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ABSTRACT. We derive the asymptotic distribution of the ordinary testguares estimator in a regres-
sion with cointegrated variables under misspecificatiatf@nonlinearity in the regressors. We show
that, under some circumstances, the order of convergente efstimator changes and the asymptotic
distribution is non-standard. The t-statistic might als@dye. A simple case arises when the intercept
is erroneously omitted from the estimated model or in n@airin-variables models with endogenous
regressors. In the latter case, a solution is to use an metrtal variable estimator. The core results in
this paper also generalise to more complicated nonlineaefadnvolving integrated time series.
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1. INTRODUCTION

In this paper we discuss a few interesting issues that camgeniie nonlinear and misspecified
cointegration models. More precisely, we show that undeatceconditions, the classical Ordinary
Least Squares (OLS) estimator has a non-standard, poséibbdal, distribution. Furthermore, the
OLS estimator does not converge at usual fatend this may have a harmful effect on hypothesis
testing. To overcome this problem we propose a Two Staget ISepsre (2SLS) estimator which is

both consistent and has the classical distribution fourttiéncointegration literature. Although the
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results in the paper are simple and trivially obtained fraemdard cointegration asymptoticshe
implications for statistical inference are significant amduld be investigated.

Slower rates of convergence and atypical distributionssiisdy bimodal, are not rare in the coin-
tegration literature. Hansen (1992) showed that the OLigasdr in heteroskedastic cointegration
models converges &fT rate, while Park and Phillips (1999, 2001) found slowersatieconvergence
than the usual” when nonlinear regressions with integrated variables @msidered. Hansen (1992)
and Chang and Park (2011) also found that under endogetiestylistribution of the parameter of
interest has an unusual form and might even be bimodal. We gt these phenomena can also
happen in other classes of cointegration models.

All the results in this paper are derived for a simple, butiiesting, nonlinear-in-variables frame-
work. However, the results found for this trivial model candtraightforwardly generalised to more
complex ones, such as smooth transition cointegration &hoi and Saikkonnen (2004a,b) when
the transition variable is stationary (Medeiros, Mendes, @xley, 2011), and functional coefficient
cointegration models as in Xiao (2009), where the coefftsiane allowed to vary according to some
stationary variable.

Nonstandard distributions can also arise in even simpigatsbns. We show that when an intercept
is erroneously omitted from a linear regression with caqjraged variables, the distribution of the OLS
estimator of the slope parameter is not mixed normal anynibinés omission changes the converge
rate of the estimator as well as the distribution of the tistia. This result also extends to other linear
estimators such as the dynamic OLS (DOLS). Although is quitesual to have the omission of the
constant term in a standard regression, in cointegratiatysis there are several applications where
the intercept is naturally omitted. When testing for thegbasing power parity (PPP) or unbiased
forward rate hypotheses (where the intercept is zero byitefijy consumption function theory, or
synchronous dynamics among commodity prices, for exantpgenot rare to find empirical models
omitting the intercept. Furthermore, due to the superistarscy property of the OLS estimator when

the variables are cointegrated, is reasonable to imagatéttb omission of the intercept will not cause

Iror references on classical results in cointegration theee e.g. Park and Phillips (1988) and Chapters 17, 18 arml 19 i
Hamilton (1994).
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any harm. We show that this statement is wrong. The estimtiostill be consistent, however, this
simple misspecification will have serious consequencesring of inference.

The rest of the paper is organised as follows. Section 2 ptéise classical OLS results for cointe-
grating regression, with focus on the issue we deal in thesestions. Section 3 presents the simplest
case arising from the erroneous omission of the intercefhtercointegrating relationship. Section 4
presents the general result which permits nonlinearitypatential endogeneity. We also discuss the

IV estimator of the model. Section 5 presents the simulatsnlts and Section 6 concludes.

2. OVERVIEW

Consider a random vectdf; = (y,...,yr:) € R¥, which consists of possibly non-stationary

and cointegrated variables and write a expression for th® é.‘sllimator,@o s € R
(1) Bors = [AY)| " H(Y),

whereY = (Y',...,Y".), T is the sample size, and(Y') and H (Y') areq x g andg x 1 matrices,
respectively. The usual cointegration theory postuldtas, tunder certain regularity conditions, the
estimator in (1) converges to a mixed normal random vectatafl.

In this note, we show that under some circumstances, sudmagesmisspecification or nonlin-
earity, this convergence rate does not hold. More spedifiea@me components of the random vector
H (Y') will be written asZtT:1 yitve, Wherey;; is an integrated variable angis a weakly stationary
random term with mean different from zero. Hence, writingraénian motion asB(r), .1, yitv;
will converge tofo1 B(r)dr at rateT/? instead offo1 B(r)dB(r) at rateT’, which is the case when
E(v) = 0.2 These terms may reduce the order of converge of the estinwtange the respective
asymptotic distribution, and make the t-statistic divetge

We consider two specific cases of the above mentioned phermmén the first oneE(v;) # 0
due to the omission of an intercept in a linear cointegratiwsdel. In the second case, the model
is a correctly specified nonlinear-in-variables equatidriclv consists of integrated and stationary
variables. In this situation, the source of the problem fiedént: E(v;) # 0 whenever the stationary

variable is endogenous. This is an interesting case to bgsateas usual corrections for cointegration

2See Hamilton (1994, p. 486)
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models with endogenous regressors, such as DOLS, will nodt,vemd an IV estimator must be

considered instead.

3. A SIMPLE RESULT

In this section we report the consequence of a simple migggion problem: the omission of an
intercept in a regression with cointegrated variablesh@lgh it is quite rare to have the omission of
the intercept in a linear regression with stationary vdegkthis is not the case when the variables are
cointegrated. It is not unfrequent to see applications ofstep-estimators, as in the Engle-Granger
methodology, where the first step consists in estimatingraegration relation without an intercept.
In the latter, the intercept is usually included in the egorrection model.

Consider the following assumption about the data generatiocess.

ASSUMPTION1. Letx; = x;_1 + v;, Wherex; € R¥» andwv; ~ 11D(0,£2). Furthermore,y; =
o+ B’z + uy, wherea # 0, uy ~ 11D(0,02), andE(vu,) = 0, V¢, 7. Assume that the processes

Spr(r) = 3 v, and S, r(r) = & Sy, v € [0, 1), satisfy:
() Xor(r) = VTSy1(r) = By(r), and X, 7(r) = VTS, 7(r) = 02W,(r), asT — oo,

where B, (r) € R*= is a multivariate Brownian motion with covariance matfixand W, (r) is a

standard Brownian motion. Finally, assume tfit, () is independent aB,, (r).*

Now, suppose that an econometrician estimates the regnedsscribed in Assumption 1 by OLS

ommiting the intercept. In this case, the following triviebult holds.

~ —1
PROPOSITION 1. Define3 = (Zthl wtwg) S°T_ | @,y;, which is the OLS estimator when the

intercept is erroneously omitted from the estimated eqguatunder Assumption 1

3) VI(B-8)=a [ /0 1 Bv(r)Bv(r)’dr} B /0 "B, (r)dr

Many interesting features emerge from the above resultst,Rine OLS estimator is consistent
but no longer super-consistent as the convergence rat&'iss opposed td@’. This change in the

3[X] denotes the integer part &f.
“This last assumption excludes the case where the multigaaadom walk is endogenous with respegBtdseneralizing
our results to the case of endogenayss considered in Section 4.
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convergence rate has serious implications in hypothesimte Second, the distribution in (3) is not

a mixed normal anymore, even with exogenous regressorsi@retrors. In some specific cases,
the distribution in (3) can be bimodal. Figure 1, panel (a3plhys the first marginal component
of the asymptotic distribution in (3) for different dimeass, k., of the Brownian motionB,,(r) 5,

The distribution is clearly bimodal fok, = 1 andk, = 2. However, the bimodality disappears
as the dimension aB(r) increases. Third, there is a variance reductiort agrows. In order to
compare with the standard result in cointegration theorpanel (b) we consider the case where the
intercept is zero in the cointegration relationship, sunat the usual result holds, i.éF.,(B — B) =

[fol Bv(r)Bv('r)/dr] o fol B, (r)dW,(r). As we can see, the distribution is, as expected, always
unimodal and mixed normal and, contrary to the previous,dhgevariance increases as the—

Q.

o2

o8l

06

01

oaf

o2f

FIGURE 1. Asymptotic distribution of the OLS estimator of in a mplé cointegrat-
ing regression for different number of regressors. Panek (g 0 and it is omitted
from the estimated regression. Paneld4b¥ 0.

The reason why bimodality seems to vanish as the number oégsgrs increase is simple. Bi-

modality arises because the scalar distribution

fol B(r)dr
fol B2(r)dr
is bimodal as verified in our simulations. Note that the nuat@rand the denominator in the above

expression consists of the same scalar Brownian motionh®nther hand, in a multivariate setting

SIn order to simulate the distributions we consider ®ain Assumption 1 is an identity matrix and = 1. The Brownian
motions are generated from 10,000 observations and theéations repeated 10,000 times.
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the termfo1 B, (r)B,(r)'dr involves sums of cross-products of different scalar Bramninotions,
such that, component-wise, the asymptotic distributiothefparameters is a ratio where the denom-
inator and the numerator are not functions of the same sBatavnian motion.

To evaluate the effects of the above result in terms of imiegewe consider the simple case of a
single regressor, i.ek, = 1. Under the misspecified model without an intercept, theitigion of

the t-statistic forH, : 5 = 5* is given in the following proposition.

PROPOSITION2. Suppose that Assumption 1 holds with= 1, such thatB,, = o,W,(r), where

W, (r) is a standard Brownian process. Under the null hypothgsis 5*,

@ I T S G

VIT VG (sa) T e pwera]

As the denominator of the t-statistici¥7") and the numerator i9(+/T), the ratio will diverge as
T — oo, such that it should be scaled R§T". Furthermore, the distribution of the scaled t-statistic
is not free from nuisance parameters as kotindo,, appear in the asymptotic distribution.

The consequences of the omission of an intercept in a coatieg regression are quite different
from the ones in a model involving solely stationary varghlIn the latter case, the OLS estimator
is inconsistent but the asymptotic distribution is stillUSsian and the order of convergence is pre-
served. More specifically, assuming thatis a vector of second-order stationary random variables

1T
and plim # >, x;x; = Q, then
T—s00

VT (B-8) -5 N[aQ 1,9,
where is a positive-definite covariance maftix

4. A SIMPLE NONLINEAR-IN-VARIABLES MODEL

Nonstandard results also arise in simple nonlinear moditsnenstationary and stationary vari-
ables. In this section we consider a cointegration regrassith time-varying parameters. Our model

has a key feature that the cointegration relationship aemagcording to an observed state vector of

6A second-order stationary random variablehas the following features: @ (x¢) = p, —00 < p < o0; (b) E[(z¢ —
1)*] = 0% < oo; andE|[(w¢ — p)(we—;j — p)] = 75, —00 < 75 < 0.
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variablesz;. We assume that; is observable and second-order stationaryz;Ifs endogenous the
asymptotic distribution of the OLS estimator will be chadge

Consider the following assumption.
ASSUMPTION2. The vectorY; = (y;, x4, z;)’ satisfy
(5) yr = ao + Poxt + arg(ze) + Brzeg(ze) + ur,

Ty = Tg—1 + Vg, Up = Z;io Tuj€lt—j = Tu(L)ere, v = D 2o Mo eat—j = mu(L)eat, 2t =
> ie0 Tz j€31—j = Wz(L)esy, mu(L), my(L), and (L) are lag polynomialsy 22 j|my, ;| < oo,
> 20 dllmu sl < oo, and Y22l m =l < co. Sete; = (g1, €24, €%,) such thatl(e;) = 0 and
E(ete;) = Qe, where
w? wip Wwis
Qe = | wpp wr why
wiz waz 23

Assume also that, = 0 or is randomly drawn from a density independenttofFinally, g(z:) :

R*- — R is a known function of the stationary vector processs R*=.

Model (5) may arise in a number of situations. Threshold tegiration models where the change-
point is known are special cases of (5). Such kind of modedsrelevant when, for instance, the
long-run equilibrium changes according to the businestecy8uppose thaj(z;) = d; is a dummy
variable indicating recessions, such as, for example thERIBzcession indicator. In this case, (5)
becomesy; = ap + Boxs + crdy + Praedy + ug. Of course, in most practical applicatiopéz;)
will be indexed by a vector of unknown parameters, ig¢z;) = g(z¢;60). We will not consider
this case explicitly here, nevertheless, the consequesfoesr main results below will also extend
to the nonlinear least squares estimator and a correctioitasito the one proposed here should be
considered.

We show that, under endogeneitygf the order of convergence of the parameters related tgysolel
I(1) or 1(0) variables will be preserved. However, the pagsenrelated to the mixed variablgg(z;)
will converge at a slower rate. This is a new result compaoeitieé recent work of Chang and Park

(2011), where only I(1) regressors are considered in a genenlinear cointegration model.
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With respect to the random varialyjéz,) consider the assumption:

AssuMPTION 3. The stochastic procesgz;) is such thatf [g(z;)] = pg < oo andE [g(z:)?] =
m2 < oco. Furthermore, = 3"/, g(z;) > pg and VT [% ST g(ze) — ug} 45 N(0,w2), where
wg is the long-run variance of(z;). Assume also tha [g(z;)ut] = p1gu < 00 @andpg, # 0. Finally,

d
% ZtT:1 g(z1)uy NEAN Hgu andv/T [% ZtT:1 g(z1)up — ,ugu] — N(O,wgu), wherewgu < 0.

Define the following stationary zero-mean process

2

/
w; = [ut,’Utag(zt) — pg, ()" — mf,,g(zt)ut - /‘gu} €R".

We make the following assumptions abaui.

ASSUMPTION4. Each element of the proce$a, }2°,, satisfies: (8 |wi|* < c0,i =1,...,k, for
2 <a < oo;and (b){wit}2,, i =1,...,k, is either uniform mixing of sizea/(2a — 2) or strong

mixing of size-a/(a — 2), fora > 2.

ASSUMPTIONS. The processw; has a continuous spectral density functipyg,, () which is bounded
away from zero. Defin& () = VTS7(r), where S(r) = %Zgﬁ] w;, v € [0,1]. Hence,
Xrp(r) = B(r), asT — oo, whereB(r) = [BU(T‘),BU(T‘),BQ(T‘),BQQ(T‘),BQU(T)], is a multi-

variate Brownian process with covariance matfix= Tlim T—E [Sr(r)S7(r)] defined as
—00

Wyu — Wgu  We2y  Wouu

Wyy Wy Wgv Wy2y Wouw

i _ /
(6) Q =1 wu Wy wg We2g  Wggu =X +A+A]
2
Wezy Wg2y W2y Wi Wezgy

Wouu Wguv Wggu Wg2guy wgu

accordingly to the partitions ofv;, whereX = E(w;w)) andA = Tlim 50 o E(wiw}).
—00

Setf = (ag, f1, a1, P1)". The OLS estimato@ is distributed as:
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THEOREM 1. Under Assumptions 2-5 and the additional assumptionihat 0,

- _71 - -

1 [ Bu(r)dr Lhg ig Jy Bu(r)dr N [0, w2, (1)?]
r(6-o)- © o Bulrdr g [y Bor)r g Jy B. QW Jo Bulr)dBur) + Ao |
my mg Jo Bu(r)dr NWW%Q
my fo r)*dr Hgu fo r)dr

whereA,,, = oy, + Ay, andT' = diag (T%/2,T, T1/2, T1/2). On the other hand, ifi, = 0

- - -1 r -

1 fol By(r)dr 0 0 N [0, wimy(1)?]
_ - Jo Bu(r?dr 0 0 Jo Bu(r)dBu(r) + Au,
roe-60)=
( ) mg m2 folB ’I” d’l” N(,Uguawgu)
2f0 er Lgu fo r)dr

The endogeneity ot, plays an important role here as, similar to the case destiib&ection
3,T3/2 Zthl xrg(2¢)ur CONVErges tQugy, fol B,(r)dr. On the other hand, i¢; is exogenous, the
usual convergencg ! Zthl z1g(ze)ur = fol By (r)dBg,(r) holds, whereB,, (r) is the Brownian
motion associated to the procegx.)u;. As before, this simple result has severe consequences on
parameter inference.

Consider a simple version of (5) where

(7) Yt = Brig(ze) + uy.

In this case, the OLS estimator for the paramétavill have the following asymptotic distribution

/01 B(r)dr,

whenz; is endogenous. The same problems discussed in Section &fedt parameter inference.

-1

® vi-9 = ([ pora)

g

4.1. A Simple Solution. In this section we show how IV may be used in the present canfex

simplify the exposition, consider the case whegas exogenous, such that,, = 0.

ASSUMPTIONG. s; € R is a stochastic process such tliafs;g(z;)] # 0, E(siur) = 0, E(s¢) =

pts < 0o, andE (s?) = m? < oo. DefineX,, r(r) = VT Ser(r), whereSg, r(r) = ZZT? Si;,
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r € [0,1]. Hence, X, 7(r) = wsuWsu(r), asT — oco. W,(r) is a standard Brownian motion

andw?, is the long-run variance of the procesgi;.

~ ~ -1 ~
Defineg; = As;, where\ = (Zle sf) ST stg(z¢). The distribution of the IV estimatd

is given by the following theorem.

THEOREM 2. Under Assumptions 2—6 and the additional assumptiondhat= 0, if ;s # 0 then

— 4 -1 r -

Ly Bufrydr At Mis Jy Bo(r)dr N [0, w2 mu(1)?]
T (’é _ 0) N I3 Bo(r)2dr Aus [ Bo(r)dr A [ Bo(r)?dr Ji Bo(r)dBy(r)
A2m?2 A2m?2 fol By(r)dr N(0, \2w2, )
Nm? [3 Bo(r)2dr| | A fy Bo(r)dWeu(r)

Otherwise, ifus = 0, then

- _71 - -

1 [) Bu(r)dr 0 0 N [0, wim, (1)?]
~ fol By(r)?dr 0 0 fol By(r)dBu(r)
re—60)=
(6-9) Nm2 NPm? [g By(r)dr N(O, X,
Nom3 [y Bo(rdr | |\ Jy Bu(r)dWe(r)

The matrixI is given byI' = diag (72, T, T/2,T) in both cases.

5. MONTE CARLO SIMULATIONS
Consider the following special case of the general modedrieed in Assumption 2:
yr = g+ arl(z > 0) + Boxy + Praed(ze > 0) + wy
=14z +a1l(ze >0)+al(z > 0) + wy,
ze =8 +uy, and xzy = xy_q1 + vy,

I(A) is an indicator function which equals one if the evehtoccurs or zero otherwisey, ~
NID(0, 1), v¢ ~ NID(0,1), s ~ NID(0, 1), E(usv,) = 0, andE(syu,) =0, V¢, 7.
We consider two cases; = 0 anda; = 1. We simulate 5000 observations over 1000 replications

and evaluate the distribution of both the OLS and IV estimsatd g, o1, 59, and5;. In the first
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Model 2: a, Model 2: BO
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100+
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0
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FIGURE 2. Empirical distribution of the OLS and IV estimators with = 0. The
data are simulated with 5000 observations and the Monteo@aidonducted with
1000 replications.

stage the variablé(z; > 0) is regressed ofi(s; > 0). The results are shown in Figures 2—-3. We also
consider the distribution of the t-statistic under the imtbothesis as shown in Figures 4-5.

Several features emerge from the graphs. First, dependinigeovalue ofx;, bimodality may or
may not be present. When = 1, the OLS estimator of; is always bimodal, while the IV estimator
is not. Furthermore, in this specific case, the IV estima&sr lower variance than the OLS estimator.
The t-statistics for the OLS estimators display bimodalithiereas the the ones for the IV estimators
are, as expected, normally distributed. Second, the OliBvastr of 5, is always consistent. The
OLS delivers inconsistent estimators for bethanda; while the IV estimator is always consistent.

The t-statistic for the 1V estimators are always distribuds a standard normal random variable.
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Model 2: a, Model 2: Bo
20 oLS 700
oLS
600 | v
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Model 2: o, Model 2: [31
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3001
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200t
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ol 1001
0 : : ' 0 : : '
0 0.5 1 1.5 2 25 0.98 0.99 1 1.01 1.02 1.03

FIGURE 3. Empirical distribution of the OLS and IV estimators with = 1. The
data are simulated with 5000 observations and the Monteo@aidonducted with
1000 replications.

6. CONCLUSION

The paper identifies a number of interesting cases that d¢ae @r cointegration models. Bi-
modality is one such case. We show how bimodality arisesctimsequences, including the loss
of super-consistency of the estimates in a simple case; awdtre addition of regressors leads to
disappearance of the phenomena. Inclusion of an intereapbvwes both bimodality and inference
related problems arising from using a non-scaled t-si@atiStecondly, in the more general nonlinear
case, where, as expected, endogeneity leads to the pipgsibihconsistent OLS estimates, but also
the potential for the asymptotic distribution to be bimodite use of IV in these cases removes both

bimodality and inconsistency.
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Model 2: ag Model 2: BO
0.4; \ 0.4; |
oLS ! oLs !
WY v
03| - — —N(©,1) 03[~ = ~N@©.3)

0 0
-10 -5 0 5 10 -10 -5 0 5 10
Model 2: Bl
0.4r
oLS
v
0.3F| — — —N(0,2)
0.2t
0.1t
0 n n 3
-200 -100 0 100 200

FIGURE 4. Empirical distribution of t-statistic for the OLS and \éteénators with
a1 = 0. The data are simulated with 5000 observations and the MGat is
conducted with 1000 replications.
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APPENDIXA. LEMMA

LEMMA 1. Let {z;}L, be a stochastic process satisfying = z; 1 + v;, whereE(v;) = 0.
Definew; = (us — pu,v¢)', Wherew; is a stationary process witht(u;) = p, < oco. Assume
that the processSr(r) = =+ EJTTI] wj, r € [0,1], satisfies the multivariate invariance principle.
More specifically, defineX(r) = vTSr(r), such thatXr(r) = B(r), asT — oo, where
B(r) = [By.(r), B,(r)]" € R? is a vector Brownian process with covariance matrix

9@ Q= E(wiw)) + ) [E(wiw)) + E(wpw))] =%+ A+ A,
k=2

DefineA., = ouw + M- Under the assumptions above, the following results hold:
@) if 1y, # 0, thenT 2L 22wy = p,, [ B2dr;
(b) if A, # 0andp, = 0, thenT—3/2 Zitr:l riup = fol By (1)2dBy (1) + Ayy fol By(r)dr;
() if Ay, = 0andy, = 0, thenT 3231 22y, = fol By(1)?dB,(r);
(d) and, if u, # 0, thenT 32T | wuy = p,, [, Bo(r)dr.

Proof. First, definesf = u; — p,, and writeZtT,1 Py = py Ny + S0 22up. Itis well-
known thatuuTQ Zt LT = iy fo r)2dr. Direct application of the results in Theorem 3.1 in
Ibragimov and Phillips (2008) |mpI|es that

1

T 1
1
T3 E xiu) :>/ By(r)2dBy(r) + Ay | By(r)dr.
t=1 0 0

Hence, (a), (b), and (c) follow from the above convergencetdi.
To prove (d) is enough to WritE'f LTty = S @ (A uf) = Yo e+ S e,
and note that., = ST x = ) By(r)dr and 2 S zuf = [ By(r)dBy(r)dr + Ay,

APPENDIX B. PROOF OFPROPOSITIONS ANDTHEOREMS

B.1. Proof of Proposition 1. The proof is very simple. First, note that

_1T

t=1
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Itis clear thatl; S / ' B(r)B(r)dr, - 5T ' B(r)dr, andx S°F
ber D iy Ty = fo (r)B(r)'dr, 373 o T = fo (r)dr,ands >, ziup =

[ B(r)dW (r). Hence, a8~/ "L, @yuy 5 0,
T -1 T T
~ 1 , 1 1
\/T (B — B) = (ﬁ tz; $t$t> (a—T3/2 tz; Tt + —T3/2 tz; actut>

S o ( /0 1 B(r)B(r)’dr) B /0 ' B(rdr.

|
B.2. Proof of Proposition 2. Write the t-statistic as
T —1/2
_ Zthl we(a+ug) | 2 _ o Zthl Tt Zthl LUy
tg = T ~ Ou th = iz T 172"
> i1 7t —1 G T2\ T2\
= t= Ou (Dorm1 27 Ou (Dorm1 27
Hence,
T T
1 . Qs Do T Fi7m Dot Lty o Jo W(r)dr
. 2 1/2 o 12"
vT Ou (% Zle 33?) Ou (% Zthl 37%) b [fol W(T)2d"”}
|

B.3. Proof of Theorem 1. First, define the following matricesH = diag (\/T, T.VT, T) and
D = diag (1, 1,1, \/T) Note that

- q-1

1 ﬁ S T Y1 9(zt) ﬁ S 9(z0)xe
D-'H (5 _ 0) _ % Zthl a7 ﬁ Zthl 9(ze)z % Zthl 9(z)a7
% ZtT:1 g(zt)2 ﬁ 23:1 9(%)21}
% er:l g(zt)Zacf ]
ﬁ Zthl ut
" T i ety

ﬁ Zthl 9(z¢)uy

T
ﬁ > =1 Teg(ze)ut
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Therefore, foru, # 0 we need to show the following: (59%3—/2 Zt 1Ty = fo r)dr; (b)
T F > 9(z0) B pgi (€) Ts/z i 19(Zt)33t = g fo r)dr; (d) 7 Yo, @t = fo r)?dr;
OF: TZ Zt 19(zt)1’% = Uy fo r)*dr; (f) TZt 19(zt) 5 m2; (9) mZt 19(zt)2xt =

m3 [ Bo(r)dr; () 72 S 1g<zt>2x% = m? o By(r)?dr; () = zt L S N[0,w3m, (1)2);
) thzl Tiup = fo o (r)dBy (1) + Apy; (K) ﬁZt:l g(z¢)uy LA N(pgu, w3, ); and finally
(Dﬁ Zthl zg(ze)ur = fgy fol By(r)dr.

In the caseu, = 0, (c) and (e) should be replaced by the following: (ﬁ/—g Zthl Gire =5 0
and (e')yz Zthl g(z)x? 25 0.

First, defineg: = g(z1), gf = g(zt) — pig» 97 = g(24¢)%, andg?* = g(z¢)? —mg. Itis clear that (a),
(d), and (j) follow from standard results in the literaturedgb), (f), (i), and (k) are trivially satisfied.
Next, write =7 gime = S0, (g + 97) w1 = g Xopy 0 + Xy g

It is clear that

r 1 T 1
1 1 .
Homazs D0 = My / By(r)dr and - > _ gie = / By (r)dBy(r) + Agy.
t=1 t=1

Hence, ify, # 0, T3/2 Et 19t = Jig fo r)dr and (c) is proved. Otherwise, jf, = 0,
T LS giwe = fo 7)dBy(r) + Agy, such thatm ST gizy 2+ 0 and (') is proved.

Following the same reasoning, write

T T T T
gt =) (ug+gi)ai =pg» i+ giat.
t=1 t=1 t=1 t=1

From the results in Lemma 1, it follows that
1 & 1
2 2
Haa tE_l x; = Hg/o B, (r)*dr and

1
T3/2 ngﬂ:? :/ BV(T)Qng(T) + Agv/ By (r)dr
t=1 0 0

Therefore, ifuy # 0, 72 Et L 91T = g fo r)*dr and (e) is proved. lfi, = 0, =7 S gix? =
fol By(r)2dBy(r) + Ay, fo r)dr, such thatT— Zt Lgix? 2+ 0.and (e) follows.
Now, let's turn to> "1, g2;. Agaln,Zt:1 grr =31, (m2 + g#*) xe = m2 S0 e+ O(T).

Hence 1 S0, g?zy = m2 [ B,(r)dr and (g) follows.
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Following similar arguments, it is straightforward to peoth). To prove (1), defing; = gut — p1gu

Z Trgrur = Z (Kgu + 1t) tgu Z T + Z TNt

From Lemma 1, it follows that

T
1
Housza Zl’t = ,U,gu/ r)dr and — Zazmt = / 7)dBgy (1) + Agu-
t=1
Therefore, ifyg,, # 0,

T 1
1
T3/2 Z Tegruy = ,Ugu/ By(r)dr
t=1 0
else

= thgtut :>/ ngu ) Aguv'

|
B.4. Proof of Theorem 2. DefineI’ = diag (T, T,v/T,T) and write
g
[T T T T 1 - [ 7 i
Dmrl D ® DGt Dy—g G Do Ut
T T ~ T -~ T
T (5 — 0) {7t Zt:1 ZC% thl gt thl gta:? -1 1 thl Tely
Zt 19 9 Zrir—l gr e erzl grut
L i Zt i th _ZtT:1 l’tﬁtut_
Therefore, forus, = 0 we need to show: (a%g—/2 Et L T = fo r)dr; (b) T Et 10 2 N
(©) T3/2 Zt 1 Gete = Mis fo r)dr; (d) 72 Zt 77 = fo 2d"” (€) 7= Zt Qi =
/\/~‘8 fo er (f) Zt 1 25 /\2 gu’ ()] T3/2 Zt 1 gt Ty = )‘2 3 fo r)dr; (h) Tz Zt 1@233? =
2f0 r)?dr; (i) \th 1 Ut 4N [0, wim(1)?]; () th | Teug = fo o (r)dBy(r); (K)
ﬁ Zt:l grut _> N(O, Am ) and (I) Zt 1 Tigrur = )\fo dWsu( )

In the caseus = 0, (c) and (e) should be replaced by (cﬁ)}/f2 ST Gy 2 0 and ()
% ST G2 5 0. Items (a), (d), (i), and (j) follow trivially as in the proaf Theorem 1. Writing
gt = As; and noting thatplim X = )\, itis trivial to prove items (b), (f), and (k). The proof ofeh

T— 00
remaining items are similar to the ones in Theorem 1.
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