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Abstract

This paper investigates potential measurement error biases in estimated poverty
transition matrices. We compare transition matrices based on survey expenditure data
to transition matrices based on measurement-error-free simulated expenditure. The
simulation model uses estimates that correct for measurement error in expenditure.
This dynamic model needs error-free initial conditions that can not be derived from
these estimates. We provide bounds on the initial-conditions parameters, when these
initial conditions are obtained by projection, and we also obtain initial conditions
on the assumption that there is no time-constant measurement error. We find that
for both estimates of the initial conditions measurement error in expenditure data
magnifies economic mobility in and out of poverty. Roughly 44% of households initially
in poverty at time t−1 are found to be out of poverty at time t using expenditure data
from the Korean Labor and Income Panel Study (KLIPS). However, when we remove
measurement error through a model-based simulation, only between 32 and 40% of
households initially in poverty are found to be out of poverty.
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1. Introduction

Income and consumption mobility as measures of economic mobility have been receiving

substantially more attention in the social sciences, with the increasing availability of panel

data. Economic mobility is both related to changes in economic welfare for individuals and

to changes in inequality for a society. One important method used to measure economic

mobility for the poor is to study poverty dynamics using expenditure data and poverty

transition matrices. In addition, studies of consumption dynamics using transition matrices

that cross different quintiles of the expenditure distribution is a related method that is useful

to assess economic mobility, not just of the poor.1

Most studies of income and poverty dynamics, however, have ignored potential mea-

surement error biases in the transition matrices, although the presence of measurement error

in both income and expenditure survey data has been widely acknowledged (eg. Deaton,

1997, Bound et al., 2001). This paper quantifies the direction and magnitude of the bias

that measurement error in surveyed expenditure creates in poverty transition matrices and

in more general expenditure transition matrices that measure economic mobility, using lon-

gitudinal data from Korea.

In this study, we use an economic model of consumption dynamics developed by Lee

(2009) to construct measures of simulated expenditure that, under the assumptions of our

model, do not contain measurement error.2 From these simulated data we construct poverty

and expenditure quintile transition matrices, which are then compared to matrices that use

the measured expenditure data, which are measured with error. We allow for fairly gen-

eral types of measurement error, in particular we allow both for time-varying measurement

1In principle, there is a distinction between consumption and expenditures. Consumption, which is the
correct economic concept, is the flow value of services from the good over the period in question. This is
quite hard to measure for semi-durables and durables, for which data generally contain expenditures, not
flows of service. However, in practice, expenditures also partly include consumption, one example being
for farmers, for food consumed out of own production, which is generally included in expenditures, but is
also consumption. So expenditures is really a mixture of concepts. In this paper we will use the two terms
interchangeably.

2A number of assumptions underlying this model we are able to test, see Lee (2009).
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error, of the type that is most often thought as being problematic, and for time-invariant

measurement error, which can be non-classical.

Since we estimate in first differences our model for error-free expenditures, which is

autoregressive of order 1 in levels, we need two initial error-free values for expenditure to

perform the simulation. The methodological contribution of this paper is that we develop

two methods, based on non-nested assumptions, to resolve this problem. The first approach

estimates the initial values by projection. As we show, with the available data we cannot

point identify the variance of the error-free projection in the year before the simulation

period. However, we develop sharp and informative bounds on this variance and simulate

error-free expenditures at the lower and upper bound. The second approach makes the rather

strong assumption that there is no time-constant measurement error in consumption and also

assumes that the expenditure process is in stationary equilibrium. Under these assumptions

we can point identify the distribution of the initial values. Fortunately, the results of both

approaches not so different, so that the results are reasonably robust to deviations from

either set of assumptions.

This study uses data from the Korean Labor and Income and Panel Study (KLIPS)

from 1998 to 2006. We find that the transition matrices based on survey data are biased when

expenditure data are reported with error. In particular, in these data measurement error

magnifies economic mobility into and out of poverty. Roughly 44% of households initially in

poverty at time t− 1 are found to be out of poverty at time t using the KLIPS expenditure

data. However, when measurement error is removed through our model-based simulation,

32 to 40% of households initially in poverty are found to be out of poverty. As another way

to look at the data, over the four year period, 2002− 2005, the measured expenditure data

show that 36% of the households are poor in at least one year, but only 6% are poor in all

years, and 12% poor in three or four years. Hence two-thirds of the poverty is transitory

using these estimates. On the other hand, using our simulated, measurement error-free data,

some 34% of households are estimated to be poor at least one of these four years, but nearly
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half of those, 15%, are poor at least in three of the four years, while only 6.5% are poor in

only one year and 12% poor in one or two years. Hence the poverty that exists in Korea

seems more permanent when measurement error is accounted for in the poverty dynamics.

We want to be careful in our conclusions though. In other settings, notably rural

settings in lower income countries, we expect a good deal more economic uncertainty than

in Korea, which is largely an urban population, due to the high variance in rainfall and

other factors that are critical in determining rural incomes and consumption.3 As a result

we might expect a greater degree of poverty mobility in such areas. Yet, we guess that in

those cases too measurement error may bias mobility estimates based on reported data in

the direction that we found. Given the modest data requirements of our approach, it would

be advisable to use it to correct for measurement error bias, if panel data are available.

The remainder of the paper is organized as follows: Section 2 briefly reviews the

literature on poverty dynamics; Section 3 develops the empirical methodology; Section 4

describes the data; Section 5 shows our findings; and Section 6 concludes.

2. Studies of Poverty Dynamics

Recent research on poverty in developing countries has focused on its variability in addi-

tion to static measures. There exist very different models that researchers have used to

estimate consumption and/or poverty mobility.4 An important method that is used to esti-

mate consumption or income mobility assumes an AR(1) model for consumption or income

3See Rosenzweig (1994) for evidence comparing the mean coeffi cient of variation (CV) of profit incomes
of individual farmers in the ICRISAT Village Level Studies to the mean CV of labor earnings of young white
males in the US from the National Longitudinal Survey of Youth (NLSY). The CV for incomes in rural India
is three times higher than in the US. The ICRISAT data are very well known for being high quality, it is
most unlikely that differential measurement error can explain this result.

4Consumption, or expenditures, are generally preferred to income to study poverty, both because income
is thought to generally have much larger measurement errors than expenditures, and because households tend
to smooth their consumption relative to their income, so that consumption is a better measure of long-run
resources. Indeed, Lee (2009) estimated both income and expenditure dynamics models on the same Korean
data that we use in this paper and was able to quantify that the variance for time-varying measurement
error for income was approximately five times larger than for expenditure.
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with exogenous covariates.5 The estimate of the autoregressive coeffi cient can be taken as

an estimate of income or consumption mobility (see for instance, Gottschalk and Spolaore,

2002; McCullough and Baulch, 2000; Luttmer, 2002; Antman and McKenzie, 2007a, 2007b;

Lee, 2009; Glewwe, forthcoming), with a higher value pointing at persistence and a lower

(positive) value to more mobility.6 These dynamic models are sometimes estimated in levels

and sometimes in first differences (the latter being preferred in order to take out unobserved

household fixed effects and time-invariant measurement error) and require instrumental vari-

ables (IV) to account for the endogeneity of lagged expenditure. The plausibility of these

instruments, as is often the case, can be debated (see Antman and McKenzie, 2007a, for a

discussion).

Another measure of poverty dynamics are poverty transition matrices between two

years and/or counts of the number of years out of the total for which an individual household

is in poverty. Many studies have used these two measures to investigate the degree to which

poverty is persistent, and in these studies strong movements in and out of poverty have

been one of regularities (Gaiha and Deolalikar, 1993; Jalan and Ravallion, 1998; Dercon,

1998; Baulch and Hoddinott, 2000; Baulch and McCulloch, 2000; Dercon and Krishnan,

2000). Some studies have tried to distinguish between chronic and transitory poverty because

different types of poverty can have different determinants and have very different policy

implications (Jalan and Ravallion, 2000; Duclos et al., 2010; McCulloch and Baulch, 2000).

As a consequence, economists have agreed that distinct anti-poverty policies for each type of

poverty can be more effi cient to alleviate targeted poverty than a single set of policies that

do not distinguish types of poverty. For example, long-term investments for the poor like

education are likely to be effective in reducing chronic poverty, while enhancing households’

ability to smooth consumption by providing a social safety net is likely to be more important

to reduce transient poverty.

5See Fields (2006) for a useful survey of income mobility and how it can be measured.
6In addition, one can interpret the autoregressive coeffi cient as signifying conditional (on the X’s) sta-

tionarity in income or consumption provided the coeffi cient is less than 1 and trending if the coeffi cient is
greater than one, as in growth models.
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Poverty dynamics is also related to the poverty trap literature which, if true, implies

permanent rather than transitory poverty. Permanently low incomes will lead to less asset

accumulation, which may lead to a poverty trap. Households with a low endowment of

assets are unable to translate these into higher incomes because they pursue low-risk and

low-return activities (Dercon, 1998; Zimmerman and Carter, 2003; Barrett and McPeak,

2004).7 Accordingly, some studies recently have emphasized a nonlinear relationship between

current and lagged income to identify potential poverty traps, but studies generally do not

find evidence that supports this (Lokshin and Ravallion, 2004; Antman and McKenzie,

2007b).

Surprisingly few studies, however, have investigated the effect of measurement error on

poverty rates and transition probabilities. The gold standard of studies that have considered

measurement error are for income and earnings, not expenditure, and use administrative

data (considered measured without error) that are matched to survey data at the household

or individual level (see Lee, 2009, for a more detailed discussion). These studies are mainly

based on US panel data (see Bound et al., 2001, for an older survey). Studies such as Bound

and Krueger (1991) and Pischke (1995), for instance, have found that measurement error in

labor market earnings in the US is positively autocorrelated and negatively correlated with

“true”earnings. Even though these findings are for earnings, not expenditure, to the extent

that they may be relevant for this study, we allow for measurement error that is correlated

with true expenditure. Tests in Lee (2009) fail to reject the hypothesis that measurement

error for both income and expenditure is uncorrelated over time in our data after removing

household fixed effects and time-constant measurement error.

As discussed in Lee (2009), there are a small number of studies that compare measured

recalled expenditure in a survey to expenditure as measured by daily diaries (eg. Ahmed et

al., 2006). These studies find discrepancies between these measures. While in these studies,

diaries are assumed to measure true expenditure, there is evidence that even diaries contain

7However, many other studies show that a household’s business can start at very low asset levels and
grow (McKenzie and Woodruff, 2006, for instance).
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measurement errors (Browning, Crossley and Weber, 2003).

Studies that have examined income or consumption dynamics while accounting for

measurement error without the benefit of administrative records, include McGarry (1995),

Fields et al. (2003), Antman and McKenzie (2007a, 2007b), Lee (2009), Gibson and Glewwe

(2005) and Glewwe (forthcoming). Of these, only McGarry and Gibson and Glewwe estimate

poverty transition matrices as we do here. Fields et al. estimate a growth model of change in

log income on lagged log income and other covariates. Although the dependent variable is a

first-difference, only lagged log income is included. Relative to our model log income lagged

twice is omitted and this variable is correlated with time-invariant measurement error and

household-level time-invariant unobservables. Fields et al. instrument lagged income with

household asset variables, household location variables and characteristics of the household

head such as age, education and employment status in the initial period. These variables

are surely correlated with time-invariant omitted variables such as individual ability.8

Glewwe (forthcoming) and Gibson and Glewwe (2005), have only two years of data

available to estimate consumption dynamics for Vietnam. Not surprisingly, these studies

have to trade off much stronger assumptions against the shorter panel. In particular, the

dynamic model has to be estimated in levels instead of first differences and Glewwe (forth-

coming) uses body mass index as his IV for lagged expenditure. These studies thus cannot

address time-invariant measurement error, unlike this paper; other strong assumptions are

made as well.9

Antman and McKenzie (2007a, 2007b) take a different approach to the estimation

of the dynamic model for income. They use a synthetic cohort approach, using quarterly,

urban Mexican employment data. They construct cohorts based on birth year and level of

8Assets may also be correlated with time-invariant measurement error of income, if for example, income
is consistently underestimated in order to keep it secret from the government and the higher the income and
assets, the more the incentive to underreport.

9Glewwe discusses the issues raised by his use of BMI as an IV. He has to assume no reverse causality
from BMI to future consumption through health effects on income. Furthermore BMI is a stock measure, so
that current values of BMI may be caused by past values of consumption, another possibility that Glewwe
has to rule out. Either possibility, if true, would invalidate BMI as a valid instrument.
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education of the head of the household.10 By constructing cohort cells with at least 100

observations in each, they argue that time-varying, random measurement error is averaged

out, leaving time-invariant error. On the other hand, they are also removing true random

shocks and thus possible understating true mobility. If the time-invariant error is fixed within

a birth year/education cohort, then the inclusion of cohort fixed effects will control for the

time-constant measurement error. They estimate autoregressive coeffi cients for quarterly

data which are around 0.8 when measurement error is fully accounted for (Antman and

McKenzie, 2007a). When they use annual data, as we do, their estimate drops to 0.54.

In Antman and McKenzie (2007b), they estimate nonlinear dynamic models of income and

consumption using the same data, using a cubic term in lagged income or expenditure.11

There goal is to test for poverty traps and they do not find much evidence for the existence

of such traps.

McGarry (1995) in a study very close in spirit to this paper, simulates income and uses

these simulations study the effect of measurement error on the change in poverty status and

poverty transitions for widows in the US. The model that she uses in her her simulations

is based on the autocorrelated individual component model (or variance component model)

advocated by Lillard and Willis (1978). This is a model without an AR(1) term in income,

but with an individual random effect, and a second random effect that is interacted with a

time trend. In addition, Lillard and Willis (and McGarry) introduce a random, individual

AR(1) disturbance, plus an idiosyncratic error. The idiosyncratic error is the sum of random

shocks to income and time-varying measurement error that, as in this paper, is assumed

10They use only households in their first year of the survey in order to reduce potential problems due to
the make-up of cohorts changing over time because of migration.
11Measurement error makes these nonlinear studies much more diffi cult because the measurement error

term will have interactions with the lagged income or consumption when the quadratic and cubic terms are
expanded. When first differences or fixed effects are taken, these interactive terms will not be removed,
even if the measurement error is time-invariant. This makes estimates such as Lokshin and Ravallion (2004)
inconsistent. Pseudo-panels as in Antman and McKenzie (2007b) may help, as they argue it does, for
random, time-varying error because of the averaging of such error over cohort members, but for non-classical
errors or errors that are correlated with covariates related to the cohort definition, like age and education,
it will not help. Cohort fixed effects will not help either because they will not remove interactions between
time-invariant cohort-specific measurement error and time-varying lagged cohort consumption.
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to be uncorrelated over time. McGarry cannot distinguish between the random shocks to

true income and time-varying measurement error, as we do in this paper. She also does

not allow for time-invariant measurement error. McGarry compares simulated incomes with

and without the variance component that includes measurement error, and she concludes

that the amount of permanent poverty of widows is underestimated if there is measurement

error. In this paper, we simulate expenditure based on our model without measurement

error, which is possible because can separately identify the true shocks and measurement

error variances. We compare the error-free expenditure to reported expenditure data, and

not a second simulation. The measured expenditure data include all types of measurement

error.12

In sum, there are a relatively few studies that are serious in trying to correct for

measurement error in estimating income or consumption dynamics. Apart from studies that

use administrative data that can be matched to survey data, studies only correct for time-

varying measurment error, not time-invariant error, and this under strong assumptions. Of

these studies, only McGarry (1995) and Gibson and Glewwe (2005) attempt to construct

poverty transition matrices based on error-free simulations.

3. Empirical Methodology

3.1. Transition matrix

Let C∗it be the true per capita consumption (or per capita expenditure, pce) of household i

in period t. We discretize consumption, so that the household has consumption level j in

period t if bj−1 ≤ C∗it < bj with b0 = 0 < b1 < · · · < bm−1 < bm = ∞. The probability that
12Luttmer (2002) and Villanger (2003), in unpublished papers, investigate the effect of measurement error

on poverty transition probabilities. Luttmer’s paper is similar to McGarry’s in spirit. Both construct their
measurement error-free welfare measure (either income or expenditure) by subtracting simulated measure-
ment error itself from survey data. However, in their studies, simulated measurement error is assumed to
be random, classical error, thus independent of the error-free income or expenditure. Thus the difference
between surveyed income or consumption and simulated random error includes non-classical error in addition
to true consumption.
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household i makes a transition from consumption level j in period t− 1 to level k in period

t is

p∗jkt =
Pr(bj−1 ≤ C∗i,t−1 < bj, bk−1 ≤ C∗it < bk)

Pr(bj−1 ≤ C∗i,t−1 < bj)
(1)

Them×mmatrix of transition probabilities is denoted by P ∗t and this matrix is the parameter

of interest.

However, we do not observe the true consumption C∗it but rather the mismeasured Cit.

The relative measurement error is ηit so that

lnCit = lnC∗it + ηit. (2)

We assume that the measurement error ηit can be decomposed into a time-invariant and a

time-varying component13

ηit = ei + vit. (3)

Measurement error in per capita consumption implies that in general the observed con-

sumption transition matrix Pt differs from the true transition matrix P ∗t . The objective of

this study is to estimate the true transition matrix from data on mismeasured per capita

consumption.

We estimate the true transition matrix by simulation. We take the model and esti-

mates from Lee (2009) and add an assumption on the distribution of the random shocks

in that model. However, even with this additional assumption we cannot simulate the true

transition matrix. The problem is that the model is an autoregressive model that does not

specify initial conditions for true consumption. We follow two approaches to deal with this

problem. In the first approach we project true initial consumption on covariates and use

observed consumption to estimate the coeffi cients of the projection. For the simulation we

also need the projection variance, i.e. the variance of the projection error for the true initial

observations. This variance is not point identified, but we obtain bounds on the variance

13One of scenarios considered is that the time-constant measurement error is 0.
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of this projection error and these bounds turn out to be informative. An advantage of this

approach is that only weak assumptions on the measurement error processes and no assump-

tions on the stationarity of true consumption are needed. In the second approach we assume

that there is no time-invariant measurement error and we also assume that the process for

true consumption is in stationary equilibrium. Under these assumptions we can initialize

the process without using projections to estimate the distribution of the initial observations.

The two approaches are valid under non-nested assumptions and therefore we report the

results of both to investigate the sensitivity of our estimates to our assumptions.

3.2. True Consumption

Lee (2009) specifies the following autoregressive model of consumption dynamics14

lnC∗it = γ lnC∗i,t−1 + β′Xit +Dt + αi + εit , t ≥ 1 (4)

where Xit is a vector household demographic variables, Dt captures time-specific effects, i.e.

a full set of year dummies, and αi is a time-invariant unobserved household specific intercept.

The corresponding model in observed household per capita consumption is after substituting

equations (2) and (3) into equation (4),

lnCit = γ lnCi,t−1 + β′Xit +Dt + αi + (1− γ)ei + vit − γvi,t−1 + εit, t ≥ 1. (5)

The total composite error of this model is

τit ≡ αi + (1− γ)ei + vit − γvi,t−1 + εit. (6)

The random shock in the true consumption equation εit is in the sequel referred to as the

equation error. Both the equation error and the time-varying measurement error are assumed

14Her paper also discusses the procedure that was used to select this model.
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to be serially uncorrelated.15

The estimation of the model (5) is complicated by the presence of unobserved household

effects, including the time-invariant component of the measurement error, and the time-

varying measurement error. Lee (2009) follows Arellano and Bond (1991) by first-differencing

the model and using lagged consumption as instruments.

∆ lnCt = γ∆ lnCt−1 + β′∆Xt + ∆Dt + ∆τt, t ≥ 2 (7)

∆τt ≡ ∆vt − γ∆vt−1 + ∆εt, t ≥ 2 (8)

First differencing allows for arbitrary correlation between αi and ei and the indepen-

dent variables. Because of the time-varying measurement error log consumption lagged two

periods is not a valid instrument, but log consumption lagged three periods is valid. In

addition she uses a lagged measure of income satisfaction as an external instrument. The

assumptions made by Lee (2009) are

E[εit| lnCi0, lnCi1, ..., lnCi,t−1, Xi, Zi0, . . . , Zi,t−1, αi, ei] = 0. (9)

and

E[vit| lnCi0, lnCi1, ..., lnCi,t−1, Xi, Zi0, . . . , Zi,t−1, αi, ei] = 0, (10)

with Xi, Zi the vectors of observations on the time-varying independent variables and the

external instruments respectively. This is a sequential exogeneity assumption on the lagged

dependent variables and the external instruments and an assumption of strict exogeneity

on the other explanatory variables, X, conditional on αi and ei. No assumptions on the

conditional variances are needed for the consistent estimation of the regression parameters,

15Lee (2009) also considers an MA(1) specification for εit, but fails to reject the hypothesis of serial
uncorrelatedness. Using only the external instrument, she also tests for serial correlation in the time-varying
measurement error and fails to reject the hypothesis of no serial correlation.
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i.e. under the assumptions made Lee estimates the parameters of the true consumption

process (4) consistently.

For the simulation of the transition probability matrix we also need the variance of the

equation error εit. Following Lee (2009) we assume that both the equation error and the

time-varying measurement error are homoskedastic, i.e.

Var(εit| lnCi0, lnCi1, ..., lnCi,t−1, Xi) = σ2ε (11)

and

Var(vit| lnCi0, lnCi1, ..., lnCi,t−1, Xi) = σ2v . (12)

Moreover we assume that the errors are conditionally uncorrelated

E(εitvit| lnCi0, lnCi1, ..., lnCi,t−1, Xi) = 0. (13)

Under these assumptions

E
[
(∆τit)

2
]

= 2σ2ε + 2(γ2 + γ + 1)σ2v (14)

E[∆τit∆τi,t−1] = −σ2ε − (γ2 + 2γ + 1)σ2v (15)

E[∆τit∆τi,t−2] = γσ2v . (16)

We can estimate the variance and covariances on the left hand side using the residuals of

the estimated consumption equation, so that we can use these three moment conditions to

estimate σ2ε and σ
2
v by minimum distance methods (see Lee (2009) for more details). 16

With the estimated regression parameters and the equation error variance we can

simulate the first difference equation (7) if we add the assumption that the equation error

16We could relax the homoskedasticity assumption by replacing estimates of unconditional by conditional
(co)variances on the left hand side. This is not considered in this paper.
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εit has a normal distribution, i.e. we simulate

∆ lnC∗it = γ̂∆ lnC∗i,t−1 + β̂′∆Xit + ∆Dt + ∆εit t ≥ 2 (17)

with

εit ∼ N(0, σ̂2ε). (18)

In the simulation we ignore the sampling variation in the parameter estimates.17

Because the transition probabilities are for the level of log consumption and not their

changes we need to find appropriate initial values. We simulate the levels by

lnC∗it = lnC∗i,t−1 + ∆ lnC∗it, t ≥ 2. (19)

Therefore the (joint) distribution of two initial observations must be known, e.g that of

∆ lnC∗i1 and lnC∗i1. To obtain these distributions of the initial values we consider two ap-

proaches: (i) projection, and (ii) no time-invariant measurement error plus stationarity.

Initial values by projection

We specify a linear relation between ∆ lnC∗i1 and lnC∗i1 and Xi0, Xi1. If we first-difference

equation (4) and recursively substitute for∆ lnC∗it−1we find that∆ lnC∗i1 is a (linear) function

of Xi1, Xi0, Xi,−1, . . .. The same equation implies that lnC∗i1 also is a (linear) function of

Xi1, Xi0, Xi,−1, . . . and, in addition, of αi, the household effect that can be correlated with

all Xit.18 Therefore the linear relations

∆ lnC∗i1 = δ0 + β0Xi0 + β1Xi1 + ζi0 (20)

17We normalize D1 to be 0 and use the estimated value of ∆D2 to derive D2.
18It is also a function, of course, of lagged values of ε.
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and

lnC∗i1 = δ1 + β2Xi0 + β3Xi1 + ζi1. (21)

are linear projections of these relations on Xi0, Xi1. Here, ζi0 and ζi1 are the projection

errors, with variances σ20 and σ
2
1.
1920 These coeffi cients of the projections and the variance

of the projection error need to be estimated to simulate lnC∗i1 and ∆ lnC∗i1.

Substituting observed consumption lnCi1 and ∆ lnCi1, we have

∆ lnCi1 = δ0 + β0Xi0 + β1Xi1 + ∆vi1 + ζi0 (22)

and

lnCi1 = δ1 + β2Xi0 + β3Xi1 + ei + vi1 + ζi1. (23)

We obtain consistent estimates of δ0, δ1, β0, β1, β2, β3 if we assume E[ei|Xi0, Xi1] = 0, i.e.

the time-constant measurement error is mean independent of Xi0, Xi1. This is a strong

assumption and if it fails the coeffi cients in (23) are biased but not those in (22).

We make two further assumptions on the projection errors that can be relaxed. We

assume that the errors are homoskedastic and that they are normally distributed. In addition,

because the initial observations are for period 1 we should allow for correlation between ∆εi2

and ζi0, ζi1 and these covariances must be estimated as well.

Define the errors in the estimation equations:

τt = α + (1− γ)e+ vt − γvt−1 + εt, t ≥ 1

ψ0 = ∆v1 + ζ0 (24)

ψ1 = e+ v1 + ζ1

19Note that ζi1 is a function of any part of the household fixed effect, α, that is uncorrelated with Xi1 and
Xi0 as well as being a function of further lags in X and in ε.
20Using a projection estimator for initial conditions of dynamic panel data regression models was used by

Bond and Windmeijer (2002), but see also Hsiao (1986).
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The errors in the simulated equations are: ∆εt, t ≥ 2, ζ0, ζ1.

It is reasonable to assume

E[ζ0∆εt] = E[ζ1∆εt] = 0 , t ≥ 3

and that the projection errors, ζ0, ζ1, are uncorrelated with the time-varying measurement

error, v. The following variances and covariances are needed for the simulation:

σ2ε , σ
2
0, σ

2
1, σ01, E[∆ε2ζ0], E[∆ε2ζ1]

The variance matrix of the random errors in the simulation is

Σ =



σ20 σ01 E[ζ0∆ε2] 0 0 0

σ21 E[ζ1∆ε2] 0 0 0

2σ2ε −σ2ε 0 0

2σ2ε −σ2ε 0

2σ2ε −σ2ε
2σ2ε



(25)

Moment conditions and identification The paper has three moment conditions (14)−

(16) that overidentify σ2v and σ
2
ε . Moreover there are two moment conditions that exactly

identify σ20 and σ01

Var(ψ0) = 2σ2v + σ20 (26)

Cov(ψ0, ψ1) = σ2v + σ01 (27)
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There are also two moment conditions that exactly identify E[ζ0∆ε2],E[ζ1∆ε2]

Cov(ψ0,∆τ2) = E[ζ0∆ε2]− (1 + 2γ)σ2v (28)

Cov(ψ1,∆τ2) = E[ζ1∆ε2]− (1 + γ)σ2v (29)

The variance of the projection error for the level equation ζ1, however, is not point

identified. To see this note that if we denote the variance of the observed projection error

for the first period log consumption by

ω = Var(ψ1) = Var(e) + σ2v + Var(ζ1) (30)

then this can be solved for Var(e) + Var(ζ1). The problem is that we cannot identify the

variance of the time-constant measurement error. However we have information on this

variance from the time-average of the errors of the log consumption equation. From this we

can derive bounds on the variance σ21. These are derived in three steps. First define

κ = E
[
(α + (1− γ)e)2

]
= σ2α + (1− γ)2σ2e (31)

From this definition

0 ≤ σ2e ≤
κ

(1− γ)2
(32)

Note that

κ = E

[
1

T − 2

T∑
t=3

(τt − E(τ))(τt−2 − E(τ))

]
(33)

This suggests the estimator

κ̂ =
1

n

n∑
i=1

(
1

T − 2

T∑
t=3

(τ̂it − τ̂ i)(τt−2 − τ̂ i)
)
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with τ̂ i the time average of the residuals τ̂it.2122

Finally, from the moment condition

Var(ψ1) = σ2e + σ2v + σ21 (34)

we obtain the bounds

max

{
Var(ψ1)− σ2v −

κ

(1− γ)2
, 0

}
≤ σ21 ≤ Var(ψ1)− σ2v (35)

In addition to satisfying the bounds (35),the variance σ21 must satisfy the additional restric-

tion that the variance matrix Σ must be positive semi-definite. If at the lower bound that

matrix is not positive semi-definite, i.e. if the smallest eigenvalue of that matrix is negative

then the lower bound of σ21 is that value that makes the smallest eigenvalue equal to 0. For

that value the joint normal distribution of the errors in simulation is singular. The exact

relation between these errors is given by the eigenvector corresponding to the 0 eigenvalue.

If the eigenvector is c, then we have

c1ζ0 + c2ζ1 + c3∆ε2 + c4∆ε3 + c5∆ε4 + c6∆ε5 ≡ 0 (36)

This allows us (if c2 6= 0) to express ζ1 as a function of ζ0,∆ε2,∆ε3,∆ε4,∆ε5 so that only

the latter variables must be simulated.

In the simulation we draw from the joint normal distribution of ζ0, ζ1,∆ε2, . . . ,∆ε5

given by (25). For the point identified parameters we substitute the point estimates and for

the interval identified σ21 we take the estimates of the upper and lower bound.

21Other moment conditions could be used in addition, but we do not do so here.
22A minor complication is that the data are not a balanced panel. The equation (33) can be easily adapted

to the case that we have s observations for each household. The estimates of κ for the households that appear
s times in the panel are averaged using the fraction in the sample as weights to obtain an overall estimate
of κ.

18



Initial value by stationarity

We can avoid the use of projection for the initial observations if we assume that the true

consumption process is in stationary equilibrium. Under that assumption the period 1 log

consumption is equal to

lnC∗i1 =
β′Xi1

1− γL +
D1

1− γL +
αi

1− γ + φi1 (37)

with

φi1 =
εi1

1− γL (38)

To use this equation in simulation we assume that

Xit = Xi0 , t ≤ 0 (39)

Dt = 0 , t ≤ 0 (40)

These assumptions are in line with the assumption of stationarity of log consumption.

We also need an estimate of the household effect αi. Because the household effect in

the observed log consumption equation is (1 − γ)ei + αi we could go two ways. We could

assume that αi is uncorrelated with the independent variables, i.e. we have a random effects

model, and use the bounds on the variance of αi implicitly derived in the previous section

to do simulations for the two extreme cases. If we are reluctant to make the random effects

assumption, then we can assume that the time-invariant measurement error is 0. Note that

this corresponds to the case of maximum uncertainty in the distribution of the initial obser-

vation in (21), so that the variability of the true consumption process is largest minimizing

the role of time-varying measurement error as an explanation of observed transitions. Under

the assumption of no time-constant measurement error we have that αi is the long run time

average of the τit the error of the log consumption equation. Therefore an obvious estimator
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is

α̂i =
1

T

T∑
t=1

τ̂it (41)

The equation error φi1 in the initial condition is drawn from the normal distribution

with the variance

V ar(φi1) = V ar

(
εi1

1− γL

)
=

σ2ε
1− γ2 . (42)

Because we have an estimate of the household effect αi we can simulate the true log con-

sumption in levels using equation (4), so that we only need the one initial condition.

3.3. Transition Matrices

Our goal is to estimate which fraction of the transitions observed in our sample is spurious, i.e.

due to measurement error. If our model of the true error free consumption process is correct,

then we could estimate the population true transition probabilities p∗jk by simulating a large

number of error free consumption paths for each household. We then could use these to

estimate the true transition probabilities for each household and averaging of these household

transition probabilities would give us the population p∗jk. Note that strictly speaking this

still would give us an estimate, since we would be averaging over a random sample and

not over all members of the population. This is however not the relevant comparison. If

we would observe consumption without error, then we would have a sample of the same

size as our current sample and consisting of the same households, but with true instead

of mismeasured consumption. The simulation of true consumption using our model will

produce such a sample. We now compare the transition probabilities based on the sample

with the mismeasured consumption p̂jk to the transition probabilities estimated from the

simulated true consumption paths p̂∗jk . The resultant estimated transition probabilities p̂
∗
jk

differ from those estimated using mismeasured consumption for two reasons. First, their

average over (many) simulations, p∗jk , differs from pjk , which is the population transition

probability for the mismeasured consumption paths. Second, p̂∗jk and p̂jk differ because of
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sampling variation due to the fact that for each household we observe only one mismeasured

consumption path and one error free consumption path. Using our model it is easy simulate

more than one sample of true consumption paths. Comparing the distribution of these p̂∗jk

to p̂jk allows us assess the sampling variation (associated with sampling variation of the true

consumption paths) of the fraction of observed transitions that is genuine, i.e. not due to

measurement error. The average of this sampling distribution is equal to p∗jk/p̂jk and this

ratio will have a sampling distribution because of sample variability in the mismeasured

consumption paths.

In this paper we do not try to assess the sampling variation in p̂∗jk/p̂jk. Instead we draw

a single sample (of size about 4000) from the distribution of true consumption paths (one for

each household) and use p̂∗jk/p̂jk as an estimate of the fraction observed transitions between

consumption intervals based on mismeasured consumption that is genuine, i.e. would occur

if we would have accurate measures of consumption. As explained above, drawing several

samples from the distribution of true consumption would give an impression of the sampling

variability of this fraction due to sampling variation in true consumption, but not due to

sampling variability in mismeasured consumption. For now we ignore this issue and report

the fraction genuine transitions for a single sample of mismeasured consumption paths and

a single sample of true, i.e. without measurement error, consumption paths. Only the full

sampling distribution of p̂∗jk/p̂jk over samples of mismeasured and samples of true consump-

tion gives an impression of the likely variation of the fraction of spurious transitions due

to sampling. Even then we ignore sampling variability in the parameter estimates which

is expected to have a small contribution to the variability of the estimate of the fraction

genuine transitions.

21



4. Data

4.1. Variables and Sample Size

The data used for this study come from the Korean Labor and Income Panel Study (KLIPS),

from 1998 to 2006. This study uses household expenditure for investigating poverty dynamics

or economic mobility. As discussed earlier, researchers have agreed that expenditure (or

consumption) is a better basis for measuring economic welfare and poverty in particular,

and this extends to studies of mobility.

Household Expenditure Variables

KLIPS reports household expenditure in two ways: through an aggregate reporting of average

monthly household expenditures over the past year, using a single question that covers all

expenditure items (including autoconsumption of foods) and through the more common

disaggregated method, which is based on details of household expenditure. However, even for

the latter, KLIPS suffers from a lack of disaggregation of expenditure categories. Other panel

surveys usually have more categories for expenditure data; some like the Living Standards

Measurement Surveys (LSMS) may have up to one hundred categories, with much detail for

foods, but KLIPS only has 11 (for the second wave) to 20 (for the ninth wave) categories.

Household expenditures are measured in the survey by both methods only in the second,

fourth and following waves. The survey asks for total household expenditures in the first

and third waves, but excludes the disaggregated details. The average monthly household

expenditures based on aggregate reporting is thus chosen for our main analysis so that we

may have more years of data. All expenditures are converted into annual measures in year

2000, won. In KLIPS, there is little difference between the aggregate and disaggregate levels

of expenditure.23 Though there are fewer incentives to under-report survey consumption

compared to income, substantial recall errors are assumed because of the lack of documented

23See Appendix Table 2. Only two households report zero consumption. Log of household per capita
expenditure (pce) is taken and the two households who report zero consumption are excluded.
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records for expenditures by households and because expenditure is asked about aggregated

groups, which we suspect will lead to measurement error.

Other Variables

A set of household characteristics is controlled for the basic estimations and expenditure

simulations. These include household size, the fraction of elderly people, educational level

of head of household, sex of head of household, age of the head of household and its square,

a locality indicator to show whether the respondent resides in Seoul, and a non-spouse

indicator to show whether the household head has a spouse living in the household. The

main summary statistics are reported in Table 1.

As explained in Section 3, The two-step GMM estimation of equation (7) uses in ad-

dition to three period and past lags of the dependent variable, lags of the household head’s

measured satisfaction regarding their household income as instruments. The income satis-

faction variable comes from the response of each household head to the question ‘how much

are you satisfied with your household net income’, and each individual responds according

to degree of satisfaction on a 1 to 5 scale, with "1" being very satisfied and "5" being very

dissatisfied. Lower scores, therefore, measure higher satisfaction. This question is asked at

the individual level for each year except for the first wave.

Two period lagged income satisfaction is used as an external instrument in the GMM

estimation. This is useful because when we use period three and further back lags of the

dependent variable as our internal IVs for the time difference in log pce between periods t−1

and t − 2 (as we must when we allow for time-varying measurement error) we sometimes

encounter a weak instruments problem. External instruments help to avoid this in our

case (see Lee, 2009). Equations (9) and (10) in Section 3 show the assumptions we must

maintain in order to consistently use income satisfaction as an instrument. In the case of

income satisfaction, conditional on the fixed effect and time-invariant measurement error,

we must assume that past values of income satisfaction are uncorrelated with the current
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equation error (or expenditure shock), but that future values of income satisfaction may be

correlated with current expenditure shocks.

Sample Size

The estimation of equation (7) requires at least four years’data because of potential time-

varying measurement error. The availability of instruments used in this study is reported in

Appendix Table A2. Total annual household expenditure, asked directly, is available from

1997 to 2005.24 On the other hand, income satisfaction data are available only from 1999

to 2006. The overlapping periods for this analysis are only from 1999 to 2005. Because

the Arellano and Bond method requires up to lagged period t-3 for instruments under the

assumption of time-varying measurement error, the expenditure equation can only cover

the years 2002, 2003, 2004 and 2005. Consequently, 2000 and 2001 data are used to esti-

mate initial conditions, and 2002 - 2005 data are used to construct measurement error-free

expenditure for the later years, as explained in Section 3.

In this study, the simulation of expenditure without measurement error is carried out

for the same households that are used for the estimation of the basic standard consumption

dynamics model, equation (5).25

4.2. Consumption Classes

The goal in our study is to compare movements into and out of poverty, or more generally

movements across quintiles of the distribution of real per capita expenditure, comparing

surveyed and simulated expenditure data. Accordingly, this study starts constructing by

2×2 and 5×5 transition matrices with two and five consumption classes respectively. The

former provides absolute poverty transition probabilities, while the latter allows us to look

24It is not available for 2006 because the question asks monthly average during the prior year.
25See Table 2 and Appendix Table 1. Using our simulation method, it is actually possible to simulate

expenditures even if the household did not report expenditures for the current year (but did so for past
years). Since we compare surveyed expenditures with our simulations, we drop the few household/years for
which this is true.
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at the expenditure transition probabilities across quintiles.

Studies for other countries generally use a poverty threshold, in particular an offi cial

poverty line, as a boundary of two consumption classes for 2×2 transition matrices. However,

there is no offi cial poverty line in Korea. Most researchers who study poverty in Korea use

the Minimum Cost of Living (MCL) announced annually by the government as a poverty

threshold (Park, 2001).26 Like other researchers, this study uses the MCL as a boundary of

consumption classes for 2×2 transition matrices. However, the MCL differs by household

size. In this study, the MCL is calculated in proportion to the average household size in

2002, which is 3.43 for samples used in this study. The MCLs in 2002 are 73.7 and 92.8

for three and four person households (household, not percapita) respectively before taking

logarithms, and so 87.0 for a 3.43 person household.27 In 2000 won the 2002 MCL is 23.9

per capita. On the other hand, for 5×5 matrices, the boundaries are based on the quintiles

of percapita expenditure (pce) in KLIPS, 2002. Either the poverty threshold or quintiles are

fixed in real currency over time from 2002 to 2005, as are the percapita expenditures.

Any poverty threshold could have an important role for both static and dynamic analy-

sis of poverty because where the threshold is set could affect results of both the poverty rate

and transition (see Davidson and Duclos, 2000, for example, for a method to avoid this

dependence for static poverty analyses). One advantage of examining transitions between

quintiles, as well as between in and out of poverty, is that the thresholds differ and so we

can examine to some degree the extent to which this matters.

5. Results

5.1. Simulated Consumption

This study requires estimates of several regressions, and these estimates can be classified

26The Ministry of Health and Welfare in Korea releases the MCL each year.
27This is about $8 per day per capita in 2002.
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by their roles. An estimate of the autoregressive coeffi cient from the dynamic consumption

model of equation (5) while informative, is not suffi cient to construct the transition matri-

ces. Because the model is a first or second order stochastic difference equation, we need

initial conditions. These initial conditions are distributions of initial observations and these

distributions can be estimated, or we can assume stationarity with additional assumptions,

particularly that no time-invariant measurement error exists.

Table 3 shows the results of our base estimations using the initial conditions projection

methodology. The GMM estimate of γ in equation (7), the autoregressive coeffi cient on log

pce, is .375.28 The variance of the time-varying measurement error (.032) is 60 percent as

large as the variance of the equation error (.054), which suggests that time-varying measure-

ment error exists in the reported KLIPS consumption data and has a substantial magnitude.

However, the table shows a weak correlation between the projection error, ζ, in either the

differenced or initial level equation (equations (22) and (23)), and the differenced equation

error, ∆ε, in equation (7) (see equations (28) and (29)). The projection errors, ζi0 and ζi1,

are also weakly correlated, with an estimated covariance of .027.

As described in Section 3, we obtain initial observations as draws from linear projections

with projection errors, ζ0 and ζ1, that have a joint normal distribution with mean 0 and a

variance-covariance matrix that has to be estimated. First, the variance of the projection

error for the differenced initial condition, σ20, is estimated as .116. The variance of the

projection error for the level initial condition, σ21, is not point identified. The bounds that we

derive can be estimated, and estimates of the upper and lower bound of the variance together

with the implied estimates of the unconditional variance of the time-constant measurement

error and of the household effect, α, are shown in Table 3. The variance of the level projection

error, σ21, lies between .081 and .197. The lower bound is a constrained estimate that

makes the 6x6 covariance matrix just positive semi-definite, as discussed in Section 3.29 Our

estimate of the eigenvector corresponding to the constrained lower bound is also reported.

28See Appendix Tables 3 and 4 for the other estimates of equations (7), (20) and (21)
29That is the lowest eigenvalue is 0; numerically it is 5.15E − 12.
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Note that when σ21 is largest, the time-invariant measurement error variance is 0, and σ
2
1

is smallest if the time-constant measurement error is as large as possible given the inequality

constraint in equation (35). We can see that the estimated variance of the time-invariant

measurement error in the lower bound case is over 3.5 times the variance of the time-varying

measurement error.30 This seems high for expenditures, but there has never been a quaniti-

fication of this comparison, so we don’t really know. The time-invariant measurement error

may include a part that is non-classical, related to true expenditures, such as mean reversion,

but a part, too, that may be related to time-invariant characteristics of the respondents, such

as education and age (which obviously varies over time, but over a very short time period

such as our four years, may be considered as time-invariant for practical purposes). The

variance of the household fixed effect, α, is also large, especially compared to the variance

of ε, the true equation error in equation (4), and to the variance of ζ1. It is also larger for

the upper bound case compared to the lower bound estimate. However, also notice that for

the lower bound case the variance of α is 50 percent higher compared to the variance of the

time-invariant measurement error. Given the many omitted variables in the consumption

dynamics equation, one would expect that the variance of the fixed effect should be larger

than of the time-invariant measurement error. Whether this order of magnitude makes

sense the reader will have to decide. One advantage of both the upper bound projection

and the stationary distribution estimates is that the fixed effect dominates the time-invariant

measurement error, though obviously that is because the latter is assumed to be zero in both

cases, which is also an assumption that many might not believe.

To impose stationarity, we need to estimate the the implied stationary equation error

variance, that is equal to .063 (Table 3). We also need estimates of the household fixed effect,

α, the two-step GMM estimates of equation (7) and the estimate of σ2ε from the minimum

distance estimation. The αi are estimated from the residuals of the estimation of equation

30Remember that in the estimation of the dynamic consumption model, all time-invariant factors, including
measurement error, are removed; the time-invariant measurement error variance is only used in the projection
of intitial conditions for the 2001 level.
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(5) (see equation (41)) for each household. The mean of αi is 3.9 and its variance .264 (Table

3). The variance is somewhat higher than the variance of αi for the upper bound projection

error variance case-henceforth the upper bound projection case (Table 3). Recall that under

our stationarity assumptions, we also have to assume no time-invariant measurement error.

Figure 1 plots the densities for our simulated initial expenditure and for the actual

data as a difference between 2000 and 2001 and a level for t = 2001. Summary statistics

are presented in Appendix Table A.5. Based on the upper bound projection case, the two

distributions in Figure 1 seem close, and this implies that there is more spread in the surveyed

consumption for 2001 when the lower bound on the projection error variance is used (the

lower bound projection case). In this case our estimate of the time-invariant measurement

error variance (which of course does not contribute to the simulated pce) is highest. The

density for the stationarity simulation shows a slightly higher variance for 2001 than the

surveyed data.

Simulated expenditures from 2002 to 2005 are sequentially constructed starting with

simulated initial conditions and estimates of equation (7) and then using equations (17) and

(19). Figure 2 plots the results and Appendix Table A.5 shows the summary statistics. Sim-

ulated expenditures using projection have virtually the same means as surveyed expenditure

data, but unlike the expenditure data, the variances increase a small amount over time start-

ing with 2002. One possible explanation may be that inequality is increasing, but is hidden

by measurement error. It is also possible, on the other hand, that the simulated variance is

approaching the stationary one.31 Imposing stationarity, we can avoid having variances rise

over time, and indeed we see that the densities largely overlap with the density for measured

pce, but have slightly higher variances.

Randommeasurement error is generally believed to inflate the variances of consumption

data. According to the literature, households are supposed to appear to have higher mobility

with this type of measurement error. However, this study indicates that surveyed consump-

31It can be shown that the projection error variance cannot be equal to the stationary variance, so that
the simulation will involve a transition to stationarity with changing variances.
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tion has roughly equal variances compared to simulated consumption under the upper bound

projection and stationarity assumptions, and a lower variance compared to the lower bound

projection case. One possible explanation is that surveyed consumption in reality consists

not only of time-varying measurement error but also of time-invariant measurement error.

Bound and Krueger (1991) argue that households in the US at the top of the income dis-

tribution underreport their true income while households at the bottom over-report, and

thus the distribution of surveyed income is compressed. The same logic may apply to these

expenditure data, although there does not exist direct evidence for expenditure.

Appendix Table A.6 presents poverty headcount rates based on the minimum cost of

living as a threshold, using expenditure data and simulated expenditure. For this study

estimated headcount measures.are quite similar for the surveyed data and the simulations

using the upper bound projection and stationary distribution estimates, while headcount

rates using the lower bound projections are lower by approximately 5.3 percentage points.32

Here, as Figure 2 shows, a comparison of the distribution of measured expenditure data

with simulated data using projections of initial conditions for the lower bound case indicates

a smaller variance of the simulated expenditure data. This results in a lower headcount

estimate.

5.2. Mobility

The main focus of this study is on poverty dynamics, or the movement into and out of

poverty. Table 4 shows the number and percentage of households experiencing poverty by

years spent in poverty out of the four years possible from 2002 to 2005. Baulch and Hoddinott

(2000) in their review note that the number of households characterized as ‘sometimes poor’

is larger than those that are ‘always poor’in other studies, and the surveyed expenditure

data in this study tells the same story. The simulated expenditure data show a somewhat

different story.
32McGarry (1995) concludes that cross-sectional estimates of poverty rates of widows in the US are not

biased by measurement error. As discussed in Section B, she only considers time-varying error.
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Over the four year period, 2002-2005, the measured expenditure data show that 36%

of the households are poor in at least one year, but only 6% are poor in all years, only

17 percent of the ever poor, while 24% (two-thirds of the ever poor) are poor in only one

or two years. Hence most of the poverty is transitory using these estimates. Using our

simulated, measurement error-free data based on the upper bound projection case, some

34% of households are estimated to be ever poor, but 25% of those, 9.2%, are poor each

year and another 5.8% in three of the four years. Hence almost half the the ever poor (44%)

are poor in all four years or in three of the four, while only 11.3% are poor in only one year

and 19% poor in one or two years. This is a quite different balance, much more evenly split,

than the surveyed expenditures show. Using the lower bound projection case, the results

are different, a smaller fraction of the population is ever poor, only 26%, and of these 18%

are poor in only one or two years (just over two-thirds). When we impose stationarity, a

slightly higher fraction are ever in poverty, 35%, and of these 7.6% are in poverty all four

years, while 6.1% are for three years. Thus, nearly 40% are in poverty 3 or 4 years, a little

under the estimates from our upper bound projection case.

This study thus indicates that the fraction of ‘always poor’households with these Ko-

rean data is downward biased by time-varying measurement error, whether stationarity is

assumed or not for estimating initial conditions, the bias being greater when stationarity

is not assumed. This result means that “chronic”poverty is understated when such mea-

surement error is not corrected. However, allowing for both time-varying and time-invariant

measurement error in projecting the initial conditions changes the picture. Apparently in

our case, time-invariant measurement error offsets time-varying error.

Tables 5 and 6 present 2×2 and 5×5 transition matrices respectively, which are our

main interest. The 2×2 poverty transition matrices show the persistence of poverty, by

showing the probabilities of a household staying poor or moving from poor to non-poor.

The 5×5 transition matrices consist of the probabilities of movements between quintile pce
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classes from t-1 to t.33

Most striking, for both the 2×2 and 5×5 matrices, the probabilities that households

stay at the bottom are downward biased by measurement error; in the 2×2 case up to

around 11.5 percentage points (56.5% versus 68%) for the simulation using the upper bound

projection, a 20% difference.34 The simulation using the lower bound projection case shows

a higher mean movement out of poverty, 40%, but still marginally lower than estimates from

the surveyed data. The estimate from the stationary distribution model is closer to the

estimate from the upper bound projection case. So, again, it appears that allowing for

time-invariant measurement error in our initial conditions projections offsets the impact of

time-varying error. This makes sense in our context because as we saw from Figures 1 and

2, the tails of the level pce distribution are smallest for the lower bound projection model.

This will result in those simulated observations that are below the poverty line, being closer

to the poverty line compared to models that have fatter tails. This in turn will result in

more transitions out of poverty under this model, which is what we see. For transiting into

poverty, all the simulations show a very small fraction, between 5.8% and 6.8%. These

estimates are lower than in the surveyed data, 7.8%, or between 13 and 25% lower.

In Table 6, when we examine the transition out of the bottom pce quintile the proba-

bilities are quite close to those for transiting out of poverty, and the impact of measurement

error is very similar as well, again with a downward bias for the probability of staying in the

bottom quintile. Note that the probability of transiting into one of the top two quintiles

from the bottom quintile is markedly lower for the simulations using the upper bound pro-

jection and stationary case estimates, although using the lower bound projection case the

fractions are closer to the measured data.
33These probabilities are averaged across years. This study first calculates the cell size for each pair of

adjacent years, then averages those across the years and finally calculates the row percentages. Year-by-year
transition matrices are reported in Appendix Tables A7 and A8. Major differences across the pairs of years
are not observed.
34McGarry (1995) also suggests a downward bias in the probabilities that households stay at the bottom,

and the difference (74-63=11%) is quite similar. Again, McGarry compares simulated income with and
without measurement error, not focusing on surveyed income. Though she also presents the probability for
surveyed income, it is 74% which basically suggests no bias from measurement error at all.
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The probability that households stay at the top of the distribution is somewhat bi-

ased downwards, by up to 7 percentage points, in the 5×5 matrix, when the upper bound

projection estimate is used, but is roughly the same when we impose stationarity and is

biased upwards when the lower bound projection estimate is used.. Being in the top quintile

at time t − 1, the odds of staying there are 61 - 76%, once measurement error is corrected

using projections, and 71% when stationarity is imposed. The transition probabilities of

the middle classes do not seem to be as much affected by measurement error. This is pre-

dicted by Baulch and Hoddinott (2000); measurement error biases in transition matrices

are particularly problems for the poorest and richest categories, where negative and positive

measurement errors cannot offset each other.

Finally, Table 7 summarizes the findings. In terms of mobility, especially for the 5×5

pce quintile transition matrix based on survey data, the probability of movements by two or

more quintiles for households at the bottom is considerably larger, by at least 40 percent,

using survey data than using simulated consumption with the upper bound projection or

stationarity cases, although projection with the lower bound projection case provides a very

different result. For all diagonals in the transition matrices the probability of moving is also

overstated when measurement error is not corrected,35 though the bias appears to be smaller

than for those who start at the bottom.

6. Conclusion

We investigate whether transition matrices based on survey data are biased when expen-

ditures are reported with errors. Measurement error-free expenditures are simulated based

on parameters estimated from a basic model of consumption dynamics allowing for general

types of measurement error. Initial conditions are estimated in two ways, by linear projec-

tion, and by imposing stationarity, and using the parameter estimates from the dynamic

35Again, except for the case of the loewr bound projection simulation and then only for the 5x5 transition
matrix.
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model of consumption. When we impose stationarity we need to assume that no time-

invariant measurement error exists, because we are estimating the percapita expenditures in

levels and so need an estimate of the household fixed effect. For this we can only identify

the sum of the household fixed effect and the time-invariant measurement error, not the

components separately. Using projections for the initial conditions, we can estimate pce in

differences plus the level of initial conditions. The estimation of consumption dynamics in

differences allows us to eliminate time-invariant measurement error and any household fixed

effect in addition to dealing with time-varying measurement error. It also allows for a more

general dynamic relationship between lagged and current consumption, not confining the

source of the dynamics to be a serially correlated consumption shock. Consequently, our

study presents different results from the literature.

This study has shown that with the KLIPS data fromKorea, time-varying measurement

error magnifies economic mobility into and out of poverty. The probability of remaining

poor is downward biased by such measurement error. However, allowing for time-invariant

measurement error in our projection of initial conditions of levels offsets the time-varying

error in our case. The resulting differences from survey data in the probability of transiting

out of poverty is at least 3.5 percentage points as a lower bound estimate, allowing for both

types of measurement error, but may be as high as 11.5 percentage points, or 20 percent when

we restrict measurement error in initial conditions to be only time-varying. The number of

years spent in poverty is also downward biased by measurement error. Many studies up to

date have purported to find substantial economic mobility, but this study suggests that the

estimated high mobility in Korea is overstated due to measurement error.

Looking at the pce quintile (5×5) transition matrices has an advantage in exploring the

potential difference of the impact of measurement error on transition probabilities for each

class of expenditure. This study finds that the magnitudes of biases differ among classes.

Among the probabilities of immobility for households which remain on the diagonals in a

transition matrix, the probability of staying at the bottom is most affected by measurement
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error. For the 5×5 transition matrix, the second most affected probability is staying at the

top. However, the diagonals of the matrices, which indicate economic immobility, seem to

be more affected by measurement error when the number of classes increases.

In view of these results, for Korea at least, permanent poverty seems to be somewhat

more important than people might have realized based on transition probabilities from un-

corrected survey data. This suggests that policies aimed at lowering persistent poverty that

focus on factors like education and health that can permanently raise people out of poverty,

are still very important. As noted in the introduction, people residing in lower income coun-

tries with much larger rural populations are likely to experience higher income risk than the

current, largely urban, population in Korea, and if they have problems smoothing consump-

tion, then expenditures will be more variable relative to mean expenditure than we see in

the KLIPS data. Still, measurement error in expenditures will be a problem for surveys in

such settings just as it is in KLIPS, and likely will lead to an overstatement of consumption

mobility, just as we have found.
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Figure 1: Simulated Initial Expenditures
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B. Initial expenditure in 2001, from stationary distribution
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Figure 2: Density of Simulated Expenditure from 2002 to 2005

A1. Initial expenditures based on the upper bound of projection error variance
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A2. Initial expenditures based on the lower bound of projection error variance
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Figure 2: Continued

B. Initial expenditure from stationary distribution
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Table 1: Summary Statistics - Mean and Standard Deviation

Year
Variable 2000 2001 2002 2003 2004 2005

Log (per capita expenditure) 5.87 5.95 6.06 6.11 6.13 6.16
(0.56) (0.57) (0.56) (0.56) (0.53) (0.54)

Household size 3.53 3.58 3.43 3.39 3.35 3.28
(1.34) (1.35) (1.31) (1.32) (1.32) (1.32)

Male aged over 65 0.05 0.05 0.06 0.07 0.07 0.08
(0.14) (0.14) (0.16) (0.17) (0.17) (0.18)

Female aged over 55 0.15 0.15 0.17 0.18 0.19 0.2
(0.26) (0.26) (0.28) (0.28) (0.29) (0.29)

Sex of head 1.14 1.15 1.15 1.16 1.16 1.17
(0.35) (0.36) (0.36) (0.37) (0.37) (0.38)

Education of head 10.21 10.21 10.17 10.17 10.15 10.16
(4.44) (4.43) (4.45) (4.45) (4.44) (4.44)

Seoul dummy 0.24 0.23 0.23 0.22 0.21 0.21
(0.42) (0.42) (0.42) (0.41) (0.41) (0.41)

Nonspouse dummy 0.20 0.20 0.20 0.22 0.22 0.24
(0.40) (0.40) (0.40) (0.41) (0.41) (0.42)

Age of head 49.56 50.29 51.42 52.86 53.82 54.76
(12.89) (12.91) (12.83) (12.78) (12.67) (12.56)

Obs # 3,053 3,068 3,072 2,951 2,851 2,774

Observations for households analyzed in this study
Standard deviations in parentheses
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Table 3: Basic Results

Parameter Estimate

γ 0.375
σ2ε 0.054
σ2ν 0.032

A. Initial observations by projections

κ = V ar(αi+(1− γ)ei) 0.226
V ar(ψ0) 0.180
V ar(ψ1) 0.229

Cov(ψ0, ψ1) 0.091
E[ζ0∆ε2] -0.077
E[ζ1∆ε2] -0.069

Projection errors
A1. upper bound A2. lower bound

V ar(ζ i0) 0.116 0.116
V ar(ζ i1) 0.197 0.081 (constrained)
V ar(ei) 0.000 0.116
V ar(αi) 0.226 0.180

c1 0.244
c2 0.374
c3 0.654
c4 0.490
c5 0.327
c6 0.163

B. Initial observation from stationary distribution

V ar(φi1) 0.063
ᾱi 4.587

V ar(αi) 0.242

Other estimates of equation (5) and their standard errors are in Appendix Table A.3.
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Table 4: Number of years spent in poverty from 2002 to 2005

Number of years in which poor Never 1 2 3 Always

(1)Observed expenditure
Obs # 1,758 405 272 167 168

% 63.37 14.60 9.81 6.02 6.06

(2) Simulated true expenditure

A1. Initial expenditures based on the upper bound of projection error variance
Obs # 1,825 314 215 162 254

% 65.79 11.32 7.75 5.84 9.16

A2. Initial expenditures based on the lower bound of projection error variance
Obs # 2,037 321 175 117 120

% 73.43 11.57 6.31 4.22 4.33

B. Initial observation from stationary distribution
Obs # 1,811 353 228 168 210

% 65.29 12.73 8.22 6.06 7.57

The number of samples which exist in 2005 (and so all over the years) are 2,774.
% of HHs, for a certain number of years in which poor, is calculated based on these samples.
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Table 5: 2x2 Poverty Transition Matrices for Two Consecutive Years

Poverty status at t
Poverty status at t-1 Poverty Not in poverty

Poverty
(1) Observed expenditure 56.45 43.55
(2) Simulated expenditure
A1. upper bound of projection error variance 67.92 32.08
A2. lower bound of projection error variance 59.83 40.17
B. stationary distribution 64.78 35.22

Not in poverty
(1) Observed expenditure 7.81 92.19
(2) Simulated expenditure
A1. upper bound of projection error variance 6.78 93.22
A2. lower bound of projection error variance 5.81 94.19
B. stationary distribution 6.53 93.47

Row percentages are presented.
Averaged probability for all years (2002-2005)
Poverty status is based on the Minimum Cost of Living (MCL).
MCL = 5.7 , around $8 per day in 2000.
Expenditure is converted by currency in 2000.
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Table 6: 5x5 Expenditure Quintile Transition Matrices for Two Consecutive Years

Class at t

Class at t-1 1 2 3 4 5

1 (1) Observed expenditure 58.11 24.45 9.66 6.16 1.62
(2) Simulated expenditure

A1. upper bound of projection error variance 67.06 22.35 8.27 1.57 0.75
A2. lower bound of projection error variance 61.77 20.72 10.43 5.25 1.84
B. stationary distribution 62.15 27.70 7.86 2.16 0.13

2 (1) Observed expenditure 21.11 34.57 24.26 15.68 4.38
(2) Simulated expenditure

A1. upper bound of projection error variance 20.71 36.71 28.15 12.28 2.16
A2. lower bound of projection error variance 19.09 27.47 25.26 19.16 9.03
B. stationary distribution 18.92 40.28 29.51 9.66 1.62

3 (1) Observed expenditure 7.84 18.77 33.20 30.76 9.44
(2) Simulated expenditure

A1. upper bound of projection error variance 4.84 20.08 36.39 30.18 8.51
A2. lower bound of projection error variance 7.63 20.60 26.35 28.05 17.37
B. stationary distribution 3.77 23.99 36.15 30.10 6.00

4 (1) Observed expenditure 3.66 8.48 20.20 42.21 25.45
(2) Simulated expenditure

A1. upper bound of projection error variance 1.18 8.27 22.78 38.64 29.13
A2. lower bound of projection error variance 2.49 12.76 22.49 30.83 31.44
B. stationary distribution 0.65 6.80 23.60 45.19 23.76

5 (1) Observed expenditure 1.20 2.28 5.17 22.24 69.11
(2) Simulated expenditure

A1. upper bound of projection error variance 0.20 0.71 4.56 18.15 76.37
A2. lower bound of projection error variance 0.75 4.32 11.90 21.99 61.04
B. stationary distribution 0.35 0.98 5.10 22.71 70.86

Row percentages are presented
Averaged probability for all years (2002-2005)
Expenditure classes are based on the 2002 quintile (1: poorest).
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Appendix

Table A1: Sample Size Construction

for the estimation of equation (5)

Year
Variable 2002 2003 2004 2005 Total
Expenditure at t 3,516 3,638 3,637 3,639 14,430

- Expenditure at t-1 3,333 3,354 3,459 3,495 13,641
(183) (284) (178) (144) (789)

- Expenditure at t-2 3,135 3,191 3,220 3,337 12,883
(198) (163) (239) (158) (758)

- Expenditure at t-3 3,050 3,005 3,073 3,121 12,249
(85) (186) (147) (216) (634)

- Other covariates at t 3,013 2,984 3,051 3,103 12,151
(37) (21) (22) (18) (98)

- Other covariates at t-1 2,999 2,965 3,048 3,097 12,109
(14) (19) (3) (6) (42)

- HH income satisfaction at t-1 2,974 2,942 3,023 3,035 11,974
(25) (23) (25) (62) (135)

- HH income satisfaction at t-2 2,954 2,923 2,993 3,026 11,896
(20) (19) (30) (9) (78)

- HH income satisfaction at t-3 2,931 2,903 2,975 2,991 11,800
(23) (20) (18) (35) (96)

- Outliers 2,930 2,902 2,974 2,990 11,796
(1) (1) (1) (1) (1)

Marginal loss of observations in parenthesis
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Table A2: Data Availability

Year Income Expenditure (1) Expenditure (2) Income Satisfaction

1997 Yes

1998 Yes Yes Yes

1999 Yes Yes Yes

2000 Yes Yes Yes Yes

2001 Yes Yes Yes Yes

2002 Yes Yes Yes Yes

2003 Yes Yes Yes Yes

2004 Yes Yes Yes Yes

2005 Yes Yes Yes Yes

2006 Yes

Expenditure (1) refers to directly-asked expenditure and expenditure (2)
refers to aggregated one from disaggregated questions
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Table A3: Two-step GMM Estimates after First Differencing
Pooled over years, t=2002, 2003, 2004 and 2005

Dependent variable: Coeffi cient
4Log expenditure t

4Log expenditure t− 1 0.376**
(0.075)

4Household size -0.294**
(0.015)

4Male aged over 65 0.042
(0.093)

4Female aged over 55 0.140*
(0.068)

4Sex of head 0.005
(0.078)

4Education of head 0.011
(0.013)

4Seoul dummy -0.031
(0.055)

4Nonspouse dummy 0.093
(0.050)

4Age of head 0.005
(0.014)

4Square age of head 0.000
(0.000)

4Year dummy (2002) 0.023
(0.013)

4Year dummy (2003) 0.032
(0.022)

4Year dummy (2004) 0.004
(0.028)

4Year dummy (2005) 0.016
(0.032)

Hansen J statistics 9.815
(p value) 0.57
N 11,796

All covariates are first differenced (denoted by 4)
External IVs: HH income satisfaction of head at year t-2 and t-3
Internal IVs: log expenditure. at t-3 and earlier
** significant at 1%, * significant at 5%
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Table A4: OLS estimates for Initial Conditions

Dependent variable: Dependent Variable

∆Log expenditure at 2001 Log expenditure at 2001

Household size in 2001 -0.317** -0.191**

(0.026) (0.029)

Male aged over 65 in 2001 -0.065 -0.050

(0.161) (0.182)

Female aged over 55 in 2001 0.147 -0.136

(0.139) (0.157)

Sex of head in 2001 0.021 -0.207*

(0.092) (0.104)

Education of head in 2001 0.009 0.026*

(0.010) (0.011)

Seoul dummy in 2001 -0.030 -0.018

(0.073) (0.082)

Nonspouse dummy in 2001 -0.015 -0.067

(0.075) (0.085)

Age of head in 2001 -0.017 0.030

(0.014) (0.016)

Square age of head in2001 0.000 0.000

(0.000) (0.000)

Household size in 2000 0.306** 0.034

(0.026) (0.029)

Male aged over 65 in 2000 -0.142 -0.518**

(0.162) (0.182)

Female aged over 55 in 2000 -0.234 -0.111

(0.137) (0.154)

Sex of head in 2000 0.025 0.122

(0.093) (0.105)

Education of head in 2000 -0.009 0.024*

(0.010) (0.011)

Seoul dummy in 2000 0.009 0.122

(0.073) (0.082)

Nonspouse dummy in 2000 -0.040 0.039

(0.076) (0.086)

Age of head in 2000 0.007 0.004

(0.014) (0.016)

Square age of head in 2000 0.000 0.000

(0.000) (0.000)

Constant 0.413* 5.322**

(0.135) (0.152)

R-squared 0.073 0.288

N 3,053 3,068

** significant at 1%, * significant at 5%
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Table A.5 Statistics for Surveyed and Simulated Expenditures
Year Obs # Mean Std. Dev. Min Max

(1) Observed expenditure

2001-2000 3,053 0.084 0.441 -2.605 2.486
2001 3,068 5.954 0.567 3.543 8.149
2002 3,072 6.057 0.558 3.335 8.458
2003 2,951 6.114 0.555 3.300 8.375
2004 2,851 6.125 0.534 3.446 7.869
2005 2,774 6.163 0.540 3.014 9.078

(2) Simulated true expenditure

A1. Initial expenditures based on the upper bound of projection error variance

2001-2000 3,053 0.081 0.357 -1.707 1.268
2001 3,068 5.946 0.536 4.022 7.734
2002 3,072 6.045 0.525 4.069 7.906
2003 2,951 6.103 0.550 3.851 8.401
2004 2,851 6.119 0.575 3.481 8.530
2005 2,774 6.155 0.595 3.292 9.066

A2. Initial expenditures based on the lower bound of projection error variance

2001-2000 3,053 0.078 0.356 -1.650 1.365
2001 3,068 5.951 0.418 3.903 7.466
2002 3,072 6.053 0.398 4.522 7.350
2003 2,951 6.112 0.420 3.998 7.925
2004 2,851 6.121 0.451 3.632 8.096
2005 2,774 6.154 0.482 3.386 8.050

B. Initial observation from stationary distribution

2001 3,068 6.007 0.632 2.786 8.085
2002 3,072 6.079 0.578 3.868 8.342
2003 2,951 6.118 0.561 3.788 8.154
2004 2,851 6.128 0.556 4.159 8.224
2005 2,774 6.166 0.560 3.857 8.274
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Table A.6 Poverty Rates from 2002 to 2005

Poor (below MCL) 2002 2003 2004 2005 Avg.

(1) Observed expenditure
Obs # 719 551 510 446 557

% 23.41 18.67 17.89 16.08 19.11

(2) Simulated true expenditure

A1. Initial expenditures based on the upper bound of projection error variance
Obs # 689 582 570 523 591

% 22.43 19.72 19.99 18.85 20.30

A2. Initial expenditures based on the lower bound of projection error variance
Obs # 463 388 388 363 401

% 15.07 13.15 13.61 13.09 13.75

B. Initial observation from stationary distribution
Obs # 697 583 527 470 569

% 22.69 19.76 18.49 16.94 19.84
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Table A7: 2×2 Poverty Transition Matrices for Two Consecutive Years

Poverty status at t-1 Poverty status at t
Poverty Not in poverty

Investigated Years: from 2002 to 2003

Poverty
(1) Observed expenditure 53.69 46.31
(2) Simulated expenditure
A1. upper bound of projection error variance 64.47 35.53
A2. lower bound of projection error variance 56.11 43.89
B. stationary distribution 63.21 36.80

Non in poverty
(1) Observed expenditure 7.96 92.04
(2) Simulated expenditure
A1. upper bound of projection error variance 6.66 93.35
A2. lower bound of projection error variance 5.58 94.42
B. stationary distribution 6.90 93.11

Investigated Years: from 2003 to 2004

Poverty
(1) Observed expenditure 59.02 40.98
(2) Simulated expenditure
A1. upper bound of projection error variance 71.28 28.72
A2. lower bound of projection error variance 62.33 37.67
B. stationary distribution 66.90 33.10

Non in poverty
(1) Observed expenditure 8.46 91.54
(2) Simulated expenditure
A1. upper bound of projection error variance 7.31 92.69
A2. lower bound of projection error variance 6.37 93.63
B. stationary distribution 6.44 93.56
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Table A7: Continued

Poverty status at t-1 Poverty status at t
Poverty Not in poverty

Investigated Years: from 2004 to 2005

Poverty
(1) Observed expenditure 57.55 42.46
(2) Simulated expenditure
A1. upper bound of projection error variance 68.65 31.35
A2. lower bound of projection error variance 61.77 38.24
B. stationary distribution 64.50 35.50

Non in poverty
(1) Observed expenditure 6.99 93.01
(2) Simulated expenditure
A1. upper bound of projection error variance 6.36 93.64
A2. lower bound of projection error variance 5.47 94.54
B. stationary distribution 6.27 93.73

Row percentages are presented.
Poverty status is based on the Minimum Cost of Living (MCL).
MCL = 5.7 , around $8 per day in 2000.
Expenditure is converted by currency in 2000.
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Table A8: 5×5 Expenditure Quintile Transition Matrices for Two Consecutive Years

Class at 2003

Class at 2002 1 2 3 4 5

1 (1) Observed expenditure 56.33 25.87 11.74 4.95 1.10
(2) Simulated expenditure

A1. upper bound of projection error variance 64.76 23.78 9.78 1.01 0.67
A2. lower bound of projection error variance 56.07 23.25 12.31 5.64 2.74
B. stationary distribution 60.10 28.96 8.75 2.02 0.17

2 (1) Observed expenditure 22.52 32.28 23.78 15.12 6.30
(2) Simulated expenditure

A1. upper bound of projection error variance 17.92 36.35 29.18 14.16 2.39
A2. lower bound of projection error variance 15.75 29.15 28.14 19.60 7.37
B. stationary distribution 20.47 37.77 29.62 11.31 0.83

3 (1) Observed expenditure 7.46 21.56 31.68 27.03 12.27
(2) Simulated expenditure

A1. upper bound of projection error variance 4.06 17.60 37.06 32.15 9.14
A2. lower bound of projection error variance 5.89 21.21 25.42 28.62 18.86
B. stationary distribution 3.74 25.68 34.18 30.78 5.61

4 (1) Observed expenditure 4.49 8.64 19.86 41.45 25.56
(2) Simulated expenditure

A1. upper bound of projection error variance 1.18 8.91 19.50 37.98 32.44
A2. lower bound of projection error variance 2.71 11.86 20.85 30.51 34.07
B. stationary distribution 0.68 6.28 23.77 43.46 25.81

5 (1) Observed expenditure 1.53 3.74 5.60 23.09 66.04
(2) Simulated expenditure

A1. the upper bound of projection error variance 0.17 0.68 4.61 17.24 77.30
A2. the lower bound of projection error variance 0.85 3.42 12.48 24.44 58.80
B. stationary distribution 0.69 0.52 5.53 22.97 70.29
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Table A8: Continued

Class at 2004

Class at 2003 1 2 3 4 5

1 (1) Observed expenditure 59.96 23.05 8.98 7.03 0.98
(2) Simulated expenditure

A1. the upper bound of projection error variance 69.51 21.78 6.53 1.78 0.40
A2. the lower bound of projection error variance 67.40 18.38 8.53 5.03 0.66
B. stationary distribution 64.59 25.96 7.65 1.81 0.00

2 (1) Observed expenditure 22.08 34.72 25.47 13.77 3.96
(2) Simulated expenditure

A1. the upper bound of projection error variance 24.09 38.06 26.52 9.92 1.42
A2. the lower bound of projection error variance 23.00 24.17 24.56 18.52 9.75
B. stationary distribution 18.60 43.33 27.54 8.42 2.11

3 (1) Observed expenditure 8.47 17.50 35.54 30.94 7.55
(2) Simulated expenditure

A1. the upper bound of projection error variance 5.78 20.67 35.55 29.25 8.76
A2. the lower bound of projection error variance 8.42 19.83 26.32 29.83 15.61
B. stationary distribution 3.79 24.31 38.62 27.41 5.86

4 (1) Observed expenditure 3.12 9.50 22.12 40.97 24.30
(2) Simulated expenditure

A1. the upper bound of projection error variance 1.02 8.33 23.81 40.65 26.19
A2. the lower bound of projection error variance 3.25 13.96 24.19 29.06 29.55
B. stationary distribution 0.79 6.80 23.58 45.25 23.58

5 (1) Observed expenditure 1.29 1.93 5.47 22.83 68.49
(2) Simulated expenditure

A1. based on the highest projection error 0.43 0.72 5.35 21.27 72.21
A2. based on the highest projection error 0.87 4.76 12.70 22.37 59.31
B. from stationary distribution 0.18 1.40 5.44 23.33 69.65
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Table A8: Continued

Class at 2005

Class at 2004 1 2 3 4 5

1 (1) Observed expenditure 58.14 24.33 8.04 6.60 2.89
(2) Simulated expenditure

A1. upper bound of projection error variance 67.34 21.24 8.22 2.00 1.20
A2. lower bound of projection error variance 63.35 19.88 9.94 4.97 1.86
B. stationary distribution 62.16 27.98 6.88 2.75 0.23

2 (1) Observed expenditure 18.02 37.58 23.52 18.68 2.20
(2) Simulated expenditure

A1. upper bound of projection error variance 20.62 35.70 28.60 12.42 2.66
A2. lower bound of projection error variance 19.07 29.07 22.09 19.30 10.47
B. stationary distribution 17.59 39.86 31.42 9.16 1.97

3 (1) Observed expenditure 7.62 16.91 32.53 34.76 8.18
(2) Simulated expenditure

A1. upper bound of projection error variance 4.71 22.22 36.54 29.00 7.53
A2. lower bound of projection error variance 8.70 20.74 27.41 25.56 17.59
B. stationary distribution 3.77 21.96 35.68 32.08 6.52

4 (1) Observed expenditure 3.46 7.37 18.65 44.06 26.47
(2) Simulated expenditure

A1. upper bound of projection error variance 1.34 7.56 25.04 37.31 28.74
A2. lower bound of projection error variance 1.49 12.42 22.35 32.95 30.80
B. stationary distribution 0.49 7.28 23.46 46.76 22.01

5 (1) Observed expenditure 0.80 1.27 4.46 20.86 72.61
(2) Simulated expenditure

A1. upper bound of projection error variance 0.00 0.72 3.74 15.83 79.71
A2. lower bound of projection error variance 0.56 4.62 10.64 19.61 64.57
B. stationary distribution 0.17 1.04 4.33 21.84 72.62

Row percentages are presented
Expenditure classes are based on the 2002 quintile (1: poorest).
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