. Under Assumption 1

(3)
√
T
(
β̂ − β

)
⇒ α

[∫ 1

0
Bv(r)Bv(r)

′dr

]−1 ∫ 1

0
Bv(r)dr.

Many interesting features emerge from the above result. First, the OLS estimator is consistent

but no longer super-consistent as the convergence rate is
√
T as opposed toT . This change in the

3[X] denotes the integer part ofX.
4This last assumption excludes the case where the multivariate random walk is endogenous with respect toβ. Generalizing
our results to the case of endogenousxt is considered in Section 4.
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convergence rate has serious implications in hypothesis testing. Second, the distribution in (3) is not

a mixed normal anymore, even with exogenous regressors andIID errors. In some specific cases,

the distribution in (3) can be bimodal. Figure 1, panel (a), displays the first marginal component

of the asymptotic distribution in (3) for different dimensions,kx, of the Brownian motionBv(r)
5.

The distribution is clearly bimodal forkx = 1 andkx = 2. However, the bimodality disappears

as the dimension ofB(r) increases. Third, there is a variance reduction askx grows. In order to

compare with the standard result in cointegration theory, in panel (b) we consider the case where the

intercept is zero in the cointegration relationship, such that the usual result holds, i.e.,T
(
β̂ − β

)
⇒

[∫ 1
0 Bv(r)Bv(r)

′dr
]−1 ∫ 1

0 Bv(r)dWu(r). As we can see, the distribution is, as expected, always

unimodal and mixed normal and, contrary to the previous case, the variance increases as thekx −→

∞.
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FIGURE 1. Asymptotic distribution of the OLS estimator of in a multiple cointegrat-
ing regression for different number of regressors. Panel (a) α 6= 0 and it is omitted
from the estimated regression. Panel (b)α = 0.

The reason why bimodality seems to vanish as the number of regressors increase is simple. Bi-

modality arises because the scalar distribution

∫ 1
0 B(r)dr
∫ 1
0 B2(r)dr

is bimodal as verified in our simulations. Note that the numerator and the denominator in the above

expression consists of the same scalar Brownian motion. On the other hand, in a multivariate setting

5In order to simulate the distributions we consider thatΩ in Assumption 1 is an identity matrix andα = 1. The Brownian
motions are generated from 10,000 observations and the simulations repeated 10,000 times.
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the term
∫ 1
0 Bv(r)Bv(r)

′dr involves sums of cross-products of different scalar Brownian motions,

such that, component-wise, the asymptotic distribution ofthe parameters is a ratio where the denom-

inator and the numerator are not functions of the same scalarBrownian motion.

To evaluate the effects of the above result in terms of inference, we consider the simple case of a

single regressor, i.e.,kx = 1. Under the misspecified model without an intercept, the distribution of

the t-statistic forH0 : β = β∗ is given in the following proposition.

PROPOSITION2. Suppose that Assumption 1 holds withkx = 1, such thatBv ≡ σvWv(r), where

Wv(r) is a standard Brownian process. Under the null hypothesisβ = β∗,

(4)
1√
T
tβ =

1√
T

β̂ − β∗

σ̂u

(∑T
t=1 x

2
t

)−1/2
⇒ α

σu

∫ 1
0 Wv(r)dr

[∫ 1
0 Wv(r)2dr

]−1/2
.

As the denominator of the t-statistic isO(T ) and the numerator isO(
√
T ), the ratio will diverge as

T −→ ∞, such that it should be scaled by
√
T . Furthermore, the distribution of the scaled t-statistic

is not free from nuisance parameters as bothα andσu appear in the asymptotic distribution.

The consequences of the omission of an intercept in a cointegrating regression are quite different

from the ones in a model involving solely stationary variables. In the latter case, the OLS estimator

is inconsistent but the asymptotic distribution is still Gaussian and the order of convergence is pre-

served. More specifically, assuming thatxt is a vector of second-order stationary random variables

and plim
T−→∞

1
T

∑T
t=1 xtx

′
t = Q, then

√
T
(
β̂ − β

)
d−→ N

[
αQ−1µ,Ω

]
,

whereΩ is a positive-definite covariance matrix6.

4. A SIMPLE NONLINEAR-IN-VARIABLES MODEL

Nonstandard results also arise in simple nonlinear models with nonstationary and stationary vari-

ables. In this section we consider a cointegration regression with time-varying parameters. Our model

has a key feature that the cointegration relationship changes according to an observed state vector of

6A second-order stationary random variablext has the following features: (a)E(xt) = µ, −∞ < µ < ∞; (b) E[(xt −

µ)2] = σ2 < ∞; andE[(xt − µ)(xt−j − µ)] = γj , −∞ < γj < ∞.
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variableszt. We assume thatzt is observable and second-order stationary. Ifzt is endogenous the

asymptotic distribution of the OLS estimator will be changed.

Consider the following assumption.

ASSUMPTION2. The vectorY t = (yt, xt,z
′
t)
′ satisfy

(5) yt = α0 + β0xt + α1g(zt) + β1xtg(zt) + ut,

xt = xt−1 + vt, ut =
∑∞

j=0 πu,jε1,t−j = πu(L)ε1,t, vt =
∑∞

j=0 πv,jε2,t−j = πv(L)ε2,t, zt =
∑∞

j=0 πz,jε3,t−j = πz(L)ε3,t, πu(L), πv(L), andπz(L) are lag polynomials,
∑∞

j=0 j|πu,j | < ∞,
∑∞

j=0 j‖πv,j‖ < ∞, and
∑∞

j=0 j‖πz,j‖ < ∞. Setεt =
(
ε1,t, ε2,t, ε

′
3,t

)′
such thatE(εt) = 0 and

E(εtε
′
t) = Ωε, where

Ωε =




ω2
1 ω12 ω′

13

ω12 ω2 ω′
23

ω13 ω23 Ω3


 .

Assume also thatx0 = 0 or is randomly drawn from a density independent oft. Finally, g(zt) :

R
kz → R is a known function of the stationary vector processzt ∈ R

kz .

Model (5) may arise in a number of situations. Threshold cointegration models where the change-

point is known are special cases of (5). Such kind of models are relevant when, for instance, the

long-run equilibrium changes according to the business cycle. Suppose thatg(zt) = dt is a dummy

variable indicating recessions, such as, for example the NBER recession indicator. In this case, (5)

becomesyt = α0 + β0xt + α1dt + β1xtdt + ut. Of course, in most practical applicationsg(zt)

will be indexed by a vector of unknown parameters, i.e.,g(zt) ≡ g(zt;θ). We will not consider

this case explicitly here, nevertheless, the consequencesof our main results below will also extend

to the nonlinear least squares estimator and a correction similar to the one proposed here should be

considered.

We show that, under endogeneity ofzt, the order of convergence of the parameters related to solely

I(1) or I(0) variables will be preserved. However, the parameter related to the mixed variablextg(zt)

will converge at a slower rate. This is a new result compared to the recent work of Chang and Park

(2011), where only I(1) regressors are considered in a general nonlinear cointegration model.
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With respect to the random variableg(zt) consider the assumption:

ASSUMPTION 3. The stochastic processg(zt) is such thatE [g(zt)] = µg < ∞ andE
[
g(zt)

2
]
=

m2
g < ∞. Furthermore,1T

∑T
t=1 g(zt)

p−→ µg and
√
T
[
1
T

∑T
t=1 g(zt)− µg

]
d−→ N(0, ω2

g), where

ω2
g is the long-run variance ofg(zt). Assume also thatE [g(zt)ut] = µgu < ∞ andµgu 6= 0. Finally,

1
T

∑T
t=1 g(zt)ut

p−→ µgu and
√
T
[
1
T

∑T
t=1 g(zt)ut − µgu

]
d−→ N(0, ω2

gu), whereω2
gu < ∞.

Define the following stationary zero-mean process

w′
t =

[
ut, vt, g(zt)− µg, g(zt)

2 −m2
g, g(zt)ut − µgu

]′ ∈ R
k.

We make the following assumptions aboutwt.

ASSUMPTION4. Each element of the process{wt}∞t=1, satisfies: (a)E|wit|a < ∞, i = 1, . . . , k, for

2 ≤ a < ∞; and (b){ωit}∞t=1, i = 1, . . . , k, is either uniform mixing of size−a/(2a − 2) or strong

mixing of size−a/(a− 2), for a > 2.

ASSUMPTION5. The processwt has a continuous spectral density functionf
ww

(λ) which is bounded

away from zero. DefineXT (r) =
√
TST (r), whereST (r) = 1

T

∑[Tr]
i=1 wi, r ∈ [0, 1]. Hence,

XT (r) ⇒ B(r), asT → ∞, whereB(r) =
[
Bu(r), Bv(r), Bg(r), Bg2(r), Bgu(r)

]′
is a multi-

variate Brownian process with covariance matrixΩ = lim
T→∞

T−1
E [ST (r)ST (r)

′] defined as

Ω =




ω2
u ωvu ωgu ωg2u ωguu

ωvu ω2
v ωgv ωg2v ωguv

ωgu ωgv ω2
g ωg2g ωggu

ωg2u ωg2v ωg2g ω2
g2 ωg2gu

ωguu ωguv ωggu ωg2gu ω2
gu




= Σ+Λ+Λ
′,(6)

accordingly to the partitions ofwt, whereΣ = E(w1w
′
1) andΛ = lim

T→∞

1
T

∑∞
t=2 E(w1w

′
t).

Setθ = (α0, β1, α1, β1)
′. The OLS estimator̂θ is distributed as:
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THEOREM 1. Under Assumptions 2–5 and the additional assumption thatµg 6= 0,

Γ

(
θ̂ − θ

)
⇒




1
∫ 1
0 Bv(r)dr µg µg

∫ 1
0 Bv(r)dr

·
∫ 1
0 Bv(r)

2dr µg

∫ 1
0 Bv(r)dr µg

∫ 1
0 Bv(r)

2dr

· · m2
g m2

g

∫ 1
0 Bv(r)dr

· · · m2
g

∫ 1
0 Bv(r)

2dr




−1 


N
[
0, ω2

1πu(1)
2
]

∫ 1
0 Bv(r)dBu(r) + ∆vu

N(µgu, ω
2
gu)

µgu

∫ 1
0 Bv(r)dr




,

where∆vu = σvu + λvu andΓ = diag
(
T 1/2, T, T 1/2, T 1/2

)
. On the other hand, ifµg = 0

Γ

(
θ̂ − θ

)
⇒




1
∫ 1
0 Bv(r)dr 0 0

·
∫ 1
0 Bv(r)

2dr 0 0

· · m2
g m2

g

∫ 1
0 Bv(r)dr

· · · m2
g

∫ 1
0 Bv(r)

2dr




−1 


N
[
0, ω2

1πu(1)
2
]

∫ 1
0 Bv(r)dBu(r) + ∆vu

N(µgu, ω
2
gu)

µgu

∫ 1
0 Bv(r)dr




.

The endogeneity ofzt plays an important role here as, similar to the case described in Section

3, T−3/2
∑T

t=1 xtg(zt)ut converges toµgu

∫ 1
0 Bv(r)dr. On the other hand, ifzt is exogenous, the

usual convergenceT−1
∑T

t=1 xtg(zt)ut ⇒
∫ 1
0 Bv(r)dBgu(r) holds, whereBgu(r) is the Brownian

motion associated to the processg(zt)ut. As before, this simple result has severe consequences on

parameter inference.

Consider a simple version of (5) where

(7) yt = βxtg(zt) + ut.

In this case, the OLS estimator for the parameterβ will have the following asymptotic distribution

(8)
√
T (β̂ − β) ⇒ µgu

m2
g

(∫ 1

0
B(r)2dr

)−1 ∫ 1

0
B(r)dr,

whenzt is endogenous. The same problems discussed in Section 3 willaffect parameter inference.

4.1. A Simple Solution. In this section we show how IV may be used in the present context. To

simplify the exposition, consider the case wherext is exogenous, such thatωvu = 0.

ASSUMPTION 6. st ∈ R is a stochastic process such thatE [stg(zt)] 6= 0, E(stut) = 0, E(st) =

µs < ∞, andE
(
s2t
)
= m2

s < ∞. DefineXsu,T (r) =
√
TSsu,T (r), whereSsu,T (r) =

1
T

∑[Tr]
i=1 siui,
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r ∈ [0, 1]. Hence,Xsu,T (r) ⇒ ωsuWsu(r), asT → ∞. Wsu(r) is a standard Brownian motion

andω2
su is the long-run variance of the processstut.

Defineĝt = λ̂st, whereλ̂ =
(∑T

t=1 s
2
t

)−1∑T
t=1 stg(zt). The distribution of the IV estimator̃θ

is given by the following theorem.

THEOREM 2. Under Assumptions 2–6 and the additional assumption thatωvu = 0, if µs 6= 0 then

Γ

(
θ̃ − θ

)
⇒




1
∫ 1
0 Bv(r)dr λµs λµs

∫ 1
0 Bv(r)dr

·
∫ 1
0 Bv(r)

2dr λµs

∫ 1
0 Bv(r)dr λµs

∫ 1
0 Bv(r)

2dr

· · λ2m2
s λ2m2

s

∫ 1
0 Bv(r)dr

· · · λ2m2
s

∫ 1
0 Bv(r)

2dr




−1 


N
[
0, ω2

1πu(1)
2
]

∫ 1
0 Bv(r)dBu(r)

N(0, λ2ω2
su)

λ
∫ 1
0 Bv(r)dWsu(r)




.

Otherwise, ifµs = 0, then

Γ

(
θ̃ − θ

)
⇒




1
∫ 1
0 Bv(r)dr 0 0

·
∫ 1
0 Bv(r)

2dr 0 0

· · λ2m2
s λ2m2

s

∫ 1
0 Bv(r)dr

· · · λ2m2
s

∫ 1
0 Bv(r)

2dr




−1 


N
[
0, ω2

1πu(1)
2
]

∫ 1
0 Bv(r)dBu(r)

N(0, λ2ω2
su)

λ
∫ 1
0 Bv(r)dWsu(r)




.

The matrixΓ is given byΓ = diag
(
T 1/2, T, T 1/2, T

)
in both cases.

5. MONTE CARLO SIMULATIONS

Consider the following special case of the general model described in Assumption 2:

yt = α0 + α1I(zt > 0) + β0xt + β1xtI(zt > 0) + ut

= 1 + xt + α1I(zt > 0) + xtI(zt > 0) + ut,

zt = st + ut, and xt = xt−1 + vt.

I(A) is an indicator function which equals one if the eventA occurs or zero otherwise,ut ∼

NID(0, 1), vt ∼ NID(0, 1), st ∼ NID(0, 1), E(utvτ ) = 0, andE(stuτ ) = 0, ∀ t, τ .

We consider two cases:α1 = 0 andα1 = 1. We simulate 5000 observations over 1000 replications

and evaluate the distribution of both the OLS and IV estimators of α0, α1, β0, andβ1. In the first
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FIGURE 2. Empirical distribution of the OLS and IV estimators withα1 = 0. The
data are simulated with 5000 observations and the Monte Carlo is conducted with
1000 replications.

stage the variableI(zt > 0) is regressed onI(st > 0). The results are shown in Figures 2–3. We also

consider the distribution of the t-statistic under the nullhypothesis as shown in Figures 4–5.

Several features emerge from the graphs. First, depending on the value ofα1, bimodality may or

may not be present. Whenα1 = 1, the OLS estimator ofβ1 is always bimodal, while the IV estimator

is not. Furthermore, in this specific case, the IV estimator has lower variance than the OLS estimator.

The t-statistics for the OLS estimators display bimodality, whereas the the ones for the IV estimators

are, as expected, normally distributed. Second, the OLS estimator ofβ1 is always consistent. The

OLS delivers inconsistent estimators for bothα0 andα1 while the IV estimator is always consistent.

The t-statistic for the IV estimators are always distributed as a standard normal random variable.
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FIGURE 3. Empirical distribution of the OLS and IV estimators withα1 = 1. The
data are simulated with 5000 observations and the Monte Carlo is conducted with
1000 replications.

6. CONCLUSION

The paper identifies a number of interesting cases that can arise in cointegration models. Bi-

modality is one such case. We show how bimodality arises; theconsequences, including the loss

of super-consistency of the estimates in a simple case; and how the addition of regressors leads to

disappearance of the phenomena. Inclusion of an intercept removes both bimodality and inference

related problems arising from using a non-scaled t-statistic. Secondly, in the more general nonlinear

case, where, as expected, endogeneity leads to the possibility of inconsistent OLS estimates, but also

the potential for the asymptotic distribution to be bimodal. The use of IV in these cases removes both

bimodality and inconsistency.
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FIGURE 4. Empirical distribution of t-statistic for the OLS and IV estimators with
α1 = 0. The data are simulated with 5000 observations and the MonteCarlo is
conducted with 1000 replications.

REFERENCES

CHANG, Y., AND J. PARK (2011): “Endogeneity in Nonlinear Regressions with Integrated Time

Series,”Econometric Reviews, 30, 51–87.

HAMILTON , J. (1994):Time series analysis. Princeton Univ Press.

HANSEN, B. E. (1992): “Heteroskedastic Cointegration,”Journal of Econometrics, 54, 139–158.

IBRAGIMOV, R., AND P. PHILLIPS (2008): “Regression asymptotics using martingale convergence

methods,”Econometric Theory, 24, 888–947.

MEDEIROS, M., E. MENDES, AND L. OXLEY (2011): “Cointegrating Smooth Transition Regres-

sions with a Stationary Transition Variable,” Working paper, Pontifical Catholic University of Rio

de Janeiro.



14 M. C. MEDEIROS, E. MENDES, AND L. OXLEY

−60 −40 −20 0 20
0

0.1

0.2

0.3

0.4

Model 2: α
0

 

 
OLS
IV
N(0,1)

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

Model 2: β
0

 

 OLS
IV
N(0,1)

−20 0 20 40 60 80
0

0.1

0.2

0.3

0.4

Model 2: α
1

 

 
OLS
IV
N(0,1)

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

Model 2: β
1

 

 
OLS
IV
N(0,1)

FIGURE 5. Empirical distribution of t-statistic for the OLS and IV estimators with
α1 = 1. The data are simulated with 5000 observations and the MonteCarlo is
conducted with 1000 replications.

PARK , J., AND P. PHILLIPS (1988): “Statistical inference in regressions with integrated processes:

Part I,” Econometric Theory, 4, 468–497.

(1999): “Asymptotics fof Nonlinear Transformation of Integrated Time Series,”Econometric

Theory, 15, 269–298.

(2001): “Nonlinear Regression with Integrated Time Series,” Econometrica, 69, 1452–1498.

SAIKKONEN , P., AND I. CHOI (2004a): “Cointegrating Smooth Transition Regressions,”Economet-

ric Theory, 20, 301–340.

(2004b): “Testing Linearity in Cointegrating Smooth Transition Regressions,”Econometrics

Journal, 7, 341–365.

X IAO , Z. (2009): “Functional-Coefficient Cointegration Models,” Journal of Econometrics, 152, 81–

92.



COINTEGRATION, NONLINEARITY AND BIMODALITY 15

APPENDIX A. L EMMA

LEMMA 1. Let {xt}Tt=1 be a stochastic process satisfyingxt = xt−1 + vt, whereE(vt) = 0.

Definewt = (ut − µu, vt)
′, whereut is a stationary process withE(ut) = µu < ∞. Assume

that the processST (r) = 1
T

∑[Tr]
j=1 wj , r ∈ [0, 1], satisfies the multivariate invariance principle.

More specifically, defineXT (r) =
√
TST (r), such thatXT (r) ⇒ B(r), as T → ∞, where

B(r) = [Bu(r), Bv(r)]
′ ∈ R

2 is a vector Brownian process with covariance matrix

(9) Ω =


 ω2

u ωvu

ωvu ω2
v


 = E(w1w

′
1) +

∞∑

k=2

[
E(w1w

′
k) + E(wkw

′
1)
]
= Σ+Λ+Λ

′.

Define∆uv = σuv + λuv. Under the assumptions above, the following results hold:

(a) if µu 6= 0, thenT−2
∑T

t=1 x
2
tut ⇒ µu

∫ 1
0 B2

vdr;

(b) if ∆vu 6= 0 andµu = 0, thenT−3/2
∑T

t=1 x
2
tut ⇒

∫ 1
0 Bv(r)

2dBu(r) + ∆vu

∫ 1
0 Bv(r)dr;

(c) if ∆vu = 0 andµu = 0, thenT−3/2
∑T

t=1 x
2
tut ⇒

∫ 1
0 Bv(r)

2dBu(r);

(d) and, ifµu 6= 0, thenT−3/2
∑T

t=1 xtut ⇒ µu

∫ 1
0 Bv(r)dr.

Proof. First, defineu∗t = ut − µu and write
∑T

t=1 x
2
tut = µu

∑T
t=1 x

2
t +

∑T
t=1 x

2
tu

∗
t . It is well-

known thatµu
1
T 2

∑T
t=1 x

2
t ⇒ µu

∫ 1
0 Bv(r)

2dr. Direct application of the results in Theorem 3.1 in

Ibragimov and Phillips (2008) implies that

1

T 3/2

T∑

t=1

x2tu
∗
t ⇒

∫ 1

0
Bv(r)

2dBu(r) + ∆vu

∫ 1

0
Bv(r)dr.

Hence, (a), (b), and (c) follow from the above convergence limits.

To prove (d) is enough to write
∑T

t=1 xtut =
∑T

t=1 xt (µu + u∗t ) = µu
∑T

t=1 xt +
∑T

t=1 xtu
∗
t ,

and note thatµu
1

T 3/2

∑T
t=1 xt ⇒

∫ 1
0 Bv(r)dr and 1

T

∑T
t=1 xtu

∗
t ⇒

∫ 1
0 Bv(r)dBu(r)dr +∆uv.

�

APPENDIX B. PROOF OFPROPOSITIONS ANDTHEOREMS

B.1. Proof of Proposition 1. The proof is very simple. First, note that

(
β̂ − β

)
=

(
T∑

t=1

xtx
′
t

)−1 T∑

t=1

xt(α+ ut) =

(
T∑

t=1

xtx
′
t

)−1(
α

T∑

t=1

xt +

T∑

t=1

xtut

)
.
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It is clear that 1
T 2

∑T
t=1 xtx

′
t ⇒

∫ 1
0 B(r)B(r)′dr, 1

T 3/2

∑T
t=1 xt ⇒

∫ 1
0 B(r)dr, and 1

T

∑T
t=1 xtut ⇒

∫ 1
0 B(r)dW (r). Hence, asT−3/2

∑T
t=1 xtut

p→ 0,

√
T
(
β̂ − β

)
=

(
1

T 2

T∑

t=1

xtx
′
t

)−1(
α

1

T 3/2

T∑

t=1

xt +
1

T 3/2

T∑

t=1

xtut

)

⇒ α

(∫ 1

0
B(r)B(r)′dr

)−1 ∫ 1

0
B(r)dr.

�

B.2. Proof of Proposition 2. Write the t-statistic as

tβ =

∑T
t=1 xt(α+ ut)∑T

t=1 x
2
t

÷ σ̂u

(
T∑

t=1

x2t

)−1/2

=
α
∑T

t=1 xt

σ̂u

(∑T
t=1 x

2
t

)1/2 +

∑T
t=1 xtut

σ̂u

(∑T
t=1 x

2
t

)1/2 .

Hence,

1√
T
tβ =

α 1
T 3/2

∑T
t=1 xt

σ̂u

(
1
T 2

∑T
t=1 x

2
t

)1/2 +
1

T 3/2

∑T
t=1 xtut

σ̂u

(
1
T 2

∑T
t=1 x

2
t

)1/2 ⇒ α

σu

∫ 1
0 W (r)dr

[∫ 1
0 W (r)2dr

]1/2 .

�

B.3. Proof of Theorem 1. First, define the following matrices:H = diag
(√

T , T,
√
T , T

)
and

D = diag
(
1, 1, 1,

√
T
)

. Note that

D−1H
(
θ̂ − θ

)
=




1 1
T 3/2

∑T
t=1 xt

1
T

∑T
t=1 g(zt)

1
T 3/2

∑T
t=1 g(zt)xt

· 1
T 2

∑T
t=1 x

2
t

1
T 3/2

∑T
t=1 g(zt)xt

1
T 2

∑T
t=1 g(zt)x

2
t

· · 1
T

∑T
t=1 g(zt)

2 1
T 3/2

∑T
t=1 g(zt)

2xt

· · · 1
T 2

∑T
t=1 g(zt)

2x2t




−1

×




1√
T

∑T
t=1 ut

1
T

∑T
t=1 xtut

1√
T

∑T
t=1 g(zt)ut

1
T 3/2

∑T
t=1 xtg(zt)ut




.
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Therefore, forµg 6= 0 we need to show the following: (a)1
T 3/2

∑T
t=1 xt ⇒

∫ 1
0 Bv(r)dr; (b)

1
T

∑T
t=1 g(zt)

p→ µg; (c) 1
T 3/2

∑T
t=1 g(zt)xt ⇒ µg

∫ 1
0 Bv(r)dr; (d) 1

T 2

∑T
t=1 x

2
t ⇒

∫ 1
0 Bv(r)

2dr;

(e) 1
T 2

∑T
t=1 g(zt)x

2
t ⇒ µg

∫ 1
0 Bv(r)

2dr; (f) 1
T

∑T
t=1 g(zt)

2 p→ m2
g; (g) 1

T 3/2

∑T
t=1 g(zt)

2xt ⇒

m2
g

∫ 1
0 Bv(r)dr; (h) 1

T 2

∑T
t=1 g(zt)

2x2t ⇒ m2
g

∫ 1
0 Bv(r)

2dr; (i) 1√
T

∑T
t=1 ut

d→ N
[
0, ω2

1πu(1)
2
]
;

(j) 1
T

∑T
t=1 xtut ⇒

∫ 1
0 Bv(r)dBu(r) + ∆vu; (k) 1√

T

∑T
t=1 g(zt)ut

d→ N(µgu, ω
2
gu); and finally

(l) 1
T 3/2

∑T
t=1 xtg(zt)ut ⇒ µgu

∫ 1
0 Bv(r)dr.

In the caseµg = 0, (c) and (e) should be replaced by the following: (c’)1
T 3/2

∑T
t=1 gtxt

p−→ 0

and (e’) 1
T 2

∑T
t=1 g(zt)x

2
t

p−→ 0.

First, definegt ≡ g(zt), g∗t = g(zt)−µg, g2t ≡ g(zt)
2, andg2∗t = g(zt)

2−m2
g. It is clear that (a),

(d), and (j) follow from standard results in the literature and (b), (f), (i), and (k) are trivially satisfied.

Next, write
∑T

t=1 gtxt =
∑T

t=1 (mg + g∗t )xt = µg
∑T

t=1 xt +
∑T

t=1 g
∗
t xt.

It is clear that

µg
1

T 3/2

T∑

t=1

xt ⇒ µg

∫ 1

0
Bv(r)dr and

1

T

T∑

t=1

g∗t xt ⇒
∫ 1

0
Bv(r)dBg(r) + ∆gv.

Hence, ifµg 6= 0, 1
T 3/2

∑T
t=1 gtxt ⇒ µg

∫ 1
0 Bv(r)dr and (c) is proved. Otherwise, ifµg = 0,

1
T

∑T
t=1 gtxt ⇒

∫ 1
0 Bv(r)dBg(r) + ∆gv, such that 1

T 3/2

∑T
t=1 gtxt

p−→ 0 and (c’) is proved.

Following the same reasoning, write

T∑

t=1

gtx
2
t =

T∑

t=1

(µg + g∗t ) x
2
t = µg

T∑

t=1

x2t +

T∑

t=1

g∗t x
2
t .

From the results in Lemma 1, it follows that

µg
1

T 2

T∑

t=1

x2t ⇒ µg

∫ 1

0
Bv(r)

2dr and

1

T 3/2

T∑

t=1

g∗t x
2
t ⇒

∫ 1

0
Bv(r)

2dBg(r) + ∆gv

∫ 1

0
Bv(r)dr.

Therefore, ifµg 6= 0, 1
T 2

∑T
t=1 gtx

2
t ⇒ µg

∫ 1
0 Bv(r)

2dr and (e) is proved. Ifµg = 0, 1
T 3/2

∑T
t=1 gtx

2
t ⇒

∫ 1
0 Bv(r)

2dBg(r) + ∆gv

∫ 1
0 Bv(r)dr, such that 1

T 2

∑T
t=1 gtx

2
t

p−→ 0 and (e’) follows.

Now, let’s turn to
∑T

t=1 g
2
t xt. Again,

∑T
t=1 g

2
t xt =

∑T
t=1

(
m2

g + g2∗t
)
xt = m2

g

∑T
0 xt +O(T ).

Hence, 1
T 3/2

∑T
t=1 g

2
t xt ⇒ m2

g

∫ 1
0 Bv(r)dr and (g) follows.
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Following similar arguments, it is straightforward to prove (h). To prove (l), defineηt = gtut−µgu

T∑

t=1

xtgtut =

T∑

t=1

(µgu + ηt)µgu

T∑

t=1

xt +

T∑

t=1

xtηt.

From Lemma 1, it follows that

µgu
1

T 3/2

T∑

t=1

xt ⇒ µgu

∫ 1

0
Bv(r)dr and

1

T

T∑

t=1

xtηt ⇒
∫ 1

0
Bv(r)dBgu(r) + ∆guv.

Therefore, ifµgu 6= 0,

1

T 3/2

T∑

t=1

xtgtut ⇒ µgu

∫ 1

0
Bv(r)dr

else
1

T

T∑

t=1

xtgtut ⇒
∫ 1

0
Bv(r)dBgu(r) + ∆guv.

�

B.4. Proof of Theorem 2. DefineΓ = diag
(√

T , T,
√
T , T

)
and write

Γ

(
θ̃ − θ

)
=





Γ
−1




∑T
t=1 1

∑T
t=1 xt

∑T
t=1 ĝt

∑T
t=1 ĝtxt

·
∑T

t=1 x
2
t

∑T
t=1 ĝtxt

∑T
t=1 ĝtx

2
t

· · ∑T
t=1 ĝ

2
t

∑T
t=1 ĝ

2
t xt

· · · ∑T
t=1 ĝ

2
t x

2
t




Γ
−1





−1

Γ
−1




∑T
t=1 ut

∑T
t=1 xtut

∑T
t=1 ĝtut

∑T
t=1 xtĝtut




.

Therefore, forµs = 0 we need to show: (a) 1
T 3/2

∑T
t=1 xt ⇒

∫ 1
0 Bv(r)dr; (b) 1

T

∑T
t=1 ĝt

p→ λµs;

(c) 1
T 3/2

∑T
t=1 ĝtxt ⇒ λµs

∫ 1
0 Bv(r)dr; (d) 1

T 2

∑T
t=1 x

2
t ⇒

∫ 1
0 Bv(r)

2dr; (e) 1
T 2

∑T
t=1 ĝtx

2
t ⇒

λµs

∫ 1
0 Bv(r)

2dr; (f) 1
T

∑T
t=1 ĝ

2
t

p→ λ2ω2
su; (g) 1

T 3/2

∑T
t=1 ĝ

2
t xt ⇒ λ2m2

s

∫ 1
0 Bv(r)dr; (h) 1

T 2

∑T
t=1 ĝ

2
t x

2
t ⇒

λ2m2
s

∫ 1
0 Bv(r)

2dr; (i) 1√
T

∑T
t=1 ut

d→ N
[
0, ω2

1πu(1)
2
]
; (j) 1

T

∑T
t=1 xtut ⇒

∫ 1
0 Bv(r)dBu(r); (k)

1√
T

∑T
t=1 ĝtut

d→ N(0, λ2m2
sσ

2
u); and (l) 1

T

∑T
t=1 xtĝtut ⇒ λ

∫ 1
0 Bv(r)dWsu(r).

In the caseµs = 0, (c) and (e) should be replaced by (c’)1
T 3/2

∑T
t=1 ĝtxt

p−→ 0 and (e’)

1
T 2

∑T
t=1 ĝtx

2
t

p−→ 0. Items (a), (d), (i), and (j) follow trivially as in the proofof Theorem 1. Writing

gt = λ̂st and noting thatplim
T−→∞

λ̂ = λ, it is trivial to prove items (b), (f), and (k). The proof of the

remaining items are similar to the ones in Theorem 1.

�



COINTEGRATION, NONLINEARITY AND BIMODALITY 19

(M. C. Medeiros) DEPARTMENT OFECONOMICS, PONTIFICAL CATHOLIC UNIVERSITY OF RIO DE JANEIRO, RIO

DE JANEIRO, RJ, BRAZIL .

E-mail address: mcm@econ.puc-rio.br

(E. F. Mendes) DEPARTMENT OFSTATISTICS, NORTHWESTERNUNIVERSITY, EVANSTON, IL, U.S.A.

(L. Oxley) DEPARTMENT OFECONOMICS, CANTERBURY UNIVERSITY, CHRISTCHURCH, NZ



 

 
Departamento de Economia    PUC-Rio 

Pontifícia Universidade Católica do Rio de Janeiro 
Rua Marques de Sâo Vicente 225  - Rio de Janeiro 22453-900, RJ 

    Tel.(21) 35271078     Fax (21) 35271084 
www.econ.puc-rio.br 
flavia@econ.puc-rio.br 


