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Abstract

We study the interaction between dispersed and sticky information by assuming

that firms receive private noisy signals about the state in an otherwise standard model

of price setting with sticky-information. We show that there exists a unique equilibrium

of the incomplete information game induced by the firms’ pricing decisions, and derive

the resulting Sticky-Dispersed Information (SDI) Phillips curve. The (equilibrium)

aggregate price level and the inflation rates we derive depend on all values they have

taken in the past. We perform several numerical simulations to evaluate how the

Sticky-Dispersed Phillips curve we derive respond to changes in the main parameters

of the model.
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1 Introduction

Over the last years, there has been renewed interest in the idea pioneered by Lucas (1972) and

Phelps (1968) that prices fail to respond quickly to nominal shocks due to the fact agents are

imperfectly informed about those shocks. As an example, Mankiw and Reis (2002) suggest

that, perhaps due to acquisition costs, information (rather than prices) is sticky, i.e., new

information is not immediately revealed to agents so that it diffuses slowly in the economy.

As a result, although prices are always changing, pricing decisions are not always based on

current information, and, consequently, do not respond instantaneously to nominal shocks.

There is also a large literature that assumes that agents have access to timely but het-

erogenous information about fundamentals. As a result, in the dispersed-information models

of Morris and Shin (2002), Angeletos and Pavan (2007) and others, prices reflect the inter-

action among differently informed agents and their heterogenous beliefs about the state and

about what others know about the state.

In this paper, we study how individual firms set prices when information is both sticky

and dispersed, and analyze the resulting dynamics for aggregate prices and inflation rates.

In our model, the firms’ optimal price is a convex combination of the current state of the

economy and the aggregate price level. Moreover, as in Mankiw and Reis (2002), only a

fraction of firms update their information set at each period. Those who update receive two

sources of information: the first piece is the value of all previous periods states, while the

second piece is a noisy, idiosyncratic, private signal about the current state of the economy.

Since noisy signals are idiosyncratic, the firms that update their information set will have

heterogenous information about the state (as in Morris and Shin (2002) and Angeletos and

Pavan (20007)). Hence, in our model, heterogenous information disseminates slowly in the

economy.

As individual prices depend on the current state and the aggregate price level, firms that

update their information set must not only form beliefs about the current state but also form

beliefs about the other firms’ beliefs about current the state, and so on and so forth, so that

higher-order beliefs play a key role in our model. A firm’s belief about the state depends on

it is private signal. Hence, the pricing decisions by firms induce an incomplete information

game among them.

In our main result, we prove that there exists a unique equilibrium of such game. The

uniqueness of the equilibrium allows us to unequivocally speak about the sticky-dispersed-

information (henceforth, SDI) aggregate price level and Phillips curve. The SDI aggregate
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price level we derive depends on all the prices firms have set in the past. This is so for two

reasons. First, there are firms in the economy for which the information set has been last

updated in the far past. This is a direct effect of sticky information. Second, firms that have

just received new information will behave, at least partly, as if they were backward-looking.

This happens because of an strategic effect: their optimal relative price depends on how they

believe all other firms (including those that have outdated information sets) in the economy

are setting prices

From aggregate prices, we are able to derive the SDI Phillips curve. Since current ag-

gregate prices depend on all prices set by firms in the past, the current inflation rate will

also depend on inflation rates that prevailed in the past. Therefore, in spite of the fact that

firms are forward looking in our model, the Phillips curve that results from their interaction

displays a non-trivial dependence on inflation rates that prevailed in the past. This is an

implication of the stickiness of information in our model and was already present in Mankiw

and Reis (2002). In our model, however, in addition to being sticky, information is also noisy

and dispersed. The fact that information is noisy leads a firm that has its information set

updated in t to find it optimal to place positive weight on the states from periods t − j,

j > 0, to predict the state in period t. Hence, in comparison to an economy à la Mankiw

and Reis (2002), the adjustment of prices to shocks will be slower in an economy with noisy

information. Through the complementarities in price setting, the dispersion of information

magnifies such effect.

Our model nests as special cases the complete information model, the dispersed informa-

tion model and the sticky information model. To better understand the roles played by infor-

mation stickiness and dispersed information, we decompose our SDI Phillips curve into three

benchmark inflation rates that can be obtained as limiting cases of our model: (i) complete-

information inflation, (ii) dispersed-information inflation, and (iii) sticky-information infla-

tion.

We study the individual contribution to the SDI Phillips curve of each of the main

parameters of our model: (i) Degree of strategic complementarity, (ii) Degree of informational

stickiness, (iii) Public information precision, and (iv) Private information precision. First,

we analyze the impact of current and past complete-information inflation rates on current

SDI inflation. Second, we consider the inflation response to monetary shocks. Finally, we

compare the variance of SDI inflation with the variances of complete-information inflation,

dispersed-information inflation, and sticky-information inflation.

In addition to the effects discussed above, the introduction of dispersed information in
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an otherwise standard sticky-information model sheds light on two different issues. First,

dispersion in an sticky- information setting generates price and inflation inertia irrespective of

assumptions regarding the firms’ capacity to predict equilibrium outcomes. Indeed, although

they may not have their information sets up to date, the firms in our model correctly predict

the equilibrium behavior of their opponents. In spite of correctly predicting the strategies

(i.e., contingent plans) adopted by the opponents in equilibrium, a firm cannot infer what is

the actual price set by them (i.e., the action taken), since it does not observe its opponents’

private signals. Hence, a firm that has not updated its information set cannot infer the

current state from the behavior of its opponents. This is in contrast to Mankiw and Reis

(2002) who, at least for the main numerical experiment presented in their paper, obtain price

inertia by (implicitly) assuming that agents cannot condition on equilibrium behavior from

the opponents. In fact, in such experiment, there is a (single) nominal shock that only a

fraction of the firms observe. Trivially, the prices set by those firms (as well as aggregate

prices) will reflect such change in the fundamental. Hence, firms that haven’t observed the

shock but can predict the equilibrium behavior of the opponents will be able to infer the

fundamental from such behavior.1 It follows that all firms should adjust prices in response

to a shock.

The second, and more important, issue relates to policy. In a world in which information

is dispersed, the optimal communication policy for a benevolent central banker who has

(imperfect) information about the states is far from trivial. On the one hand, any information

disclosed by the central banker about the state will have the benefit of allowing the agents

to count on an additional piece of information about the state when deciding on their prices.

This benefit is particularly relevant when information is sticky for a fraction of firms is setting

prices based on outdated information about the current state. On the other hand, since the

information disclosed by the central banker is a public signal, agents will place too much

weight on any information disclosed by the central banker as this is a public signal (e.g.,

Morris and Shin (2002), Angeletos and Pavan (2007). We believe the model we put forth in

this paper is a suitable framework to study optimal communication policy by central banks

when information is heterogenous and sticky.

Related Literature. This work follows a large number of papers that sheds new light
into the tradition that dates back to Phelps (1968) and Lucas (1972) of considering the effects

of imperfect information on price-setting decisions. Mankiw and Reis (2009) provide the most

1The argument here is similar to the one in Rational Expectations Equilibrium models à la Grosmann
(1981).
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recent survey of aggregate supply under imperfect information, whereas Veldkamp (2009)

covers a myriad of topics related to informational asymmetries and information acquisition

in macroeconomics and finance. Our paper connects to this broad literature through two

specific strands. In our model, (i) information in our model is sticky, as in Mankiw and Reis

(2002) and others, and (ii) following Woodford (2002) and Morris and Shin (2002), among

others, information is dispersed.

The papers that are the closest to ours are Mankiw and Reis (2009) and Angeletos and

La’O (2009). In addition to surveying the most recent literature on the impact of informa-

tional frictions on pricing decisions, Mankiw and Reis (2009) compare a partial (dispersed)

information model with a delayed (sticky) information model, and derive their common

implications.2 In turn, Angeletos and La’O (2009) introduce dispersed information (and ex-

plicitly discuss the role of higher order beliefs) in an otherwise standard setting with sticky

prices à la Calvo (1983). We depart from Mankiw and Reis (2009) by combining in a sin-

gle model both dispersed information and informational stickiness, highlighting their joint

effects on aggregate prices and inflation rates. To the best of our knowledge, we are the

first to offer an integrated approach to study the interaction of dispersion and stickiness on

pricing decisions. By focusing on informational stickiness (rather than price stickiness), we

complement the analysis of Angeletos and La’O (2009).

Organization. The paper is organized as follows. In section 2, the set-up of the model
is described. In section 3, we derive the unique equilibrium of the pricing game played

by the firms, and derive the implied aggregate prices and inflation rates. In section 4,

we compare our SDI Phillips curve with three benchmarks: the complete information, the

sticky-information and the dispersed information Phillips curves. Section 5 calibrates our

SDI Phillips curve for different values of the main parameters of the model. Section 6

draws the concluding remarks. All derivations that are not in the text can be found in the

Appendix.

2 The Model

The model is a variation of Mankiw and Reis’ (2002) sticky information model.3 There is a

continuum of firms, indexed by i ∈ [0, 1] , that set prices at every period t ∈ {1, 2, ...} .
2The theories of "rational inattention" proposed by Sims (2003, 2009) and "inattentiveness" proposed by

Reis (2006a, 2006b), have been used to justify models of dispersed information and sticky information.
3Subsequent refinements of the sticky information models can be found in Mankiw and Reis (2009, 2007,

2006) and Reis (2009, 2006a, 2006b).
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Although prices can be re-set at no cost at each period, information regarding the state

of the economy is made available to the firms infrequently. At period t, only a fraction λ

of firms is selected to update their information sets about the current state. For simplicity,

the probability of being selected to adjust information sets is the same across firms and

independent of history.

We depart from a standard sticky-information model by allowing information to be het-

erogeneous and dispersed : a firm that updates its information set receives public information

regarding the past states of the economy as well as a private signal about the current state.

Pricing Decisions:
Under complete information, any given firm z ∈ [0, 1] set its (log-linear) price pt (z) equal

to the optimal price decision p∗t given by

p∗t ≡ rPt + (1− r) θt, (1)

where Pt ≡
R 1
0
pt (z) dz is the aggregate price level, and θt is the nominal aggregate demand,

the current state of the economy. This pricing rule is standard, and, although we don’t

do it explicitly, can be derived from a firm’s profit maximization problem in a model of

monopolistic competition à la Blanchard and Kiyotaki (1987).

Information:
The state θt follows a random walk

θt = θt−1 + �t, (2)

with �t ∼ N (0, α−1).

If firm z ∈ [0, 1] is selected to update its information set in period t, it observes all

previous periods realizations of the state, {θt−j, j ≥ 1}. Moreover, it obtains a noisy private
signal about the current state. Denoting such signal by xt (z), we follow the literature and

assume:

xt (z) = θt + ξt (z) , (3)

where ξt (z) ∼ N
¡
0, β−1

¢
, β is the precision of xt (z), and the error term ξt (z) is independent

of �t for all z, t.

As a result, if one defines

Θt−j = {θt−k}∞k=j , (4)

at period t, the information set of a firm z that was selected to update its information j

7



periods ago is

It−j (z) = {xt−j (z) ,Θt−j−1} . (5)

3 Equilibrium

Using (1), the best response for a firm z that was selected to update its information j

periods ago — and, therefore, has It−j (z) as its information set — is its forecast of p∗t , given

the available information It−j (z) and the equilibrium behavior of its opponents:

pj,t (z) = E [p∗t | It−j (z) , p−j,t (.)] . (6)

Denoting by Λt−j the set of firms that last updated its information set at period t − j,

we can express the aggregate price level Pt as

Pt =
R
∪∞j=0Λt−j

pt (z) dz (7)

=
P∞

j=0

R
Λt−j

E [p∗t | It−j (z) , p−j,t (.)] dz.

Since the optimal price p∗t is a convex combination of the state, θt, and the aggregate

price level, firm z needs to forecast the state of the economy and the pricing behavior of the

other firms in the economy. The pricing behavior of each of these firms, in turn, depends

on their own forecast of the other firms’ aggregate behavior. It follows that firm z must not

only forecast the state of the economy but also, to predict the behavior of the other firms in

the economy, must make forecasts of these firms’ forecasts about the state, forecasts about

the forecasts of these firms forecasts about the state, and so on and so forth. In other words,

higher order beliefs will play a key role in the derivation of an equilibrium in our model.

Indeed, if one defines the average k-th order belief about the current state recursively as

follows:

Ēk [θt] =

(
θt, k = 0P∞

j=0

R
Λt−j

E
£
Ēk−1 [θt] | It−j (z)

¤
dz, k ≥ 1

(8)

we have:

Proposition 1 In equilibrium, the aggregate price level is

Pt = (1− r)
P∞

k=1 r
k−1Ēk [θt] . (9)
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3.1 Computing the Equilibrium

In this section, we derive the unique equilibrium of the pricing game played by the firms.

Following Morris and Shin (2002), we do this in two steps. We first derive an equilibrium

for which the aggregate price level is a linear function of fundamentals. We then establish,

using Proposition 1, that this linear equilibrium is the unique equilibrium of our game.

3.1.1 Prior Distribution

In the Appendix, we show that, given the distribution of the private signals and the process

{θt} implied by (2), a firm z that updated its information set in period t− j makes use of

the variables xt−j (z) = θt−j + ξt−j (z) and θt−j−1 = θt−j − �t−j, to form the following belief

about the current state θt−j:

θt−j | It−j (z) ∼ N
¡
(1− δ)xt−j (z) + δθt−j−1, (α+ β)−1

¢
, (10)

where

δ ≡ α

α+ β
∈ (0, 1) . (11)

Hence, a firm that updated its information set in t − j expects the current state to be a

convex combination of the private signal xt−j (z) and a (semi) public signal θt−j−1 — the only

relevant piece of information that comes from learning all previous states {θt−j−k}k≥1.4 The
relative weights given to xt−j (z) and θt−j−1 when the firm computes the expected value of

state θt−j depend on the precision of such signals.

Using (2), one has that, for m ≤ j,

θt−m = θt−j +
Pj−m−1

k=0 �t−m−k. (12)

Thus, the expectation of a firm z that last updated its information set at t− j about θ is

E [θt−m | It−j (z)] =
(

E [θt−j | It−j (z)] = (1− δ)xt−j (z) + δθt−j−1 : m ≤ j

θt−m : m > j
. (13)

In words, a firm that last updated its information set in period t− j expects that all future

values of the fundamental θ will be the same as the expected value of the fundamental at the

4θt−j−1 is the only piece of information in Θt−j = {θt−j−k}∞k=1 the firm needs to use because the state’s
process is Markovian.
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period t− j. Moreover, since at the moment it adjusts its information set the firm observes

all previous states, the firm will know for sure the value of θt−m for m > j.

3.1.2 Linear Equilibrium

To derive the linear equilibrium, we adopt a standard guess and verify approach. We assume

that the (equilibrium) aggregate price level is linear and then show that the implied best

responses for the individual firms indeed lead to linear aggregate prices.

Toward that, assume that

Pt =
P∞

j=0 cjθt−j. (14)

for some constants cj, j ≥ 0.
In such case, the optimal price for a firm that last updated information at t−m is

pt = E [(1− r) θt + rPt | It−m]
= (1− r)E [θt | It−m] + r

P∞
j=0 cjE [θt−j | It−m]

= (1− r)E [θt | It−m] + r
Pm

j=0 cjE [θt−j | It−m] + r
P∞

j=m+1 cjE [θt−j | It−m]
= [1− r (1− Cm)] [(1− δ)xt−m + δθt−m−1] + r

P∞
j=m+1 cjθt−j

= (1− δ) [1− r (1− Cm)]xt−m + δ [1− r (1− Cm+1)] θt−m−1 + r
P∞

j=m+2 cjθt−j,

where

Cm ≡
Pm

j=0 cj.

Aggregating such individual prices and using (7), we get

Pt =
P∞

m=0

R
Λt−m

[1− r (1− Cm)] [(1− δ) xt−m + δθt−m−1] + r
P∞

j=m+1 cjθt−jdz

= λ
P∞

m=0 (1− λ)m
n
[1− r (1− Cm)] [(1− δ) θt−m + δθt−m−1] + r

P∞
j=m+1 cjθt−j

o
= λ

P∞
m=0 (1− λ)m {[1− r (1− Cm)] [(1− δ) θt−m + δθt−m−1]}

+r
P∞

m=0 cm [1− (1− λ)m] θt−m.

Note that the above equality can be re-written as
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(1− r)Pt = λ (1− δ)
P∞

m=0 (1− λ)m [1− r (1− Cm)] θt−m

+λδ
P∞

m=0 (1− λ)m [1− r (1− Cm)] θt−m−1

−r
P∞

m=0 (1− λ)m cmθt−m,

so that the implied aggregate price will be linear in the values of the fundamental, as assumed

in (14).

Matching coefficients, we obtain

ck ≡

⎧⎨⎩
λ(1−δ)(1−r)
1−rλ(1−δ) if k = 0

λ(1−r)φ(1−λ)k−1

[1−r[1−φ(1−λ)k−1]][1−r[1−φ(1−λ)k]]
if k ≥ 1, (15)

where

φ = 1− λ (1− δ) ,

C∞ ≡ lim
m→∞

Pm
j=0 cj = 1.

We have then shown:

Proposition 2 (Linear Equilibrium) There exists an equilibrium in which the aggregate

price level in period t, Pt, are linear in the states {θt−j}∞j=0 .

3.1.3 Uniqueness of Equilibrium: Beliefs

As shown in Proposition (1), an alternative way to describe the aggregate price level in

period t is through a weighed average of all (average) higher order beliefs about the state

θt. In this section, we derive such beliefs and establish that the implied aggregate price level

will be identical to the one derived in Proposition (2). This will establish that the linear

equilibrium is unique.

First Order Beliefs:
Using (13), we are able to compute (8) for the case k = 1.

Ē1 [θt] = λ
P∞

j=0 (1− λ)j [(1− δ) θt−j + δθt−j−1] . (16)

Higher Order Beliefs:
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In the Appendix, we use (16) and the recursion (8) to derive the following useful result:

Lemma 1 The average k-th order forecast of the state is given by

Ēk [θt] = λ
P∞

m=0 (1− λ)m [κm,kθt−m + δm,kθt−m−1] , (17)

with the weights (κm,k, δm,k) are recursive defined for k ≥ 1"
κm,k+1

δm,k+1

#
=

"
(1− δ)

δ

#
[1− (1− λ)m]

k
+Am

"
κm,k

δm,k

#
,

where the matrix Am is given by

Am ≡
"£
(1− δ)

£
1− (1− λ)m+1

¤
+ δ [1− (1− λ)m]

¤
0

δ
££
1− (1− λ)m+1

¤
− [1− (1− λ)m]

¤ £
1− (1− λ)m+1

¤# ,
and the initial weights are (κ1,k, δ1,k) ≡ (1− δ, δ).

Plugging (17) into the expression for the aggregate price level Pt, (9), we get, after a few

manipulations, the following expression for the aggregate price level:

Pt = (1− r)
P∞

k=1 r
k−1Ēk [θt] (18)

=
P∞

m=0Km [(1−∆m) θt−m +∆mθt−m−1] ,

where the weights Km and ∆m are

Km ≡ (1− r)λ (1− λ)m

(1− r [1− (1− λ)m])
¡
1− r

£
1− (1− λ)m+1

¤¢ ,
∆m ≡ δ [1− r [1− (1− λ)m]]

1− r
£
(1− δ)

£
1− (1− λ)m+1

¤
+ δ [1− (1− λ)m]

¤ .
Comparing the coefficients above with the {cj}∞j=0 defined in (15), for

c0 with K0 (1−∆0) ,

ck with Km−1∆m−1 +Km (1−∆m) , m ≥ 1,

one sees that the aggregate price level implied by (18) is exactly the same as the one derived

in Proposition (2).
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Having shown that the equilibrium is unique, we can unequivocally speak about the

Phillips curve of our economy. Denoting the inflation rate by πt, by taking first differences

of equation (18), we can write our sticky-dispersed-information Phillips curve as

πt =
P∞

m=0Km [(1−∆m) (θt−m − θt−m−1) +∆m (θt−m−1 − θt−m−2)] . (19)

We summarize all the discussion above in the following result:

Proposition 3 In an economy in which information is sticky and dispersed, and the state
follows (2), there is a unique equilibrium in the pricing game played by the firms. In such

equilibrium, the aggregate price level is given by

Pt =
P∞

m=0Km [(1−∆m) θt−m +∆mθt−m−1] , (20)

and the SDI Phillips curve is given by

πt =
P∞

m=0Km [(1−∆m) (θt−m − θt−m−1) +∆m (θt−m−1 − θt−m−2)] , (21)

where

Km ≡ (1− r)λ (1− λ)m

(1− r [1− (1− λ)m])
¡
1− r

£
1− (1− λ)m+1

¤¢ , (22)

∆m ≡ δ [1− r [1− (1− λ)m]]

1− r
£
(1− δ)

£
1− (1− λ)m+1

¤
+ δ [1− (1− λ)m]

¤ . (23)

Note that the current aggregate price level Pt depends on all the prices firms have set

in the past. This is so for two reasons. First, there are firms in the economy for which

the information set has been last updated in the far past. This is a direct effect of sticky

information. Second, even firms that have just adjusted their information set will be, at

least partly, backward-looking. This happens because of an strategic effect: their optimal

relative price depends on how they believe all other firms (including those that have outdated

information sets) in the economy are setting prices. The direct and strategic effects of sticky

information are captured by the terms Km.

It is immediate that, since current aggregate prices depend on all prices set by firms in

the past, the current inflation rate will also depend on inflation rates that prevailed in the

past. Therefore, in spite of the fact that firms are forward looking in our model, the Phillips

curve that results from their interaction displays a non-trivial dependence on inflation rates
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that prevailed in the past. This is an implication of the stickiness of information in our

model and was already present in Mankiw and Reis (2002).

In our model, however, on top of being sticky, information is also disperse. The effect of

dispersion is captured by the positive weight given to the state in period θt−m−1 by a firm

that has its information set updated in t − m. As the private signal the firm observes is

noisy, it is always optimal to place some weight on past states to forecast the current state.

Hence, in comparison to an economy à la Mankiw and Reis (2002), the adjustment of prices

to shocks will be slower in an economy with disperse information.

Also, and perhaps more importantly, the introduction of dispersion in an sticky infor-

mation model allows us to generate price and inflation inertia irrespective of assumptions

regarding the firms’ capacity to predict equilibrium outcomes. Indeed, although they may

not have their information sets up to date, the firms in our model correctly predict the

equilibrium behavior of their opponents. In spite of correctly predicting the strategies (i.e.,

contingent plans) adopted by the opponents in equilibrium, a firm cannot infer what is the

actual price set by them (i.e., the action taken), since it cannot observe its opponents’ private

signals. Hence, a firm that hasn’t updated its information set cannot infer the current state

from the behavior of its opponents.

This is in contrast to Mankiw and Reis (2002) who, in order to obtain price and infor-

mation inertia in a model with sticky but non-dispersed information, (implicitly) assume

that agents cannot condition on equilibrium behavior from the opponents. In fact, in their

main experiment, there is a (single) nominal shock that only a fraction of the firms observe.

Trivially, the prices set by those firms (as well as aggregate prices) will reflect such change

in the fundamental. Hence, a firm that hasn’t observed the shock but can predict the equi-

librium behavior of the opponents will be able to infer the fundamental from such behavior.5

It follows that all firms will adjust prices in response.

4 Benchmarks for the SDI Phillips Curve

Our model nests the dispersed information model (λ = 1) and the sticky information model

(β−1 → 0) as special cases. In order to understand the properties of the SDI Phillips curve,

in what follows, we compare it to those two benchmarks as well as to the Phillips curve

implied by the complete information case.

5The argument here is similar to the one in Rational Expectations Equilibrium models à la Grosmann
(1981).
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4.1 Benchmark 1: Complete-information Inflation

Under complete information, the price of any firm z is

pt (z) = p∗t ≡ rPt + (1− r) θt.

Since firms are identical, they all set the same price. As a result

Pt = rPt + (1− r) θt ⇒ Pt = θt.

Hence, if θ is common knowledge, the equilibrium entails an inflation rate πC,t — that we

call the complete-information inflation — that is equal to the change of states:

πC,t = θt − θt−1 (24)

4.2 Benchmark 2: Dispersed-information Inflation

If stickiness vanishes (λ = 1), our results converge to the ones obtained by Morris and Shin

(2002) and Angeletos and Pavan (2007). Denoting the inflation rate for the economy without

stickiness by πD,t (the dispersed information inflation), we have:

πD,t = (1−∆)πC,t +∆πC,t−1, (25)

so that the inflation rate in period t is a convex combination of the complete information

inflations of period t and t−1, with the weight on period t−1 complete information inflation
given by

∆ = c1 ≡
δ

1− r (1− δ)
, (26)

1−∆ = c0, and ck = 0, ∀ k > 1.6

When compared to the full information case, the inflation rate that prevails with dispersed

information displays more inertia. Moreover, note that

E [πD,t | It (z)] = (1−∆)E [πC,t | It (z)] +∆πC,t−1.

6Alternatively, as in Morris and Shin (2002), we can say that inflation in t is a convex combination of the
"state/fundamental", πC,t, and the "public signal", πC,t−1.
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Hence, when information is dispersed, the forecast error

πD,t −E [πD,t | It (z)] = (1−∆) [πC,t −E [πC,t | It (z)]]

is proportional to the forecast error of the complete information inflation πC,t.

4.3 Benchmark 3: Sticky-information Inflation

The other polar case occurs when information is sticky but not dispersed (δ = 0). In such

case, the Phillips curve we obtain resembles the one in Mankiw and Reis (2002). Denoting

the sticky information inflation by πS,t, we have

πS,t =
P∞

m=0KmπC,t−m, (27)

where inflation is also a function of current and past complete-information inflation, but with

the weights Km in (22) replacing the coefficients cm defined in (15). Note that, for m = 0

c0 ≡
(1− r)λ (1− δ)

1− rλ (1− δ)
<
(1− r)λ

1− rλ
≡ K0

because
∂c0
∂δ
≡ − (1− r)λ

[1− rλ (1− δ)]2
< 0.

4.4 Benchmark contribution to SDI inflation

We can rewrite our SDI Phillips curve as a combination of the inflation rates that prevail

under the three benchmarks cases discussed above. First, note that the SDI inflation π is

a function of complete information inflations πC of current and previous periods. Indeed,

using (14) or (20), we obtain

πt =
P∞

j=0 cjπC,t−j (28)

=
P∞

m=0Km [(1−∆m)πC,t−m +∆mπC,t−m−1] .

Using (21) and (27), we can also relate the SDI inflation to the sticky-information inflation

πS as follows:

πt = πS,t −
P∞

m=0Km∆m (πC,t−m − πC,t−m−1) .
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Finally, if we combine this last equation with (25), we obtain a decomposition of SDI inflation

that includes all the proposed benchmarks

πt = πS,t +
P∞

m=0Km

µ
∆m

∆

¶
[πD,t−m − πC,t−m] . (29)

Thus, compared to the case in which information is sticky, inflation under sticky and dis-

persed information will be higher if, and only if, the dispersed information inflation, πD,t−m,

is on "average" higher than the complete information inflation πC,t−m.

5 Inflation Behavior under SDI

We now examine how the SDI Phillips curve behaves in response to changes in the main

parameters of the model. Making use of the fact that we can write the SDI inflation as a

weighted average of all past complete information inflation rates, we start, in Figure 1, by

analyzing the impact of period t − k complete information inflation πC,t−k on SDI current

inflation πt. After that, in Figure 2, we consider the inflation response to monetary shocks.

Finally, in Figure 3, we consider the behavior of SDI’s inflation variance as well as the

variances of the three benchmarks considered in Section 4: complete-information inflation,

dispersed-information inflation, and sticky-information inflation.

To isolate effects, we perform each of the above exercises for different values of the

key parameters of the model as listed in Table 1 — (a) Strategic complementarity r, (b)

Information stickiness λ, (c) Public information precision α, and (d) Private information

precision β.

5.1 Calibration

The model’s structural parameters are r, λ α, and β. The baseline values we use for r and λ

(see Table 1) are standard and based on Mankiw and Reis (2002). A value of λ = 0.25 can

be interpreted as implying that, on average, firms adjust their information set (and therefore

their prices) once a year. This is compatible with the most recent microeconomic evidence

on price-setting.7 The higher the value of r, the more important becomes the aggregate price

level (and therefore the strategic interaction component) for (of) the firms’s optimal price.

We set α = β = 0.5 as our benchmark value to keep the baseline calibration as neutral as

7See, for example, Klenow and Malin (2009).
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Parameter Description Range Benchmark
Value

r Degree of strategic complementarity [0, 1] 0.90
λ Degree of informational stickiness [0, 1] 0.25
α Public information precision [0, 1] 0.50
β Private information precision [0, 1] 0.50

Table 1: Baseline calibration

possible regarding the importance of public versus private information precision.

To better understand the impact of each individual parameter on the SDI Phillips curve,

in what follows, we always keep three of the four key parameters fixed at their benchmark

values and vary the fourth one.

5.2 Impact of complete information inflation

We first consider the impact of period t − k complete information inflation πC,t−k on the

current SDI inflation πt. Using equation (28), one can readily see that such impact is fully

captured by the coefficients c0js in Equation (15). We plot the results in Figure 1, where

each panel shows the effect of changes in one of the four parameters of the model.

Consider Panel (a) of Figure 1. The weight on the current complete information inflation

is higher the lower the degree of strategic complementarity, r. As the degree of strategic

complementarity rises, the incentive for firms to align prices increases. As a result, even

informed firms will attach a higher weight on past information. This leads to a higher

impact of past complete information on current SDI inflation.

Panel (b) of Figure 1 captures the role of informational stickiness on the impact of past

full information inflation rates on current SDI inflation. It can be seen that higher values of λ

(i.e., smaller degrees of information stickiness) are related to lower weights on past complete

information inflation. As the degree of information stickiness increases, however, the share

of SDI inflation that comes from the past is higher, since firms have incentives to align prices

and, the lower λ, the larger the faction of price setters that are stuck with past information

about the state.

The impact of information dispersion on SDI inflation is shown in Panels (c) and (d)

of Figure 1. Firms attach more weight on a given piece of information the more precise

it is. Consider the case in which public information becomes more precise (α increases)
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Figure 1: Coefficients c0js for different values of the parameters (r, λ, α, β).

and/or private information becomes less precise (β decreases). In such case, δ ≡ α/ (α+ β)

increases, and firms attach more weight to the past since, the larger δ, the more (relatively

to their private information) the firms can be confident about past fundamentals being a

good source of information about the current fundamental.

5.3 Impulse Response Functions

Figure 2 shows the impulse responses of current SDI inflation, πt, to a shock in the funda-

mental process {�t} in (2).
From Panel (a) of Figure 2, we observe that, as r increases, inflation becomes more

inertial. When r = 0, the firms’ desired prices respond only to the value of the fundamental,

θ. In such case, inflation responds quickly to the shock. By contrast, when 0 < r < 1, firms

also care about the overall price level and, therefore, need to consider what information
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Figure 2: Responses of πt to a shock in the fundametal process �t for different values of
(r, λ, α, β).

other firms have. In the SDI model, as well as in the sticky-information model, this strategic

complementarity in prices is a source of inflation inertia.

Panel (b) of Figure 2 considers the impact of information stickiness on inflation dynamics.

For higher values of λ (smaller degree of information stickiness), inflation not only responds

more quickly to a shock in the fundamental but also returns to its pre-shock levels at a faster

rate.

Finally, Panels (c) and (d) of Figure 2 show the impact of information dispersion on SDI

inflation. Once again, recall that δ ≡ α/ (α+ β) rises when public information becomes

more precise and/or private information becomes less precise. Higher values for δ imply that

previous values of θ are relatively more precise signals of the state than the firm’s private

information. As a result, for large δ, even firms that update their information sets at the

moment of the shock respond less to such new piece of information.
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Also, for a given δ, an additional strategic effect leads the firms to place a larger weight

on past information about the state. Indeed, a firm that wishes to align its price to other

firms’ prices relies more heavily on public information because it is a better predictor of other

firms’ prices than private information. This effect has been already pointed out by authors

such as Morris and Shin (2002), Angeletos and Pavan (2007), and others in related contexts.

5.4 Inflation Variance

We now analyze the variance of inflation under SDI. Using equation (24), we obtain the

complete-information inflation variance

V ar [πC,t] = α−1.

From equations (25) and (27), we obtain the variances of dispersed-information inflation

and sticky-information inflation

V ar [πD,t] =
£
(1−∆)2 +∆2

¤
V ar [πC,t] ,

V ar [πS,t] = κV ar [πC,t] ,

where ∆, defined in (26), is a function of (r, α, β) while

κ ≡
P∞

j=0K
2
j

is a function of (r, λ), as can be seen by the definition of Kj in (22).

Finally, from equation (28), we obtain the variance of SDI inflation

V ar [πt] = ΩV ar [πC,t] ,

where Ω, which is a function of the parameters (r, λ, α, β) , is given by

Ω ≡
P∞

j=0 c
2
j ∈ (0, 1) ,

where the c0js are defined in (15).

Notice that the variance of the SDI inflation, V ar [πt] , is proportional to the variance of

complete information inflation, V ar [πC,t]. A bit more surprising is the fact that the informa-

tional frictions we consider in the model reduce the variance of inflation when compared to
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Figure 3: Variances of SDI inflation πt, complete-information inflation πC,t, dispersed-
information inflation πD,t, and sticky-information inflation πS,t as a function of
(r, λ, α, β).

the complete information benchmark. The reason is as follows. As discussed throughout the

paper, the combination of sticky and dispersed information with strategic interdependence

in price setting leads to inflationary inertia, which, in turn, reduces, the variance of inflation

under SDI.

Figure 3 plots V ar [πt] as well as V ar [πC,t], V ar [πD,t], and V ar [πS,t] as a function of

(r, λ, α, β).8

As can be seen from Figure 3, the variances of complete-information inflation V ar [πC,t]

and dispersed-information inflation V ar [πD,t] are always higher than SDI inflation’s, V ar [πt] ,

and sticky-information inflation’s, V ar [πS,t]. Notice, moreover, that V ar [πt] and V ar [πS,t]

have a similar behavior and only seem to be affected by the degree of informational stickiness

8We plot Ωk̄ ≡
Pk̄

j=0 c
2
j rather than Ω for computational reasons.
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λ. Both variances, V ar [π] and V ar [πS,t], increase with the degree of information stickiness.

As the signals become more precise, more similar are the information sets of the firms.

As a result, dispersed-information inflation V ar [πD,t] decreases considerably as information

precision α and β increase. V ar [πD,t] is also affected by the degree os strategic complemen-

tarity r. As r increases, more weight is given by a firm to its forecast about the forecast of

the others, increasing V ar [πD,t].

6 Conclusion

Costs to acquire and process information make its diffusion through the economy slow:

i.e., information is sticky. Likewise, heterogeneity in the sources and interpretation of new

information is likely to make relevant information about the economy dispersed across agents.

In this paper, we have considered the impact of sticky and dispersed information on individual

price setting decisions, and the resulting effect on the aggregate price level and the inflation

rate.

Compared to a setting in which information is solely sticky as in Mankiw and Reis (2002),

sticky and dispersed information always leads to non-trivial effects on prices regardless of

assumptions about the agents’ capability to predict equilibrium behavior by their opponents.

Moreover, the effects of information on aggregate prices and inflation rates will be more

pronounced: aggregate prices and inflation rates will be more inertial than their sticky

information counterparts.

There are several interesting dimensions in which our model of price setting under SDI

can be extended. Perhaps the most important one is to explore the policy implications of

dispersed information. In a world in which information is dispersed, a benevolent central

banker’s optimal communication policy is far from trivial. On the one hand, any information

disclosed by the central banker about the state will have the benefit of allowing the agents

to count on an additional piece of information about the state when deciding on their prices.

On the other hand, from a social perspective, agents will place too much weight on any

information disclosed by the central banker as this is a public signal (e.g., Morris and Shin

(2002) and Angeletos and Pavan (2007)). One can remedy this latter effect by setting

a tax that corrects the incentives the agents have to "coordinate" on such public signal.

Our derivation of the equilibrium played by firms and the prevailing Phillips curve when

information is sticky and dispersed is a necessary first step toward answering the policy

questions suggested above.
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7 Appendix

7.1 Prior Distribution

At this appendix, we calculate the distribution of the fundamental θt−j given that the firm

updated its information set at period t− j. We can compute f (θt−j | Θt−j−1, xt−j) as
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f (θt−j | θt−j−1, xt−j) =
f (θt−j, θt−j−1, xt−j)R∞

−∞ f (θt−j, θt−j−1, xt−j) dθt−j

=
f (θt−j−1, xt−j | θt−j) f (θt−j)R∞
−∞ f (θt−j, θt−j−1, xt−j) dθt−j

=
f (θt−j−1 | θt−j) f (xt−j | θt−j) f (θt−j)R∞

−∞ f (θt−j, θt−j−1, xt−j) dθt−j

where the last equality holds due to the independence of ξt (z) and �t−j. As

xt−j (z) = θt−j + ξt−j (z)

θt−j−1 = θt−j − �t−j.

where ξt (z) ∼ N
¡
0, β−1

¢
and �t−j ∼ N (0, α−1), we have that f (xt−j | θt−j) = N

¡
θt−j, β

−1¢
and f (θt−j−1 | θt−j) = N (θt−j, α

−1). If the dynamics of θt was

θt−j−1 = ρθt−j − �t−j.

we would have

E [θt−j] = E [θt] =
E [�t]

1− ρ
= 0

V ar [θt−j] = V ar [θt] =
V ar [�t]

1− ρ2
=

α−1

1− ρ2
.

Therefore, the distribution of θt−j would be given by f (θt−j) = N (0,Ψ−1)whereΨ =.α (1− ρ2).

Thus, we would obtain

f (θt−j, θt−j−1, xt−j) = c exp

(
−1
2

"
(xt−j (z)− θt−j)

2

β−1
+
(θt−j−1 − ρ−1θt−j)

2

(ρ2α)−1
+

θ2t−j
Ψ−1

#)

= c exp

½
−1
2

£
(β + α+Ψ) θ2t−j − 2 (βxt−j (z) + αρθt−j−1) θt−j

¤¾
× exp

½
−1
2

£
βx2t−j (z) + αρ2θ2t−j−1

¤¾
= cd

1√
2πσΣ

exp

(
−1
2

(θt−j − μ)2

Σ2

)
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where

c = (2π)−3/2 (βαΨ)1/2 d =
√
2πσ exp

©
−1
2

£
−μ2Σ−2 + βx2t−j (z) + αρ2θ2t−j−1

¤ª
μ = [∆xt−j (z) + (1−∆) zt−j−1] ∆ = β (β + α+Ψ)−1

zt−j−1 = Λρθt−j−1 Λ = α (β + α)−1

Σ2 = (β + α+Ψ)−1

As ρ → 1, we have Ψ → 0, ∆ → δ, and Σ2 → (β + α)−1. Thus f (θt−j | θt−j−1, xt−j) =
N (μ, σ2) where μ = [δxt−j (z) + (1− δ) θt−j−1], and σ2 = (β + α)−1.

7.2 Higher Order Beliefs

In this appendix we derive the general formula of the k-th order average expectation

Ēk [θt] = λ
P∞

m=0 (1− λ)m [κm,kθt−m + δm,kθt−m−1]

with the weights (κm,k, δm,k) are recursive defined for k ≥ 1"
κm,k+1

δm,k+1

#
=

"
(1− δ)

δ

#
[1− (1− λ)m]

k
+Am

"
κm,k

δm,k

#
,

where the matrix Am is given by

Am ≡
"£
(1− δ)

£
1− (1− λ)m+1

¤
+ δ [1− (1− λ)m]

¤
0

δ
££
1− (1− λ)m+1

¤
− [1− (1− λ)m]

¤ £
1− (1− λ)m+1

¤# ,
and the initial weights are (κ1,k, δ1,k) ≡ (1− δ, δ).

We start by computing Ē1 [θt] as

Ē1 [θt] =
P∞

j=0

R
Λj
E
£
Ē0 [θt] | It−j (z)

¤
dz

=
P∞

j=0

R
Λj
E [θt | It−j (z)] dz

=
P∞

j=0

R
Λj
[(1− δ)xt−j (z) + δθt−j−1] dz

= λ
P∞

j=0 (1− λ)j [(1− δ) θt−j + δθt−j−1] .
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We can use this result to obtain Ē2 [θt] as

Ē2 [θt] =
P∞

m=0

R
Λm

E
£
Ē1 [θt] | It−m (z)

¤
dz

= λ
P∞

m=0

R
Λm

P∞
j=0 (1− λ)j E [(1− δ) θt−j + δθt−j−1 | It−m (z)] dz.

We know that

E [θt−j | It−m (z)] =
(
(1− δ)xt−m (z) + δθt−m−1 : m ≥ j

θt−j : m < j
.

Thereafter

Ē2 [θt] = λ
P∞

m=0

R
Λm

Pm−1
j=0 (1− λ)j {(1− δ)E [θt−j | It−m (z)] + δE [θt−j−1 | It−m (z)]} dz

+λ
P∞

m=0

R
Λm
(1− λ)m {(1− δ)E [θt−m | It−m (z)] + δθt−m−1} dz

+λ
P∞

m=0

R
Λm

P∞
j=m+1 (1− λ)j [(1− δ) θt−j + δθt−j−1] dz

= λ
P∞

m=0

R
Λm

Pm−1
j=0 (1− λ)j [(1− δ) xt−m (z) + δθt−m−1] dz

+λ
P∞

m=0

R
Λm
(1− λ)m [(1− δ) [(1− δ)xt−m (z) + δθt−m−1] + δθt−m−1] dz

+λ
P∞

m=0

R
Λm

P∞
j=m+1 (1− λ)j [(1− δ) θt−j + δθt−j−1] dz

= λ2
P∞

m=0 (1− λ)m [(1− δ) θt−m + δθt−m−1]
Pm−1

j=0 (1− λ)j

+λ2
P∞

m=0 (1− λ)2m
£
(1− δ)2 θt−m +

£
1− (1− δ)2

¤
θt−m−1

¤
+λ2

P∞
j=1 (1− λ)j [(1− δ) θt−j + δθt−j−1]

Pj−1
m=0 (1− λ)m

= λ
P∞

m=0 (1− λ)m [(1− δ) θt−m + δθt−m−1] [1− (1− λ)m]

+λ2
P∞

m=0 (1− λ)2m
£
(1− δ)2 θt−m +

£
1− (1− δ)2

¤
θt−m−1

¤
+λ
P∞

j=1 (1− λ)j [(1− δ) θt−j + δθt−j−1]
h
1− (1− λ)j

i
= λ

P∞
m=0 (1− λ)m 2 [1− (1− λ)m] [(1− δ) θt−m + δθt−m−1]

+λ2
P∞

m=0 (1− λ)2m
£
(1− δ)2 θt−m +

£
1− (1− δ)2

¤
θt−m−1

¤
.

We can write this expression as

Ē2 [θt] = λ
P∞

j=0 (1− λ)j [κj,2θt−j + δj,2θt−j−1]
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where

κj,2 =
¡
1− δ2

¢ h
1− (1− λ)j

i
+ (1− δ)2

h
1− (1− λ)j+1

i
=

h
1− (1− λ)j+1

i
κ2j,1 +

h
1− (1− λ)j

i ¡
1− δ2j,1

¢
,

δj,2 = δ2
h
1− (1− λ)j

i
+
£
1− (1− δ)2

¤ h
1− (1− λ)j+1

i
=

h
1− (1− λ)j+1

i ¡
1− κ2j,1

¢
+
h
1− (1− λ)j

i
δ2j,1.

Note that

κj,2 + δj,2 =
P1

n=0

h
1− (1− λ)j

in h
1− (1− λ)j+1

i1−n
.

We use induction to obtain the general case. Suppose that (17) holds for k − 1. Then

Ēk−1 [θt] = λ
P∞

m=0 (1− λ)m [κm,k−1θt−m + δm,k−1θt−m−1] ,

where Pm−1
j=0 (1− λ)j (κj,k−1 + δj,k−1) =

1

λ
[1− (1− λ)m]

k−1
.
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As a result

Ēk [θt] =
P∞

m=0

R
Λm

E
£
Ēk−1 [θt] | It−m (z)

¤
dz

=
P∞

m=0

R
Λm

E
h
λ
P∞

j=0 (1− λ)j [κj,k−1θt−j + δj,k−1θt−j−1] | It−m (z)
i
dz

= λ
P∞

m=0

R
Λm

Pm−1
j=0 (1− λ)j {κj,k−1E [θt−j | It−m (z)] + δj,k−1E [θt−j−1 | It−m (z)]} dz

+λ
P∞

m=0

R
Λm
(1− λ)m {κm,k−1E [θt−m | It−m (z)] + δm,k−1θt−m−1} dz

+λ
P∞

m=0

R
Λm

P∞
j=m+1 (1− λ)j [κj,k−1θt−j + δj,k−1θt−j−1] dz

= λ
P∞

m=0

R
Λm

Pm−1
j=0 (1− λ)j (κj,k−1 + δj,k−1) [(1− δ)xt−m (z) + δθt−m−1] dz

+λ
P∞

m=0

R
Λm
(1− λ)m [κm,k−1 [(1− δ)xt−m (z) + δθt−m−1] + δm,k−1θt−m−1] dz

+λ
P∞

m=0

R
Λm

P∞
j=m+1 (1− λ)j [κj,k−1θt−j + δj,k−1θt−j−1] dz

= λ2
P∞

m=0 (1− λ)m [(1− δ) θt−m + δθt−m−1]
Pm−1

j=0 (1− λ)j (κj,k−1 + δj,k−1)

+λ2
P∞

m=0 (1− λ)2m [κm,k−1 (1− δ) θt−m + [κm,k−1δ + δm,k−1] θt−m−1]

+λ2
P∞

j=1 (1− λ)j [κj,k−1θt−j + δj,k−1θt−j−1]
Pj−1

m=0 (1− λ)m

= λ
P∞

m=0 (1− λ)m [1− (1− λ)m]
k−1
[(1− δ) θt−m + δθt−m−1]

+λ2
P∞

m=0 (1− λ)2m [κm,k−1 (1− δ) θt−m + [κm,k−1δ + δm,k−1] θt−m−1]

+λ
P∞

m=0 (1− λ)m [1− (1− λ)m] [κm,k−1θt−m + δm,k−1θt−m−1] .

We can rewrite the last three as

Ēk [θt] = λ
P∞

m=0 (1− λ)m [κm,kθt−m + δm,kθt−m−1] ,

where

κm,k ≡ (1− δ) [1− (1− λ)m]
k−1

+ [(1− δ)λ (1− λ)m + [1− (1− λ)m]]κm,k−1

= (1− δ) [1− (1− λ)m]
k−1

+
£
(1− δ)

£
1− (1− λ)m+1

¤
+ δ [1− (1− λ)m]

¤
κm,k−1

δm,k ≡ δ [1− (1− λ)m]
k−1

+ δλ (1− λ)m κm,k−1 + [λ (1− λ)m + [1− (1− λ)m]] δm,k−1

= δ [1− (1− λ)m]
k−1

+δ
££
1− (1− λ)m+1

¤
− [1− (1− λ)m]

¤
κm,k−1 +

£
1− (1− λ)m+1

¤
δm,k−1

since

λ (1− λ)m =
£
1− (1− λ)m+1

¤
− [1− (1− λ)m] .
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Rewriting these weights in matrix format, we obtain"
κm,k+1

δm,k+1

#
=

"
(1− δ)

δ

#
[1− (1− λ)m]

k
+Am

"
κm,k

δm,k

#
,

where the matrix Am is given by

Am ≡
"£
(1− δ)

£
1− (1− λ)m+1

¤
+ δ [1− (1− λ)m]

¤
0

δ
££
1− (1− λ)m+1

¤
− [1− (1− λ)m]

¤ £
1− (1− λ)m+1

¤# ,
which is exactly our result.
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