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ABSTRACT. This paper shows that bagging can improve the forecast accuracy of time

series models for realized volatility. We consider 23 stocks from the Dow Jones Industrial

Average over the sample period 1995 to 2005 and employ two different forecast models,

a log-linear specification in the spirit of the heterogeneous autoregressive model and a

nonlinear specification with logistic transitions. Both forecast model types benefit from

bagging, in particular in the 1990s part of our sample. The log-linear specification shows

larger improvements than the nonlinear model. Bagging the log-linear model yields the

highest forecast accuracy on our sample.

1. INTRODUCTION

We consider the problem of forecasting stock market volatility. The aim is to apply

bagging (bootstrap aggregation), a recently proposed statistical learning technique, to re-

alized volatility, a recently proposed improved measure ofasset price variance. Time

series models for realized volatility often comprise lags of realized volatility aggregated

over different time horizons, lagged returns cumulated over different time horizons, and

other possible exogenous variables. The selection of thesevariables puts the forecaster in

a situation where bagging can help: There are potentially many regressors to choose from

and the individual regressors have little forecast power (Inoue and Kilian in press, Inoue

and Kilian 2004).

We find that bagging can substantially improve forecast meansquared errors for real-

ized volatility. We consider a log-linear forecast model specification that is commonly

used and can approximate long range dependence by linearly combining aggregated past

volatility at different time scales (Corsi 2004, Andersen,Bollerslev, and Diebold 2007).

In addition, we consider a nonlinear neural network specification that apart from long

range dependence captures possible threshold and transition effects. These nonlinear

phenomena have been documented in many studies of realized volatility and earlier latent

volatility models (e.g. Nelson 1991, Glosten, Jagannathan, and Runkle 1993, Martens,
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van Dijk, and de Pooter 2004, Hillebrand and Medeiros to appear, McAleer and Medeiros

2006, Hillebrand and Medeiros 2008). For our sample of 23 stocks from the set of the

Dow Jones Industrial Average index and the period from 1995 to 2005, bagging results

in improved forecast accuracy for both model types. The log-linear model benefits more

from bagging than the nonlinear specification, in particular for forecasts made for the

1990s.

The idea of bagging was introduced in Breiman (1996), studied more rigorously in

Bühlmann and Yu (2002), and introduced to econometrics in Inoue and Kilian (2004).

Bagging is motivated by the observation that in models wherestatistical decision rules

are applied to choose from a set of predictors, such as significance in pre-tests, the set

of selected regressors is data-dependent and random. Bootstrap replications of the raw

data are used to re-evaluate the selection of predictors, togenerate bootstrap replications

of forecasts, and to average over these bootstrapped forecasts. It has been shown in a

number of studies that bagging reduces the mean squared error of forecasts considerably

by averaging over the randomness of variable selection (Inoue and Kilian in press, Lee

and Yang 2006). Applications include, among others, financial volatility (Huang and

Lee 2007a), equity premia (Huang and Lee 2007b), and employment data (Rapach and

Strauss 2007).

Realized volatility was introduced in Andersen and Bollerslev (1998) and has devel-

oped into a large literature that is concerned with finding consistent and robust estimators

of realized volatility as well as time series models for realized volatility (e.g. Andersen,

Bollerslev, Diebold, and Ebens 2001, Andersen, Bollerslev, Diebold, and Labys 2001, An-

dersen, Bollerslev, Diebold, and Labys 2003, Barndorff-Nielsen and Shephard 2002,

Corsi 2004, Zhang, Mykland, and Aı̈t-Sahalia 2005, Barndorff-Nielsen, Hansen, Lunde,

and Shephard in press, Christensen, Oomen, and Podolskij 2008). We present a brief out-

line of the concept in Section 2. Realized volatility inherits all stylized facts that have

been established for volatility in earlier latent variablespecifications, most notably long-

range dependence (e.g. Engle 1982, Engle and Bollerslev 1986, Bollerslev 1987, Ding,

Granger, and Engle 1993, Baillie, Bollerslev, and Mikkelsen 1996).

The paper is organized as follows: Section 2 describes the concept of realized volatility.

Section 3 defines the two model classes that are considered for bagging. Section 4 defines

the bagging schemes. Section 5 describes the data set and presents the empirical findings.

Section 6 concludes.
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2. REALIZED VOLATILITY

Suppose that on dayt the logarithmic pricep of a given asset at timet+ � , 0 ≤ � ≤ 1,

follows a continuous time diffusion:

dp(t+ �) = �(t+ �)d� + �(t+ �)dW (t+ �), 0 ≤ � ≤ 1, t = 1, . . . , T,

where�(t + �) is the drift component,�(t + �) is instantaneous volatility that may be

deterministic or stochastic, andW (t+ �) is standard Brownian motion.

Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and

Labys (2003) and Barndorff-Nielsen and Shephard (2002), among others, consider daily

compound returnsr(t) = p(t) − p(t − 1). Setℱt = ℱ {�(t+ � − 1), �(t+ � − 1)}�=1
�=0

as sigma-algebra generated by the sample paths of the drift and diffusion processes�(t+

� −1) and�(t+ � −1) butnotby the Brownian motionW (t+ � −1), 0 ≤ � ≤ 1. Define

(1) IVt =

∫ 1

0

�2(t+ � − 1)d� = Var(r(t)∣ℱt),

or integrated variance, as the object of interest in realized volatility theory.

In practical applications, prices are observed at discreteand irregularly spaced intervals

and there are many ways to sample the data. Suppose that on a given dayt, we partition

the interval [0,1] and define the grid of observation times{�0, . . . , �n}, 0 = �0 < �1 <

⋅ ⋅ ⋅ , �n = 1. The length of theith subinterval is given by�i = �i − �i−1. The most widely

used sampling scheme is calendar time sampling, where the intervals are equidistant in

calendar time, that is�i = 1/n. Let pt,i, i = 1, . . . , n, be theith price observation during

dayt, such thatrt,i = pt,i−pt,i−1 is theith intra-period return of dayt. Realized volatility

is defined as

(2) RV (t) =

√√√⎷
n∑

i=2

r2t,i.

Under additional regularity conditions including the assumption of uncorrelated intra-

day returns, realized varianceRV 2
t is a consistent estimator of integrated variance, such

thatRV 2
t

p
−→ IVt. When returns are serially correlated, however, realized variance is a

biased estimator of integrated variance. Serial correlation may be the result of market mi-

crostructure effects such as bid-ask bounce and discreteness of prices (Campbell, Lo, and

MacKinlay 1997, Madhavan 2000, Biais, Glosten, and Spatt 2005). These effects prevent

very fine sampling partitions. Realized volatility is therefore not an error-free measure of
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volatility. Barndorff-Nielsen and Shephard (2002) study the properties of the estimation

error of realized volatility.

The search for asymptotically unbiased, consistent, and efficient methods for measur-

ing realized volatility in the presence of microstructure noise has been one of the most

active research topics in financial econometrics over the last few years. While early ref-

erences in the literature, such as Andersen, Bollerslev, Diebold, and Ebens (2001), ad-

vocated the simple selection of an arbitrary lower frequency (typically 5-15 minutes) to

balance accuracy and the dissipation of microstructure bias, a procedure that is known

as sparse sampling, recent articles have developed estimators that dominate this proce-

dure. The currently available consistent estimators are the realized kernel estimator of

Barndorff-Nielsen, Hansen, Lunde, and Shephard (in press), the modified MA filter of

Hansen, Large, and Lunde (2008), the two time scales estimator of Zhang, Mykland,

and Aı̈t-Sahalia (2005), and the quantile-based estimatorof Christensen, Oomen, and

Podolskij (2008). For the purposes of this paper, we choose the realized kernel estima-

tor of Barndorff-Nielsen, Hansen, Lunde, and Shephard (in press), which is robust to

microstructure noise.

3. MODELING AND FORECASTING REALIZED VOLATILITY

LetRV 2
t be a consistent and unbiased estimator for integrated variance on dayt. In this

paper, we consider two different forecasting models forlog(RVt), a log-linear model and a

nonlinear extension. As explanatory variables, we consider lags of realized volatility, day-

of-the-week dummies, dummies for days where macroeconomically relevant announce-

ments were made, and past cumulative returns that capture possible leverage effects.

3.1. The Log-Linear Heterogenous Autoregressive Model with Exogenous Variables.

3.1.1. Model Definition.The starting point for our log-linear model specification isthe

Heterogeneous Autoregressive (HAR) model proposed by Corsi (2004). Let

yt,k =
1

k

k∑

i=1

yt+1−i

be the average over the lastk observations of a time series and consider the model

(3) yt = �0 +
∑

�j∈I

�jyt−1,�j + "t,
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whereI = (�1, �2, . . . , �p) is a set ofp indices with�1 < �2 < . . . < �p, j = 1, . . . , p.

Throughout this paper,"t is a zero-mean process with finite, but not necessarily constant

variance (Corsi, Mittnik, Pigorsch, and Pigorsch 2008). Bysubstituting the definition of

yt,�j into (3), we can write

(4) yt = �0 +
�1

�1

�1∑

i=1

yt−i +
�2

�2

�2∑

i=1

yt−i + ⋅ ⋅ ⋅+
�p

�p

�p∑

i=1

yt−i + "t,

a representation that shows that we are considering a restricted AR(p) model (Craioveanu

and Hillebrand 2008). Corsi (2004) proposes model (3) withyt = log(RVt) andI =

(1, 5, 22). His specification builds on the HARCH model proposed by Müller, Dacorogna,

Dave, Olsen, Pictet, and von Weizsaecker (1997). It captures long-range dependence by

aggregating realized volatility over the different time scales inI.

In this paper, we consider a slightly more general version ofthe HAR model that in-

cludes deterministic predictors, a flexible lag structure,and past cumulative returns. Let

rt be the daily log-return,yt = log(RVt), and define, with some abuse of notation,

rt,k =

k∑

i=1

rt+1−i.

Let I = (�1, . . . , �p) andK = (�1, . . . , �q) be two sets of indices,xt = (1, yt,�1, . . . , yt,�p),

andrt =
(
rt,�1

, . . . , rt,�q

)
. The general HAR model with exogenous variables considered

in this paper may be written as

(5) yt = �
′wt + �

′xt−1 + �
′rt−1 + "t,

wherewt is is a vector of dummy variables for weekdays and macroeconomic announce-

ment days, the vectorxt−1 contains the usual HAR predictors with possibly more and/or

other lags than(1, 5, 22), andrt−1 includes past cumulative returns over different hori-

zons. The vectors�, �, and� contain parameters.

The inclusion of announcement dates is motivated by the possible presence of jumps in

the volatility process (Andersen, Bollerslev, and Diebold2007, Barndorff-Nielsen and

Shephard 2006, McAleer and Medeiros 2006, Scharth and Medeiros 2006). Several

studies consider days-of-the-week dummies in volatility models (Engle and Ng 1993,

Martens, van Dijk, and de Pooter 2004). The results in Scharth and Medeiros (2006)

and Fernandes, Medeiros, and Scharth (2007) motivate the inclusion of past cumulative

returns as possible predictors. The authors show in different frameworks that cumulative
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returns over long horizons up to three months improve the forecasting power of models

for realized volatility.

3.1.2. Specification and Estimation.Typically, the index set(1, 5, 22) is considered in

the HAR model. A flexible choice of the lag structure imposes high computational costs.

Two parameters need to be set a priori, a maximum time scale toconsider and the number

of predictors to be used. For example, if we decide to includetwo time scales�2 and

�3 in addition to�1 = 1, and we allow for a maximum time horizon of 250 days, we

have to consider
(
250
2

)
= 31125 different specifications and pick the one with the highest

likelihood, lowest AIC or BIC, or any other criterion. Even for a single time series, the

computational costs are substantial. See Craioveanu and Hillebrand (2008) for a study that

explores the optimal lag structure for HAR models. For bagging, where we have to repeat

this procedure for every bootstrap sample, implementationis prohibitive at this point. To

circumvent this problem, we define a grid of lags to choose from such that the selection

problem remains tractable and include these lags as regressors inxt. In this study, we

setI = (1, 2, . . . , 22) andK = (1, 2, . . . , 100). Equation (5) can then be estimated in a

linear regression and we pre-test for regressor significance. Letzt :=
(
w′

t, x
′
t−1, r

′
t−1

)′
.

Following the notation in Inoue and Kilian (in press), we candefine the one-step ahead

forecast ofyt = log(RVt) as

(6) ŷt∣t−1 := E [yt∣ℱt−1] =

⎧
⎨
⎩
0 if ∣tj∣ < c ∀j,

�̂z̃t otherwise,

wherez̃t := Stzt, St is a diagonal selection matrix withjth diagonal element given by

1{∣tj ∣>c} =

⎧
⎨
⎩
1 if ∣tj∣ > c,

0 otherwise,

c is a pre-specified critical value of the test, and�̂ is the ordinary least squares estimator

given by

�̂ =

[
T∑

t=1

z̃tz̃
′
t

]−1 T∑

t=1

z̃′tyt.

3.2. The Neural Network Heterogenous Autoregressive Model and Bayesian Regu-

larization.

3.2.1. Model Definition. In order to compare the out-of-sample performance of the log-

linear model described above we consider a nonlinear extension of the HAR model. Let



BAGGING REALIZED VOLATILITY MODELS 7

yt = log(RVt) be generated by the following stochastic process

(7) yt = T (zt) + "t,

whereT (zt) is an unknown nonlinear function ofzt =
(
w′

t,x
′
t−1, r

′
t−1

)′
, and"t is a zero-

mean process with finite variance.

The goal of modeling techniques based on neural networks is to approximate (7) by the

following nonlinear specification

(8) T (zt) ≈ G(zt; ) := �
′
0zt +

M∑

m=1

�mf(zt;
m),

whereG(zt; ) is a nonlinear function of the variableszt that is indexed by the vector of

parameters , andf(zt;
m) is the logistic function

f(zt;
m) =
1

1 + e−
′

mzt

with state variablezt and slope parameters
m.

As first discussed in Kuan and White (1994), the model defined by equation (8) may

alternatively have a parametric or a nonparametric interpretation. In the parametric inter-

pretation, the model can be viewed as a kind of smooth transition regression where the

transition variable is an unknown linear combination of theexplanatory variables inzt
(van Dijk, Teräsvirta, and Franses 2002). In this case, there is an optimal, fixed num-

berM of logistic transitions that can be understood as the numberof limiting regimes

(Trapletti, Leisch, and Hornik 2000, Medeiros and Veiga 2000, Medeiros, Teräsvirta, and

Rech 2006). On the other hand, forM → ∞ the neural network model is a represen-

tation of any Borel-measurable function over a compact set (Grenander 1981, Hornik,

Stinchombe, and White 1989, Hornik, Stinchcombe, White, and Auer 1994, Chen and

Shen 1998, Chen and White 1998, Chen, Racine, and Swanson 2001). For largeM , this

representation suggests a nonparametric interpretation as series expansion, sometimes

referred to as sieve-approximator. In this paper, we adopt the nonparametric interpreta-

tion of the neural network model and show that it approximates typical nonlinear behav-

ior of realized volatility well. Neural network approachesto volatility forecasting have

been successfully taken in Donaldson and Kamstra (1997), Huand Tsoukalas (1999), and

Hamid and Iqbal (2004).
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3.2.2. Specification and Estimation.Usually, is estimated by nonlinear least-squares

(9)  ̂ = argmin
 

QT ( ) = argmin
 

T∑

t=1

[log(RVt)−G(zt; )]
2 ,

and the estimated residuals"̂t = log(RVt) − G(zt;  ̂) are an approximation to the true

error term"t in (7). In most applications, a simple gradient descent algorithm is used to

estimate .

Approximating (7) by (8) poses two main problems. First, thetrue vector of variables

zt is not known in advance and the modeler has to determine whichvariables should be

included inzt. The second problem is related to the selection of the numberM of logistic

functions in (8). Selecting a small number of hidden units leads to a poor approximation

of the true data generating process. On the other hand, a model with a large number of

hidden units may be overfitted and have little forecast accuracy. In most neural network

applications, it is customary to select the variables and the number of hidden units using

some rule of thumb. A vast number of models with different combinations of variables and

numbers of hidden units are estimated and the one with the best performance according to

some criterion is chosen as the final specification. Several alternatives to this rule of thumb

have appeared in the literature. The simplest one is the so-calledearly stopping. The key

idea is to split the available data into three subsets. The first subset is used to estimate

the parameters. The second subset is called the validation set. The error on the validation

set is monitored during the estimation process. When the network begins to overfit the

data, the error on the validation set typically begins to rise. When the validation error

increases for a specified number of iterations, the estimation process is discontinued, and

the parameters estimated at the minimum of the validation error serve as final estimates.

The third subset called the test set is not used for estimation and is saved for comparing

the out-of-sample performance of different models. The model with the best forecasting

performance is chosen as the final specification.

Pruning is another popular technique to find the smallest network that fits the data

well and produces good forecasts. The main idea is to start with a large network and

sequentially reduce its size by removing some network connections (Reed 1993). Anders

and Korn (1999) compared a number of different methodologies including a simplified

version of the specific-to-general approach of Medeiros, Teräsvirta, and Rech (2006) and

information criteria (such as AIC or BIC) pruning.
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In this paper, we adopt the Bayesian regularization approach proposed by MacKay

(1992). The fundamental idea is to find a balance between the number of parameters and

goodness of fit by penalizing large models. The objective function is modified in such

a way that the estimation algorithm reduces the network by driving irrelevant parameter

estimates to zero during the optimization. The parameter vector is estimated as

(10)  ̂ = argmin
 

Q̃T ( ) = argmin
 

[�QT ( ) + 
Q∗( )] ,

whereQT ( ) =
∑T

t=1 [log(RVt)−G(zt; )]
2, Q∗( ) is the regularizationor penalty

term, and�, 
 > 0 areobjective functionor regularizationparameters. The penalty term

is usually chosen to be the sum of squared parametersQ∗( ) =  ′ .

The forecast accuracy of the neural network model depends crucially on the values of

� and
, especially in small samples. The relative size of the objective function parame-

ters determines the emphasis of the estimation process. If� >> 
, then the optimization

algorithm places more weight on error minimization and the network may still overfit.

If � << 
, the optimization emphasizes network size reduction at theexpense of error

size, thus producing a smoother function of the input variables. The main problem with

implementing regularization is setting the correct valuesfor these objective function pa-

rameters. One approach to determine the optimal objective function parameters is the

Bayesian framework, where the parameters of the network areassumed to be random

variables with well-specified distributions. The objective function parameters are related

to the unknown variances associated with these distributions. Foresee and Hagan (1997)

present a detailed discussion of the use of Bayesian regularization in combination with

the Levenberg-Marquardt optimization algorithm. The mainadvantage of this method is

that even if the neural network model is over-parametrized,the irrelevant parameter esti-

mates are likely to be close to zero and the model behaves likea small network. See the

appendix for more details.

Bayesian regularization has been shown to be a very flexible modeling approach. Teräsvirta,

van Dijk, and Medeiros (2005) show that neural network models specified and estimated

with Bayesian regularization outperform models that employ the specific-to-general ap-

proach proposed by Medeiros, Teräsvirta, and Rech (2006).Medeiros, Teräsvirta, and

Rech (2006) present simulation evidence that AIC and BIC tend to underestimate the

number of hidden units; see also Anders and Korn (1999). Another successful application

of Bayesian regularization can be found in Medeiros, Veiga,and Pedreira (2001).
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As suggested in the literature, we tried different numbers of hidden units in the neural

network model, ranging fromM = 1 to M = 10. As the number of predictors is high,

increasing the number of hidden units increases the complexity of the model and the

computational burden to estimate it substantially withoutyielding additional benefits. In

our application, we found that when more than five hidden units are used, the Bayesian

regularization approach always reduces the model complexity, so we start the Bayesian

regularization algorithm atM = 5.

4. BAGGING PREDICTORS

Realized volatility models lend themselves to bagging since they involve selection of

lags of logarithmic realized volatility, cumulative returns over different horizons, and

dummies for weekdays and announcement dates. The optimal predictor structure is data-

dependent in the sense that pre-tests as described in Section 3.1.2 apply indicators of the

type 1{t>c} to predictor variables. This is the standard situation for the application of

bagging as described in Bühlmann and Yu (2002), Section 2. Inoue and Kilian (in press)

show for inflation data in an analogous problem that bagging averages over the random-

ness of predictor selection, resulting in lower forecast mean squared errors. We consider

the following bagging schemes.

PROPOSAL 1 (Bagging the HAR model).The bagging forecast in the extended HAR

model is defined as follows:

(1) Arrange the set of tuples(yt, z′t), t = 2, . . . , T , in the form of a matrixX of

dimension(T − 1)× k, wherek is the number of regressors inzt.

(2) Construct bootstrap samples of the form
{(

y∗(i)2, z
′∗
(i)2

)
, . . . ,

(
y∗(i)T , z

′∗
(i)T

)}
, i =

1, . . . , B, by drawing blocks ofm rows ofX with replacement, where the block

sizem is chosen to capture possible dependence in the error term ofthe realized

volatility series.

(3) Following Inoue and Kilian (in press), compute theith bootstrap forecast as

(11) ŷ∗(i)t∣t−1 =

⎧
⎨
⎩
0 if ∣t∗j ∣ < c ∀j,

�̂
∗

(i)z̃
∗
(i)t otherwise,

where z̃∗(i)t := S∗
(i)tz

∗
(i)t and S∗

(i)t is a selection matrix as in equation (6) that

depends on the bootstrap sample. As is common, the asterisk indicates bootstrap

replications.
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(4) Compute the average forecast over the bootstrap samples:

ỹt∣t−1 =
1

B

B∑

i=1

ŷ∗(i)t∣t−1,

where the tilde indicates the bagging forecast.

PROPOSAL2 (Bagging the neural network model).The bagging predictor in the nonlin-

ear model is defined as follows:

(1) Repeat steps (1) and (2) in Proposal 1.

(2) For each bootstrap sample, first remove insignificant regressors by pre-testing as

in step (3) of Proposal 1. Then, estimate the nonlinear modelusing Bayesian

Regularization withM = 5 in (8). Note that for each bootstrap sample, the

optimal selection of variables and hidden units are different. Compute theith

bootstrap forecast and call it̂y∗(i)t∣t−1.

(3) Compute the average forecast over the bootstrap samples:

ỹt∣t−1 =
1

B

B∑

i=1

ŷ∗(i)t∣t−1.

Following Hall, Horowitz, and Jing (1995), we choose a blocksize ofm = T 1/3 for

the moving block bootstrap procedure in both proposals. This allows for dependence in

the error term of equation (5) (Corsi, Mittnik, Pigorsch, and Pigorsch 2008). The critical

valuec of the test statistic is set equal to 1.96, corresponding to atwo-sided test at the

95% confidence level. We also tried other critical values. Confidence levels much lower

than 95% worsen the bagging performance while levels stricter than 95% do not improve

the results further.

5. APPLICATION: BAGGING REALIZED VOLATILITY

5.1. Data. We use high-frequency tick-by-tick trades on 23 stocks fromthe set of the

Dow Jones Industrial Average index as listed in Table 1. The data are obtained from

the NYSE TAQ (Trade and Quote) database. The sample period covers 3-Jan-1995 to

31-Dec-2005. The selection of 23 out of the 30 stocks of the index is motivated by data

availability; these are the stocks for which we can obtain data that cover the entire sample

period.

In calculating daily realized volatility, we employ the realized kernel estimator with

modified Tukey-Hanning weights of Barndorff-Nielsen, Hansen, Lunde, and Shephard
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(in press). We start by cleaning the data for outliers. We consider transactions between

9.30 am through 4.00 pm. Following Barndorff-Nielsen, Hansen, Lunde, and Shephard

(in press) we employ the following 60 second activity fixed tick time sampling scheme:

fqt = 1+60nt/(�0t−�nt), wherefqt is the sampling frequency,nt represents the number

of transactions for dayt, and�0t, �nt are the times for the first and last trade for dayt. This

is tick-time sampling chosen such that the same number of observations is obtained each

day.

Following the realized volatility literature, we focus on logarithmic realized volatility.

Figure 7 shows the daily time series of returns, realized volatility, and logarithmic realized

volatility for WMT, a typical stock in the sample. We also consider dummies for the

days of the week as in Martens, van Dijk, and de Pooter (2004) and dummies for the

following macroeconomic announcements: Federal Open Market Committee meetings,

The Employment Situation Report from the Bureau of Labor Statistics, CPI and PPI price

indices; see also Scharth and Medeiros (2006) and McAleer and Medeiros (2006).

5.2. Results. In this section, we apply bagging Proposals 1 and 2 to the log-linear model

and to the neural network specification. We find that bagging improves the forecast per-

formance of the log-linear model, in particular in the late 1990s. The neural network

specification also benefits from bagging but there is less improvement. We compare the

forecast performances of the log-linear model and the neural network specification and

find that bagging eliminates any advantage of the nonlinear model.

We adopt the following strategy to compute one-day-ahead forecasts. The models are

initially estimated using data from the years 1995 to 1996 only. The forecast period

starts on 3-Jan-1997. The parameter estimates from the period 1995–1996 are then used

to compute one-day-ahead forecasts for the whole year 1997.Then, the model is re-

estimated on the data set 1995–1997 and the estimates are used to compute one-day ahead

forecasts for the year 1998, and so on. In the last iteration,we estimate the model on the

span 1995–2004 and use the parameters to generate forecastsfor 2005. In the bagging

procedure using the block-bootstrap of Künsch (1989), we useB = 200 replications and a

block size ofm = T 1/3 (Hall, Horowitz, and Jing 1995), such that the block size increases

with each year.

Tables 2 and 3 show one-step-ahead forecasting results for the log-linear and for the

nonlinear specification, respectively. The reported numbers are the fractions of the root

mean squared error (RMSE) of the considered model with bagging over the RMSE of
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the considered model without bagging. Therefore, a number less than one indicates that

bagging reduced the RMSE for that stock and year.

The numbers in parentheses report thep-value of the test for conditional predictive

ability of Giacomini and White (2006). The null hypothesis is that the expected loss of

the forecast (here RMSE) is the same for both models; a numberless than� indicates

that the null hypothesis is rejected at significance level�. Thus, a rejection only tells us

that one of the models has better forecast performance than the other. Exactly which one

of the two performs better has to be read from the RMSE. It is important to notice that

forecasting equality can can be rejected by the test even when the ratio is equal to one

in the tables. This is caused by rounding effects. For these cases we put a “-” or a “+”

meaning that the ratios are, in fact, bellow or above 1, respectively.

Table 2 shows that bagging leads to substantial reductions in forecast RMSE for the

log-linear model. The improvements are most pronounced in the 1990s and decline in

2004 and 2005. For the years 1997, 1998, and on the whole forecast sample 1997–2005

the Giacomini and White test rejects the null hypothesis forall series at all common sig-

nificance levels. We can conclude that bagging significantlyimproves forecast accuracy.

Table 3 shows the effect of bagging on forecasts made with theneural network spec-

ification. While the evidence from the RMSE fractions is moremixed across years and

stocks, the Giacomini and White test indicates significant improvements similar to the

log-linear specification. For some stocks, the nonlinear model benefits from bagging

across all years, such as AIG, GE, HD, MCD, MO, and MRK. The only stock for which

the nonlinear specification does not improve by bagging on the total sample is WMT.

Table 4 compares the RMSE of the forecast made with the neuralnetwork specification

(numerator) to the one by the log-linear model (denominator). Therefore, a number less

than one indicates that the nonlinear model outperforms thelog-linear model. The years

1997 through 2000 show forecast improvements over the log-linear model for most of the

stocks while the years 2004 and 2005 show no improvement at all. Some stock volatility

forecasts benefit from nonlinear modeling fairly consistently, such as AA, BA, HON, and

UTX. A possible reason for the better performance of the nonlinear model in the late

1990s is that the models are initially estimated on the years1995 and 1996, which still

fall into the low volatility regime that lasted through the mid-1990s. Then, the first year

of the forecast period 1997 experiences with the Asian crisis the onset of a high volatility

regime that lasts through 2003. Thus, the early estimates ofthe log-linear model may
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be less prepared to forecast the nonlinear phenomenon of thetransition into the high

volatility regime.

Table 5 makes the same comparison as Table 4 but in a bagging environment for both

models. It is apparent that bagging eliminates any advantage that nonlinear modeling dis-

played in Table 4. The Giacomini and White test in fact indicates that the neural network

specification performs significantly worse than the log-linear model under bagging in

many cases. A possible reason why the log-linear model catches up with and even outper-

forms the nonlinear model once it is bagged may be that bagging expands the shrinkage

representation of the conditional expectation that is the forecast (Stock and Watson 2005).

The shrinkage representation can be seen as an alternative approximation to Equation (7).

In summary, bagging the log-linear specification yields thebest forecast results on our

sample.

6. CONCLUSION

In this paper, we have studied how bagging can improve the out-of-sample accuracy

of forecast models for realized volatility. We consider 23 stocks over the period 1995

through 2005. Specifying a log-linear and a nonlinear forecast model for the realized

kernel estimator of integrated volatility, we find that bagging reduces the prediction mean

squared error for both model types. The improvement is more pronounced for the log-

linear model and for forecasts in the 1990s. Bagging is foundto eliminate the advantage

of the nonlinear specification over the log-linear specification on our sample. Bagging the

log-linear model shows the best forecast performance on oursample.
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BÜHLMANN , P.,AND B. YU (2002): “Analyzing Bagging,”Annals of Statistics, 30, 927–961.

BIAIS , B., L. GLOSTEN, AND C. SPATT (2005): “Market Microstructure: A Survey of Microfoundations,

Empirical Results, and Policy Implications,”Journal of Financial Markets, 8, 217–264.

BOLLERSLEV, T. (1987): “A conditionally heteroskedastic time series model for speculative prices and

rates of return,”The Review of Economics and Statistics, 69, 542–547.

BREIMAN , L. (1996): “Bagging Predictors,”Machine Learning, 36, 105–139.

CAMPBELL , J., A. LO, AND A. M ACK INLAY (1997):The Econometrics of Financial Markets. Princeton

University Press, Princeton, NJ.

CHEN, X., J. RACINE, AND N. R. SWANSON (2001): “Semiparametric ARX neural-network models with

an application to forecasting inflation,”IEEE Transactions on Neural Networks, 12, 674–683.

CHEN, X., AND X. SHEN (1998): “Sieve extremum estimates for weakly dependent data,” Econometrica,

66, 289–314.

CHEN, X., AND H. WHITE (1998): “Improved rates and asymptotic normality for nonparametric neural

network estimators,”IEEE Transactions on Information Theory, 18, 17–39.

CHRISTENSEN, K., R. OOMEN, AND M. PODOLSKIJ (2008): “Realised Quantile-Based Estimation of the

Integrated Variance,” Working paper, University of Aarhus, Denmark.

CORSI, F. (2004): “A Simple Long Memory Model of Realized Volatility,” Manuscript, University of

Southern Switzerland.



16 E. HILLEBRAND AND M. C. MEDEIROS

CORSI, F., S. MITTNIK , C. PIGORSCH, AND U. PIGORSCH(2008): “The volatility of realized volatility,”

Econometric Reviews, 27, 46–78.

CRAIOVEANU , M., AND E. HILLEBRAND (2008): “Models for Daily Realized Stock Volatility Time

Series,” Working paper, Louisiana State University.

DING, Z., C. W. J. GRANGER, AND R. F. ENGLE (1993): “A Long Memory Property of Stock Market

Returns and a New Model,”Journal of Empirical Finance, 1, 83–106.

DONALDSON, R. G.,AND M. K AMSTRA (1997): “An artificial neural network-GARCH model for inter-

national stock return volatility,”Journal of Empirical Finance, 4(1), 17–46.

ENGLE, R. F. (1982): “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of

UK Inflations,” Econometrica, 50, 987–1007.

ENGLE, R. F., AND T. BOLLERSLEV (1986): “Modelling the Persistence of Conditional Variances,”

Econometric Reviews, 5, 1–50.

ENGLE, R. F.,AND V. K. NG (1993): “Measuring and Testing the Impact of News on Volatility,” Journal

of Finance, 48, 1749–1778.

FERNANDES, M., M. MEDEIROS, AND M. SCHARTH (2007): “Modeling and Predicting the CBOE Mar-

ket Volatility Index,” Discussion paper, Pontifical Catholic University of Rio de Janeiro.

FORESEE, F. D.,AND M. T. HAGAN (1997): “Gauss-Newton Approximation to Bayesian Regularization,”

in IEEE International Conference on Neural Networks (Vol. 3), pp. 1930–1935, New York. IEEE.

GIACOMINI , R., AND H. WHITE (2006): “Tests of Conditional Predictive Ability,”Econometrica, 74,

1545–1578.

GLOSTEN, L., R. JAGANNATHAN , AND R. RUNKLE (1993): “On The Relationship Between The Ex-

pected Value and The Volatility of The Nominal Excess Returns on Stocks,”Journal of Finance, 48,

1779–1801.

GRENANDER, U. (1981):Abstract Inference. Wiley Series, New York.

HALL , P., J. HOROWITZ, AND B.-Y. JING (1995): “On Blocking Rules for the Bootstrap with Dependent

Data,”Biometrika, 82, 561–574.

HAMID , S. A.,AND Z. IQBAL (2004): “Using neural networks for forecasting volatilityof S&P 500 Index

futures prices,”Journal of Business Research, 57(1), 1116–1125.

HANSEN, P., J. LARGE, AND A. L UNDE (2008): “Moving average-based estimators of integrated vari-

ance,”Econometric Reviews, 27, 79–111.

HILLEBRAND , E., AND M. M EDEIROS(to appear): “Estimating and Forecasting GARCH Models in The

Presence of Structural Breaks and Regime Switches,” inForecasting in The Presence of Structural Breaks

and Model Uncertainty, ed. by M. Wohar,andD. Rapach. Elsevier.

HILLEBRAND , E., AND M. C. MEDEIROS(2008): “Asymmetries, Breaks, and Long-Range Dependence:

An Estimation Framework for Time Series of Daily Realized Volatility,” Working paper, Louisiana State

University and Pontifical Catholic University Rio de Janeiro.

HORNIK, K., M. STINCHCOMBE, H. WHITE, AND P. AUER (1994): “Degree of Approximation Results

for Feedforward Networks Approximating Unknown Mappings and Their Derivatives,”Neural Computa-

tion, 6, 1262–1274.



BAGGING REALIZED VOLATILITY MODELS 17

HORNIK, K., M. STINCHOMBE, AND H. WHITE (1989): “Multi-Layer Feedforward Networks are Uni-

versal Approximators,”Neural Networks, 2, 359–366.

HU, M. Y., AND C. TSOUKALAS (1999): “Combining conditional volatility forecasts using neural net-

works: an application to the EMS exchange rates,”Journal of International Financial Markets, Institutions

and Money, 9(4), 407–422.

HUANG, H., AND T.-H. LEE (2007a): “Forecasting Using High-Frequency Financial Time Series,” Work-

ing paper, University of California at Riverside.

(2007b): “To Combine Forecasts or to Combine Information,”Working paper, University of Cali-

fornia at Riverside.

INOUE, A., AND L. K ILIAN (2004): “Bagging Time Series Models,” Discussion paper no.4333, Centre

for Economic Policy Research (CEPR).

(in press): “How Useful is Bagging in Forecasting Economic Time Series? A Case Study of U.S.

CPI Inflation,”Journal of the American Statistical Association.
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7. APPENDIX

Let D := (y,Z) represent the data set, wherey = (log(RV1), . . . , log(RVT ))
′ and

Z = (z′1, . . . , z
′
T )

′. ℳ is a particular neural network model. After the data are obtained,

the density function for the parameters is updated according to Bayes’ rule

(12) ℙ ( ∣D, �, 
,ℳ) =
ℙ (D∣ , �,ℳ)ℙ ( ∣
,ℳ)

ℙ (D∣�, 
,ℳ)
,

whereℙ ( ∣
,ℳ) is the prior density, which represents our knowledge of the parameters

before any data is collected,ℙ (D∣ , �,ℳ) is the likelihood function, which is the prob-

ability of the data occurring given the parameters, andℙ (D∣�, 
,ℳ) is a normalization

factor, which guarantees that the total probability is equal to one.

If the distribution of"t and the prior distribution for the parameters are both Gaussian,

thenℙ (D∣ , �,ℳ) andℙ ( ∣�,ℳ) are written as

(13) ℙ (D∣ , �,ℳ) =

(
�

�

)−T
2

exp [−�QT ( )]

and

(14) ℙ ( ∣�,ℳ) =

(
�




)−L
2

exp [−
Q∗
T ( )] ,

whereL is the total number of parameters in the NN model. Substituting (14) and (13)

into (12), we get

ℙ ( ∣D, �, 
,ℳ) =

(
�
�

)−T
2

(
�



)−L
2

exp {− [�QT ( ) + 
Q∗
T ( )]}

Normalization Factor

= Z(�, 
) exp
[
−Q̃T ( )

]
.

(15)

In this Bayesian framework, the optimal parameters should maximize the posterior proba-

bility ℙ ( ∣D, �, 
,ℳ), which is equivalent to minimizing the regularized objective func-

tion given in (10). The regularization parameters are optimized by applying Bayes’ rule

(16) ℙ (�, 
∣D,ℳ) =
ℙ (D∣�, 
,ℳ)ℙ (�, 
∣ℳ)

ℙ (D∣ℳ)
.

Assuming a uniform prior densityℙ (�, 
∣ℳ) for the regularization parameters, maxi-

mizing the posterior is achieved by maximizing the likelihood functionℙ (D∣ , �,ℳ).
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Since all probabilities have a Gaussian form, the normalization factor is expressed as

(17) ℙ (D∣�, 
,ℳ) =
ℙ (D∣ , �,ℳ)ℙ ( ∣
,ℳ)

ℙ ( ∣D, �, 
,ℳ)
=

(
�

�

)−T
2

(
�




)−L
2

Z−1(�, 
).

Since the objective function is quadratic in a small area surrounding a minimum point, we

can expand̃QN( ) in a Taylor series around the minimum point of the posterior density,

where the gradient is zero. Solving for the normalizing constant yields

(18) Z(�, 
) = (2�)
L
2 [det (H)]−1/2 exp

[
−Q̃T ( )

]
,

whereH is the Hessian matrix of the objective function. Inserting (17) into (16) we solve

for the optimal values for� and
 at the minimum point. We do this by computing the

derivatives of the log of (17) with respect to
 and� and setting them equal to zero. This

yields

(19) 
̂ =
�

2Q∗( )

and

(20) �̂ =
T − �

2QT ( )
,

where� = L− 2
trace(H)−1 is called the effective number of parameters.

Following Foresee and Hagan (1997), the steps required for Bayesian optimization

of the regularization parameters with the Gauss-Newton approximation to the Hessian

matrix are:

(1) Initialize �, 
, and the network parameters by the Nguyen-Widrow rule (Nguyen

and Widrow 1990). After the first estimation step, the objective function parame-

ters recover from the initial setting.

(2) Take one step of the Levenberg-Marquardt algorithm to minimize the objective

functionQ̃N ( ).

(3) Compute the effective number of parameters� = L − 2
 trace(H)−1 making

use of the Gauss-Newton approximation to the Hessian matrixavailable in the

Levenberg-Marquardt optimization algorithm:H = ∇2Q̃N( ) ≈ 2
J′J+ 2�IT ,

whereJ is the Jacobian matrix of the estimation set errors.

(4) Compute new estimates for the objective function parameters.

(5) Now iterate steps 1 through 3 until convergence.
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TABLE 1. DATA DESCRIPTION.

The first two columns display the symbols and names of the stocks considered
in the empirical investigation. The third column gives the average number of
transactions per day. The number of days is 2771.

Symbol Stock Transactions per day
AA Alcoa Inc. 2055
AIG American International Group Inc. 2979
AXP American Express Co. 2599
BA Boeing Co. 3006
CAT Caterpillar Inc. 3597
DD Du Pont de Nemours & Co. 2587
DIS Walt Disney Co. 3839
GE General Electric Co. 8072
GM General Motors Corp. 2945
HD Home Depot Inc. 4758
HON Honeywell International Inc. 1888
IBM International Business Machines Corp. 5117
JNJ Johnson & Johnson 3551
JPM JPMorgan Chase & Co. 3400
KO Coca-Cola Co. 3302
MCD McDonald’s Corp. 2720
MMM 3M Co. 2183
MO Altria Group Inc. 4031
MRK Merck & Co. Inc. 4353
PFE Pfizer Inc. 7029
PG Procter and Gamble Co. 3062
UTX United Technologies Corp. 1834
WMT Wal-Mart Stores Inc. 4797
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TABLE 2. BAGGING THE LOG-L INEAR MODEL.

The table reports the ratio of the root mean squared errors from the log-linear model for one-day ahead
forecasts between 1997 and 2005 with and without bagging. Numbers below one indicate that bagging im-
proves the forecast performance. The numbers in parentheses report thep-value of Giacomini and White’s
(2006) test of conditional predictive ability.

Series 1997 1998 1999 2000 2001 2002 2003 2004 2005 1997–2005
AA 0.79 0.83 0.91 0.87 0.86 0.96 0.97 0.98 1.00 0.88

(0.00) (0.00) (0.17) (0.14) (0.00) (0.38) (0.25) (0.35) (0.37) (0.00)
AIG 0.81 0.82 0.83 0.89 0.99 0.96 0.99 0.99 0.98 0.91

(0.00) (0.00) (0.00) (0.00) (0.35) (0.04) (0.57) (0.18) (0.04) (0.00)
AXP 0.80 0.85 0.85 0.89 0.96 0.98 0.97 1.00 1.01 0.91

(0.00) (0.00) (0.01) (0.00) (0.17) (0.25) (0.00) (0.54) (0.44) (0.00)
BA 0.86 0.86 0.92 0.91 0.93 0.91 0.93 0.99 0.98 0.91

(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.20) (0.20) (0.00)
CAT 0.86 0.85 0.89 0.90 0.97 0.94 0.96 0.97 0.99 0.91

(0.00) (0.00) (0.00) (0.00) (0.07) (0.00) (0.01) (0.02) (0.77) (0.00)
DD 0.73 0.77 0.88 0.92 0.95 0.95 0.97 0.99 0.99 0.87

(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.03) (0.61) (0.66) (0.00)
DIS 0.80 0.85 0.91 0.91 0.96 0.92 0.96 0.99 1.00 0.91

(0.00) (0.00) (0.01) (0.00) (0.04) (0.00) (0.01) (0.83) (0.78) (0.00)
GE 0.90 0.90 0.90 0.92 0.97 0.93 0.97 0.97 0.99 0.94

(0.00) (0.00) (0.00) (0.00) (0.65) (0.00) (0.01) (0.01) (0.17) (0.00)
GM 0.88 0.88 0.93 0.90 0.92 0.93 0.92 0.99 0.98 0.92

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.37) (0.06) (0.00)
HD 0.85 0.89 0.89 0.89 0.92 0.96 0.97 0.99 1.00 0.91

(0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.12) (0.30) (0.11) (0.00)
HON 0.84 0.85 0.85 0.84 0.90 0.96 0.94 0.99 0.99 0.89

(0.00) (0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.60) (0.03) (0.00)
IBM 0.86 0.94 0.92 0.93 0.97 0.95 0.961.00− 0.99 0.95

(0.00) (0.01) (0.00) (0.02) (0.32) (0.05) (0.36) (0.01) (0.60) (0.00)
JNJ 0.88 0.88 0.90 0.94 0.97 0.98 0.96 0.99 0.98 0.94

(0.00) (0.00) (0.00) (0.00) (0.00) (0.38) (0.00) (0.58) (0.79) (0.00)
JPM 0.79 0.72 0.87 0.89 0.93 0.93 0.96 0.99 0.99 0.87

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.77) (0.72) (0.00)
KO 0.80 0.88 0.93 0.91 0.96 0.95 0.98 1.00 0.99 0.92

(0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.19) (0.86) (0.82) (0.00)
MCD 0.93 0.88 0.88 0.92 0.95 0.93 0.96 0.99 0.98 0.93

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.38) (0.06) (0.00)
MMM 0.82 0.88 0.89 0.91 0.91 0.97 0.96 0.98 0.99 0.90

(0.00) (0.00) (0.00) (0.00) (0.00) (0.15) (0.00) (0.02) (0.34) (0.00)
MO 0.80 0.92 0.95 0.91 0.92 0.97 0.98 0.98 0.99 0.93

(0.00) (0.00) (0.05) (0.00) (0.00) (0.04) (0.04) (0.04) (0.36) (0.00)
MRK 0.80 0.91 0.92 0.92 0.97 0.95 0.97 0.99 0.98 0.93

(0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.05) (0.79) (0.03) (0.00)
PFE 0.80 0.90 0.93 0.92 0.98 0.98 0.98 0.98 0.98 0.93

(0.00) (0.00) (0.02) (0.00) (0.13) (0.33) (0.07) (0.13) (0.09) (0.00)
PG 0.76 0.83 0.92 0.91 0.98 0.94 1.00 0.99 0.98 0.91

(0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.41) (0.43) (0.01) (0.00)
UTX 0.75 0.77 0.88 0.86 0.90 0.92 0.95 0.98 0.96 0.86

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.08) (0.00) (0.00)
WMT 0.84 0.82 0.84 0.82 0.93 0.98 0.97 0.99 0.99 0.89

(0.00) (0.00) (0.00) (0.00) (0.00) (0.05) (0.11) (0.67) (0.03) (0.00)
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TABLE 3. BAGGING THE NEURAL NETWORK MODEL.

The table reports the ratio of the root mean squared errors from the nonlinear model for one-day ahead
forecasts between 1997 and 2005 with and without bagging. Numbers below one indicate that bagging im-
proves the forecast performance. The numbers in parentheses report thep-value of Giacomini and White’s
(2006) test of conditional predictive ability.

Series 1997 1998 1999 2000 2001 2002 2003 2004 2005 1997–2005
AA 1.02 0.90 0.93 0.96 0.89 0.99 0.96 0.99 1.00 0.92

(0.09) (0.00) (0.00) (0.00) (0.00) (0.66) (0.10) (0.59) (0.63) (0.00)
AIG 0.97 0.87 0.88 0.93 0.98 0.96 0.99 0.98 0.97 0.92

(0.00) (0.00) (0.00) (0.01) (0.07) (0.03) (0.56) (0.32) (0.14) (0.00)
AXP 0.96 0.93 0.89 0.93 0.95 1.00 0.98 0.99 1.00 0.93

(0.00) (0.00) (0.00) (0.11) (0.01) (0.99) (0.40) (0.06) (0.66) (0.00)
BA 0.93 0.88 0.93 0.92 0.98 0.91 0.96 1.01 1.00 0.92

(0.00) (0.00) (0.00) (0.00) (0.21) (0.00) (0.09) (0.81) (0.92) (0.00)
CAT 0.95 0.88 0.94 0.94 0.96 0.95 0.97 0.99 1.00 0.90

(0.00) (0.00) (0.00) (0.01) (0.02) (0.00) (0.05) (0.94) (0.85) (0.00)
DD 0.98 0.84 0.92 0.94 0.95 0.98 0.99 1.00 0.99 0.93

(0.00) (0.00) (0.01) (0.00) (0.00) (0.21) (0.85) (0.88) (0.76) (0.00)
DIS 0.96 0.89 0.94 0.93 0.96 0.95 0.96 1.01 0.99 0.93

(0.00) (0.00) (0.01) (0.00) (0.00) (0.19) (0.03) (0.10) (0.92) (0.00)
GE 0.97 0.86 0.93 0.96 0.96 0.96 0.96 0.98 0.99 0.95

(0.00) (0.00) (0.00) (0.02) (0.02) (0.04) (0.69) (0.80) (0.48) (0.00)
GM 1.00− 0.85 0.98 0.95 0.94 0.96 0.94 0.98 0.98 0.92

(0.06) (0.00) (0.09) (0.00) (0.00) (0.01) (0.00) (0.13) (0.03) (0.00)
HD 0.94 0.91 0.94 0.95 0.95 0.99 0.97 0.99 0.99 0.95

(0.00) (0.00) (0.01) (0.15) (0.02) (0.06) (0.07) (0.93) (0.54) (0.00)
HON 1.03 1.00− 0.98 0.90 0.94 0.99 0.96 1.00 1.01 0.92

(0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.07) (0.79) (0.16) (0.00)
IBM 0.91 1.00 0.92 0.96 0.98 0.98 0.98 1.01 0.99 0.96

(0.00) (0.39) (0.01) (0.25) (0.58) (0.34) (0.16) (0.02) (0.23) (0.00)
JNJ 1.02 0.91 0.94 0.97 0.99 0.98 0.98 0.99 0.99 0.95

(0.00) (0.00) (0.00) (0.07) (0.48) (0.12) (0.26) (0.01) (0.25) (0.00)
JPM 0.92 0.86 0.91 0.89 0.91 0.95 0.96 1.00 0.97 0.91

(0.00) (0.00) (0.00) (0.00) (0.00) (0.56) (0.08) (0.34) (0.43) (0.00)
KO 0.91 0.93 0.93 0.90 0.98 0.97 0.971.00+ 0.99 0.94

(0.00) (0.00) (0.00) (0.00) (0.56) (0.01) (0.52) (0.06) (0.76) (0.00)
MCD 0.92 0.92 0.95 0.96 0.95 0.94 0.99 0.99 0.99 0.94

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.68) (0.92) (0.06) (0.00)
MMM 0.96 0.91 0.95 0.93 0.95 0.95 0.98 0.99 1.00 0.95

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.13) (0.70) (0.15) (0.00)
MO 0.89 0.95 0.98 0.94 0.96 0.97 0.99 0.99 0.99 0.92

(0.00) (0.00) (0.95) (0.00) (0.05) (0.05) (0.65) (0.98) (0.42) (0.00)
MRK 0.99 0.91 0.96 0.93 0.99 0.96 0.97 0.99 0.99 0.95

(0.00) (0.00) (0.00) (0.00) (0.48) (0.01) (0.35) (0.65) (0.43) (0.00)
PFE 0.89 0.87 0.97 0.97 0.98 1.03 0.99 1.02 0.99 0.93

(0.00) (0.00) (0.04) (0.01) (0.11) (0.15) (0.17) (0.01) (0.05) (0.00)
PG 0.94 0.90 0.93 0.91 0.98 0.94 0.97 0.98 1.00 0.93

(0.00) (0.00) (0.00) (0.00) (0.14) (0.00) (0.28) (0.13) (0.97) (0.00)
UTX 0.95 0.92 0.92 0.95 0.96 0.94 0.961.00− 0.97 0.95

(0.00) (0.00) (0.00) (0.28) (0.04) (0.01) (0.02) (0.02) (0.07) (0.00)
WMT 1.00 1.06 0.94 0.90 0.98 1.01 1.04 1.05 0.99 1.01

(0.35) (0.00) (0.00) (0.00) (0.19) (0.48) (0.00) (0.00) (0.00) (0.00)
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TABLE 4. NONLINEAR VS. LOG-L INEAR MODEL WITHOUT BAGGING.

The table reports the ratio of the root mean squared errors from the nonlinear and log-linear models for
one-day-ahead forecasts between 1997 and 2005 without bagging. Numbers below one indicate that non-
linearity improves the forecast performance. The numbers in parentheses report thep-value of Giacomini
and White’s (2006) test of conditional predictive ability.

Series 1997 1998 1999 2000 2001 2002 2003 2004 2005 1997–2005
AA 0.74 0.93 0.97 0.95 0.97 0.98 0.99 0.99 1.00 0.97

(0.00) (0.00) (0.00) (0.00) (0.25) (0.38) (0.72) (0.70) (0.63) (0.00)
AIG 0.84 1.01 0.96 0.98 1.02 1.01 0.99 1.01 1.01 1.04

(0.07) (0.00) (0.04) (0.42) (0.20) (0.01) (0.63) (0.43) (0.37) (0.00)
AXP 0.85 1.05 0.97 0.95 1.03 0.98 0.98 0.99 1.00 1.04

(0.00) (0.00) (0.48) (0.84) (0.13) (0.44) (0.28) (0.62) (0.78) (0.00)
BA 0.94 0.97 1.00− 0.98 0.98 0.99 0.97 0.98 0.98 1.02

(0.05) (0.05) (0.03) (0.00) (0.00) (0.75) (0.04) (0.32) (0.47) (0.00)
CAT 0.95 0.97 0.95 0.97 1.03 0.99 0.99 1.01 1.00 1.05

(0.06) (0.00) (0.09) (0.48) (0.10) (0.15) (0.23) (0.27) (0.54) (0.00)
DD 0.73 0.89 0.95 0.99 0.99 0.99 0.97 1.00 1.00 0.98

(0.01) (0.37) (0.03) (0.01) (0.81) (0.57) (0.02) (0.93) (0.58) (0.00)
DIS 0.82 1.00− 0.99 0.96 1.01 0.97 1.00 1.00 1.00 1.00−

(0.01) (0.00) (0.11) (0.03) (0.06) (0.20) (0.92) (0.82) (0.53) (0.00)
GE 0.97 1.09 0.98 0.97 1.01 1.00 1.01 0.98 0.99 1.04

(0.06) (0.00) (0.36) (0.78) (0.39) (0.56) (0.31) (0.58) (0.42) (0.00)
GM 0.88 1.12 0.99 0.96 0.98 0.99 0.99 1.01 1.01 1.03

(0.00) (0.00) (0.20) (0.04) (0.17) (0.94) (0.66) (0.29) (0.59) (0.00)
HD 0.89 1.05 0.95 0.95 0.99 1.00 1.00 0.99 1.00 1.00−

(0.00) (0.00) (0.11) (0.26) (0.69) (0.74) (0.92) (0.93) (0.35) (0.00)
HON 0.82 0.87 0.88 0.94 0.97 0.97 0.99 0.99 1.00 1.00+

(0.00) (0.07) (0.00) (0.00) (0.06) (0.14) (0.75) (0.10) (0.81) (0.00)
IBM 0.95 0.99 1.01 0.99 1.00 0.97 0.99 0.98 1.01 1.02

(0.03) (0.13) (0.07) (0.18) (0.89) (0.26) (0.87) (0.12) (0.34) (0.01)
JNJ 0.86 0.96 0.96 0.95 0.97 1.00 1.00 1.00 1.00 1.00+

(0.16) (0.10) (0.04) (0.10) (0.01) (0.20) (0.58) (0.14) (0.19) (0.07)
JPM 0.86 0.85 0.97 0.99 1.02 0.96 0.98 1.00 1.00 0.98

(0.01) (0.70) (0.39) (0.12) (0.24) (0.05) (0.36) (0.72) (0.59) (0.01)
KO 0.88 0.97 1.00 0.98 0.99 0.99 0.99 1.01 1.00 0.99

(0.04) (0.19) (0.15) (0.60) (0.08) (0.53) (0.60) (0.05) (0.23) (0.01)
MCD 1.01 1.00 0.90 0.94 1.00 0.98 0.98 1.00 0.99 1.00

(0.03) (0.49) (0.07) (0.06) (0.96) (0.11) (0.04) (0.34) (0.71) (0.08)
MMM 0.86 0.99 0.92 0.98 0.95 1.01 0.98 0.98 0.99 0.97

(0.00) (0.00) (0.36) (0.28) (0.01) (0.18) (0.16) (0.10) (0.41) (0.00)
MO 0.89 0.97 0.96 0.96 0.96 1.00 0.99 1.00 1.00 1.04

(0.00) (0.71) (0.56) (0.63) (0.01) (0.24) (0.44) (0.82) (0.18) (0.00)
MRK 0.80 1.02 0.94 0.99 1.00 1.00+ 1.02 1.01 0.98 1.00+

(0.08) (0.03) (0.11) (0.07) (0.92) (0.07) (0.06) (0.07) (0.12) (0.00)
PFE 0.90 1.04 1.01 0.98 1.01 1.03 1.01 0.97 0.99 1.03

(0.00) (0.00) (0.02) (0.56) (0.81) (0.13) (0.42) (0.06) (0.44) (0.00)
PG 0.80 0.92 0.97 1.00 1.00 1.00 1.02 1.00 0.98 0.99

(0.17) (0.00) (0.38) (0.86) (0.36) (0.89) (0.05) (0.15) (0.09) (0.02)
UTX 0.75 0.83 0.95 0.92 0.95 0.98 0.99 0.98 0.99 0.91

(0.00) (0.00) (0.44) (0.01) (0.00) (0.20) (0.61) (0.34) (0.68) (0.00)
WMT 0.85 0.85 0.90 0.92 0.99 1.00 0.981.00− 1.01 0.94

(0.00) (0.00) (0.04) (0.01) (0.40) (0.12) (0.06) (0.00) (0.00) (0.00)
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TABLE 5. NONLINEAR VS. LOG-L INEAR MODEL WITH BAGGING.

The table reports the ratio of the root mean squared errors from the nonlinear and log-linear models for
one-day-ahead forecasts between 1997 and 2005 with bagging. Numbers below one indicate that nonlin-
earity improves the forecast performance. The numbers in parentheses report thep-value of Giacomini and
White’s (2006) test of conditional predictive ability.

Series 1997 1998 1999 2000 2001 2002 2003 2004 2005 1997–2005
AA 0.96 1.01 1.00− 1.04 1.01 1.01 0.99 1.00 1.00 1.01

(0.02) (0.03) (0.00) (0.00) (0.17) (0.39) (0.06) (0.99) (0.18) (0.00)
AIG 1.01 1.06 1.01 1.03 1.01 1.00− 0.99 1.00 1.00 1.05

(0.00) (0.00) (0.00) (0.07) (0.08) (0.06) (0.56) (0.26) (0.39) (0.00)
AXP 1.02 1.15 1.01 1.00− 1.01 1.00 0.99 0.99 0.99 1.07

(0.00) (0.00) (0.00) (0.00) (0.52) (0.26) (0.65) (0.02) (0.11) (0.00)
BA 1.02 1.00 1.01 1.00 1.04 0.99 1.00 1.00 1.00 1.02

(0.00) (0.83) (0.02) (0.00) (0.04) (0.44) (0.79) (0.24) (0.69) (0.00)
CAT 1.05 1.01 0.99 1.02 1.02 1.00 1.00 1.02 1.01 1.04

(0.00) (0.00) (0.59) (0.00) (0.11) (0.87) (0.68) (0.00) (0.39) (0.00)
DD 0.99 0.98 1.00− 1.01 0.99 1.01 0.99 1.01 1.00 1.04

(0.00) (0.08) (0.10) (0.41) (0.48) (0.54) (0.93) (0.02) (0.44) (0.00)
DIS 0.98 1.05 1.03 0.99 1.01 1.00 1.00 1.01 0.99 1.02

(0.08) (0.00) (0.02) (0.24) (0.39) (0.17) (0.36) (0.01) (0.49) (0.00)
GE 1.05 1.04 1.02 1.01 1.00+ 1.03 1.01 0.99 0.99 1.05

(0.00) (0.00) (0.18) (0.13) (0.07) (0.13) (0.00) (0.01) (0.00) (0.00)
GM 0.99 1.07 1.04 1.02 1.01 1.01 1.011.00− 1.00 1.03

(0.23) (0.00) (0.00) (0.00) (0.22) (0.21) (0.34) (0.06) (0.17) (0.00)
HD 0.98 1.08 1.01 1.01 1.01 1.03 1.00 0.99 0.99 1.03

(0.13) (0.00) (0.08) (0.00) (0.20) (0.04) (0.56) (0.38) (0.50) (0.00)
HON 1.00+ 1.02 1.01 1.00+ 1.01 1.00+ 1.01 1.00 1.02 1.03

(0.05) (0.00) (0.00) (0.00) (0.16) (0.01) (0.48) (0.65) (0.02) (0.00)
IBM 1.00 1.06 1.01 1.02 1.01 1.00 1.01 0.99 1.00 1.03

(0.04) (0.00) (0.00) (0.00) (0.15) (0.44) (0.00) (0.01) (0.13) (0.00)
JNJ 1.00 1.01 1.00 0.99 1.00 1.00 1.011.00− 1.00 1.01

(0.97) (0.03) (0.74) (0.08) (0.35) (0.54) (0.00) (0.00) (0.63) (0.01)
JPM 1.00+ 1.01 1.00 0.99 1.00 0.98 0.99 1.01 0.99 1.03

(0.00) (0.00) (0.30) (0.01) (0.93) (0.85) (0.38) (0.09) (0.10) (0.00)
KO 1.00 1.02 1.00 0.97 1.02 1.01 0.99 1.011.00+ 1.02

(0.46) (0.02) (0.77) (0.59) (0.02) (0.67) (0.01) (0.00) (0.01) (0.00)
MCD 1.01 1.04 0.98 0.99 1.00 0.99 1.011.00− 1.00 1.01

(0.47) (0.00) (0.15) (0.54) (0.91) (0.08) (0.41) (0.02) (0.57) (0.00)
MMM 1.00− 1.04 0.99 0.99 1.00 1.00 0.99 0.991.00− 1.02

(0.00) (0.00) (0.88) (0.89) (0.23) (0.93) (0.92) (0.49) (0.02) (0.00)
MO 0.99 1.00 1.00+ 0.99 1.00 1.00 1.00 1.01 1.00 1.02

(0.00) (0.52) (0.06) (0.46) (0.29) (0.64) (0.54) (0.02) (0.46) (0.00)
MRK 0.99 1.02 0.99 1.01 1.01 1.02 1.02 1.01 1.00 1.02

(0.00) (0.03) (0.09) (0.01) (0.11) (0.08) (0.00) (0.00) (0.87) (0.00)
PFE 1.00− 1.00 1.06 1.02 1.01 1.08 1.01 1.011.00− 1.03

(0.02) (0.86) (0.06) (0.37) (0.31) (0.01) (0.01) (0.02) (0.08) (0.00)
PG 0.99 1.00− 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.01

(0.00) (0.01) (0.45) (0.74) (0.95) (0.25) (0.46) (0.84) (0.22) (0.00)
UTX 0.95 0.99 1.00 1.02 1.02 1.00 1.00 1.00 1.00 1.00

(0.03) (0.02) (0.94) (0.00) (0.33) (0.71) (0.99) (0.36) (0.45) (0.00)
WMT 1.01 1.10 1.01 1.02 1.04 1.03 1.05 1.06 1.01 1.07

(0.08) (0.00) (0.16) (0.00) (0.00) (0.04) (0.00) (0.00) (0.00) (0.00)
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FIGURE 1. Time series of (a) returns, (b) realized volatility, and (c) loga-
rithmic realized volatility of WMT.
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