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THE BENEFITS OF BAGGING FOR FORECAST MODELS OF REALIZED
VOLATILITY

ERIC HILLEBRAND AND MARCELO C. MEDEIROS

ABSTRACT. This paper shows that bagging can improve the forecastacgwf time
series models for realized volatility. We consider 23 ssaftkm the Dow Jones Industrial
Average over the sample period 1995 to 2005 and employ tvierdift forecast models,
a log-linear specification in the spirit of the heterogerseautoregressive model and a
nonlinear specification with logistic transitions. Botlrdoast model types benefit from
bagging, in particular in the 1990s part of our sample. Tleliioear specification shows
larger improvements than the nonlinear model. Baggingdhdihear model yields the
highest forecast accuracy on our sample.

1. INTRODUCTION

We consider the problem of forecasting stock market vatatilThe aim is to apply
bagging (bootstrap aggregation), a recently proposetstat learning technique, to re-
alized volatility, a recently proposed improved measuressget price variance. Time
series models for realized volatility often comprise lagsealized volatility aggregated
over different time horizons, lagged returns cumulated oNiéerent time horizons, and
other possible exogenous variables. The selection of tresables puts the forecaster in
a situation where bagging can help: There are potentiallyymegressors to choose from
and the individual regressors have little forecast powsr{e and Kilian in press, Inoue
and Kilian 2004).

We find that bagging can substantially improve forecast nsegared errors for real-
ized volatility. We consider a log-linear forecast modetdfication that is commonly
used and can approximate long range dependence by lineanlyining aggregated past
volatility at different time scales (Corsi 2004, AndersBo]lerslev, and Diebold 2007).
In addition, we consider a nonlinear neural network speatiic that apart from long
range dependence captures possible threshold and toaneftects. These nonlinear
phenomena have been documented in many studies of reabladity and earlier latent
volatility models (e.g. Nelson 1991, Glosten, Jagannataad Runkle 1993, Martens,
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van Dijk, and de Pooter 2004, Hillebrand and Medeiros to appédcAleer and Medeiros
2006, Hillebrand and Medeiros 2008). For our sample of 28kstdrom the set of the
Dow Jones Industrial Average index and the period from 199%005, bagging results
in improved forecast accuracy for both model types. Thelilmgar model benefits more
from bagging than the nonlinear specification, in partictitet forecasts made for the
1990s.

The idea of bagging was introduced in Breiman (1996), studi@re rigorously in
Buhimann and Yu (2002), and introduced to econometricsidué and Kilian (2004).
Bagging is motivated by the observation that in models wiséastical decision rules
are applied to choose from a set of predictors, such as signde in pre-tests, the set
of selected regressors is data-dependent and random. tiapotsplications of the raw
data are used to re-evaluate the selection of predictogenerate bootstrap replications
of forecasts, and to average over these bootstrapped $tseck has been shown in a
number of studies that bagging reduces the mean squaredéfovecasts considerably
by averaging over the randomness of variable selectioru@rand Kilian in press, Lee
and Yang 2006). Applications include, among others, firelnablatility (Huang and
Lee 2007a), equity premia (Huang and Lee 2007b), and em@oydata (Rapach and
Strauss 2007).

Realized volatility was introduced in Andersen and Bollerg1998) and has devel-
oped into a large literature that is concerned with findingststent and robust estimators
of realized volatility as well as time series models for izad volatility (e.g. Andersen,
Bollerslev, Diebold, and Ebens 2001, Andersen, Boller§désbold, and Labys 2001, An-
dersen, Bollerslev, Diebold, and Labys 2003, Barndoriisién and Shephard 2002,
Corsi 2004, Zhang, Mykland, and Ait-Sahalia 2005, Barffeldielsen, Hansen, Lunde,
and Shephard in press, Christensen, Oomen, and Podol6i8).20/e present a brief out-
line of the concept in Sectidd 2. Realized volatility interall stylized facts that have
been established for volatility in earlier latent variabpecifications, most notably long-
range dependence (e.g. Engle 1982, Engle and Bollersle¥, H8lerslev 1987, Ding,
Granger, and Engle 1993, Baillie, Bollerslev, and Mikkal4©96).

The paper is organized as follows: Section 2 describes theeg of realized volatility.
Section 3 defines the two model classes that are considarbddging. Section 4 defines
the bagging schemes. Section 5 describes the data set aetisrthe empirical findings.
Section 6 concludes.
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2. REALIZED VOLATILITY

Suppose that on daythe logarithmic pricey of a given asset at timet+ 7,0 < 7 < 1,
follows a continuous time diffusion:

dp(t+7)=plt+71)dr +o(t+7)dW(t+7), 0<7<1, t=1,...,T,

wherep(t + 7) is the drift componenty (¢t + 7) is instantaneous volatility that may be
deterministic or stochastic, ail (¢ + 7) is standard Brownian motion.

Andersen, Bollerslev, Diebold, and Labys (2001), Ander&milerslev, Diebold, and
Labys (2003) and Barndorff-Nielsen and Shephard (2002prenothers, consider daily
compound returns(t) = p(t) — p(t — 1). SetF, = F{u(t+71—1),0(t +7—1)} =}
as sigma-algebra generated by the sample paths of therttittifusion processes(t +
7—1) ando(t+ 7 — 1) butnotby the Brownian motio/ (t+7—1), 0 < 7 < 1. Define

(1) IV, = /01 o(t+ 71— 1)dr = Var(r(t)|F),

or integrated varianceas the object of interest in realized volatility theory.

In practical applications, prices are observed at disenetrregularly spaced intervals
and there are many ways to sample the data. Suppose that eenadgiyt, we partition
the interval [0,1] and define the grid of observation tides ..., 7,},0 =17 < 7 <
-+, 1, = 1. The length of theth subinterval is given by, = 7, — 7;_;. The most widely
used sampling scheme is calendar time sampling, where tevats are equidistant in
calendar time, thati§;, = 1/n. Letp,;, i = 1,...,n, be theith price observation during
dayt, such that;; = p,; — p.;—1 is theith intra-period return of day. Realized volatility
is defined as

(2)

Under additional regularity conditions including the asgtion of uncorrelated intra-
day returns, realized variand®y/? is a consistent estimator of integrated variance, such
that RV} 25 IV,. When returns are serially correlated, however, realizgthuce is a
biased estimator of integrated variance. Serial cormatiay be the result of market mi-
crostructure effects such as bid-ask bounce and discest@f@rices (Campbell, Lo, and
MacKinlay 1997, Madhavan 2000, Biais, Glosten, and Spdb620These effects prevent
very fine sampling partitions. Realized volatility is thiene not an error-free measure of
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volatility. Barndorff-Nielsen and Shephard (2002) stubdg properties of the estimation
error of realized volatility.

The search for asymptotically unbiased, consistent, aindesft methods for measur-
ing realized volatility in the presence of microstructuggse has been one of the most
active research topics in financial econometrics over tbieféav years. While early ref-
erences in the literature, such as Andersen, Bollersleb®d, and Ebens (2001), ad-
vocated the simple selection of an arbitrary lower freqyditygpically 5-15 minutes) to
balance accuracy and the dissipation of microstructurs, lsigorocedure that is known
as sparse sampling, recent articles have developed estgrthat dominate this proce-
dure. The currently available consistent estimators aadhlized kernel estimator of
Barndorff-Nielsen, Hansen, Lunde, and Shephard (in prélss)modified MA filter of
Hansen, Large, and Lunde (2008), the two time scales estinodtZhang, Mykland,
and Ait-Sahalia (2005), and the quantile-based estinaft&@hristensen, Oomen, and
Podolskij (2008). For the purposes of this paper, we chdosedalized kernel estima-
tor of Barndorff-Nielsen, Hansen, Lunde, and Shephard fes$), which is robust to
microstructure noise.

3. MODELING AND FORECASTING REALIZED VOLATILITY

Let RV;? be a consistent and unbiased estimator for integratechearian day:. In this
paper, we consider two different forecasting modelddgfRV;), alog-linear model and a
nonlinear extension. As explanatory variables, we com$idys of realized volatility, day-
of-the-week dummies, dummies for days where macroecoradiyielevant announce-
ments were made, and past cumulative returns that captastpmleverage effects.

3.1. TheLog-Linear Heterogenous Autoregressive M odel with Exogenous Variables.

3.1.1. Model Definition. The starting point for our log-linear model specificatiorthe
Heterogeneous Autoregressive (HAR) model proposed byi (2084). Let

1 k
Ytk = E ; Yt+1—i

be the average over the lasbbservations of a time series and consider the model

(3) Yo = Po+ Z Biyt—1,; + €t

LJ'EI
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wherel = (v, ta, ...,1,) IS asetofpindices withy; < 15 < ... <1y, j =1,...,p.
Throughout this papet, is a zero-mean process with finite, but not necessarily aonst
variance (Corsi, Mittnik, Pigorsch, and Pigorsch 2008).dBpstituting the definition of
Y., into (3), we can write

Bi & Ba & By &
(4) yt=60+L—lz.yt_mtb—zz.yt_ﬁ---+L—”Zyt_i+st,
1 2= P =1

i=1

a representation that shows that we are considering aatesthR ) model (Craioveanu
and Hillebrand 2008). Corsi (2004) proposes mogdel (3) with= log(RV;) and I =
(1,5,22). His specification builds on the HARCH model proposed byIstiiDacorogna,
Dave, Olsen, Pictet, and von Weizsaecker (1997). It captioreg-range dependence by
aggregating realized volatility over the different timelkss in/.

In this paper, we consider a slightly more general versiothefHAR model that in-
cludes deterministic predictors, a flexible lag structared past cumulative returns. Let
r, be the daily log-returny, = log(RV;), and define, with some abuse of notation,

k

Ttk = E Tt41—i-

=1
Let] = (11,...,1p) @NdK = (K1,...,K,) be two sets of indicess, = (1, yeuys- -+, Yr,)s
andr; = (r¢y,,...,7x,). The general HAR model with exogenous variables considered
in this paper may be written as

(5) y=a'w,+ 3%+ p'ri g + &,

wherew;, is is a vector of dummy variables for weekdays and macroeoanannounce-
ment days, the vectot;_; contains the usual HAR predictors with possibly more and/or
other lags tharil, 5, 22), andr;_; includes past cumulative returns over different hori-
zons. The vectora, 3, andp contain parameters.

The inclusion of announcement dates is motivated by thelpegsesence of jumps in
the volatility process (Andersen, Bollerslev, and Dieb2@D7, Barndorff-Nielsen and
Shephard 2006, McAleer and Medeiros 2006, Scharth and Med2006). Several
studies consider days-of-the-week dummies in volatilitydels (Engle and Ng 1993,
Martens, van Dijk, and de Pooter 2004). The results in Sbhhamtd Medeiros (2006)
and Fernandes, Medeiros, and Scharth (2007) motivate thesion of past cumulative
returns as possible predictors. The authors show in diffdrameworks that cumulative
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returns over long horizons up to three months improve thectasting power of models
for realized volatility.

3.1.2. Specification and EstimatiorTypically, the index set1, 5,22) is considered in
the HAR model. A flexible choice of the lag structure imposighftomputational costs.
Two parameters need to be set a priori, a maximum time scatengsider and the number
of predictors to be used. For example, if we decide to inclwe time scales, and

t3 in addition to,; = 1, and we allow for a maximum time horizon of 250 days, we
have to conside(*’) = 31125 different specifications and pick the one with the highest
likelihood, lowest AIC or BIC, or any other criterion. Evearfa single time series, the
computational costs are substantial. See Craioveanu dlethidind (2008) for a study that
explores the optimal lag structure for HAR models. For baggwhere we have to repeat
this procedure for every bootstrap sample, implementasignohibitive at this point. To
circumvent this problem, we define a grid of lags to choosmfsoich that the selection
problem remains tractable and include these lags as regseissx;. In this study, we
set/ = (1,2,...,22)andK = (1,2,...,100). Equation[(5) can then be estimated in a
linear regression and we pre-test for regressor significabetz, == (wj, x,_;,r,_,)".
Following the notation in Inoue and Kilian (in press), we akefine the one-step ahead
forecast ofy, = log(RV,) as

0 if |t;] < cVy,

(6) Ytj—1 = E [y Fia] = ~_ )
Az, otherwise

wherez,; := S;z;, S; is a diagonal selection matrix witith diagonal element given by

1 if ‘tj| > ¢,
Ljej1>ey = .
0 otherwise,
c is a pre-specified critical value of the test, ands the ordinary least squares estimator
given by
R T -1
A= [Z ztz;] AT
t=1 t=1
3.2. The Neural Network Heterogenous Autoregressive Model and Bayesian Regu-
larization.

3.2.1. Model Definition. In order to compare the out-of-sample performance of the log
linear model described above we consider a nonlinear arten$ the HAR model. Let
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v = log(RV;) be generated by the following stochastic process
(7) yr = 1(z) + e,

whereT (z,) is an unknown nonlinear function af = (w},x;_;, r;_l)', ande, is a zero-
mean process with finite variance.

The goal of modeling techniques based on neural networksaigpiroximatel(7) by the
following nonlinear specification

M
(8) T(z:) = G(z¢;¢) := Bz + Z B f (2t Y )

m=1
whereG(z; 1) is a nonlinear function of the variablesthat is indexed by the vector of
parametersp, and f(z;;~,,) is the logistic function
1
f(Z67,,) = p=——rn
with state variable, and slope parametefs,,.

As first discussed in Kuan and White (1994), the model definedduation[(B) may
alternatively have a parametric or a nonparametric ingtgpion. In the parametric inter-
pretation, the model can be viewed as a kind of smooth tiansiégression where the
transition variable is an unknown linear combination of éxplanatory variables in,
(van Dijk, Terasvirta, and Franses 2002). In this caseagtiean optimal, fixed num-
ber M of logistic transitions that can be understood as the nurabémiting regimes
(Trapletti, Leisch, and Hornik 2000, Medeiros and Veiga@Q@@dedeiros, Terasvirta, and
Rech 2006). On the other hand, fof — oo the neural network model is a represen-
tation of any Borel-measurable function over a compact Ge¢rfander 1981, Hornik,
Stinchombe, and White 1989, Hornik, Stinchcombe, Whitel Aoer 1994, Chen and
Shen 1998, Chen and White 1998, Chen, Racine, and Swansah ) large)M, this
representation suggests a nonparametric interpretaicgei@es expansion, sometimes
referred to as sieve-approximator. In this paper, we admphbnparametric interpreta-
tion of the neural network model and show that it approxim#&geical nonlinear behav-
ior of realized volatility well. Neural network approachisvolatility forecasting have
been successfully taken in Donaldson and Kamstra (19973ndur soukalas (1999), and
Hamid and Igbal (2004).
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3.2.2. Specification and EstimatiorlJsually,v) is estimated by nonlinear least-squares

T
9 P = argminQr (1) = argmin > llog(RV;) — G(zi; )],
t=1

~

and the estimated residuals = log(RV;) — G(z;; 1) are an approximation to the true
error termg, in (). In most applications, a simple gradient descentrélym is used to
estimatey.

Approximating [(7) by[(8) poses two main problems. First,titue vector of variables
z; IS not known in advance and the modeler has to determine wiaighbles should be
included inz;. The second problem is related to the selection of the numbef logistic
functions in [8). Selecting a small number of hidden unitslieto a poor approximation
of the true data generating process. On the other hand, alwibea large number of
hidden units may be overfitted and have little forecast amgurin most neural network
applications, it is customary to select the variables aethtimber of hidden units using
some rule of thumb. A vast number of models with different borations of variables and
numbers of hidden units are estimated and the one with thgpbdermance according to
some criterion is chosen as the final specification. Sevieahatives to this rule of thumb
have appeared in the literature. The simplest one is thalkedearly stopping The key
idea is to split the available data into three subsets. Thedirbset is used to estimate
the parameters. The second subset is called the validaioimise error on the validation
set is monitored during the estimation process. When thearktbegins to overfit the
data, the error on the validation set typically begins te.ri8Vhen the validation error
increases for a specified number of iterations, the estimatiocess is discontinued, and
the parameters estimated at the minimum of the validatioor serve as final estimates.
The third subset called the test set is not used for estimainal is saved for comparing
the out-of-sample performance of different models. The ehadth the best forecasting
performance is chosen as the final specification.

Pruning is another popular technique to find the smallesvorét that fits the data
well and produces good forecasts. The main idea is to staint avlarge network and
sequentially reduce its size by removing some network cctiores (Reed 1993). Anders
and Korn (1999) compared a number of different methodokgieluding a simplified
version of the specific-to-general approach of Medeirogas\@rta, and Rech (2006) and
information criteria (such as AIC or BIC) pruning.
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In this paper, we adopt the Bayesian regularization apprgaoposed by MacKay
(1992). The fundamental idea is to find a balance betweenutmar of parameters and
goodness of fit by penalizing large models. The objectivetion is modified in such
a way that the estimation algorithm reduces the network bamdy irrelevant parameter
estimates to zero during the optimization. The parametetove) is estimated as

(10) P = arggﬂnéT(zp) = argmin Qr () + Q" ()],

where Oy (1) = .1, [log(RV;) — G(zs; )], Q*(ab) is theregularizationor penalty
term, andy, v > 0 areobjective functioror regularizationparameters. The penalty term
is usually chosen to be the sum of squared paramé&drg) = 1'1).

The forecast accuracy of the neural network model dependsatlly on the values of
n and-~, especially in small samples. The relative size of the dlwedunction parame-
ters determines the emphasis of the estimation process> i v, then the optimization
algorithm places more weight on error minimization and teemork may still overfit.

If n << ~, the optimization emphasizes network size reduction aekpense of error
size, thus producing a smoother function of the input véembThe main problem with
implementing regularization is setting the correct valiceshese objective function pa-
rameters. One approach to determine the optimal objeativetibn parameters is the
Bayesian framework, where the parameters of the networlassamed to be random
variables with well-specified distributions. The objeetiunction parameters are related
to the unknown variances associated with these distribsitiboresee and Hagan (1997)
present a detailed discussion of the use of Bayesian regatian in combination with
the Levenberg-Marquardt optimization algorithm. The medwantage of this method is
that even if the neural network model is over-parametritieel jrrelevant parameter esti-
mates are likely to be close to zero and the model behaves keall network. See the
appendix for more details.

Bayesian regularization has been shown to be a very flexibteefimg approach. Terasvirta,
van Dijk, and Medeiros (2005) show that neural network medekecified and estimated
with Bayesian regularization outperform models that emphe specific-to-general ap-
proach proposed by Medeiros, Terasvirta, and Rech (200@deiros, Terasvirta, and
Rech (2006) present simulation evidence that AIC and BI@ tenunderestimate the
number of hidden units; see also Anders and Korn (1999). Weratuccessful application
of Bayesian regularization can be found in Medeiros, Veageal, Pedreira (2001).
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As suggested in the literature, we tried different numbétsaden units in the neural
network model, ranging from/ = 1 to M = 10. As the number of predictors is high,
increasing the number of hidden units increases the contyplek the model and the
computational burden to estimate it substantially withgalding additional benefits. In
our application, we found that when more than five hiddensuaie used, the Bayesian
regularization approach always reduces the model contplesa we start the Bayesian
regularization algorithm at/ = 5.

4. BAGGING PREDICTORS

Realized volatility models lend themselves to baggingesithey involve selection of
lags of logarithmic realized volatility, cumulative retsr over different horizons, and
dummies for weekdays and announcement dates. The optigditfor structure is data-
dependent in the sense that pre-tests as described inrg8cti@ apply indicators of the
type 1~ to predictor variables. This is the standard situation fer application of
bagging as described in Buhlmann and Yu (2002), Section@ud and Kilian (in press)
show for inflation data in an analogous problem that baggusgeayes over the random-
ness of predictor selection, resulting in lower forecasamsquared errors. We consider
the following bagging schemes.

PrRoOPOSAL 1 (Bagging the HAR model)The bagging forecast in the extended HAR
model is defined as follows:

(1) Arrange the set of tuple§y, z}), t = 2,...,T, in the form of a matrixX of
dimension7" — 1) x k, wherek is the number of regressors .

(2) Construct bootstrap samples of the fo{réyap, z’(’;)Q) e (ya)T, z’(j.)T> } i =
1,..., B, by drawing blocks ofn rows of X with replacement, where the block
sizem is chosen to capture possible dependence in the error tetthreakalized
volatility series.

(3) Following Inoue and Kilian (in press), compute tih bootstrap forecast as

(11) TS SO I

A% Otherwise

wherezj,, = S(;,z(;, and 5;, is a selection matrix as in equationl (6) that

depends on the bootstrap sample. As is common, the astedislkies bootstrap

replications.
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(4) Compute the average forecast over the bootstrap samples:

1 B
Y1 = B ; @Eki)t\t—lu
where the tilde indicates the bagging forecast.

PROPOSAL 2 (Bagging the neural network modelJhe bagging predictor in the nonlin-
ear model is defined as follows:

(1) Repeat steps (1) and (2) in Propokal 1.

(2) For each bootstrap sample, first remove insignificant regpes by pre-testing as
in step (3) of Proposdlll. Then, estimate the nonlinear modelg Bayesian
Regularization withM/ = 5 in (8). Note that for each bootstrap sample, the
optimal selection of variables and hidden units are diffikreCompute theth
bootstrap forecast and call ;) ;-

(3) Compute the average forecast over the bootstrap samples:

|
-1 = 5 Zga)t\t—l'
i—1

Following Hall, Horowitz, and Jing (1995), we choose a blsike ofm = T'/3 for
the moving block bootstrap procedure in both proposalss &liows for dependence in
the error term of equationl(5) (Corsi, Mittnik, PigorschddPigorsch 2008). The critical
valuec of the test statistic is set equal to 1.96, correspondingtt@casided test at the
95% confidence level. We also tried other critical valuesnfidcience levels much lower
than 95% worsen the bagging performance while levels striban 95% do not improve
the results further.

5. APPLICATION: BAGGING REALIZED VOLATILITY

5.1. Data. We use high-frequency tick-by-tick trades on 23 stocks ftbm set of the
Dow Jones Industrial Average index as listed in Tdble 1. Taim ére obtained from
the NYSE TAQ (Trade and Quote) database. The sample perwet8-Jan-1995 to
31-Dec-2005. The selection of 23 out of the 30 stocks of thdexris motivated by data
availability; these are the stocks for which we can obtaia tlzat cover the entire sample
period.

In calculating daily realized volatility, we employ the tead kernel estimator with
modified Tukey-Hanning weights of Barndorff-Nielsen, HansLunde, and Shephard
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(in press). We start by cleaning the data for outliers. Wesmter transactions between
9.30 am through 4.00 pm. Following Barndorff-Nielsen, HamsLunde, and Shephard
(in press) we employ the following 60 second activity fixezkttime sampling scheme:
fa. = 14+60n;/ (10 — 7t ), Wheref g, is the sampling frequency, represents the number
of transactions for dag, andr,, 7,,; are the times for the first and last trade for dayhis

is tick-time sampling chosen such that the same number @reatons is obtained each
day.

Following the realized volatility literature, we focus arglarithmic realized volatility.
FigurelT shows the daily time series of returns, realizedtildy, and logarithmic realized
volatility for WMT, a typical stock in the sample. We also swter dummies for the
days of the week as in Martens, van Dijk, and de Pooter (206d)dummies for the
following macroeconomic announcements: Federal Open dlalbmmittee meetings,
The Employment Situation Report from the Bureau of Laboti§ties, CPI and PPI price
indices; see also Scharth and Medeiros (2006) and McAletMadeiros (2006).

5.2. Results. In this section, we apply bagging Proposals 1 and 2 to thditags model
and to the neural network specification. We find that baggimgroves the forecast per-
formance of the log-linear model, in particular in the la@@Qs. The neural network
specification also benefits from bagging but there is lessawgment. We compare the
forecast performances of the log-linear model and the heatavork specification and
find that bagging eliminates any advantage of the nonlinexstein

We adopt the following strategy to compute one-day-aheegtésts. The models are
initially estimated using data from the years 1995 to 199f.oihe forecast period
starts on 3-Jan-1997. The parameter estimates from thedpE995—-1996 are then used
to compute one-day-ahead forecasts for the whole year 198én, the model is re-
estimated on the data set 1995-1997 and the estimates drwusenpute one-day ahead
forecasts for the year 1998, and so on. In the last iteratvergestimate the model on the
span 1995-2004 and use the parameters to generate foreea2@95. In the bagging
procedure using the block-bootstrap of Kiinsch (1989), segu= 200 replications and a
block size ofm = T/3 (Hall, Horowitz, and Jing 1995), such that the block sizeéases
with each year.

Tabled 2 andl3 show one-step-ahead forecasting resulteddog-linear and for the
nonlinear specification, respectively. The reported nusbee the fractions of the root
mean squared error (RMSE) of the considered model with bgggver the RMSE of
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the considered model without bagging. Therefore, a humdsesr than one indicates that
bagging reduced the RMSE for that stock and year.

The numbers in parentheses report thealue of the test for conditional predictive
ability of Giacomini and White (2006). The null hypothessstihat the expected loss of
the forecast (here RMSE) is the same for both models; a nutabgrthan indicates
that the null hypothesis is rejected at significance leveThus, a rejection only tells us
that one of the models has better forecast performance higasther. Exactly which one
of the two performs better has to be read from the RMSE. It {gortant to notice that
forecasting equality can can be rejected by the test evem Wieeratio is equal to one
in the tables. This is caused by rounding effects. For thaseswe put a “-” or a “+”
meaning that the ratios are, in fact, bellow or above 1, retspdy.

Table[2 shows that bagging leads to substantial reductioferécast RMSE for the
log-linear model. The improvements are most pronouncetienl®90s and decline in
2004 and 2005. For the years 1997, 1998, and on the wholeafsireample 1997-2005
the Giacomini and White test rejects the null hypothesisfbseries at all common sig-
nificance levels. We can conclude that bagging significantfyroves forecast accuracy.

Table[3 shows the effect of bagging on forecasts made witméieal network spec-
ification. While the evidence from the RMSE fractions is mored across years and
stocks, the Giacomini and White test indicates significargrovements similar to the
log-linear specification. For some stocks, the nonlineadehdenefits from bagging
across all years, such as AlIG, GE, HD, MCD, MO, and MRK. Theg @tbck for which
the nonlinear specification does not improve by bagging endtal sample is WMT.

Table[4 compares the RMSE of the forecast made with the neetabrk specification
(numerator) to the one by the log-linear model (denominafbhnerefore, a number less
than one indicates that the nonlinear model outperformsotipdinear model. The years
1997 through 2000 show forecast improvements over theitagdt model for most of the
stocks while the years 2004 and 2005 show no improvemenit &a@he stock volatility
forecasts benefit from nonlinear modeling fairly consiliesuch as AA, BA, HON, and
UTX. A possible reason for the better performance of the inear model in the late
1990s is that the models are initially estimated on the y2886 and 1996, which still
fall into the low volatility regime that lasted through thed¥1990s. Then, the first year
of the forecast period 1997 experiences with the Asiansctig onset of a high volatility
regime that lasts through 2003. Thus, the early estimatélseofog-linear model may
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be less prepared to forecast the nonlinear phenomenon dfahsition into the high
volatility regime.

Table[5 makes the same comparison as Table 4 but in a baggiingrenent for both
models. It is apparent that bagging eliminates any advartteg nonlinear modeling dis-
played in Table}. The Giacomini and White test in fact inthsahat the neural network
specification performs significantly worse than the logeéin model under bagging in
many cases. A possible reason why the log-linear model eatgh with and even outper-
forms the nonlinear model once it is bagged may be that bgggipands the shrinkage
representation of the conditional expectation that is tinedast (Stock and Watson 2005).
The shrinkage representation can be seen as an alterngpirexanation to Equation{7).
In summary, bagging the log-linear specification yields lbkst forecast results on our
sample.

6. CONCLUSION

In this paper, we have studied how bagging can improve th@bsample accuracy
of forecast models for realized volatility. We consider 28cks over the period 1995
through 2005. Specifying a log-linear and a nonlinear fastenodel for the realized
kernel estimator of integrated volatility, we find that baggreduces the prediction mean
squared error for both model types. The improvement is moyaqunced for the log-
linear model and for forecasts in the 1990s. Bagging is faoreliminate the advantage
of the nonlinear specification over the log-linear spediftcaon our sample. Bagging the
log-linear model shows the best forecast performance osample.
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7. APPENDIX

Let D := (y,Z) represent the data set, where= (log(RV}),...,log(RVz))" and
Z = (z),...,2y)". Mis a particular neural network model. After the data are okt
the density function for the parameters is updated accgrdiBayes’ rule
P (D4, 7, M) P (|7, M)

P (Dln,~, M) ’

whereP (v|v, M) is the prior density, which represents our knowledge of drameters
before any data is collecteB,(D|, , M) is the likelihood function, which is the prob-
ability of the data occurring given the parameters, &ri@D |7, v, M) is a normalization
factor, which guarantees that the total probability is étane.

If the distribution ofs, and the prior distribution for the parameters are both Gaoss
thenP (D, n, M) andP (¢ |n, M) are written as

(12) P(¢|D,n,v, M) =

13) B (D[4, n, M) — (%)xp —1 Qe ()]
and
(14) P (4], M) = (%)xp [ Q(ep)].

where L is the total number of parameters in the NN model. Substigufid) and[(I3)
into (12), we get

(z) " (2) " ep{-InQr ) +Qr))}
(15) P(ID, 7,7, M) = Normalization Factor

= Z(n,7) exp [—QT(W] :

In this Bayesian framework, the optimal parameters showalximize the posterior proba-
bility P (¢»|D, n, v, M), which is equivalent to minimizing the regularized objeetiunc-
tion given in [10). The regularization parameters are oiztih by applying Bayes’ rule
P (Dn, vy, M)P (n,7|M)

P (D|M)
Assuming a uniform prior densit (1, v| M) for the regularization parameters, maxi-
mizing the posterior is achieved by maximizing the likebkofunctionP (D], n, M).

(16) P (n, 7D, M) =
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Since all probabilities have a Gaussian form, the norm@édindactor is expressed as

(D, n, M)P (]7, M) _ (w) <W)

ol

A7) P(Dlny. M) = - 77, 7).

P (4D, 7,7, M) 7 v
Since the objective function is quadratic in a small areeosurding a minimum point, we
can expand) y (v) in a Taylor series around the minimum point of the postereonsity,

where the gradient is zero. Solving for the normalizing ¢ansyields

(18) Z(n,7) = (2m)¥ [det (H)] " exp |~ Or(¥)|

whereH is the Hessian matrix of the objective function. Insertihg)(into (16) we solve
for the optimal values for, and~ at the minimum point. We do this by computing the
derivatives of the log of (17) with respect{oandn and setting them equal to zero. This
yields

¢
19) 7720 ()
and

. T-=¢

where¢ = L — 2~tracgH) ! is called the effective number of parameters.

Following Foresee and Hagan (1997), the steps required &ye8an optimization
of the regularization parameters with the Gauss-Newtomaqopation to the Hessian
matrix are:

(1) Initialize n, v, and the network parameters by the Nguyen-Widrow rule (déguy
and Widrow 1990). After the first estimation step, the obyectunction parame-
ters recover from the initial setting.

(2) Take one step of the Levenberg-Marquardt algorithm toimmize the objective
functionQ ().

(3) Compute the effective number of parameters= L — 2+ tracé H)~! making
use of the Gauss-Newton approximation to the Hessian mataxable in the
Levenberg-Marquardt optimization algorithiH: = V2QN(¢) ~ 2vJ'J + 2nlr,
wherelJ is the Jacobian matrix of the estimation set errors.

(4) Compute new estimates for the objective function patarse

(5) Now iterate steps 1 through 3 until convergence.
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TABLE 1. DATA DESCRIPTION

The first two columns display the symbols and names of thekstoonsidered
in the empirical investigation. The third column gives theermge number of
transactions per day. The number of days is 2771.

Symbol Stock Transactions per day
AA Alcoa Inc. 2055
AlG American International Group Inc. 2979
AXP American Express Co. 2599
BA Boeing Co. 3006
CAT Caterpillar Inc. 3597
DD Du Pont de Nemours & Co. 2587
DIS Walt Disney Co. 3839
GE General Electric Co. 8072
GM General Motors Corp. 2945
HD Home Depot Inc. 4758
HON Honeywell International Inc. 1888
IBM International Business Machines Corp. 5117
JNJ Johnson & Johnson 3551
JPM JPMorgan Chase & Co. 3400
KO Coca-Cola Co. 3302
MCD McDonald’s Corp. 2720
MMM  3M Co. 2183
MO Altria Group Inc. 4031
MRK  Merck & Co. Inc. 4353
PFE Pfizer Inc. 7029
PG Procter and Gamble Co. 3062
UTXxX United Technologies Corp. 1834
WMT  Wal-Mart Stores Inc. 4797

21
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TABLE 2. BAGGING THE LOG-LINEAR MODEL.

The table reports the ratio of the root mean squared errors the log-linear model for one-day ahead
forecasts between 1997 and 2005 with and without baggingib¢us below one indicate that bagging im-
proves the forecast performance. The numbers in paresthesert thep-value of Giacomini and White’s

(2006) test of conditional predictive ability.

Series 1997 1998 1999 2000 2001 2002 2003 2004 2005 1997—2005
AA 079 083 091 087 086 096 09/ 0098 1.00 0.88
(0.00) (0.00) (0.17) (0.14) (0.00) (0.38) (0.25) (0.35) 3®. (0.00)
AIG 081 082 083 089 099 096 099 099 0.98 0.91
(0.00) (0.00) (0.00) (0.00) (0.35) (0.04) (0.57) (0.18) 0O4).  (0.00)
AXP 080 085 085 089 096 098 097 1.00 1.01 0.91
(0.00) (0.00) (0.01) (0.00) (0.17) (0.25) (0.00) (0.54) 44).  (0.00)
BA 086 086 092 091 093 091 093 099 0098 0.91
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.20) 2@®.  (0.00)
CAT 086 085 0.89 090 097 094 096 097 0.99 0.91
(0.00) (0.00) (0.00) (0.00) (0.07) (0.00) (0.01) (0.02) 7®. (0.00)
DD 073 077 088 092 095 095 097 099 0.99 0.87
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.03) (0.61) 6@).  (0.00)
DIS 080 085 091 091 09 092 09 099 1.00 0.91
(0.00) (0.00) (0.01) (0.00) (0.04) (0.00) (0.01) (0.83) 7@.  (0.00)
GE 090 090 090 092 097 093 097 097 099 0.94
(0.00) (0.00) (0.00) (0.00) (0.65) (0.00) (0.01) (0.01) 1®. (0.00)
GM 088 0.88 093 090 092 093 092 099 0.98 0.92
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.37) O@).  (0.00)
HD 085 089 089 0.89 092 096 097 099 1.00 0.91
(0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.12) (0.30) 1).  (0.00)
HON 084 085 0.85 084 090 096 094 099 0.99 0.89
(0.00) (0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.60) O@).  (0.00)
IBM 0.86 094 092 093 097 095 0.961.00_ 0.99 0.95
(0.00) (0.01) (0.00) (0.02) (0.32) (0.05) (0.36) (0.01) 6.  (0.00)
JNJ 088 0.88 090 094 097 098 096 099 0.98 0.94
(0.00) (0.00) (0.00) (0.00) (0.00) (0.38) (0.00) (0.58) 7@.  (0.00)
JPM 079 072 087 089 093 093 096 099 0.99 0.87
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.77) 7@.  (0.00)
KO 080 088 093 091 096 095 098 1.00 0.99 0.92
(0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.19) (0.86) 8@.  (0.00)
MCD 093 088 088 092 095 093 096 099 0098 0.93
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.38) OF).  (0.00)
MMM 0.82 0.88 089 091 091 097 096 098 0.99 0.90
(0.00) (0.00) (0.00) (0.00) (0.00) (0.15) (0.00) (0.02) 3@).  (0.00)
MO 080 092 095 091 092 097 098 098 0.99 0.93
(0.00) (0.00) (0.05) (0.00) (0.00) (0.04) (0.04) (0.04) 3@. (0.00)
MRK 0.80 091 092 092 097 095 097 099 0.98 0.93
(0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.05) (0.79) 0@).  (0.00)
PFE 080 090 093 092 098 098 098 098 0.98 0.93
(0.00) (0.00) (0.02) (0.00) (0.13) (0.33) (0.07) (0.13) 0@).  (0.00)
PG 076 083 092 091 098 094 1.00 099 0.98 0.91
(0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.41) (0.43) O).  (0.00)
UTX 075 077 088 086 090 092 095 098 0.96 0.86
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.08) O@.  (0.00)
WMT 084 0.82 0.84 082 093 098 097 099 0.99 0.89
(0.00) (0.00) (0.00) (0.00) (0.00) (0.05) (0.11) (0.67) 0@).  (0.00)
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TABLE 3. BAGGING THE NEURAL NETWORK MODEL.

The table reports the ratio of the root mean squared errors the nonlinear model for one-day ahead
forecasts between 1997 and 2005 with and without baggingibiéus below one indicate that bagging im-
proves the forecast performance. The numbers in parersthesert thep-value of Giacomini and White’s
(2006) test of conditional predictive ability.

Series 1997 1998 1999 2000 2001 2002 2003 2004 2005 1997—2005
AA  1.02 090 093 096 089 099 0096 099 1.00 0.92
(0.09) (0.00) (0.00) (0.00) (0.00) (0.66) (0.10) (0.59) 6@). (0.00)
AIG 097 0.87 088 093 098 096 099 098 0.97 0.92
(0.00) (0.00) (0.00) (0.01) (0.07) (0.03) (0.56) (0.32) 14). (0.00)
AXP 096 093 089 093 095 1.00 098 099 1.00 0.93
(0.00) (0.00) (0.00) (0.11) (0.01) (0.99) (0.40) (0.06) 6@).  (0.00)
BA 093 088 093 092 098 091 096 101 1.00 0.92
(0.00) (0.00) (0.00) (0.00) (0.21) (0.00) (0.09) (0.81) 9@).  (0.00)
CAT 095 0.88 094 094 096 095 097 099 1.00 0.90
(0.00) (0.00) (0.00) (0.01) (0.02) (0.00) (0.05) (0.94) 8&).  (0.00)
DD 098 084 092 094 095 098 099 100 0.99 0.93
(0.00) (0.00) (0.01) (0.00) (0.00) (0.21) (0.85) (0.88) 7@).  (0.00)
DIS 096 089 094 093 096 095 096 1.01 0.99 0.93
(0.00) (0.00) (0.01) (0.00) (0.00) (0.19) (0.03) (0.10) 9@).  (0.00)
GE 097 086 093 096 096 096 096 098 0.99 0.95
(0.00) (0.00) (0.00) (0.02) (0.02) (0.04) (0.69) (0.80) 4€).  (0.00)
GM 1.00_ 0.85 098 095 094 096 094 098 0.98 0.92
(0.06) (0.00) (0.09) (0.00) (0.00) (0.01) (0.00) (0.13) 0Q).  (0.00)
HD 094 091 094 095 095 099 097 099 0.99 0.95
(0.00) (0.00) (0.01) (0.15) (0.02) (0.06) (0.07) (0.93) 5@).  (0.00)
HON 1.03 1.00_ 098 0.90 094 099 096 100 1.01 0.92
(0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.07) (0.79) 1. (0.00)
IBM 091 100 092 096 098 098 098 101 0.99 0.96
(0.00) (0.39) (0.01) (0.25) (0.58) (0.34) (0.16) (0.02) 2@). (0.00)
INJ 1.02 091 094 097 099 098 098 099 0.99 0.95
(0.00) (0.00) (0.00) (0.07) (0.48) (0.12) (0.26) (0.01) 2&).  (0.00)
JPM 092 086 091 089 091 095 096 100 0.97 0.91
(0.00) (0.00) (0.00) (0.00) (0.00) (0.56) (0.08) (0.34) 48). (0.00)
KO 091 093 093 090 098 097 0.97.00, 0.99 0.94
(0.00) (0.00) (0.00) (0.00) (0.56) (0.01) (0.52) (0.06) 7@).  (0.00)
MCD 092 092 095 096 095 094 099 099 0.99 0.94
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.68) (0.92) 0@). (0.00)
MMM 0.96 091 095 093 095 095 098 099 1.00 0.95
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.13) (0.70) 18). (0.00)
MO 089 095 098 094 096 097 099 099 0.99 0.92
(0.00) (0.00) (0.95) (0.00) (0.05) (0.05) (0.65) (0.98) 4@).  (0.00)
MRK 0.99 091 096 093 099 096 097 099 0.99 0.95
(0.00) (0.00) (0.00) (0.00) (0.48) (0.01) (0.35) (0.65) 4@). (0.00)
PFE 089 087 097 097 098 1.03 099 102 0.99 0.93
(0.00) (0.00) (0.04) (0.01) (0.11) (0.15) (0.17) (0.01) O&). (0.00)
PG 094 090 093 091 098 094 097 098 1.00 0.93
(0.00) (0.00) (0.00) (0.00) (0.14) (0.00) (0.28) (0.13) 9. (0.00)
UTX 095 092 092 095 096 094 0.961.00_ 0.97 0.95
(0.00) (0.00) (0.00) (0.28) (0.04) (0.01) (0.02) (0.02) 0. (0.00)
WMT 100 106 0.94 090 098 101 104 1.05 0.99 1.01
(0.35) (0.00) (0.00) (0.00) (0.19) (0.48) (0.00) (0.00) O@. (0.00)
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TABLE 4. NONLINEAR VS. LOG-LINEAR MODEL WITHOUT BAGGING.

The table reports the ratio of the root mean squared erroms the nonlinear and log-linear models for
one-day-ahead forecasts between 1997 and 2005 withouingaggumbers below one indicate that non-
linearity improves the forecast performance. The numbeparentheses report thevalue of Giacomini
and White's (2006) test of conditional predictive ability.

Series 1997 1998 1999 2000 2001 2002 2003 2004 2005 1997—2005
AA 074 093 097 095 09/ 098 099 099 1.00 0.97
(0.00) (0.00) (0.00) (0.00) (0.25) (0.38) (0.72) (0.70) 6@).  (0.00)
AIG 084 101 096 098 1.02 101 099 101 1.01 1.04
(0.07) (0.00) (0.04) (0.42) (0.20) (0.01) (0.63) (0.43) 3@. (0.00)
AXP 085 1.05 097 095 103 098 098 099 1.00 1.04
(0.00) (0.00) (0.48) (0.84) (0.13) (0.44) (0.28) (0.62) 7€).  (0.00)
BA 094 097 1.00_ 098 098 099 097 098 0098 1.02
(0.05) (0.05) (0.03) (0.00) (0.00) (0.75) (0.04) (0.32) 4. (0.00)
CAT 095 097 095 097 103 099 099 1.01 1.00 1.05
(0.06) (0.00) (0.09) (0.48) (0.10) (0.15) (0.23) (0.27) 5@).  (0.00)
DD 073 089 095 099 099 099 097 100 1.00 0.98
(0.01) (0.37) (0.03) (0.01) (0.81) (0.57) (0.02) (0.93) 5@). (0.00)
DIS 0.82 1.00_ 099 096 101 097 1.00 1.00 1.00 1.00_
(0.01) (0.00) (0.11) (0.03) (0.06) (0.20) (0.92) (0.82) 5@).  (0.00)
GE 097 109 098 097 1.01 1.00 101 098 0.99 1.04
(0.06) (0.00) (0.36) (0.78) (0.39) (0.56) (0.31) (0.58) 4@).  (0.00)
GM 088 112 099 096 098 099 099 1.01 1.01 1.03
(0.00) (0.00) (0.20) (0.04) (0.17) (0.94) (0.66) (0.29) 5@.  (0.00)
HD 089 105 095 095 099 1.00 1.00 099 1.00 1.00_
(0.00) (0.00) (0.11) (0.26) (0.69) (0.74) (0.92) (0.93) 3. (0.00)
HON 0.82 0.87 088 094 097 097 099 099 1.00 1.00,
(0.00) (0.07) (0.00) (0.00) (0.06) (0.14) (0.75) (0.10) 8@).  (0.00)
IBM 095 099 101 099 1.00 097 099 098 1.01 1.02
(0.03) (0.13) (0.07) (0.18) (0.89) (0.26) (0.87) (0.12) 3@. (0.01)
JNJ 086 096 096 095 097 100 1.00 1.00 1.001.00,
(0.16) (0.10) (0.04) (0.10) (0.01) (0.20) (0.58) (0.14) 1@). (0.07)
JPM 086 085 097 099 1.02 096 098 100 1.00 0.98
(0.01) (0.70) (0.39) (0.12) (0.24) (0.05) (0.36) (0.72) 5@. (0.01)
KO 088 097 1.00 098 099 099 099 101 1.00 0.99
(0.04) (0.19) (0.15) (0.60) (0.08) (0.53) (0.60) (0.05) 2@).  (0.01)
MCD 1.01 100 090 094 1.00 098 098 100 0.99 1.00
(0.03) (0.49) (0.07) (0.06) (0.96) (0.11) (0.04) (0.34) 7().  (0.08)
MMM 0.86 099 092 098 095 101 098 098 0.99 0.97
(0.00) (0.00) (0.36) (0.28) (0.01) (0.18) (0.16) (0.10) 40).  (0.00)
MO 089 097 096 096 096 1.00 099 1.00 1.00 1.04
(0.00) (0.71) (0.56) (0.63) (0.01) (0.24) (0.44) (0.82) 1€). (0.00)
MRK 0.80 1.02 094 099 1.001.00, 102 1.01 098 100,
(0.08) (0.03) (0.11) (0.07) (0.92) (0.07) (0.06) (0.07) 1@.  (0.00)
PFE 090 1.04 101 098 101 1.03 1.01 097 0.99 1.03
(0.00) (0.00) (0.02) (0.56) (0.81) (0.13) (0.42) (0.06) 44).  (0.00)
PG 080 092 097 1.00 1.00 1.00 1.02 100 0.98 0.99
(0.17) (0.00) (0.38) (0.86) (0.36) (0.89) (0.05) (0.15) 0@). (0.02)
UTX 075 0.83 095 092 095 098 099 0098 0.99 0.91
(0.00) (0.00) (0.44) (0.01) (0.00) (0.20) (0.61) (0.34) 6@).  (0.00)
WMT 085 0.85 090 092 099 1.00 0.981.00_ 1.01 0.94
(0.00) (0.00) (0.04) (0.01) (0.40) (0.12) (0.06) (0.00) O@. (0.00)
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TABLE 5. NONLINEAR VS. LOG-LINEAR MODEL WITH BAGGING.

The table reports the ratio of the root mean squared errors the nonlinear and log-linear models for
one-day-ahead forecasts between 1997 and 2005 with bagyingbers below one indicate that nonlin-
earity improves the forecast performance. The numbersrenplaeses report thevalue of Giacomini and
White’s (2006) test of conditional predictive ability.

Series 1997 1998 1999 2000 2001 2002 2003 2004 2005 1997-2005
AA 096 1.0l 1.00_ 1.04 1.01 1.01 099 1.00 1.00 1.01
(0.02) (0.03) (0.00) (0.00) (0.17) (0.39) (0.06) (0.99) 16).  (0.00)
AIG 101 106 1.01 1.03 1.011.00_ 099 1.00 1.00 1.05
(0.00) (0.00) (0.00) (0.07) (0.08) (0.06) (0.56) (0.26) 3@).  (0.00)
AXP  1.02 1.15 1.01 1.00_ 1.01 100 0.99 0.99 0.99 1.07
(0.00) (0.00) (0.00) (0.00) (0.52) (0.26) (0.65) (0.02) 1.  (0.00)
BA 1.02 1.00 101 1.00 1.04 099 100 100 1.00 1.02
(0.00) (0.83) (0.02) (0.00) (0.04) (0.44) (0.79) (0.24) 6@).  (0.00)
CAT 105 101 099 1.02 102 100 1.00 1.02 1.01 1.04
(0.00) (0.00) (0.59) (0.00) (0.11) (0.87) (0.68) (0.00) 3@).  (0.00)
DD 099 098 1.00. 1.01 099 101 0.99 1.01 1.00 1.04
(0.00) (0.08) (0.10) (0.41) (0.48) (0.54) (0.93) (0.02) 4@).  (0.00)
DIS 098 1.05 1.03 099 101 1.00 1.00 1.01 0.99 1.02
(0.08) (0.00) (0.02) (0.24) (0.39) (0.17) (0.36) (0.01) 4@.  (0.00)
GE 1.05 1.04 102 1.011.00, 1.03 101 099 0.99 1.05
(0.00) (0.00) (0.18) (0.13) (0.07) (0.13) (0.00) (0.01) O@.  (0.00)
GM 099 1.07 1.04 1.02 101 101 1.011.00_ 1.00 1.03
(0.23) (0.00) (0.00) (0.00) (0.22) (0.21) (0.34) (0.06) 1.  (0.00)
HD 098 108 1.01 1.01 101 103 1.00 0.99 0.99 1.03
(0.13) (0.00) (0.08) (0.00) (0.20) (0.04) (0.56) (0.38) 5@®.  (0.00)
HON 1.00, 1.02 1.01 1.00, 1.01 1.00, 1.01 1.00 1.02 1.03
(0.05) (0.00) (0.00) (0.00) (0.16) (0.01) (0.48) (0.65) O@.  (0.00)
IBM  1.00 106 101 1.02 1.01 100 101 0.99 1.00 1.03
(0.04) (0.00) (0.00) (0.00) (0.15) (0.44) (0.00) (0.01) 1@).  (0.00)
INJ 1.00 1.01 100 099 1.00 1.00 1.01.00_ 1.00 1.01
(0.97) (0.03) (0.74) (0.08) (0.35) (0.54) (0.00) (0.00) 6@). (0.01)
JPM 100, 101 100 0.99 1.00 098 099 1.01 0.99 1.03
(0.00) (0.00) (0.30) (0.01) (0.93) (0.85) (0.38) (0.09) 1@®.  (0.00)
KO 1.00 1.02 100 097 1.02 1.01 099 1.01.00,  1.02
(0.46) (0.02) (0.77) (0.59) (0.02) (0.67) (0.01) (0.00) OQ.  (0.00)
MCD 101 104 098 099 1.00 099 1.011.00_ 1.00 1.01
(0.47) (0.00) (0.15) (0.54) (0.91) (0.08) (0.41) (0.02) 5. (0.00)
MMM 1.00_ 1.04 099 099 1.00 1.00 0.99 0.991.00_  1.02
(0.00) (0.00) (0.88) (0.89) (0.23) (0.93) (0.92) (0.49) 0.  (0.00)
MO 099 100 1.00, 099 1.00 100 1.00 1.01 1.00 1.02
(0.00) (0.52) (0.06) (0.46) (0.29) (0.64) (0.54) (0.02) 4@).  (0.00)
MRK 099 1.02 099 101 1.01 1.02 102 101 1.00 1.02
(0.00) (0.03) (0.09) (0.01) (0.11) (0.08) (0.00) (0.00) 8. (0.00)
PFE 1.00_ 1.00 1.06 1.02 101 1.08 1.01 1.011.00_  1.03
(0.02) (0.86) (0.06) (0.37) (0.31) (0.01) (0.01) (0.02) 08).  (0.00)
PG 099 1.00. 099 099 100 1.00 099 1.00 1.00 1.01
(0.00) (0.01) (0.45) (0.74) (0.95) (0.25) (0.46) (0.84) 2@).  (0.00)
UTX 095 099 100 102 1.02 1.00 1.00 100 1.00 1.00
(0.03) (0.02) (0.94) (0.00) (0.33) (0.71) (0.99) (0.36) 48).  (0.00)
WMT 101 110 1.01 1.02 104 103 105 1.06 1.01 1.07
(0.08) (0.00) (0.16) (0.00) (0.00) (0.04) (0.00) (0.00) O@.  (0.00)
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FIGURE 1. Time series of (a) returns, (b) realized volatility, an§llpga-
rithmic realized volatility of WMT.
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