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Abstract

In this paper, we introduce a linearity test for fuzzy rule-based models
in the framework of time series modeling. To do so, we explore a family
of statistical models, the regime switching autoregressive models, and the
relations that link them to the fuzzy rule-based models. From these rela-
tions, we derive a Lagrange Multiplier linearity test and some properties
of the maximum likelihood estimator needed for it. Finally, an empirical
study of the goodness of the test is presented.

Keywords: fuzzy rule-based models, time series, linearity test, sta-
tistical inference

1 Introduction

Time series analysis is a problem which has always attracted the attention of
Soft Computing (SC) researchers. Forecasting future values of a series is usu-
ally a very complex task, and many SC methods and models have been faced
with it, including fuzzy rule-based models (FRBM) in their various formulations
[18]. Notwithstanding, a common characteristic of those approaches is that they
usually consider time series as just another dataset which requires some small
adaptations to be cast into the regression or classification format for which most
SC models were created.

However, time series analysis is a prominent field in Econometrics, which has
been widely studied under a statistical perspective during the last centuries. In
1807, Fourier proved that a deterministic time series can be approximated by
a sum of sine and cosine terms. But it was not until the beginnings of the
XX century when a stochastic approach for time series was first introduced [4],
while the foundations for a general stochastic process theory were fixed in the
1930’s by [13] and [12]. Independently, in 1927 Yule [31] stated that Fourier
analysis is not suited for stochastic time series analysis and introduced second
order autoregressive processes as theoretical schemes able to generate series with
stochastic cyclic oscillations.
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In 1970, the idea of forecasting future values of a time series as a com-
bination of its past values received a strong impulse after [6]. In that work,
Box and Jenkins proposed a modeling cycle for the autoregressive (AR) model,
which assumes that future values of a time series can be expressed as a linear
combination of its past values.

Of course this linearity assumption implies certain limitations, and in the
last years much research has been devoted to nonlinear models. Nonlinear and
non-stationary models are more flexible in capturing the characteristics of data
and, in some cases, are better in terms of estimation and forecasting. These
advances do not rule out linear models at all, because these models are a first
approach which can be of great help to further estimate some of the parameters.
Furthermore, modeling of any real-world problem by using nonlinear models
must start by evaluating if the behavior of the series follows a linear or nonlinear
pattern.

For some reason, SC researchers do not usually go deep into classical time
series analysis, disregarding all the knowledge gathered through the years in the
statistical field. In this paper, we take a step forward in the quest for a SC-
based time series research which integrates methods and models coming from
the econometric perspective, introducing a linearity test against fuzzy rule-based
models.

By applying this test, practitioners will be able to determine if a series’ data
generating process is linear, in which case it can be modelled by using a linear
model or a single-rule fuzzy rule-based model. The experiments show that the
test is robust against Type I errors (rejecting the null hypothesis when it is
actually true) and very powerful against Type II errors (not rejecting the null
hypothesis when it is false).

The structure of the paper is as follows: in the following Section 2, a brief
review of some statistical regime-switching models is offered, while in Section 3
their links with fuzzy rule-based models are recalled. In Section 4 the linearity
test is presented, both intuitively and in its mathematical formulation. Section 5
contains a Monte Carlo simulation and a power analysis of the test, which shows
its robustness. Finally, the conclusions of the paper are gathered in Section 6,
while Appendix A contains some required results about the properties of the
maximum likelihood estimator.

2 Regime switching autoregressive models

In statistical time series modeling, one of the oldest and most successful con-
cepts is to forecast future values of a time series as a combination of its past
values. This is a quite natural idea that we apply on every day’s life, and it was
popularized in 1970 after [6]. In that work, Box and Jenkins formalized the use
of the autoregressive (AR) model, which assumes that future values of a time
series can be expressed as a linear combination of its past values.

An autoregressive model of order p ≥ 1 is defined as

yt = b′xt = b0 + b1yt−1 + . . . + bpyt−p + εt (1)

where xt = (1, yt−1, . . . , yt−p)
′ and {εt} ∼ N(0, σ2), usually known as white

noise (equivalent to a random signal with a flat power spectral density). For
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Figure 1: An example of TAR model

this model we write {yt} ∼ AR(p), and the time series {yt} generated from this
model is called the AR(p) process.

Model (1) represents the current state yt through its immediate p past values
yt−1, . . . , yt−p in a linear regression form. It explicitly specifies the relationship
between the current value and its past values.

Such a simple idea proved to be extremely useful and suited to series which,
at first sight, seem to be highly complex. Applications of the Box and Jenkins
methodology spread in the following decades, covering a wide range of scientific
areas such as Biology, Astronomy or Econometrics.

However, there were still many problems which could not be modeled using
linear models. In 1978, taking a step towards integrating non-linearity, Tong [23]
proposed a piecewise linear model: the threshold autoregressive (TAR) model,
which is based on the idea of partitioning the state-space into several subspaces,
each of which was to be modeled by an AR model. To control the transitions
from one linear model to another, a set of thresholds must be defined on one of
the variables involved. This variable can be an exogenous variable associated
to the process being modeled or one of the lagged values of the series, in which
case the model is called self-exciting —yielding the acronym SETAR.

A threshold autoregressive (TAR) model with k (k ≥ 2) regimes is defined
as

yt =

k
∑

i=1

b′

ixtI(st ∈ Ai)+εt =

k
∑

i=1

{bi,0+bi,1yt−1+bi,pyt−p+εt}I(st ∈ Ai)+εt,

(2)

where st is the threshold variable, I is an indicator (or step) function, bi are
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Figure 2: An example of 2 regime STAR model using logistic transition function.

unknown parameters, and {Ai} forms a partition of (−∞,∞) with ∪k
i=1Ai =

(−∞,∞) and Ai ∩ Aj = ∅,∀i 6= j.
In this model, we fit on each subset Ai a linear autoregressive form. The

partition is dictated by the threshold variable st. Usually, Ai = (ri−1, ri], with
−∞ = r0 < r1 < . . . < rk = ∞, where the ri’s are called thresholds.

In Figure 1 we can see the graphical representation of an example TAR
model with two regimes.

2.1 Smooth transition autoregressive model (STAR)

A key feature of TAR models is the discontinuous nature of the AR relation-
ship as the threshold is passed. Taking into account that nature is generally
continuous, in 1994 an alternative model called smooth threshold autoregressive
or smooth transition autoregressive (STAR) was proposed by Teräsvirta [21]. In
STAR models there is a smooth continuous transition from one linear AR to
another, rather than a sudden jump.

In this model and variants (cf. [24]), the indicator function I(·) in (2),
which, as shown above, is a step function that takes the value zero below the
threshold and one above it is substituted by a smooth function with sigmoid
characteristics. The STAR model with k + 1 regimes is defined as

yt = b′

0xt +
k
∑

i=1

b′

ixtfi(st;φi) + εt. (3)

The transition function, fi(st;φi), is a continuous function that is bounded
between 0 and 1. The regime that occurs at time t is determined by the observ-
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able variable st and the associated value of fi(st;φi). Different choices for the
transition function give rise to different types of regime-switching behavior. A
popular choice for fi(st;φi) is the first-order logistic function,

fl(st; c, γ) = (1 + exp(γ(st − c)))−1, (4)

and the resultant model is called the logistic STAR (LSTAR).
In the LSTAR model, we define the transition function F(st;φi) of expression

(3) as

Fi(st; γi, ci) =







1 − fl(st; γi, ci) if i = 1
fl(st; γi, ci) − fl(st; γi+1, ci+1) if 1 < i < k

fl(st; γi, ci) if i = k

(5)

where f(st; γi, ci) is defined as in (4). The LSTAR model can be (and usually
is) consequently rewritten as

yt =

k
∑

i=2

b′

ixtF(st; γi, ci) + εt. (6)

Figure 2 shows the graphical representation of an STAR model with two regimes
and two transition functions, together with the linear models and the transition
functions associated with them.

Each of the parameters ci in (6) can be interpreted as the threshold between
two regimes, in the sense that the logistic function changes monotonically from
0 to 1 as st increases and F(ci; γi, ci) = 0.5. The parameter γi determines the
smoothness of the transition from one regime to another. As γi becomes very
large, the logistic function approaches the indicator function I(·) and hence the
change of F(st; γi, ci) from 0 to 1 becomes instantaneous at st = c. Conse-
quently, the LSTAR nests threshold autoregressive (TAR) models as a special
case. Furthermore, when γ → 0 the LSTAR model reduces to a linear AR
model.

In the LSTAR model, the regime switches are associated with small and
large values of the transition variable st relative to c. In certain applications
it may be more appropriate to specify the transition function such that the
regimes are associated with small and large absolute values of st (again relative
to c). This can be achieved by using, for example, the exponential function, in
which case the model may be named ESTAR. Other frequently used function is
the normal distribution, which yields the acronym NSTAR.

3 Relations with fuzzy rule-based models

In [1] we explored the existing links between an AR model and a fuzzy rule used
in the time series framework. As well, we proved that STAR models can be
seen as a particular case of a fuzzy rule-based model. Here we will briefly recall
those results. For the sake of clarity, let us first note the expression of the fuzzy
rule-based model considered here.

When dealing with time series problems (and, in general, when dealing with
any problem for which precision is more important than interpretability), the
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Takagi-Sugeno-Kang paradigm is preferred over other variants of FRBM. A
fuzzy rule of type TSK has the following shape:

If x1 is A1 and x2 is A2 and . . . and xp is Ap

THEN y = b′xt = b0 + b1x1 + b2x2 + . . . + bpxp (7)

where xi are input variables and Aj are fuzzy sets for input variables.
Concerning the fuzzy reasoning mechanism for TSK rules, the firing strength

of the ith rule is obtained as the t-norm (usually, multiplication operator) of
the membership values of the premise part terms of the linguistic variables:

ω(x) =

p
∏

j=1

µAj
(xj), (8)

where the shape of the membership function of the linguistic terms µAj
can be

chosen from a wide range of functions. One of the most common is the Gaussian
bell,

µA(x) = exp
−(x − c)2

2σ2
, (9)

but it can also be a logistic function,

µA(x) =
1

1 + exp ( c−x
σ2 )

, (10)

and also non-derivable functions as a triangular or trapezoidal function.
The overall output is computed as a weighted average or weighted sum of

the rules output. In the case of the weighted sum, the output expression is:

yt = G (xt;ψ) =

R
∑

i=1

b′

ixt · ωi(xt), (11)

where G is the general nonlinear function with parameters ψ, and R denotes
the number of fuzzy rules included in the system. While many TSK FRBM
perform a weighted average to compute the output, additive FRBM are also
a common choice. They have been used in a large number of applications, for
example [7, 11, 14, 25].

When applied to model or forecast a univariate time series {yt}, the rules of
a TSK FRBM are expressed as:

If yt−1 is A1 and yt−2 is A2 and . . . and yt−p is Ap

THEN yt = b0 + b1yt−1 + b2yt−2 + . . . + bpyt−p. (12)

In this rule, all the variables yt−i are lagged values of the time series, {yt}.

3.1 The AR model and the TSK fuzzy rules

Fuzzy rules are the core element of fuzzy systems. When applied to Time Series,
as seen in equation (12), fuzzy rules can describe the relationship between the
lagged variables in some parts of the state-space. From [1], a close look into this
equation suggests that when used for time series modeling, a TSK fuzzy rule
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can be seen as a local AR model, applied on the state-space subset defined by
the rule antecedent.

This connection between the two models opened the possibility of an ex-
change of knowledge from one field to another, enabling us to apply what we
know about AR models to fuzzy rules and vice versa. From the point of view
of the Box-Jenkins models, this kind of fuzzy rules represents a local AR model
which is applied only when some conditions hold. These conditions are given
by the terms in the rule antecedent, and are expressed as the fuzzy membership
degree of the lagged variables to some fuzzy sets describing parts of the state-
space domain. This scheme is closely related to the structure of the Threshold
Autoregressive family of models, as shown below.

To stress the stochastic nature of fuzzy rules and their relationship with AR
models, a random shock term εt should be included in the expression of the
rule:

IF yt−p is A1 and . . . and yt−1 is Ap

THEN y∗

t = b1yt−p + . . . + bpyt−1 + bp+1 + εt (13)

to obtain what might be called fuzzy autoregressive rules.

3.2 STAR model and fuzzy rule-based models

After the previous result, [1] went further in the exploration of the relationships
between threshold models and fuzzy logic-based models. On the one hand, we
have seen that AR models are good linear models applicable to prediction prob-
lems. As well, we know that a TAR model is basically a set of local AR models,
and that it allows for some non-linearity in its computations. On the other hand,
we have seen above how a fuzzy rule relates to an AR model. Knowing that
fuzzy rule-based models contain sets of fuzzy rules, we were interested in consid-
ering the relationship existing between threshold models and fuzzy rule-based
models.

It is rather clear that there is some parallelism between the two aforemen-
tioned families of models. At a high level, models from both sides are composed
of a set of elements (AR – fuzzy rules) which happen to be closely related,
as stated above. On a lower level, both families of models rely on building a
hyper-surface on the state-space which tries to model the relationship between
the lagged variables of a time series. Moreover, both define this hyper-surface
as the composition of hyper-planes which apply only in certain parts of the
state-space.

This can be seen clearly in figure 3, which shows the graphical representation
of the fuzzy inference system or the STAR model. On the left side, we can
see the graphical representation of the skeleton of two linear models of type
yt = b0 + b1yt−1 + b2yt−2 + εt, together with the representation of two Gaussian
membership/transition functions. On the right side, the two local linear models
(or fuzzy rules) are linked through the smoothing functions into a single surface
which represents a STAR model or a FRBM.

Indeed, [1] proved that the STAR model is functionally equivalent to an
Additive TSK FRBM with only one term in the rule antecedents.
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Figure 3: (a) Two local AR models (or two fuzzy rules) (b) The STAR model
(or the fuzzy inference system) derived from the two AR (or rules) shown in (a).

4 A linearity test for FRBM

As stated before, a fundamental objection argued by scientists with a classical
statistical background against Soft Computing models in general and neural
networks and FRBM in particular was the lack of a sound theory behind them.
Not being able to prove a priori if such models had good statistical properties
(related to their much praised ’black-box’ condition) prevented them to be ac-
cepted by wide parts of the scientific community despite its good performance
in practical situations. Fuzzy-related researchers’ and practitioners’ attitude
towards this has usually been to work from an engineering point of view and to
further extend the practical applications of the models and methods in hope that
their empirical benefits were at some point good enough as to finally convince
the scientific community.

The results presented in Section 3 have an immediate impact on this ques-
tion, as they permit the derivation of a statistical approach to a family of Soft
Computing models, namely the FRBM family, considering them as nonlinear
time series models.

This includes a priori proofs of their statistical properties, such as stationar-
ity or identifiability, which will throw some light on their inner behavior. Also,
the use of log-likelihood based estimation methods allow us to guarantee ex-
istence, convergence, consistence and asymptotic normality of the estimators.
These properties are a must for a statistical model to be accepted. Finally, the
development of linearity tests grant the ability to decide, based on the data, if a
series can be modeled with a single linear autoregressive model or if an FRBM
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seems appropriate instead.

Before deriving these tests, a word on notation must be said. In the standard
FRBM framework, the residuals are considered as an information source about
the ’goodness of fit’ of the model. They are looked at once the model is built,
as they are the basis for computing the so-called error measures: mean squared
error, mean average error and so on.

In the statistical field, on the other hand, the time series formed by the
residuals, {εt}, is a fundamental piece of the modeling process, and as such it
is always included in the definition of the models. Hence, we will redefine the
Additive TSK FRBM, Equation (11), in the time series framework as

yt = G (xt;ψ) + εt =
r
∑

i=1

b′

ixt · ωi(xt;ψω) + εt, (14)

where ψ is the parameter vector, including the consequent (linear) parameters,
ψp = (b1, ...,br) and the antecedent (nonlinear) parameters, ψω, whose number
depends on the type of membership function, µA, used. The residuals, εt, are
henceforth included in the definition of the FRBM.

In this section, we will consider membership functions of Gaussian type,
being the most common derivable membership functions used in this context.
It is usually expressed as in Equation (9) but we will rewrite it as

µ(xt; γ, c) = exp
(

−γ(x − c)2
)

. (15)

Since FRBM can be seen as nonlinear regression models, the standard pro-
cedures for testing parameter significance, like LM-tests, should be applicable,
in principle. To perform these tests, however, the asymptotic distribution of
the model parameters must be known. This issue is dealt with in Section A.2,
where it is shown that the parameters of an FRBM are asymptotically normal.

In the fuzzy literature, however, no attention has been paid to hypothesis
testing up to now. While it is obvious that a linear time series should be modeled
with a linear model, i.e. a single (default) rule, to our knowledge there is no
testing procedure to avoid the mistake of using highly complex structures to
model simple problems.

Next we propose a statistical test to decide if a problem can be solved using
a linear model or if we need a combination of rules to model it. Let us suppose
that we have an FRBM composed of a single linear model which applies to the
whole input space:

yt = b′

0xt + εt. (16)

Now we want to know if the use of an extra rule with Gaussian membership
function would increase the performance of the model. We would add such rule
as follows:

yt = b′

0xt + b′

1xtω(xt;ψ) + εt. (17)

If our FRBM uses Gaussian membership functions, with ψ = [γ, c], we might
rewrite it as

yt = b′

0xt + b′

1xt

p
∏

i=1

exp
(

−γ(xi − ci)
2
)

+ εt.
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Our goal is to test for the significance of the extra rule, so in this case an
appropriate null hypothesis could be

H0 : γ = 0, (18)

being the alternative H1 : γ > 0. Hypothesis (18) opens up the possibility of
studying linearity in the Lagrange Multiplier (LM) testing framework. Under
this null hypothesis, the contribution of the extra rule is identically equal to a
constant and merges with the intercept b00 of the default rule, that is, the rule
is not necessary.

We assume that, under (18), the maximum likelihood estimators of the pa-
rameters of (15) are asymptotically normal and hence can be estimated consis-
tently (as granted by Theorem A.2, section A).

As it was thoroughly discussed in [2], model (17) is only identifiable under
the alternative hypothesis, i.e., if the null is true, the parameters are not locally
unique and thus the estimator does not follow an asymptotic normal distribu-
tion. This issue is known as the problem of ’hypothesis testing when a nuisance
parameter is present only under the alternative’, and was first studied by [9].
In this situation the test statistic of the LM-test does not follow a known distri-
bution and thus the standard asymptotic distribution theory for the likelihood
ratio is not available.

However, we can avoid this difficulty and obtain a χ2-statistic by following
the method first suggested in [15] and then widely applied to neural network-
based models by [22, 16, 20] amongst others. This method proposes the expan-
sion of the expression of the firing strength of a fuzzy rule into a Taylor series
around the null hypothesis γ = 0:

ω(xt; γ, c) ≈ ω(xt; 0, c)+
∂ω

∂γ

∣

∣

∣

∣

γ=0

γ+R(xt; γ, c) = γ

p
∑

i=1

(xi−ci)
2+R(xt; γ, c)

(19)

which for the expression of the contribution of the extra rule yields

C ≈ b′

1xt

[

γ
∑

(xi − ci)
2
]

=

p
∑

i=1

θixi+

p
∑

i=1

p
∑

j=i

θijxixj+

p
∑

i=1

p
∑

j=i

p
∑

k=j

θijkxixjxk.

In this case, contrary to what happens when using the sigmoid membership
function (as in the STAR model, [15]), the first order Taylor approximation
is enough for our needs, as all the θi, θij , θijk depend on the intercept, b10,
of (17). The first linear term merges with the system’s default rule, while
the remainder of the Taylor expansion adds up to the error term, becoming
ε⋆ = ε + b1xtR(xt; γ, c), which means that ε⋆ = ε under the null. Thus the
expansion results in the following model:

yt = π′xt +

p
∑

i=1

p
∑

j=1

θijxixj +

p
∑

i=1

p
∑

j=i

p
∑

k=j

θijkxixjxk + ε⋆
t . (20)

The null hypothesis can hence be defined as

H0 : θij = 0 ∧ θijk = 0 ∀ i, j, k ∈ 1, . . . , q. (21)
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This null hypothesis circumvents the identification problem, and allows us to
obtain a statistical test concerning the use of the extra rule. This test is based
on the local approximation to the log-likelihood for observation t, which takes
the form (ς is the variance of ε):

lt = −1

2
ln (2π)−1

2
ln ς2− 1

2ς2







yt − π′xt −
p
∑

i=1

p
∑

j=1

θijxixj −
p
∑

i=1

p
∑

j=1

p
∑

k=1

θijkxixjxk







2

.

(22)

Following [16], we must rely on the following assumptions:

Assumption 4.1. The ((r + 1)× 1) parameter vector defined by [ψ′, ς2]′ is an
interior point of the compact parameter space Ψ which is a subspace of R

r×R
+,

the r dimensional Euclidean space.

Assumption 4.2. Under the null hypothesis, the data generating process (DGP)
for the sequence of scalar real valued observations {yt}T

t=1 is an ergodic stochas-
tic process, with true parameter vector ψ ∈ Ψ.

Assumption 4.3. E|yt−i|δ < ∞,∀i ∈ {1, . . . , p} for some δ > 8.

Under H0 and Assumptions 4.1, 4.2 and 4.3 we can compute the standard
Lagrange Multiplier or score-type test statistic given by

LM =
1

σ̂2

T
∑

t=1

ε̂τ̂t
′×







T
∑

t=1

τ̂tτ̂t
′ −

T
∑

t=1

τ̂tĥ
′

t ×
(

T
∑

t=1

ĥ′

tĥt

)−1

×
T
∑

t=1

ĥtτ̂t
′







×
T
∑

t=1

τ̂t
′ε̂

(23)

where ε̂ = yt − π′xt are the residuals estimated under the null hypothesis,

ĥt =
∂G(xt;ψp,ψω)

∂ψ̂p∂ψ̂ω

∣

∣

∣

∣

∣

ψp=ψ̂p∧ψω=ψ̂ω

(24)

is the gradient of the model and τ̂t contains all the nonlinear regressors in (20),
with ‖τ̂t‖ = m. This statistic has an asymptotic χ2 distribution with m degrees
of freedom.

Although it might seem complicated at first sight, this test can be easily
carried out in stages:

1. Regress yt on xt and compute the residual sum of squares SSR0 =
∑T

t=1 ς̂t
2

2. Regress ς̂t on xt and on the m nonlinear regressors of (20). Compute the

residual sum of squares SSR1 =
∑T

t=1 τ̂t
2.

3. Compute the χ2 statistic

LMl
χ2 = T

SSR0 − SSR1

SSR0

or the F version of the test

LMl
F =

(SSR0 − SSR1)

m

(

SSR1

(T − p − 1 − m)

)−1

.
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If the value of the test statistic exceeds the appropriate value of the χ2 or F

distribution, the null hypothesis is rejected.

There is a publicly available implementation of this test in the statistical
language R, where the linearity test has been implemented as part of the package
tsDyn [17]. Having loaded the package, applying the test is as simple as calling
the function linearityTest with the series under study as main argument.

5 Power analysis

The use of synthetic datasets has been recently studied in the framework of
Soft Computing. For a detailed state-of-the-art, see [5]. Nonetheless, in the
statistical field, it is a common practice to use this type of experiments to check
the modeling capabilities of the proposals.

The basic assumption is that any series is considered to be generated by a
usually unknown data generating process (DGP) to which a noise component is
added:

yt = G (xt;ψ) + εt. (25)

As a reverse result of this, to generate an artificial time series, we need to define
a DGP and a noise distribution, whose sum in iterative application will produce
the data. This artificial series could then be studied under the chosen modeling
scheme, identifying and estimating a model for it. If the parameters of this
model are (or tend to be) equal to the parameters of the original DGP, we
obtain a clear evidence that the modeling scheme is correct.

In order to simulate a series according to the aforementioned basic assump-
tion, we must go back again to the expression of the general model, equation
(25). The first part of the right hand side of that expression is called in this
context the model skeleton, and of course is the part which is to be modeled.
Having defined a model skeleton or DGP, we generate the series by seeding
a random starting point xt0 and successively obtaining the yt, t = 1...T , by
applying the skeleton function and adding a n.i.d. value given by the random
series εt. It is usually a good idea to discard the first N observations to avoid
initialization effects.

In this study, we generated ten synthetic time series. Some of them are
similar to the ones used by [16], that we reuse in order to test them in the
FRBM framework.

We start by simulating five stationary linear autoregressive models:

yt = 0.8 − 0.5yt−1 + 0.3yt−2 + εt, εt ∼ NID(0, 12), (26)

yt = −0.1 + 0.2yt−1 + 0.2yt−2 + εt, εt ∼ NID(0, 0.52), (27)

yt = −0.4 + 0.7yt−1 + 0.1yt−2 + εt, εt ∼ NID(0, 0.22), (28)

yt = 0.3 − 0.4yt−1 − 0.5yt−2 + εt, εt ∼ NID(0, 1.92), (29)

yt = 0.5 + 0.2yt−1 + 0.6yt−2 + εt, εt ∼ NID(0, 0.92), (30)

whose simple formulation produces a series as the one shown in Figure 4 (cor-
responding to model (26)).
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Figure 4: Generated series for model (26), stationary linear autoregressive
model.

Knowing that these series are linear, we first wanted to check if the null
hypothesis of the linearity test would be accepted or not. By using the skele-
ton and the random noise series, we simulated 500 replications of the model
(containing 500 observations each) and applied the test to them1.

For a significance level of 0.05, the results are conclusive and are shown in
the first five rows of Table 1, where the first and second columns show in how
many series the null hypothesis was accepted an rejected, respectively. The
third column shows the percentage of correct answers and the fourth shows the
average p-value obtained. As we can see, in the five examples the test properly
accepted the null hypothesis in more than 90% of the cases.

Once we empirically know that the test is robust against Type I errors, we
turn to investigate Type II errors, i.e., the null hypothesis of linearity not being

1All the experiments were carried out in the statistical programming language R using the
package tsDyn.

Table 1: Results of the linearity tests applied to the synthetic series.

model accept H0 reject H0 % correct average p-value

eq. (26) 461 39 92.2 0.5490
eq. (27) 476 24 95.2 0.5047
eq. (28) 467 33 93.4 0.5254
eq. (29) 471 29 94.2 0.4825
eq. (30) 481 19 96.2 0.5283

eq. (31) 6 494 98.8 0.0029
eq. (32) 2 498 99.6 0.0009
eq. (33) 0 500 100 0.00001
eq. (34) 0 500 100 1.18e-29
eq. (35) 0 500 100 2.75e-8
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rejected when dealing with nonlinear series. In order to do so, we simulated the
following five models:

yt = 1.8yt−1 − 1.06yt−2+

(0.02 − 0.9yt−1 + 0.795yt−2) × µ(xt;ψ) + εt,

εt ∼ NID(0, 0.022) (31)

with ψ = [γ, c] = [3, (1.2, 0.7)].

yt = −0.1 + 0.3yt−1 + 0.2yt−2+

(−1.2yt−1 + 0.5yt−2) × µ1(xt;ψ1)+

(1.8yt−1 − 1.2yt−2) × µ2(xt;ψ2) + εt,

εt ∼ NID(0, 0.52) (32)

with ψ1 = [γ1, c1] = [2, (2.0, 0.1)] and ψ2 = [γ2, c2] = [4.3, (0.31, 1.5)].

yt = 0.5 + 0.8yt−1 − 0.2yt−2+

(−0.5 − 1.2yt−1 + 0.8yt−2) × µ(xt;ψ) + εt

εt ∼ NID(0, 0.52) (33)

with ψ = [γ, c] = [11.31, (0.7071,−0.7071)].

yt = 0.5 + 0.8yt−1 − 0.2yt−2+

(1.5 − 0.6yt−1 − 0.3yt−2) × µ1(xt;ψ1)+

(−0.5 − 1.2yt−1 + 0.7yt−2) × µ2(xt;ψ2) + εt,

εt ∼ NID(0, 12) (34)

whereψ1 = [γ1, c1] = [8.49, (0.7071,−0.7071)] andψ2 = [γ2, c2] = [8.49, (−0.7071, 0.7071)].

yt = 0.5 + 0.8yt−1 − 0.2yt−2+

(1.5 − 0.6yt−1 − 0.3yt−2) × µ1(xt;ψ1)+

(0.2 + 0.3yt−1 − 0.9yt−2) × µ2(xt;ψ2)+

(−1.2 + 0.6yt−1 + 0.8yt−2) × µ3(xt;ψ3)+

(−0.5 − 1.2yt−1 + 0.7yt−2) × µ4(xt;ψ4) + εt,

εt ∼ NID(0, 0.22) (35)

where

ψ1 = [γ1, c1] = [2.34, (−0.4,−0.7)]

ψ2 = [γ2, c2] = [2.34, (−0.7, 0.4)]

ψ3 = [γ3, c3] = [4.23, (0.11,−0.65)]

ψ4 = [γ4, c4] = [4.23, (0.65,−0.11)].
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Figure 5: Power estimation for linearity test.

Again, for each of these models, we simulated 500 series, of 500 observations
each, and applied the test to each of them. For a significance level of 0.05, the
five last rows of Table 1 show that the test is very good against Type II errors,
as the null hypothesis was not rejected in only 8 series over a total of 2500.

In order to further assess the goodness of the test, we studied its power
with respect to the sample size. For a nominal size (significance) of 0.05, the
theoretical power of the test is shown in Figure 5. The classification proposed
by [8] uses the effect size as a way to express the strength of the relationship
between two variables. According to this classification and the curves shown
in Figure 5, if we have a “small” effect size (0.2), the test shows good power
already when we use a sample size of 300. For a “medium” effect size (0.5), the
test is powerful already with 50 samples, and with a “large” effect size (0.8),
even less than 25 samples are enough to obtain good test power.

Figure 6 shows empirical power with respect to nominal size or significance
for model (31). This model was chosen because, amongst the nonlinear models,
is the less complex and hence it is easier to mistakenly accept the null hypothesis.
This is also seen in Table 1, where model (31) gets the worse percentage of
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Figure 6: Empirical power versus nominal size for the linearity test applied on
model (31).

correct rejections amongst the nonlinear models. However, the empirical power
shown in the Figure is clearly very strong (over 0.99 for the standard nominal
size 0.05), so it is clear that the test is good enough even for not very complex
models.

To conclude, in order to further illustrate the usefulness of the test, we will
show how neglecting the information provided by it might lead to a waste of
resources and time.

Let us assume that we want to model the data shown in Figure 4 by using 2
lagged variables, yt−1 and yt−2. At first sight this series looks quite complex, and
we might want to try to model it using a fuzzy rule-based model. If we choose
to apply a Wang and Mendel [26] grid partition strategy to define the structure
of the model, and we use 3 Gaussian-based labels for each fuzzy variable, we will
end up with a model having 9 rules and a total of 3×9+2×6 = 39 parameters.

However, Wang and Mendel algorithm is known for not being very parsimo-
nious and we might use a better algorithm as substractive clustering to define
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the structure of the model. In that case, using the default values for the algo-
rithm’s parameters, we get a 3 rule model with a total of 3 × 3 + 2 × 6 = 21
parameters. After some tuning of the substractive clustering algorithm, the
smallest model we get is a 2 rule model with 3 × 2 + 2 × 4 = 14 parameters.

After accepting the null hypothesis of linearity, we know that the the series
shown in Figure 4 is generated (and hence best modeled) by a linear model with
just 3 parameters. A linear regression is sufficient to obtain model (26).

6 Conclusions

As a new step towards a statistical framework for fuzzy rule-based modeling of
time series, this paper introduces a test for linearity and some results concerning
the maximum likelihood estimator. These contributions are relevant both in a
theoretical and practical point of view.

On the one hand, in deriving the theoretical properties of the estimator
and the test itself, we move closer to a convincing statistical foundation for
FRBM which will surely lead to a better understanding of the model and a
deeper insight into its behavior. As a side-effect, these contributions could also
be another argument to temper the traditional skepticism amongst Statistics
researchers concerning FRBM.

On the other hand, the practical implications of the contributions shown
above are clear. The proposed linearity test, of a Lagrange Multiplier type,
allows for an empirical determination of the non-linearity of a series. This is an
important issue which should be considered by any researcher before trying to
model a time series using a FRBM. It is clear that it would be a loss of time
and resources to model a linear time series with a highly nonlinear model as the
FRBM, and hence it is something to be avoided.

Finally, this work is part of a continued effort to bring statistical results,
methods and tools, to the fuzzy rule-based time series modeling. Further de-
velopments are expected to come, aiming at a complete statistical approach to
time series modeling and forecasting through FRBM.

A Estimation procedures. Properties of the es-
timator

The linearity test developed above requires the estimation of the FRBM. In this
section we will focus on this problem.

There is a growing number of algorithms in the literature for estimating
the parameters of FRBM and Neural Network based models. Following the
reasons argued in [22, 16], we choose to estimate the parameters of the model
by maximum likelihood, making use of the assumptions made previously on εt.

Estimation through maximum likelihood has been applied to Neural Net-
works but it is not so common to find it applied to FRBM. This is another
idea that we borrow from classical statistic time series analysis, and it makes it
feasible to obtain an idea of the uncertainty in the parameter estimates through
asymptotic standard deviation estimates, which is something hardly possible
through metaheuristic algorithms. It may be argued, though, that maximum
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likelihood estimation of neural network models is most likely to lead to conver-
gence problems, and that penalizing the log-likelihood function is a necessary
precondition for obtaining satisfactory results. Notwithstanding, in this case,
unidentifiable models are not estimated (a main reason for penalizing the log-
likelihood), and furthermore the initial values for the parameters are carefully
chosen.

If, as we assume here, εt is a Gaussian white noise with zero mean and finite
variance, εt ∽ NID(0, σ2), the maximum likelihood is equivalent to nonlinear
least squares. Hence, the parameter vector ψ of the model is estimated as

ψ̂ = arg min
ψ

QT (ψ) = arg min
ψ

T
∑

t=1

(yt − G(xt;ψ))2. (36)

The least squares estimator (LSE) defined by (36) belongs to the class of M
estimators considered by [19]. We next discuss the conditions that guarantee
existence, consistency and asymptotic normality of the LSE.

A.1 Existence of the estimator

Following [20], the existence of the LSE estimator is based in Lemma 2 of
[10], which establishes the existence under certain conditions of continuity and
measurability on the mean squared error (MSE) function.

Theorem A.1. The Additive TSK FRBM satisfies the following conditions and
the LSE exists:

1. For each xt ∈ X, function G(xt;ψ) is continuous in a compact subset Ψ

of the Euclidean space.

2. For each ψ ∈ Ψ, function G(xt;ψ) is measurable in space X.

3. εt are independent and identically distributed errors with mean 0 and vari-
ance σ2.

Proof. Lemma 2 of [10] shows that conditions 1–3 in Theorem A.1 are sufficient
to guarantee the existence (and measurability) of the LSE. To apply this result
to the FRBM, we need to check whether these conditions are satisfied by the
model.

Condition 3 of Theorem A.1 was already assumed when defining the model.
It is easy to prove in our case that G(xt;ψ) is continuous in the parameter vector
ψ. This follows from the fact that p(xt;ψµ) and µ(xt;ψp) depend continuously
on ψp and ψµ for each value of xt. Similarly we can see that G(xt;ψ) is
continuous in xt and thus is measurable, for each fixed value of the parameter
vector ψ. Thus, conditions 1 and 2 are also satisfied.

A.2 Consistence and Asymptotic Normality of the esti-
mator

White [28, 29] established the conditions that guarantee strong consistency of
the LSE. In the context of stationary time series models, the conditions that
ensure (almost certain) consistency have been established in [27, 30]. Now, as
[2] guarantees the global identifiability of the model, we can prove existence,
consistency and asymptotic normality of the FRBM estimators.
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Theorem A.2. Under Assumptions 4.1, 4.2 and Theorem 1 of [2], the maxi-

mum likelihood estimator ψ̂ is almost surely consistent for ψ and

√
T (ψ̂ −ψ)

D−→ N

(

0,− plim
T→∞

A(ψ−1)

)

(37)

where

A(ψ−1) =

(

1

σ2T

)(

∂2QT (ψ)

∂ψ∂ψ′

)

.

Proof. To prove consistency, we will make use of Theorem 3.5 of [27] and follow
[16]. We must show that the assumptions of that theorem are fulfilled in the
case of the FRBM:

Assumptions 2.1 and 2.3, related to the probability space and to the density
functions, are trivial. Let q(xt;ψ) = (yt − G(xt;ψ))2. Assumption 3.1a states
that for each ψ ∈ Ψ, −E(q(xt;ψ)) exists and is finite for t = 1, ..., T . Under
Assumption 4.2 and the fact that εt is a zero mean normally distributed ran-
dom variable with finite variance, hence, k-integrable, Assumption 3.1a in [27]
follows.

Assumption 3.1b states that −E(q(xt;ψ)) is continuous in Ψ, t = 1, ..., T .
Let ψ → ψ∗, since for any t, G(xt;ψ) is continuous on Ψ, then q(xt;ψ) →
q(xt;ψ

∗), ∀t (point-wise convergence). From the continuity of G(xt;ψ) on
the compact set Ψ, we have uniform continuity and we obtain that q(xt;ψ)
is dominated by an integrable function dF . Then, by Lebesgue’s dominated
convergence theorem, we get

∫

q(xt;ψ)dF →
∫

q(xt;ψ
∗)dF and E(q(xt;ψ)) is

continuous.
Assumption 3.1c states that −E(q(xt;ψ)) obeys the strong (weak) law of

large numbers (ULLN). Lemma 2 of [19] guarantees that E(q(xt;ψ)) obeys the
strong law of large numbers. The set of hypothesis (b) of this lemma is satisfied:

1. we deal with an ergodic process,

2. from the continuity of E(q(xt;ψ)) and from the compactness of Ψ we have
that inf E(q(xt;ψ)) = E(q(xt;ψ

∗)) for ψ∗ ∈ Ψ, and with Assumption 3.1a
in [27] we may guarantee that E(q(xt;ψ

∗)) exists and is finite, getting that
E(q(xt;ψ

)) > −∞.

Assumption 3.2 is related to the unique identifiability of ψ∗, which is guaranteed
by [2].

Now, to prove normality, we will use Theorem 6.4 of [27] and will check its
assumptions. Assumptions 2.1, 2.3 and 3.1 follow from the proof of consistency
showed above. Assumptions 3.2 and 3.6 follow from the fact that G(xt;ψ) is
continuously differentiable of order 2 on ψ in the compact space Ψ.

In order to check Assumptions 3.7a and 3.8a we have to prove that E (∇QT (ψ)) <

∞ and E
(

∇2QT (ψ)
)

< ∞, ∀T . The expected gradient and the expected Hes-
sian of QT (ψ) are given by

E (∇QT (ψ)) = 2E (∇G(xt;ψ)(yt − G(xt;ψ)))

and

E
(

∇2QT (ψ)
)

= 2E
(

∇G(xt;ψ)∇G(xt;ψ)′ −∇2G(xt;ψ)(yt − G(xt;ψ))
)
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respectively. Assumption 3.7a and 3.8a follow considering the normality condi-
tion on εt, the properties of the function G(xt;ψ) and the fact that ∇G(xt;ψ)
and ∇2G(xt;ψ) contain at most second order terms of xt.

Assumption 3.8c is guaranteed by the proof of consistency and the ULLN
from [19].

Assumption 3.9 follows from the identifiability of the FRBM and the prop-
erties of function G(xt;ψ).

Assumption 6.1 requires using Theorem 2.4 of [29], by which we can show
that 2ξ′∇G(xt;ψ

∗)εt obeys the central limit theorem for some (r × 1) vector ξ,
such that ξξ′ = 1. Assumptions A(i) and A(iii) both hold because εt is Gaus-
sian. Assumption A(ii) also holds with V = 4σ2ξ′E(∇G(xt;ψ

∗)∇′G(xt;ψ
∗)).

Furthermore, since any measurable transformation of mixing processes is itself
mixing (see [29, Lemma 2.1]), hence we have that 2ξ′∇G(xt;ψ

∗)εt is a strong
mixing sequence and obeys the central limit theorem. ∇QT (ψ) also obeys the
CLT with covariance matrix B∗

T = 4σ2E(∇G(xt;ψ
∗)∇′G(xt;ψ

∗)) = 2σ2A∗

T ,
which is O(1) and non-singular.
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