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ABSTRACT. In this paper we propose a flexible model to capture nonlinearities aneréomg depen-
dence in time series dynamics. The new model is a multiple regime smooth transitinsientef the
Heterogenous Autoregressive (HAR) model, which is specifically dedigm model the behavior of
the volatility inherent in financial time series. The model is able to describe sirsoltigty long mem-
ory, as well as sign and size asymmetries. A sequence of tests is deviaapetdrmine the number
of regimes, and an estimation and testing procedure is presented. MoldesiGaulations evaluate
the finite-sample properties of the proposed tests and estimation procetNeespply the model to
several Dow Jones Industrial Average index stocks using transdetiehdata from the Trades and
Quotes database that covers ten years of data. We find strong sfgedortg memory and both sign
and size asymmetries. Furthermore, the new model, when combined with theHiABamodel, is
viable and flexible for purposes of forecasting volatility.
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2 LONG MEMORY AND ASYMMETRIC EFFECTS

1. INTRODUCTION

Given the rapid growth in financial markets and the continual developnfemdve and more com-
plex financial instruments, there is an ever-growing need to understarttigbretical and empirical
processes underlying the volatility in financial time series. It is well knowntti@daily returns of
financial assets, especially of stocks, can be extremely difficult to predtitough the volatility of the
returns seems to be relatively more straightforward to forecast. Thus$dtdy surprising that finan-
cial econometrics, and particularly the modelling of financial volatility, hasgqaaguch a central role
in modern pricing and risk management theories. Andersen, Bollersleist@fersen, and Diebold
(2007) provide a recent overview of the literature.

There is, however, an inherent problem in using models where the volatilagune plays a central
role. The conditional variance is latent, and hence is not directly oldservgarly classes of volatil-
ity models used squared daily returns as a measure of volatility. Howevéhisameasure is very
noisy, volatility was specified as a latent variable in different models. Wseid popular examples
of such models are the (Generalized) Autoregressive Conditional ds&ttasticity, or (G)ARCH,
model of Engle (1982) and Bollerslev (1986), various stochastic volatilitgetso(see, for example,
Taylor (1986)), and the exponentially weighted moving averages (EWapdroach, as advocated
by the Riskmetrics methodology (J. P. Morgan 1996). McAleer (200%sgasrecent exposition of a
wide range of univariate and multivariate, conditional and stochastic, Isiofl@olatility, and Asai,
McAleer, and Yu (2006) provide a review of the rapidly growing literatonemultivariate stochastic
volatility models. However, as observed by Bollerslev (1987), MalmstenTaribsvirta (2004), and
Carnero, PBa, and Ruiz (2004), among others, most of the latent volatility models haveumable to
capture simultaneously several important empirical features that ar@iherfinancial time series.

An empirical regularity which standard latent volatility models fail to descrilezjadtely is the low,
but slowly decreasing, autocorrelations in the squared returns thassoeiated with the high excess
kurtosis of returns. In this sense, the assumption of Gaussian stamdhrdtmrns has been refuted
in many studies, and heavy-tailed distributions have been used insteatierfaore, there is strong
evidence of long-range dependence in the conditional volatility of finhticia series. One possible
explanation of long memory is aggregation. Volatility is modelled as a sum of eliff@rocesses, each
with low persistence. The aggregation induces long memory, as noted ng&srél 980), LeBaron
(2001), Fouque, Papanicolaou, Sircar, and Sglna (2003), Davigisd Sibbertsen (2005), Hyung,
Poon, and Granger (2007), and Lieberman and Phillips (2007).

On the other hand, the literature has also documented asymmetric effectstilityaBtarting with
Black (1976), it has been observed that there is an asymmetric respitthgeconditional variance of
the series to unexpected news, as represented by shocks. Finangieisnieecome more volatile in
response to “bad news” (or negative shocks) than to “good newgjdsitive shocks). Goetzmann,
Ibbotson, and Peng (2001) found evidence of asymmetric sign effeetdatility as far back as 1857
for the NYSE. They report that unexpected negative shocks in morghlyns of the NYSE from 1857
to 1925 increase volatility almost twice as much as do equivalent positiveshoreturns of a similar
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magnitude. Similar results were also reported by Schwert (1990). The abentioned asymmetry
has motivated a large number of different asymmetric latent volatility models.

However, most volatility models have been unable to describe simultaneoullgdrdinear effects
and long memory. The statistical consequences of neglecting or misspgcityitinearities have been
discussed in the context of structural breaks in the GARCH literature Hyoki€1986), Lamoureux
and Lastrapes (1990), Mikosch and Starica (2004), and HillebraP@bj2 and in the literature on
long memory models by Lobato and Savin (1998), Diebold and Inoue (2@¥ahger and Tésvirta
(2001), Granger and Hyung (2004), and Smith (2005). Neglectedgelsain levels or persistence
induce estimated high persistence, which has often been called “spuhigiispersistence (see also
Hillebrand and Medeiros (2007) for a recent application).

In the opposite direction, it is also possible to misinterpret data-generatihgokigistence (in the
form of long memory or unit roots) for nonlinearity. Spuriously estimatedcstinal breaks have been
reported for unit root processes by Nunes, Kuan, and NewboRb{1&hd Bai (1998), and have been
extended to long memory processes by Hsu (2001).

The search for an adequate framework for the estimation and predictioe @dnditional variance of
financial asset returns has led to the analysis of high frequency igtdada. Merton (1980) noted that
the variance over a fixed interval can be estimated arbitrarily, althouginatety, as the sum of squared
realizations, provided the data are available at a sufficiently high sampéggéncy. More recently,
Andersen and Bollerslev (1998) showed that ex post daily foreighasmge volatility is best measured
by aggregating 288 squared five-minute returns. The five-minute fnegue a trade-off between
accuracy, which is theoretically optimized using the highest possible fneguand microstructure
noise, which can arise through the bid-ask bounce, asynchrondirsgtranfrequent trading, and price
discreteness, among other factors (see Madhavan (2000) and Baste16 and Spatt (2005) for recent
reviews).

Ignoring the remaining measurement error, which can be problematic, theséxolatility essen-
tially becomes “observable”. Andersen and Bollerslev (1998), Haasdr_unde (2005), and Patton
(2005) used the realized volatility to evaluate the out-of-sample forecastirigrmance of several
latent volatility models. As volatility becomes “observable”, it can be modellecctlyrerather than
being treated as a latent variable. Based on the theoretical results ofsand&ollerslev, Diebold,
and Labys (2003), Barndorff-Nielsen and Shephard (2002)Mettahi (2002), several recent studies
have documented the properties of realized volatilities that are constructedhigh frequency data.

In this paper, we propose a simple model that merges long memory and natilisealhe new
specification is a multiple regime generalization of the Heterogeneous Awssign (HAR) that was
suggested by Corsi (2004). The HAR model is inspired by the HeteeogsnVarket Hypothesis and
the asymmetric propagation of volatility between long and short time horizors HAR model has
been applied with success in modelling and forecasting realized variamci@en, Bollerslev, and
Diebold 2007). The new model is called the Heterogeneous Autoregnessio Multiple-Regime
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Smooth Transition (HARST) model, which combines ingredients from the HARtz Smooth Tran-
sition Autoregressive (STAR) models (Chan and Tong 198@&shérta 1994). The HARST model has
the main advantage of modelling simultaneously long-range dependencel] as mcorporating sign
and size asymmetries in a simple manner. The choice of the variable that ttievesgime switches
makes it possible to describe interesting dynamics, such as general asyranteteverage. The num-
ber of regimes is determined by a simple and easily-implemented sequence thiadesicumvents the
identification problem in the nonlinear time series literature, and the model estinaatictesting pro-
cedure is analysed. A Monte Carlo simulation evaluates the finite-samplerfiesps the proposed
modelling cycle. An empirical application with 16 stocks from the Dow Jonesidtiéhl Average
(DJIA) gives strong support in favor of the new model. In particulaigence is shown of long-range
dependence and both sign and size asymmetries in the realized volatility ofridke d€inally, the
combination of the linear and nonlinear HAR models produces superiodapnehead forecasts.

The paper is organized as follows. Section 2 introduces the theoretiraldtions and describes the
salient features of realized volatility. Section 3 presents the model andsdesestimation issues. A
formal test for an additional regime is introduced in Section 4. Section Sidesahe model building
procedure, in which the number of regimes is determined by a simple and agiBmented sequence
of tests. Monte Carlo simulations are presented in Section 6. The empiriaétsrase discussed in
Section 7. Section 8 gives some concluding comments.

2. REALIZED VOLATILITY
Suppose that at daythe logarithmic prices of a given asset follow a continuous time diffusion:
Q) dp(t+71)=pult+7)+ot+7)dW(it+7), 0<7<1, t=1,2,3,...,

wherep(t 4 7) is the logarithmic price at tim& + 7), (¢t + 7) is the drift componeniz (¢ + 7) is the
instantaneous volatility (or standard deviation), @ (¢t + 7) is standard Brownian motion.
Andersen, Bollerslev, Diebold, and Labys (2003) and Barndoigidén and Shephard (2002) showed
that the daily compound returns, definedras= p(t) — p(t — 1), are Gaussian conditionally on
Fi=o(p(s), s <t), theo-algebra (information set) generated by the sample pathssafch that

1 1
(2) |7 ~ N </0 p(t—1 —i—T)dT,/O 02(t -1 +T)d7'> .

The termlV; = fol o?(t — 1 + 7)dr is known as théntegrated variancewhich is a measure of the
day+ ex post volatility. In this sense, the integrated variance is the object of atitere

In practical applications, prices are observed at discrete and irrggsimced intervals. There are
several ways of sampling the data. Suppose that at a given, dag partition the interval [0,1] in
subintervals, and define the grid of observation tiies {71,...,7,},0 =10 <7 < -+, 7 = 1.
The length of theth subinterval is given by; = 7, — 7;,_1. The most widely used sampling scheme
is calendar time sampling (CTS), where the intervals are equidistant in caténdathat isj; = 1/n.
Setp; ¢, t = 1,...,n, to be theith price observation during day such that; ; = p;; — p;;—1 is the
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ith intra-period return of day. Realized variance is defined as

n

©) RV, =) 17,

i=1
Realized volatility is the square-root &fV/;.

The search for asymptotically unbiased, consistent and efficient metbodseasuring realized
volatility in the presence of microstructure noise has been one of the mogt eetearch topics in fi-
nancial econometrics over the last few years. While early referendies literature, such as Andersen,
Bollerslev, Diebold, and Ebens (2001), advocated the simple selectionarbdrary lower frequency
(typically 5-15 minutes) to balance accuracy and the dissipation of micrtisteumias, a procedure that
is known as sparse sampling, some recent articles have developed estithatatominate this pro-
cedure. These contributions fall in several categories: some exampléseaselection of an optimal
sampling frequency in sparse sampling, as in Bandi and Russell (200!, 2006), the subsampling
method, as in Zhang, Mykland, andt/ASahalia (2005), the kernel-based estimators of Zhou (1996),
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006a,l086d Hansen and Lunde (2006) and
MA filtering, as in Hansen, Large, and Lunde (2007). McAleer and &ited (2007) review these and
other methods, and provide a comparison of the alternative methods.

Three consistent methods of estimation are presently available: the reatinesl kstimators of
Barndorff- Nielsen, Hansen, Lunde and Shephard (2006a, 200&bmodified MA filter of Hansen,
Large, and Lunde (2007), and the two time scales realized volatility estimafdramiy, Mykland, and
Ait-Sahalia (2005), which is our choice for the empirical part of this papirSahalia, Mykland, and
Zhang (2005) show that the estimator works well when the hypothesis gbamdlent microstructure
noise is violated, is stable with regard to the choice of grids, and yields estithatesre close to the
more efficient but also more computationally-demanding Multi-Scale appafaciang (2005).

Several salient features of realized volatility have been identified in thetlitera

(1) the unconditional distribution of daily returns exhibits excess kurtosis;

(2) daily returns are not autocorrelated (except for the first omdegme cases);

(3) daily returns that are standardized by the realized variance measusmost Gaussian;

(4) the unconditional distribution of realized variance and volatility is distinctlg-normal, and
is extremely right-skewed;

(5) realized volatility does not seem to have a unit root, but there is stnddgree of fractional
integration.

On the other hand, the natural logarithm of the volatility has the following empnegalarities:

(1) the logarithm of realized volatility is close to normal;
(2) the logarithm of realized volatility displays long-range dependence.

The model described in Section 3 aims to model not only long-range depané®ind in realized
volatility but also describe risk-return asymmetries as documented in the |alatitity literature.
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3. LONG MEMORY AND NONLINEARITY IN REALIZED VOLATILITY

3.1. A Brief Review of the Literature and Stylized Facts. As observed in the Introduction, several
nonlinear conditional and stochastic volatility models have been proposed litettature to describe
asymmetries in volatility. In most of these models, volatility is a latent variable. NeE@®il) pro-
posed the Exponential GARCH (EGARCH) model, in which the natural logarihthe conditional
variance is modelled as a nonlinear ARMA model, with a term that introducesrasiry in the dy-
namics of the conditional variance, according to the sign of the laggedset@Glosten, Jagannathan,
and Runkle (1993) proposed the GJR model, where the impact of the laggaded returns on the
current conditional variance changes according to the sign of thergtash. A similar specification,
known as the Threshold GARCH (TGARCH) model, was developed by fRabjgara and Zakoian
(1993) and Zakoian (1994). Ding, Granger, and Engle (1993) g&smlithe Asymmetric Power ARCH
model, which nests several GARCH specifications (see Ling and McA2082] for a derivation of
the necessary and sufficient moment conditions).

Engle and Ng (1993) popularized the news impact curve (NIC) as a meeasiow new infor-
mation is incorporated into volatility estimates. The authors also developed fetatistical tests to
check the presence of asymmetry in the volatility dynamics. More recentlgafand Mele (1997)
generalized the GJR model by allowing all the parameters to change agctodhe sign of the past
return. Their proposal is known as the Volatility Switching GARCH (VSGARQ@#bdel. Based on
the Smooth Transition AutoRegressive (STAR) model, Hagerud (199¥Gamzalez-Rivera (1998)
proposed the Smooth Transition GARCH (STGARCH) model. While the latter anigidered the
Logistic STGARCH (LSTGARCH) model, the former discussed both the Logaiit Exponential
STGARCH (ESTGARCH) alternatives. In the logistic STGARCH specificatithe dynamics of
volatility are very similar to those of the GJR model and depends on the sign gfagtereturns.
The difference is that the former allows for a smooth transition between regim¢éhe EST-GARCH
model, the sign of the past returns does not play any role in the dynamics obtiditional variance,
but it is the magnitude of the lagged squared return that is the sourcerofraetyy.

Anderson, Nam, and Vahid (1999) combined the ideas of Fornari amel (¥@97), Hagerud (1997),
and Gonzalez-Rivera (1998) and proposed the Asymmetric Nonlineaot8moansition GARCH
(ANSTGARCH) model, and found evidence in support of their specifinatiMedeiros and Veiga
(2004) proposed the Flexible Coefficient GARCH (FCGARCH) model, tvlisca multiple regime
generalization of several models in the literature. The authors foundgsstguport of sign and size
asymmetries in volatility. Furthermore, an empirical example with ten stock indéxssssevidence
of two regimes for six series and three regimes for other four serieshdfarore, for all series with
three regimes, the GARCH model associated with the first regime, repraggatinnegative returns
(“very bad news"), is explosive. The model in the middle regime, relatedatoqtril periods, has a
slightly lower persistence than the standard estimated GARCH(1,1) models in thtuliée Finally,
the third regime, representing large positive returns, has an associaiRGHR1,1) specification that
is significantly less persistent than the others.
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Inspired by the Threshold Autoregressive (TAR) model, Li and Li9@9proposed the Double
Threshold ARCH (DTARCH) model. Liu, Li, and Li (1997) generalized thedel and proposed the
Double Threshold GARCH (DTGARCH) process to model both the conditimean and conditional
variance as threshold processes. More recently, based on thesiegraee literature, Audrino and
Buhlmann (2001) proposed the Tree Structured GARCH model to descriltiplmilimiting regimes
in volatility. Caporin and McAleer (2006) developed a dynamic asymmetricaniaite GARCH model.
When the regime switches are driven by a Markov Chain, the main reiseme Hamilton and Susmel
(1994), Cai (1994), and Gray (1996).

In the class of stochastic volatility (SV) models, several asymmetric modelshiesredeveloped.
One of the first references is Harvey and Shephard (1996). $o,drad Li (1998) and Kalimipalli and
Susmel (2007) discussed SV models with Markovian regime switches, whilei,Snd Lam (2002)
considered a threshold SV specification. Asai and McAleer (2005)gsed a dynamic asymmetric
leverage model that accommodates the direct correlation between ratdraslatility as well as sign
and size threshold effects, and Omori, Chib, Shephard, and Nakajird@)(86veloped an SV model
with leverage (see also Asai and McAleer (2006, 2007) for diffeemyimmetric SV models). Yu
(2005) also considered a SV model with leverage effects. Cappuadidah, and Davide (2006) pro-
vided empirical evidence on asymmetry in financial returns using a simpleastiockolatility model
which allows a parsimonious yet flexible treatment of both skewness ang tegks in the conditional
distribution of returns.

With respect to long memory, Baillie, Bollerslev, and Mikkelsen (1996) is dtiesomain references.
The authors proposed the Fractionally Integrated GARCH (FIGARCH)einasi a viable alternative
to model long range dependence in volatility. Giraitis, Robinson, and Sur{20@!) considered the
Leverage ARCH (LARCH) model and discussed both leverage and longonyeeffects in volatility.
Breidt, Crato, and de Lima (1998), Hurvich and Ray (2003), Jen€gv{2and Deo, Hurvich, and Lu
(2006) discussed the specification and estimation of SV models with long memory.

In the realized volatility literature, most of the early contributions considentdlmear long mem-
ory models. Martens, van Dijk, and de Pooter (2004) were the first todinte simultaneously long-
range dependence, asymmetries and structural breaks into a realaédywmodel. The authors also
evaluated the relevance of the days of the week and presented a detdilexhaustive empirical ap-
plication. Their specification belongs to the class of nonlinear AutorageeBsactionally Integrated
(ARFI) models. However, they did not consider tests of linearity or thegree of more than two lim-
iting regimes. More recently, Scharth and Medeiros (2006) proposedtplmuegime tree structure
model to describe the behavior of realized volatility, where past cumulativens drive the regime
switches. Although a formal model building procedure was developegyrtmsed specification did
not take into account possible long memory that might be caused by atigneganong other possibil-
ities. The authors considered that the long range dependence is tgusegiime switches. Hillebrand
and Medeiros (2006) suggested a model that generalizes the apdmatbped in Martens, van Dijk,
and de Pooter (2004) by merging fractionally integrated process with meamiip and asymmetry. The
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authors also considered a volatility-in-mean effect and developed alftestaf linearity following
the ideas in van Dijk, Franses, and Paap (2002). However, the estimétiom foactional integration
parameter can prove very difficult and noisy.

In this paper we extend the ingredients of Martens, van Dijk, and de P&e4), Scharth and
Medeiros (2006), and Hillebrand and Medeiros (2006), and proposedel that accommodates long-
range dependence in a very simple manner for straightforward estimatgymmetries and nonlin-
earity are developed in a smooth transition environment. A formal sequénest® is described in
order to determine the number of limiting regimes. Furthermore, external eaogerariables can be
incorporated into the model structure in a straightforward way.

3.2. Model Specification. The Heterogenous Autoregressive (HAR) model was proposed bsi Co
(2004) as an alternative to model and forecast realized volatilities, anspised by the Heterogenous
Market Hypothesis of Nller, Dacorogna, Dav, Olsen, Pictet, and Ward (1993) and the asymmetric
propagation of volatility between long and short horizons. Corsi (20@fipes the partial volatility
as the volatility generated by a certain market component, and the model iglineadascade of
different partial volatilities (generated by the actions of different tygesarket participants). At each
level of the cascade (or time scale), the unobserved volatility processumasd to be a function of
the past volatility at the same time scale and the expectation of the next peries wdlthe longer
term partial volatilities (due to the asymmetric propagation of volatility). Cors042@howed that by
straightforward recursive substitutions of the partial volatilities, this adglitdlatility cascade leads to
a simple restricted linear autoregressive model with the feature of coimgjdetatilities realized over
different time horizons. The heterogeneity of the model derives fronfieitiethat at each time scale,
the partial volatility is described by a different autoregressive structure

In this paper, we generalize the HAR model by introducing multiple regime swigchine proposed
model is defined as follows.

DEFINITION 1. Let

@) Yo = Yt + Y1 + yt—}ZL‘F ot yt—h—f—l’
h € Zy, ot = (Ll,...,Lp), € Zﬁ be a set of indexes wherg < 1y < -+ < ¢p, andx; =
(L, Yt—141s- - Ye1,,) € RPTL A time series{y,}~, follows a Multiple-Regime Smooth Transi-
tion Heterogenous Autoregressive (HARST) model iith- 1 limiting regimes if
M
(5) yr = G(xe, 213) + &0 = Boxe + Z Brxtf (26: Yms em) + €ty
m=1

whereG(xy, z;; 1) is a nonlinear function of the variables and z;, and is indexed by the vector of
parametergp ¢ RMAD@+D+2M ¢, e Y is the logistic function given by

1
1+ e m(zt—cm)’

(6) f(zt;'}’macm) =

ande; is a random noise.
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Typical values for the hyper-parameterin equation (5) are: one (daily volatility), five (weekly
volatility), and 22 (monthly volatility). The main advantage of the HARST model isitlean capture
both long-range dependence and regime switches (and hence asymifesits) & a very simple way.

It is clear thatf (z¢;vm, cm) IS @ monotonically increasing function, such thfatzy; v, cm) — 1

asz — oo and f (z;vm,cm) — 0 a@sz — —oo. The parametety,,,, m = 1,..., M, is called

the slope parameteand determines the speed of the transition between two limiting regimes. When
vm — 00, the logistic function becomes a step function, and the HARST model becothesshold-

type specification. The variablg is known as thdransition variable There are several possible
choices forz;. For example, suppose thatis the logarithm of the realized volatility and sgt= r;_1,
wherer;_1 is the return of a given asset at time- 1. Hence, the differences in the dynamics of
the conditional variance are modelled according to the sign and size ofdhkssim previous returns,
which represent previous “news”.

The number of limiting regimes is defined by the hyper-paramiferFor example, suppose that
in (5), M = 2, ¢; is highly negative, ands is very positive, so that the resulting HARST model
will have 3 limiting regimes that can be interpreted as follows. The first regime beaglated to
extremely low negative shocks (or “very bad news”) and the dynamitiseofolatility are driven by
yr = Boxt + &t aS f (11—1;Ym,cm) = 0, m = 1,2. In the the middle regime, which represents
low absolute returns (or “tranquil periods®; = (8y + 81)' x¢ + & as f (r4—1;Ym,cm) ~ 1 and
f (re—1;72, c2) ~ 0. Finally, the third regime is related to high positive shocks (or “very goauasiie
andy; = (Bg + By + Bs) x¢ +ep, asf (ri_1;7i,¢) = 1,0 =1,2.

Another interesting choice i = y;_ Or z; = y,—1+—1. In the case wherg; is the logarithm
of the realized volatility, this particular choice of transition variable means #giine switches are
driven by past volatility. Past cumulated returns are also a suitable cémddaransition variables as
discussed in Scharth and Medeiros (2006). As the speed of the trasditbmeen different limiting
HAR models is determined by the parametgy, m = 1,2, the multiple regime interpretation of the
HARST specification will become clearer as the transitiops & 0) become more abrupt

The following examples illustrate interesting situations. The daily return ofengagset is given by
4, 722, IS the cumulated return over the last 22 daysis logarithm of the daily volatility, andu, }
is a sequence of independently and normally distributed random variaGessider the following
specifications.

Lif 2, = ¢, the model accommodates smoothly changing parameters. In theylimit co, m = 1,..., M, we have an
HAR model with M structural breaks. However; = ¢ will not be considered in this paper as the asymptotic theory has to
be changed.
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(1) Example 1
re = exp(oy)ug, ug ~ NID(0,1)
o = 0.01 +0.950—1—
(7) (0.006 4 0.600¢—1 — 0.250¢—1,5 — 0.150¢_122) f(7¢—1; 5, —3.0)+
(0.004 + 0.300¢—1 — 0.160¢—1,5 — 0.090¢_1 22) f(ri—1;5,2.5) + &,
et ~ NID (0,0.5%) .
(2) Example 2
re = exp(o¢)ug, ug ~ NID(0, 1)
oy = 0.05+0.950,_1—
(8) (0.03540.580¢—1 — 0.2704—15 — 0.210¢—1,22) f(r224—1;4, —10)+
(0.03 +0.300¢—1 — 0.200¢—1,5 — 0.180¢_122) f(razt—1;4,13) + &,
et ~ NID (0,0.25%) .

In both cases above, current volatility depends on past daily volatility,edlsas on weekly and
monthly past volatilities. In the first example, when the returns are verytimegthe logarithm of
the volatility is given by a very persistent first-order autoregressiveeinand longer lags have no
influence in the volatility dynamics, such that= 0.010 + 0.950;_1 + ;. During “tranquil periods”,
the logarithm of the volatility follows an HAR model, where weekly and monthly ages influence
current values, namely; = 0.004 + 0.350;—1 + 0.2504—15 + 0.150:—1,22 + ;. When the lagged
return is very positive, the effects of the first lag are dominant, suchsthat 0.008 + 0.650¢_1 +
0.090¢—15 + 0.060¢_1 22 + ;. In the second example, the monthly returns influence the dynamics of
volatility and the regime switches are not as frequent as in Example 1.

Figures 1 and 2 show one realization with 3000 observations of the retodhihe logarithm of the
volatility when the data are generated as in Examples 1 and 2, respectivelgldar from the graphs
that the generated series have strong volatility clustering and extremevatises. Table 1 shows
the descriptive statistics for 1000 replications of equations (7) and (Bg table shows the mean,
median, standard deviation, minimum and maximum values of the following statistiest, standard
deviation, kurtosis, and skewness of the simulated daily returns; sum 6f¢hB00 autocorrelations
of the absolute and squared daily returns; the GPH (Geweke and Plaidek 1983) estimator of the
fractional difference parameter for the absolute returns, squatethse and log volatility; and the
correlation coefficient between the volatility and the lagged return.

Several interesting facts emerge from Table 1. First, in both examplestthiagdave excess kur-
tosis and positive skewness. Note that, even with Gaussian errors rthsiggeoefficient can be much
greater than three. In both cases, the volatility process displays logg-tapendence. Note that the
average estimate of theparameter is close to the 0.4 usually documented in the empirical literature.
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FIGURE 1. Upper panel: one realization of daily returns for Example 1. Loweepan
one realization of the logarithm of the daily volatility for Example 1.

In the first case, there is also a small negative correlation between tredlagigirn and the volatility
process, which indicates the presence of leverage.

3.3. Probabilistic Properties. Deriving necessary and sufficient conditions for stationarity and geo-
metric ergodicity of the HARST model is not trivial as it will depend on the paléicchoice of tran-
sition variables and the distribution of the errors. However, it is possiblentbdiset of sufficient
conditions. The core idea is to analyse the HAR model as a restricted (ABegtessive model.
First, consider the linear HAR specification as follows.
9) Yt = Boo + Bo1Yt—1, + BorYe—1,, + -+ + BopYt—1,, + t-
It is easy to show that (9) is a restricted AR model given as

Y= Qo+ O1y1—1+ -+ Y-y + P2Ys— (1 +1) T P2Yi—y

+ O3Yt—(1a41) Tt P3Yt—ig + o P (1) T PpYt—, +Et,

wheregy = oo andg; = >0 Boi j = 1,...,p
THEOREM 1. Suppose that the process; } is generated by a HAR model as in (9), where the errors

are formed by a sequenge, } of zero mean independent and identically distributed random variables
with E(¢?) = E(e?|F—1) = 0% < oo. F; is theo-algebra formed by the information available to

(10)
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FIGURE 2. Upper panel: one realization of daily returns for Example 2. Loweepan
one realization of the logarithm of the daily volatility for Example 2.

timet. The procesgy;} is strictly stationary and geometric ergodic if , and only if, the roots of the
polynomial

1— 1z — ... — P12 — ozt — [ — 22 —...—¢pz‘P—1+1—...—¢pz‘P =0
are outside the unit circle.

Following the same reasoning as above, the HARST model can be writterestsieted version of
the Functional-Coefficient Autoregressive (FAR) model propose@hmgn and Tsay (1993) given by

Yt = do(zt) + G1(2t)ye—1 + - + d1(2)Yt—0y + G2(20)Yr—(1y41) + - + P2(2)Yt—1s
(11) + G3(20)Yt—(1p+1) T+ B3(20)Yt—is + -+ Dp(2) Y1y 41) T
+ Op(2t)Yt—, + €1,
wherego(zt) = oo+ hi_y B0 f (263 Jms ) Ao (20) = S0 { Boi + Yoy Brei (26 Yoms e,

j=1...,p.
Direct application of Theorem 1.1 in Chen and Tsay (1993) enables ta&téotse following result.

THEOREM 2. Suppose that the proce$s, } is generated by a HARST model as in (5) whetg <
00, k = 0,..., M, such that|¢;(z)| < ¢; = ‘ f:j <ﬁOi+Zn]\;[:1ﬂmi>‘ < oo, j=1,...,p.
Furthermore, assume that the errors are formed by a sequéngeof zero mean independent and
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identically distributed random variables with(c?) = E(c?|F;,_1) = 02 < oco. F; is theo-algebra
formed by the information available to tinte The procesqy,} is strictly stationary and geometric
ergodic if the roots of the polynomial

22L1+1 _ tp—1+1 _

l—ciz—...—c12"" —¢ om0 — =2 co—p2? =0

are outside the unit circle.

It is clear that the condition of Theorem 2 is very strict. However, in otoleelax this condition and
the assumptions about the error term, it is important to make additional assusrgdtiaut the transition
variable. Although important, this is beyond the scope of this paper and fidfiture research. In
practical applications, the estimated model can be checked for stationacitigthsimulation. In the
following sections, we will assume that the procésgs} is stationary and ergodic.

3.4. Parameter Estimation. In this section we discuss parameter estimation of the HARST model
and the corresponding asymptotic theory. Consider the following assunatoorn the data generating
process (DGP).

AssumpPTION1 (Data Generating Processhhe observed sequence of real-valued dependent variable
{yt}thl is a realization of a stationary and ergodic stochastic process on a conmietbability space

that can be well approximated by the HARST model, as in (5), such tfwednencést}le is formed

by random variables drawn from an absolutely continuous (with respeatliebesgue measure on
the real line), positive everywhere distribution wiilie;) = E(s/|F;_1) = 0, E(¢?) = 0% < oo and
E(e?|Fi—1) = 02 > 0, Vt. Furthermore,Tliiréo% ST 0?2 =32 < co. F; is theo-algebra formed by

the information available to time

Note that only mild restrictions are imposed on the error term, without assumingaaticular
distribution. However, it is assumed that the conditional mean can be adfogescribed by a HARST
specification.

We make the following assumptions about the vector of parameters.

ASSUMPTION2 (Parameter SpaceYhe true parameter vectap, € ¥ C RIM+D@+1)+2M jg in the
interior of ¥, a compact and convex parameter space.

AssuMPTION3 (Identifiability). The parameters,,, andc,,, m = 1,..., M, satisfy the restrictions:

(R.1) ym > 0;
(R2) —0o < <+ < ey < o0
(R.3) The elements of the vect@r,, do not vanish jointly, foralin =1, ..., M.

Assumption 2 is standard and Assumption 3 guarantees that the HARST matigitiied. More
specifically, Restriction (R.1) eliminates identification problems caused bydt& f (z;; v, ¢m) =
1= f(zt; =Ym,cm), m = 1,..., M, and Restriction (R.2) avoids permutation of thielogistic func-
tions in (5).
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The vector of parameteis is estimated by nonlinear least squares, which is equivalent to the quasi-
maximum likelihood method. The estimator is given by

~

T
§ = argminQr () = argminz. 3" (),
t=1

ew PeW —

whereq, () = [y — G (xt, z;9)].

Define Q(v) = E[q:(¢)]. In the following theorems, we state the existence, consistency and as-
ymptotic normality of the estimata}. The existence result is based on Theorem 2.12 in White (1994),
which establishes that, under certain conditions of continuity and measuratbilie least squares
function, Q(1) exists.

THEOREM3 (Existence).Under Assumptions 1 and () exists, is finite, and is uniquely maximized
at,.

In White (1981) and White and Domowitz (1984), the conditions that guasardmsistency of the
nonlinear least squares estimator are established. In the context of atatiome series models, the
conditions that ensure the consistency result are established in Whit®) @®® Wooldridge (1994).
In what follows, we state and prove the theorem of consistency of the estswd the HARST model.

THEOREM4 (Consistency).Under Assumptions 1-3; 2 1.
The asymptotic normality result is also based on the results in White (1994) aoldidge (1994).
THEOREM5 (Asymptotic Normality). Under Assumptions 1-3, it follows that

VT (% — )~ N (0, Alab) " Blab) A(gho) )

where
| P
A(¢O) - ]E - a¢a¢l ¢0] and
| 00r(w)| 9Qr(9) 1 & 0aw)| daw)
B(yy) =E |T 7 :|ZE[ / ]
L 31,0 o ad] g r t=1 6"# o a,l‘b o

4. DETERMINING THE NUMBER OF REGIMES

The number of regimes in the HARST model, as represented by the numbansitittn functions
in (5), is not known in advance and should be determined from the dataéhidrpaper we tackle
the problem of determining the number of regimes of the HARST model with aifgpéo-general”
modelling strategy, but circumvent the problem of identification in a way thatrals the significance
level of the tests in the sequence and computes an upper bound to thésigaiticance level.

The following is based on the assumption that the errpase Gaussian, but the results will be made
robust to non-normal errors.
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Consider an HARST model as in (5) wift1 limiting regimes, defined as
M-1

(12) Y = Boxt + Z BrXtf (25 Yms €m) + &t

m=1

The idea is to test the presence of an additional regime, as represendéedexyra term in (12) of
the form B3, x.f (z:;var, car)- A convenient null hypothesis &y : vy = 0, against the alternative
Ha : var > 0. Note that model (12) is not identified under the null hypothesis. In dodesmedy this
problem, we follow Teasvirta (1994) and expand the logistic functipfe,; var, car) into a third-order
Taylor expansion around the null hypothesis = 0. After merging terms, the resulting modeFis

M—1

= / / ’ 2 / 3 *

(13) Yt = Box¢ + Z BroxXe f (263 Yms Cm) + Q1 X2t + 05X 2 + QsXe2y + €7,

m=1

wheresf = ef+R(z;var, evr), R(ze5 70, car ) is the remalnde;ﬁO = ﬂ0+(, — oM _ chM) Bur

Qg = (W + 7“C“) Bup oz =~ 3, andas = 18,
Consider the following addltlonal assumptlon.

AsSUMPTION4 (Moments). E (x¢x}z{) < oo, for § > 6.
UnderHy, R(z;var, car) = 0 and we can state the following result:
THEOREM6. Under Assumptions 1-4, the LM statistic given by

1 I T (A o -1 R o
(14) LM = = Z PY vivi =Y i [Z hth;] dohyvip Y i,
t=1 t=1 t=1 t=1 t=1

wherec? = }ZtT L E2, {a}thl is the estimated sequence of residuals under the null hypothesis,

/2
e (xtzt,xtzt,xtzt) and

h; = (X’taxéf(ztﬁl,a), X f(znA M1, Cr—1),

~1 Of(z;71,¢1) 1 Of(z;7m—1,CMm—1)
AxEma) g
o omn M1 0YM—1

!
Bx Of(z;71,¢1) - Of (z;7m—1,Cr—1)
X B Bens1 ;

asymptotically has &? distribution with3(p + 1) degrees of freedom under the null hypothesis.
Under the normality assumption, the test can be performed in stages, assfollow

2If 2, is an element ok, = (1,Yt—e1,t—15 -+ Yt—1,t—1) , then the resulting model should be
oy M-1
Yo = Boxe + Z BonXef (26:Yms em) + @1 Xzt + abXezi + abRezi + ey,

m=1

~ ’
Wherext = (ytfbl,tfh e ,ythpﬂgfl) .
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(1) Estimate model (5) undét, and compute the sequence of residt{é&s}le. When the sample
size is small, numerical problems in applying the quasi-maximum likelihood algorithyn ma
lead to a solution such that the residual vector is not orthogonal to théegtadatrix of
G (xy, 2¢; 1,7:). This has an adverse effect on the empirical size of the test. In ordiectonvent
this problem, we regress the residualson ﬁt and compute the sum of squared residuals,
SSRy = Y. | 22. The new residualg;},, are orthogonal td;.

(2) Regress; on h, andv,, and compute the sum of squared residusdsR; .

(3) Compute the LM statistic:

SSRy— SSRy

(15) LM, = TTRO,

or the F statistic:

_ (SSRy— SSR1)/3(p+1)

"~ SSRy /[T — (3M —5)(p+ 1))

UnderH,, LM, is asymptotically distributed ag with 3(p + 1) degrees of freedom andM - has
an asymptotic F distribution witB(p + 1) andT — (3M — 5)(p + 1) degrees of freedom.
Although the test statistic is constructed under the assumption of normality, inigrgforward

to follow Lundbergh and Tésvirta (2002) and consider a robust version of the LM test agaimst no

normal errors. The robust version of the test statistic can be constrisdtewing Procedure 4.1 in

Wooldridge (1990). The test statistic can be calculated as follows:

(1) As above.
(2) Regress, onh; and compute the residual vectors,t = 1,...,T.
(3) Regress 1 on;T; and compute the residual sum of squares, SSR. The test statistic given by

(16) LMp

(17) LMp =T — SSR

has an asymptotig? distribution withk, degrees of freedom under the null hypothesis.

5. MODEL SELECTION

The modelling cycle of the HARST model involves three steps, namely spaicificastimation,
and model evaluation. The specification consists of three decisions:

(1) choice of relevant variables;
(2) selection of the transition variable; and
(3) determination of the number of regimes.

In addition to the set of lagged variables as defined in (5), other possibiidate variables are sets
of (weakly) exogenous variables. For example, in the context of volatditydasting, these variables
may be dummies for the days of the week and dates of macroeconomic aanmnis. The set of
lagse in the HARST model should be determined first. There are several wagatfting the relevant
variables. In the STAR literature, is common to select the set of relevaiables using information
criteria, making use of a linear approximation to the true DGP. This is also #pibgsor the HARST
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specification. However, as noted in Pitarakis (2006), this method may meadwverse effect on the
final model specification. An alternative approach, which is adopteel eto consider &-th order
polynomial approximation to the nonlinear component of the DGP, as prdpodRech, Tedsvirta,
and Tschernig (2001), and applied with success in MedeirofsVeta, and Rech (2006), Medeiros
and Veiga (2005), and Suarez-Feas$, Pedreira, and Medeiros (2004). As the logistic functions in (5)
depend only on the scalar variakie the polynomial approximation can be simplified dramatically as
follows :

!/ !/ / / K !/
(18) Yt = Xy + o X2 + agxtz? + a3xtzf ot akxtzf + ¢},

wheres} = ¢; + R(x¢, z¢;%). In this paper we choose a third-order polynomial approximation.

In equation (18), every product of variables involving at least odemdant variable ixx; has the
coefficient set equal to zero. The idea is to sort out the redundaables by using this property of
(18). In order to do so, we first regregson all the variables on the right-hand side of equation (18),
assumingR(x;, z¢; ¢) = 0, and compute the value of a model selection criterion (MSC), such as AIC
or BIC. This leads to the removal of one variable from the original vectar, Then regresg; on
all the remaining terms in the corresponding polynomial, and again compute Itreeofathe MSC.
This procedure is repeated sequentially by omitting each variable in turncaante continued by
simultaneously omitting two regressors in the original model, and proceediihthervectorx; is just a
constant. The combination of variables is chosen to yield the lowest value BISIC. Rech, Térsvirta,
and Tschernig (2001) showed that the procedure works well in snmafilea when compared with well
known nonparametric techniques. Furthermore, the procedure capledesuccessfully even in large
samples when nonparametric model selection is not computationally feasible.

The selection of the transition variable is determined by testing linearity forreiffepossible
choices ofz,*. We choose the transition variable that minimizes jihelue of the test. Finally, the
number of regimes is determined by the sequence of LM tests, as describection 4.

We now combine the above procedure into a coherent modelling strategpuwbles a sequence
of LM tests. The idea is to test a linear HAR model against an alternative HAR&Iel with more
than one regime at &, level of significance. In the event that the null hypothesis is rejectedR SR
with two regimes is estimated and than tested against an alternative with more thaegimes. The
procedure continues testinbregimes against alternative models with > J + 1 regimes at signifi-
cance level; = \; C/~! for some arbitrary constaft< C < 1. The testing sequence is terminated
at the first non-rejection outcome, and then the number of additional regithder the HARST spec-
ification is estimated by\? = J — 1, whereJ refers to how many testing runs are necessary to lead
to the first non-rejection result. By reducing the significance level dt ssp of the sequence, it is
possible to control the overall level of significance, and hence to axuieissively large models. The
Bonferroni procedure ensures that such a sequence of LM testssstent, and th@jzl Aj acts as
an upper bound on the overall level of significance. As for the detetimimaf the arbitrary constant

3Although the motivation is different, this approximation is rather similar to treewsed in Section 4.
“The transition variable may also be selected by minimizing the MSC in expredsj.
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C, it would be sensible practice to perform the sequential testing procedtirdifferent values of”
to avoid selecting models that are too parsimonious.

Estimation of the parameters of the model will be determined by nonlinear lazetesg which is
equivalent to quasi-maximum likelihood estimation, as discussed in Section 3.4.

What follows is evaluation of the final estimated model. Time series models araltyggaluated
by their out-of-sample predictive performance. However, a sequenoeglected nonlinearity tests
can also be interpreted as model evaluation tests. The construction obtestsiél correlation, in the
spirit of Eitrheim and Tesvirta (1996) and Medeiros and Veiga (2003), is also possible.

6. MONTE CARLO SIMULATION

The goal of this section is to evaluate the finite sample performance of the mgdejiite, as
described in the previous section. We simulated two different specificafudlows:

(1) Model 1: HARST (Asymmetric effects)

re = exp(oy)ug, ug ~ NID(0, 1)
oy = 0.010 + 0.950¢—1—
(19) (0.006 + 0.600;_1 — 0.250y_1.5 — 015031 22) f(re—1; 5, —3.0)+
(0.004 + 0.300;_1 — 0.1601_1 5 — 0.09¢_1 22) f(re—1;5,2.5) + &4,
er ~ NID (0,0.5%) .

(2) Model 2: HARST (Asymmetric effects)

re = exp(oy)ug, ug ~ NID(0, 1)
or = 0.05 4+ 0.950¢_1—
(20) (0.035 + 0.580¢—1 — 0.270_15 — 0.210y—1,22) f(ro2t—1;4, —10)+
(0.03 +0.300¢—1 — 0.200¢—1,5 — 0.180¢_122) f(razt—1;4,13) + &,
er ~ NID (0,0.25%) .

The simulated models have been analyzed in Examples 1 and 2 in Section Jcankas three
regimes. In the first model the regime switches are more frequent as tei@itmanvariable is the past
return, while in the second model the switches are less frequent and ttet spedds a larger fraction
of time in each regime. We consider different sample sizes for each model5@0, 1000, 1500, 3000
and 5000. It should be noted that, in financial applications, 300 and b8$rvations comprise rather
small samples. Most of the datasets, especially those dealing with highrfiod&ta, have more than
2000 observations. We simulate each specification 1000 times, with two difiexeies of the starting
significance level of the sequence of tests, namely 0.05 and 0.10, ardthallevel of significance at
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each step. It is important to mention that the tests for the third regime are ¢eddatache 0.025 and
0.05 levels, respectively.

Table 2 presents the results concerning the determination of the numbgineése The table shows
the frequency of correctly selecting the number of regimes under theatarinoice of explanatory
variables in the model. The number in parentheses is the frequency offitiimde Several facts
emerge from the table. Both the robust and non-robust sequencesoféesn to be consistent, as the
frequency of success increases with the sample size. Furthermorpeasesl, the procedure is more
accurate when the first model is considered, as the switches are fafrequent. It is also clear that
the procedure is conservative as the frequency of underfitting idnginy Finally, the procedure works
well for the typical sample sizes that are observed in financial applications

7. EMPIRICAL APPLICATION

7.1. The Data. The empirical analysis focuses on the realized volatility of sixteen Dow Jodes-
trial Average index stocks: Alcoa, American International Group, Bpetraterpillar, General Electric,
General Motors, Hewlett Packard, IBM, Intel, Johnson and JohrSona-Cola, Microsoft, Merck,
Pfizer, Wal-Mart and Exxon. The raw intraday data are constituted ofbijetick quotes extracted
from the NYSE Trade and Quote (TAQ) database. The period of anakgsts in January 3, 1994, and
ends in December 31, 2003. Trading days with abnormally small trading vauachgolatility caused
by the proximity of holidays (for example, Good Friday) are excluded,ithgga total of 2541 daily
observations.

We start by removing non-standard quotes, computing mid-quote pricesn{jligossible errors,
and obtaining one second returns for the 9:30 am to 4.05 p.m. period. Fdltlwéresults of Hansen
and Lunde (2006), we adopt thpeevious tickmethod for determining prices at precise time marks.
Based on the results of Hasbrouck (1995), who reports a median 92@&hation share at the NYSE
for Dow stocks, and Blume and Goldstein (1997), who conclude that Ny(®es match or determine
the best displayed quote most of the time, we use NYSE quotes (or NASDA®Ii¢rosoft and Intel)
if they are close enough to the time marks in relation to other updates.

In order to estimate our measure of the daily realized volatility, we use the two talessestimator
of Zhang, Mykland, and A-Sahalia (2005) with five-minute grids. The final dependent variable is the
daily logarithm of the realized volatility. As in Martens, van Dijk, and de Pod804) and Scharth and
Medeiros (2006) we also consider dummies for the days of the week anchidis for the following
macroeconomic announcements: Federal Open Market Committee meetindy (F@ Employment
Situation Report from the Bureau of Labor Statistics (ESR), CPIl and PPI.

Data are used from 1993 to 1999 in order to estimate the models, and frdm®P003 to evaluate
the forecasting performance of the different specifications. The estimateels have the following

structure.
M

(21) log(RV;) = o'wi + Byx; + Z BrXef (245 7ms em) + €1,

m=1
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wherelog(RV;) is the logarithm of the daily realized volatility computed as described abwye,
is a vector containing selected dummies for the days-of-the-week andimreroent datesx; =
(1,10g(RVs—1,,); - - - ,log(RV}_l,Lp))/, f(-) is the logistic function as in (5), and is the past return

(Tt—l)-

7.2. Model Specification and Estimation. We start by selecting the relevant explanatory variables.
All the variables are selected according to the procedure describedtiorsd using BIC. In order to
keep interpretability of the selected lags and to avoid serious “data mininglgong, we consider the
following set of possible lagsX = {1, 2,5, 10, 15,22}. Table 3 shows the selected variables. Several
interesting facts emerge from the table. First, for ten of 16 series, thdestlags are 1, 5, and 22,
meaning that daily, weekly, and monthly volatility are highly relevant. Secombancement effects
are selected as explanatory variables in seven cases. The most impartanhcement seems to be
the Federal Open Market Committee meetings. Finally, there is not a cleampatiterespect to the
presence of the days-of-the-week dummies in the model.

After selecting the relevant variables, we continue estimating a linear HAR Im®oalele 4 shows
several statistics for the estimated model. The table shows-tladues for the following tests: LM
test for residual serial autocorrelation of orders 1, 5, and 10; LM¢eesARCH effects of orders 1, 5,
and 10; Jarque-Bera test for normality of the residuals; and finally tharitpeest against the HARST
alternative. As one of our main goals is to model asymmetries and leveragevioléitiéty dynamics,
we fix the transition variable to be the past daily return,;. We report both robust and non-robust
versions of the linearity test. We have also tested linearity choosing othsitiwarvariables, such as
past daily, weekly, and monthly volatilities. However, the best and more signtfresults are obtained
with the past daily return as the transition variable.

According to the results in Table 4 and at a 5% significance level, the lined& khadel fails
to account for serial correlation in 8 of the 16 series. In addition, thesvidence of conditional
heteroskedasticity in 12 of 16 series (which may be due to nonlinear ¢fféctthermore, normality
is strongly rejected in all cases. For this reason, we will use the robyisesee of LM tests to specify
the HARST model.

Finally, we estimate the HARST model for each series. The dummies for theiacemment dates
and days-of-the week enter only in the linear part of the model. The resalhown in Table 5, which
presents the following diagnostic statistigsvalue of the test of remaining nonlinearity (additional
regimes)p-value of the LM residual serial correlation tegtyalue of the LM test for ARCH effects,
andp-value of the Jarque-Bera test for normality. Only for ALCOA (AA) is e evidence of more
than a single regime. For all the other series there is strong evidence adimoas, with the exception
of Microsoft, where we find evidence of three regimes.

From the results presented in Table 5, there is still some evidence of reaittoaorrelation in
some cases, although, for most of the series, the HARST model corresttyiloes the dynamics of
the logarithm of the realized volatility. One interesting fact is that now 8 of X@selo not have
conditional heteroskedasticity. However, normality is still strongly rejected.
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Figure 3 displays the estimated transition functions. It is interesting to note tladit Gases the
asymmetry is not around zero returns, as is strongly advocated in the literatue regime switches
are associated with very negative past returns (or “very bad newh® smoothness of the transition
varies according to each series. In some cases, Caterpillar for exaimgpleansition is abrupt. In
others, such as General Electric, the transition is very smooth.

7.3. Forecasting Results.After estimating the HARST model for each series, the one-day ahead fore
casts are computed. The forecasting performance of the HARST modehfsaced with the following
competing specifications: Linear HAR, linear ARFIMA, GARCH, GJR, artslARCH models. In
addition, the forecast combination of a simple model average of the lineardhdRIARST models is
examined. As the regime switches are associated with very negative reharmenefits of using the
nonlinear model should become apparent only in periods following veygtive returns, such that a
combination of forecasts will improve the performance of both models.

The results are reported in Tables 6 and 7. Table 6 presents the meanteabswrs (MAE) and
the root mean squared errors (RMSE) for the forecasts from theatiffenodels. It can be seen from
the table that the forecasting performance of the HARST model is not segmifjcbetter than from
the linear HAR model in most cases. However, this is likely for the reaswes gireviously. When
the HAR and HARST models are combined, the forecasting performanceviegordvhen compared
with the alternative latent volatility models, the performance of both the HAR akid$T models is
far superior.

In order to determine if the combination of the linear HAR and HARST modelsrgezgemore
accurate one-step-ahead forecasts than does the linear HAR modgdplyetse modified Diebold
and Mariano (1995) test of Harvey, Leybourne, and Newbold (1&®These series of forecasts. In
Table 7, the p-values of the test are shown. We compare forecasedifs using both the absolute
value loss function (MAE) and the quadratic loss function (RMSE). Caricg the absolute errors,
the combination of models delivers superior forecasts in six cases. ém sages, the forecasts are
not statistically different, and in only two cases does the linear HAR mod&mpethe best. When
squared errors are considered, the combination of models produtessfbeecasts in six cases, the
forecasts are not statistically different in a further six cases, and ia tases the linear HAR has the
best performance. In a direct comparison of the linear HAR and HARSJetapthe forecasts are not
statistically different in 12 cases.

8. CONCLUSION

This paper developed a new flexible nonlinear model that can simultanestestyibe long-range
dependence and asymmetries in time series dynamics. The model is a getignadizthe Heteroge-
nous Autoregression (HAR) model and is called the Multiple Regime SmootisitianHeterogenous
Autoregressive (HARST) model. Following results in the nonlinear time skteeature, we developed
an estimation and testing procedure, including an easily implemented seq@itaggange multiplier
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tests to determine the number of regimes in the model. A modelling cycle was pdoposksimula-

tions were used to evaluate the finite sample performance of the estimation taimgl testhods. The
new model was used to describe and forecast realized volatility of highdrey financial time series,
and the empirical results indicated strong practical support for the model.

REFERENCES

ANDERSEN T., AND T. BOLLERSLEV (1998): “Answering the Skeptics: Yes, Standard Volatility Models Do Ri®v
Accurate Forecastslhternational Economic Revie\89, 885-906.

ANDERSEN T., T. BOLLERSLEV, P. CHRISTOFFERSEN AND F. DIEBOLD (2007): “Practical volatility and correlation
modeling for financial market risk management,Risks of Financial Institution®d. by M. CareyandR. Stulz. University

of Chicago Press for NBER, forthcoming.

ANDERSEN T., T. BOLLERSLEV, AND F. DIEBOLD (2007): “Roughing it up: Including Jump Components in the Measure-
ment, Modeling and Forecasting of Return VolatilitiReview of Economics and Statistiferthcoming.

ANDERSEN T., T. BOLLERSLEV, F. X. DIEBOLD, AND H. EBENS (2001): “The Distribution of Realized Stock Return
Volatility,” Journal of Financial Economi¢c$1, 43-76.

ANDERSEN T., T. BOLLERSLEV, F. X. DIEBOLD, AND P. LABYS (2003): “Modeling and Forecasting Realized Volatility,”
Econometrica71, 579-625.

ANDERSON H. M., K. NaM, AND F. VAHID (1999): “Asymmetric Nonlinear Smooth Transition GARCH Models,” in
Nonlinear Time Series Analysis of Economic and Financial Detk by P. Rothman, pp. 191-207. Kluwer.

Asal, M., AND M. MCALEER (2005): “Dynamic Asymmetric Leverage in Stochastic Volatility ModeE¢onometric
Reviews24, 317-332.

(2006): “Asymmetric Multivariate Stochastic Volatility®conometric Review&5, 453—-473.

(2007): “Non-trading Day Effects in Asymmetric Conditional and Statita\olatility Models,” Econometrics
Journal 10, 113-123.

AsAl, M., M. MCALEER, AND J. YU (2006): “Multivariate stochastic volatility: A reviewEconometric Review25,
145-175.

AIT-SAHALIA, Y., P. MYKLAND, AND L. ZHANG (2005): “Ultra High Frequency Volatility Estimation with Dependent
Microstructure Noise,” NBER Working Papers 11380, National Bu@dticonomic Research.

AUDRINO, F., AND P. BUHLMANN (2001): “Tree-Structured GARCH ModelsJburnal of the Royal Statistical Society,
Series B63, 727-744.

BAl, J. (1998): “A Note on Spurious BreakEconometric Theoryl4, 663—669.

BAILLIE, R., T. BOLLERSLEY, AND H. MIKKELSEN (1996): “Fractionally Integrated Generalized Autoregressive Condi-
tional Heteroskedasticity,Journal of Econometrics4, 3-30.

BANDI, F., AND J. RUSSELL (2005a): “Market microstructure noise, integrated variance estisiaod the limitations of
asymptotic approximations: a solution,” Unpublished manuscript, Gtadizhool of Business, University of Chicago.

(2005b): “Microstructure noise, realized volatility, and optimal samplibgpublished manuscript, Graduate School

of Business, University of Chicago.

(2006): “Separating market microstructure noise from volatilitptirnal of Financial Economi¢¥9, 655-692.

BARNDORFFNIELSEN, O., P. HANSEN, A. LUNDE, AND N. SHEPHARD (2006a): “Designing realised kernels to measure
the ex-post variation of equity prices in the presence of noise,” Unfhddisnanuscript, Stanford University.

(2006b): “Subsampling realised kernels,” Unpublished manusciiatf&d University.

BARNDORFFNIELSEN, O.,AND N. SHEPHARD (2002): “Econometric analysis of realised volatility and its use in estimat-
ing stochastic volatility models,Journal of the Royal Statistical Society &1, 253-280.




24 LONG MEMORY AND ASYMMETRIC EFFECTS

Bials, B., L. GLOSTEN, AND C. SPATT (2005): “Market Microstructure: A Survey of Microfoundations, Rincal Results,
and Policy Implications,Journal of Financial Markets8, 217—-264.

BLACK, F. (1976): “Studies in Stock Price Volatility ChangeBfoceedings of The American Statistical Association, Busi-
ness and Economic Statistics Sectipp. 177-181.

BLUME, M., AND M. GOLDSTEIN (1997): “Quotes, Order Flow, and Price Discovedgurnal of Finance52, 221-244.

BOLLERSLEV, T. (1986): “Generalized Autoregressive Conditional Heterossérlty,” Journal of Econometrig21, 307—
328.

(1987): “A conditionally heteroskedastic time series model for speeelatices and rates of returihe Review of
Economics and Statistic69, 542-547.

BREIDT, F., N. QRATO, AND P. DE LIMA (1998): “The detection and estimation of long memory in stochastic volatility,”
Journal of Econometrics83, 325-348.

CAl, J. (1994): “A Markov Model of Switching-Regime ARCHJbournal of Business and Economic Statistit®, 309-316.

CAPORIN, M., AND M. MCALEER (2006): “Dynamic Asymmetric GARCH Journal of Financial Econometric€, 485—
412.

Cappucclio N., D. LUBIAN, AND R. DavIDE (2006): “Investigating asymmetry in US stock market indexes: evielenc
from a stochastic volatility modelApplied Financial Economics6, 479—490.

CARNERO, M. A., D. PENA, AND E. Ruiz (2004): “Persistence and kurtosis in GARCH and stochastic volatility m@dels
Journal of Financial Econometri¢®, 319-342.

CHAN, K. S.,AND H. TONG (1986): “On Estimating Thresholds in Autoregressive Modelstirnal of Time Series Analy-
sis, 7, 179-190.

CHEN, R.,AND R. S. TsAY (1993): “Functional Coefficient AutoRegressive Modeligurnal of the American Statistical
Association88, 298—-308.

CoRsi, F. (2004): “A Simple Long Memory Model of Realized Volatility,” Manugat, University of Southern Switzerland.

DAvIDSON, J.,AND P. SBBERTSEN (2005): “Generating schemes for long memory processes: regaggsegation and
linearity,” Journal of Econometricsl28, 253-282.

DEO, R., C. HURVICH, AND Y. LU (2006): “Forecasting Realized Volatility Using a Long-Memory Stochastilatiity
Model: Estimation, Prediction and Seasonal Adjustmelttiirnal of Econometrigsl31, 29-58.

DiesoLD, F. (1986): “Modeling the persistence of conditional variances: Aroemt,” Econometric Review$, 51-56.

DieBoLD, F.,AND A. INOUE (2001): “Long Memory and Regime Switchinglburnal of Econometri¢sl05, 131-159.

DieBoLD, F. X., AND R. S. MARIANO (1995): “Comparing Predictive AccuracyJournal of Business and Economic
Statistics 13, 253-263.

DING, Z., C. W. J. RANGER, AND R. F. ENGLE (1993): “A Long Memory Property of Stock Market Returns and a New
Model,” Journal of Empirical Financel, 83—106.

EITRHEIM, O.,AND T. TERASVIRTA (1996): “Testing the Adequacy of Smooth Transition Autoregressigddls,”Journal
of Econometrics74, 59-75.

ENGLE, R. F. (1982): “Autoregressive Conditional Heteroskedasticity wittiniztes of the Variance of United Kingdom
Inflation,” Econometrica50, 987-1007.

ENGLE, R. F.,AND V. K. NG (1993): “Measuring and Testing the Impact of News on Volatiliigurnal of Finance48,
1749-1778.

FORNARI, F., AND A. MELE (1997): “Sign- and Volatility-Switching ARCH Models: Theory and Applicaisato Interna-
tional Stock Markets,Journal of Applied Econometric42, 49-65.

FOUQUE, J. P., G. RPANICOLAOU, R. SRCAR, AND K. S@LNA (2003): “Short Time-Scale in S&P 500 VolatilityJournal
of Computational Finanges, 1-23.

GEWEKE, J., AND S. PORTERHUDAK (1983): “The estimation and application of long memory time series mddels,
Journal of Time Series Analysié, 221-238.



LONG MEMORY AND ASYMMETRIC EFFECTS 25

GIRAITIS, L., P. ROBINSON, AND D. SURGAILIS (2004): “LARCH, Leverage, and Long MemoryJburnal of Financial
Econometrics2, 177-210.

GLOSTEN, L., R. AGANNATHAN, AND R. RUNKLE (1993): “On The Relationship Between The Expected Value and The
Volatility of The Nominal Excess Returns on Stockdjurnal of Finance48, 1779-1801.

GOETZMANN, W. N., R. G. BBOTSON, AND L. PENG (2001): “A New Historical Database for the NYSE 1815 to 1925:
Performance and Predictabilityjournal of Financial Markets4, 1-32.

GONZALEZ-RIVERA, G. (1998): “Smooth Transition GARCH ModelsStudies in Nonlinear Dynamics and Econometrics
3(2), 61-78.

GRANGER, C., AND N. HYUNG (2004): “Occasional Structural Breaks and Long Memory with anlispfion to the
S&P500 Absolute Stock Returnslburnal of Empirical Finance3, 399-421.

GRANGER, C. W. J. (1980): “Long Memory Relationships and the Aggregationyofdic Models,"Journal of Economet-
rics, 14, 227-238.

GRANGER, C. W. J.,AND T. TERASVIRTA (2001): “A Simple Nonlinear Time Series Model with Misleading Linear
Properties,Economics Letter$2, 161-165.

GRAY, S. (1996): “Modeling the Conditional Distribution of Interest Rates asegifRe-Switching ProcessJournal of
Financial Economics42, 27—-62.

HAGERUD, G. E. (1997): “A New Non-Linear GARCH Model,” Phd thesis, Stocdkh&chool of Economics.

HAaMILTON, J. D., AND R. SUSMEL (1994): “Autoregressive Conditional Heteroskedasticity and Cramngé&egime,”
Journal of Econometric$4, 307-333.

HANSEN, P., J. LARGE, AND A. LUNDE (2007): “Moving average-based estimators of integrated variaBm®hometric
Reviewsforthcoming.

HANSEN, P. R.,AND A. LUNDE (2005): “A Forecast Comparison of Volatility Models: Does Anythingt®&ARCH(1,1)
Model?,” Journal of Applied Econometric0, 873-889.

(2006): “Realized variance and market microstructure noise (withudggon),”Journal of Business and Economic
Statistics 24, 127-218.

HARVEY, A., AND N. SHEPHARD (1996): “Estimation of an Asymmetric Stochastic Volatility Model for AssetiRns,”
Journal of Business and Economic Statistibs, 429—-434.

HARVEY, D., S. LEYBOURNE, AND P. NEwBOLD (1997): “Testing the Equality of Prediction Mean Squared Errors,”
International Journal of Forecastind. 3, 281-291.

HASBROUCK, J. (1995): “One security, many markets: determining the contributapsce discovery,Journal of Finance
50, 1175-1198.

HILLEBRAND, E. (2005): “Neglecting Parameter Changes in GARCH Modétsjrnal of Econometricsl29, 121-138.

HILLEBRAND, E.,AND M. MEDEIROS(2006): “Asymmetries, Breaks, and Long-range DependenceatiZee Volatility:

A Simultaneous Equations Approach,” Discussion paper, PontificabGattniversity of Rio de Janeiro.

(2007): “Estimating and Forecasting GARCH Models in The PresenceruftBral Breaks and Regime Switches,”
in Forecasting in The Presence of Structural Breaks and Model Unicgytaed. by M. WoharandD. Rapach. Elsevier,
forthcoming.

Hsu, C.-C. (2001): “Change-Point Estimation in Regressions with |(d)a{#es,”Economics Letters70, 147-155.

HURVICH, C., AND B. RAY (2003): “The Local Whittle Estimator of Long-Memory Stochastic Volatilityurnal of
Financial Econometricsl, 445-470.

HWANG, J. T. G.,AND A. A. DING (1997): “Prediction Intervals for Artificial Neural Networkslburnal of the American
Statistical Associatiorf2, 109-125.

HYUNG, N., S.-H. PbON, AND C. GRANGER (2007): “The Source of Long Memory in Financial Market Volatility,” in
Forecasting in The Presence of Structural Breaks and Model Uniogytaed. by M. Wohar,and D. Rapach. Elsevier,
forthcoming.




26 LONG MEMORY AND ASYMMETRIC EFFECTS

J. P. MORGAN (1996):J. P. Morgan/Reuters Riskmetrics — Technical Documgr®. Morgan, New York.

JENSEN, M. (2004): “Semiparametric Bayesian Inference of Long-Mentigchastic Volatility Models,Journal of Time
Series Analysi®25, 895-922.

KALIMIPALLI , M., AND R. SUSMEL (2007): “Switching Stochastic Volatility and the Short-Term Interest Ratksjrnal
of Empirical Financeforthcoming.

LAMOUREUX, C. G., AND W. D. LASTRAPES(1990): “Persistence in Variance, Structural Change, and the GARCH
Model,” Journal of Business and Economic Statist®s225—-234.

LEBARON, B. (2001): “Stochastic Volatility as a Simple Generator of Apparent Fiigf#ower Laws and Long Memory,”
Quantitative Financel, 621-631.

Li, C. W.,AND W. K. LI (1996): “On a Double Threshold Autoregressive Heteroscedastie Sienies Model,Journal of
Applied Econometrigsl1, 253-274.

LIEBERMAN, O., AND P. PHILLIPS (2007): “Refined Inference on Long Memory in Realized Volatilitgtonometric
Reviewsforthcoming.

LING, S.,AND M. MCALEER (2002): “Necessary and sufficient moment conditions for the GARGHand asymmetric
power GARCH(r,s) modelsEconometric Theoryl8, 722—729.

(2003): “Asymptotic Theory for a Vector ARMA-GARCH ModelEconometric Theoryl9, 280-310.

Liu, J., W. K. i, AND C. W. LI (1997): “On a Threshold Autoregression with Conditional Heterosstezl®ariances,”
Journal of Statistical Planning and Inferend&2(2), 279-300.

LoBATO, I. N., AND N. E. SavIN (1998): “Real and Spurious Long-Memory Properties of StockikdiData,”Journal of
Business and Economic Statistit§, 261-268.

LUNDBERGH, S.,AND T. TERASVIRTA (2002): “Evaluating GARCH ModelsJournal of Econometrigsl 10, 417-435.

MADHAVAN, A. (2000): “Market Microstructure: A SurveyJournal of Financial Markets3, 205—-258.

MALMSTEN, H., AND T. TERASVIRTA (2004): “Stylized Facts of Financial Time Series and Three Populareldoof
\olatility,” Working Paper Series in Economics and Finance 563, Stockisahool of Economics.

MARTENS, M., D. VAN DIJK, AND M. DE POOTER(2004): “Modeling and Forecasting S&P 500 Volatility: Long Memory,
Structural Breaks and Nonlinearity,” Discussion Paper 04-067/4 €fgdan Institute.

MCALEER, M. (2005): “Automated Inference and Learning in Modeling Finandfalgtility,” Econometric Theory21,
232-261.

MCALEER, M., AND M. MEDEIROS(2007): “Realized Volatility: A Review,Econometric Review$orthcoming.

MEDDAHI, N. (2002): “A theoretical comparison between integrated and realiakadility,” Journal of Applied Economet-
rics, 17, 479-508.

MEDEIROS M., T. TERASVIRTA, AND G. RECH (2006): “Building Neural Network Models for Time Series: A Statistical
Approach,”Journal of Forecasting25, 49-75.

MEDEIROS M., AND A. VEIGA (2003): “Diagnostic Checking in a Flexible Nonlinear Time Series Mod#irnal of
Time Series Analysi24, 461-482.

(2004): “Modeling Multiple Regimes in Financial Volatility with a Flexible CoefficiecsARCH(1,1) Model,” Dis-

cussion Paper 486, Pontifical Catholic University of Rio de Janeiro.

(2005): “A Flexible Coefficient Smooth Transition Time Series ModEE Transactions on Neural NetworKss,
97-113.

MERTON, R. (1980): “On estimating the expected return on the market: An explyranvestigation,”"Journal of Financial
Economics8, 323-361.

MIKOSCH, T., AND C. STARICA (2004): “Nonstationarities in Financial Time Series, the Long-Rangebagnce, and the
IGARCH Effects,”Review of Economics and Statisti8§, 378—390.

MULLER, U., M. DACOROGNA, R. Dav, R. OLSEN, O. PRCTET, AND J. WARD (1993): “Fractals and Intrinsic Time — A
Challenge to Econometricians,” Proceedings of the XXXIXth International AEA Conference on Real Eznaometrics




LONG MEMORY AND ASYMMETRIC EFFECTS 27

NELSON, D. B. (1991): “Conditinal Heteroskedasticity in Asset Returns: A Nguproach,”"Econometrica59, 347-370.

NUNES, L. C., C.-M. KUAN, AND P. NEwWBOLD (1995): “Spurious BreakEconometric Theoryll, 736—749.

OMORI, Y., S. CHIB, N. SHEPHARD, AND J. NAKAJIMA (2007): “Stochastic Volatility with Leverage: Fast and Efficient
Likelihood Inference,Journal of Econometrigforthcoming.

PATTON, A. (2005): “Volatility Forecast Evaluation and Comparison Using Infipar\olatility Proxies,” Unpublished man-
uscript, London School of Economics.

PITARAKIS, J. (2006): “Model Selection Uncertainty and Detection of Threshofdd,” Studies in Nonlinear Dynamics
and EconometrigslO, 1-28.

RABEMANJARA, R., AND J. M. ZakOIAN (1993): “Threshold ARCH Models and Asymmetries in Volatilitydurnal of
Applied Econometrics8(1), 31-49.

RECH, G., T. TERASVIRTA, AND R. TSCHERNIG(2001): “A Simple Variable Selection Technique for Nonlinear Models,”
Communications in Statistics, Theory and Meth@ifs 1227-1241.

SCHARTH, M., AND M. MEDEIROS (2006): “Asymmetric Effects and Long Memory in the Volatility of DJIA Sks¢’
Discussion paper, Pontifical Catholic University of Rio de Janeiro.

SCHWERT, G. W. (1990): “Stock Volatility and the Crash of '8 /Review of Financial Studie8, 77—-102.

SMITH, A. (2005): “Level Shifts and the lllusion of Long Memory in Economiitmé Series,"Journal mf Business and
Economic Statistic23, 321-335.

So, M., K. LAM, AND W. LI (1998): “A stochastic volatility model with Markov switchingJournal of Business and
Economic Statisticsl6, 244—253.

So, M., W. LI, AND K. LAM (2002): “A threshold stochastic volatility modeldurnal of Forecasting21, 473-500.

SUAREZ-FARINAS, M., C. E. FEDREIRA, AND M. C. MEDEIROS(2004): “Local Global Neural Networks: A New Ap-
proach for Nonlinear Time Series Modelinggurnal of the American Statistical Associatj@9, 1092-1107.

TAYLOR, S. J. (1986)Modelling Financial Time Seriedohn Wiley, Chichester, UK.

TERASVIRTA, T. (1994): “Specification, Estimation, and Evaluation of Smooth Trams#iotoregressive ModelsJournal
of the American Statistical Associatid#9, 208—218.

VAN DK, D., P. RANSES AND R. PaAP (2002): “A Nonlinear Long Memory Model, With an Application to US Unem-
ployment,”Journal of Econometri¢sl10, 135-165.

WHITE, H. (1981): “Consequences and Detection of Misspecified Nonlinegrd®sion Models Journal of the American
Statistical Association76(374), 419-433.

(1994): Estimation, Inference and Specification Analy§lambridge University Press, New York, NY.

WHITE, H., AND |. DomowITZ (1984): “Nonlinear Regression with Dependent Observatidisghometricab2, 143—-162.

WOOLDRIDGE, J. M. (1990): “A unified approach to robust, regression-basedigation tests,Econometric Theory6,
17-43.

(1994): “Estimation and Inference for Dependent Processiandbook of Econometriced. by R. F. Engleand
D. L. McFadden, vol. 4, pp. 2639-2738. Elsevier Science.

Yu, J. (2005): “On Leverage in a Stochastic Volatility Moddgdurnal of Econometricsl27, 165-178.

ZAKOIAN, J. M. (1994): “Threshold Heteroskedastic Modelgtirnal of Economic Dynamics and ContréB, 931-955.

ZHANG, L. (2005): “Efficient Estimation of Stochastic Volatility Using Noisy Obsaions: A Multi-Scale Approach,”
Unplublished manuscript, Department of Mathematical Sciences, @iarkkellon University.

ZHANG, L., P. MYKLAND , AND Y. AIT-SAHALIA (2005): “A Tale of Two Time Scales: Determining Integrated Volatility
with Noisy High-Frequency DataJournal of the American Statistical Associatjd®0, 1394-1411.

ZHou, B. (1996): “High frequency data and volatility in foreign-exchangeséJournal of Business and Economic Statis-
tics, 14, 45-52.



TABLE 1. DESCRIPTIVESTATISTICS.

The table shows the mean, median, standard deviation, minimum, and amafrthe following statistics: mean, standard deviation, kurtosis, andreissy
of the simulated daily returns; sum of the first 500 autocorrelations oflikelate and squared daily returs,”™ p;(|r<|) and ">} p;(r7), respectively;
the GPH (Geweke and Porter-Hudak 1983) estimator of the fractiofatefice parameter for the absolute returns, squared returns,gudlddility, d(|r:|),
d(r#), andd(o;), respectively; and the correlation coefficient between the volatility andatiged returnp(exp (o), 7:—1). The number of ordinates in the
GPH estimator is set ds= 3000°-5.

Example 1
Mean Std. Dev. Kurtosis Skewnesi?iol p;(|7e]) 250201 pi(r?) d(r])  d(r?) d(log(or)) plexp(or),ri—1)
Mean -0.0012 1.8320 45.954 0.1233 1.6937 0.7408 0.1562 7P.08 0.2261 -0.0929
Median 0.0003 1.7859  21.763 0.0911 1.2936 0.4957 0.1549750.0 0.2308 -0.0830
Std. Dev. 0.0325 0.2510  99.464 2.8956 2.0315 1.0996 0.1052068 0.0963 0.0805
Minimum -0.1314  1.3649 7.4699 -23.127 -1.8592 -1.2114 602 -0.2487 -0.0926 -0.6373
Maximum 0.0902 3.7018 1,341.1 30.325 12.3670 7.1483 0.5193%H612 0.5125 0.1719
Example 2
Mean Std. Dev. Kurtosis Skewnes$ >% p;(|ri|) 3202 pi(r?) d(ril)  d(r?) d(log(av)) plexp(or),re—1)
Mean 0.0006  1.3429 11.006 0.0620 2.2571 1.7958 0.2690 D.2140.3904 -0.0137
Median 0.0011  1.3218 6.0657 0.0543 1.7360 1.4124 0.2676 068.2 0.3940 -0.0096
Std. Dev. 0.0236  0.1263 20.469 0.7025 2.5185 1.8799 0.1104189 0.1012 0.0407
Minimum -0.0924 1.1255  3.8245 -9.2266 -3.1003 -2.0112 030 -0.1068  0.0301 -0.2990

Maximum 0.0729  2.2681 242.14 8.1517 18.278 13.102 0.8205/679.  0.7656 0.1051

8¢
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TABLE 2. SMULATION RESULTS NUMBER OF REGIMES.

Relative frequency of selecting correctly the number of regimes of theehbased on 1000 replications
with different sample sizes. The number between parenthesis is thefregof underfitting (selection of

fewer regimes).

Initial significance level: 0.05

300 observations

500 observations

Model True Value Non-Robust Test Robust Test Non-Robust TB®bust Test
1 3 0.05 (0.95) 0(1) 0.07 (0.92) 0.01 (0.99)
2 3 0.02 (0.98) 0.01 (0.99) 0.03 (0.97) 0.02 (0.98)
1000 observations 1500 observations
Model True Value Non-Robust Test Robust Test Non-Robusdt TBebust Test
1 3 0.19 (0.80) 0.06 (0.94) 0.30 (0.69) 0.14 (0.86)
2 3 0.06 90.93) 0.04 (0.96) 0.10 (0.90) 0.04 (0.96)
3000 observations 5000 observations
Model True Value Non-Robust Test Robust Test Non-Robust TBebust Test
1 3 0.56 (0.43) 0.41 (0.59) 0.86 (0.12) 0.76 (0.24)
2 3 0.17 (0.82) 0.10 (0.89) 0.28 (0.71) 0.13(0.87)
Initial significance level: 0.10
300 observations 500 observations
Model True Value Non-Robust Test Robust Test Non-Robudt TB®bust Test
1 3 0.07 (0.93) 0.01 (0.99) 0.10 (0.88) 0.02 (0.98)
2 3 0.03 (0.96) 0.01 (0.99) 0.09 (0.90) 0.04 (0.96)
1000 observations 1500 observations
Model True Value Non-Robust Test Robust Test Non-Robudt TB®bust Test
1 3 0.25 (0.73) 0.09 (0.91) 0.34 (0.65) 0.20 (0.80)
2 3 0.12 (0.86) 0.06 (0.93) 0.17 (0.82) 0.09 (0.91)
3000 observations 5000 observations
Model True Value Non-Robust Test Robust Test Non-Robudt TB®bust Test
1 3 0.68 (0.31) 0.52 (0.48) 0.90 (0.09) 0.85(0.15)
2 3 0.21 (0.78) 0.16 (0.83) 0.34 (0.62) 0.25(0.73)
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TABLE 3. SELECTED VARIABLES.

The table shows for each series the selected lagsiin(5) and indicates whether or not announcement
effects and days-of-the-week dummies are included in the modeifispgon. FOM indicates the dates
of the Federal Open Market Committee meetings, ESR is related to therarement of The Employment
Situation Report, and CPI and PPl indicate the dates of the announceitten€®| and PPI, respectively. We
omit the dummy for Friday to avoid perfect collinearity as our model inetua constant in its specification.

Series Lags FOM ESR CPlI PPI Monday Tuesday Wednesday Thursda

AA 1,5 and22 No No No No No Yes No No
AlG 1,5,and22 No No No No No No No No
BA 1,5,and22 No No No No No No No No
CAT 1and 15 Yes No No No No No No No
GE 1,5,and22 Yes No No No Yes No Yes No
GM 1and 10 No No No No No No No No
HP 1,5,and 22 Yes No No No No No No Yes
IBM 1,5,and22 Yes No No No No No Yes No
INTC 1,5,and22 No Yes Yes Yes No No No No
JNJ 1,5,and15 No No No No No No No No
KO 1,5,and15 No No No No No No No No
MRK 1,5,and22 Yes No No No No No Yes No
MSF 1,5,and22 No Yes No No No No No No
PFE land 10 No No No No No No No No
WMT 1,2,and10 Yes No No No No No No No

XON 1,5,and22 No No No No No No No Yes




TABLE 4. LINEAR HAR MODEL: DIAGNOSTIC TESTS

The table shows for each series fh@alues for the following tests: LM test for residual serial autocorrefatiborders 1, 5, and 10; LM test for
ARCH effects of order 1, 5, and 10; the Jarque-Bera test for ndgmand finally, the linearity test against the HARST alternative using as
transition variable. The table also reports estimates for the residualsikatasskewness.

Serial Correlation ARCH Normality Linearity Test
Series 1 5 10 1 5 10 Kurtosis Skewness Jarque-Bera Non-RoRatust
AA  0.2005 0.6551 0.6749 0.3076 0.7205 0.8943 4.0196 0.4018 .0000 0.0021 0.1016
AIG 0.1866 0.2808 0.4959 0.3485 0.1760 0.1198 3.9749 0.0105 0.0000 0.0000 0.0000
BA 0.0294 0.0891 0.2338 0.1540 0.1396 0.2598 5.1427 0.7398 .0000 0.0000 0.0002
CAT 0.0772 0.0878 0.4366 0.2165 0.4454 0.6576 4.1846 0.31510.0000 0.0000 0.0014
GE 0.8184 0.0010 0.0011 0.0000 0.0001 0.0027 41731 0.3512 .0000 0.0000 0.0000
GM 0.0292 0.1359 0.1601 0.0000 0.0000 0.0000 8.4597 0.0494 .0000 0.0000 0.0004
HP  0.8155 0.8511 0.7802 0.0474 0.0226 0.0292 3.4459 0.2120 .0000 0.0080 0.0042
IBM 0.3504 0.1704 0.0471 0.0038 0.0588 0.0973 4.1146 0.6374 0.0000 0.0000 0.0000
INTC 0.8656 0.9396 0.9611 0.0000 0.0000 0.0010 4.8292 3.101 0.0000 0.0000 0.0000
JNJ 0.1568 0.7515 0.7011 0.0006 0.0035 0.0140 4.8042 0.51940.0000 0.0000 0.0000
KO 0.0275 0.0493 0.1128 0.0000 0.0000 0.0000 5.4411 0.5049 .0000 0.0000 0.0006
MRK 0.1103 0.0101 0.0034 0.0000 0.0001 0.0004 4.4371 0.4482 0.0000 0.0000 0.0001
MSF 0.0123 0.0576 0.1785 0.0000 0.0000 0.0004 4.4653  -0.035 0.0000 0.0000 0.0000
PFE 0.0457 0.1398 0.2206 0.0049 0.0077 0.0325 4.7666 0.49080.0000 0.0000 0.0049
WMT 0.0781 0.1209 0.0973 0.0000 0.0000 0.0001 4.0922 0.2602 .0000 0.0000 0.0000
XON 0.0069 0.1075 0.1432 0.0001 0.0007 0.0016 4.1868 0.43130.0000 0.0000 0.0080
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TABLE 5. HARSTMODEL: DIAGNOSTIC TESTS

The table shows for each series fh@alues for the following tests: LM test for residual serial autocorretatiborders 1, 5, and 10; LM test for ARCH
effects of order 1, 5, and 10; Jarque-Bera test for normality ofébieluals; and finally the remaining nonlinearity test (robust versiorg.taible also shows
the kurtosis and skewness for the estimated residuals.

Serial Correlation ARCH Normality Remaining Number of
Series 1 5 10 1 5 10 Kurtosis Skewness Jarque-Bera Nonliyeari Regimes
AA  0.2005 0.6551 0.6749 0.3076 0.7205 0.8943 40196  0.4018 .0000 0.1016 1
AIG 0.0643 0.1654 0.3805 0.4938 0.1863 0.1485 4.0691  0.01210.0000 0.5553 2
BA 0.0545 0.0590 0.1799 0.1644 0.2947 0.4262 5.1785  0.7496 .0000 0.1229 2
CAT 0.0529 0.0785 0.3722 0.3529 0.4661 0.6939 4.0072  0.27000.0000 0.1364 2
GE 0.0566 0.0066 0.0139 0.8282 0.2193 0.5961 3.8596  0.2246 .0000 0.0275 2
GM 0.1526 0.7447 0.1778 0.7072 0.9948 0.9990 8.8480  -0.10850.0000 0.0370 2
HP  0.1527 0.1693 0.3740 0.0203 0.0155 0.0294 3.3080 0.1683 .0014 0.2538 2
IBM 0.0611 0.2651 0.0506 0.0909 0.2743 0.3694 4.1327  0.6122 0.0000 0.3097 2
INTC 0.3359 0.5605 0.7286 0.0000 0.0018 0.0206 4.7615  6.050 0.0000 0.1122 2
JNJ 0.0580 0.1140 0.3196 0.0001 0.0023 0.0145 45882  0.43610.0000 0.0662 2
KO 0.0573 0.1017 0.3312 0.0000 0.0000 0.0006 5.3710  0.2829 .0000 0.2093 2
MRK 0.1048 0.1128 0.0810 0.0460 0.0512 0.3181 43829  0.38930.0000 0.0866 2
MSF 0.0004 0.0067 0.0133 0.0001 0.0008 0.0071 46288 -B.069 0.0000 0.1550 3
PFE 0.0111 0.0564 0.0882 0.0022 0.0129 0.0485 47709  0.41970.0000 0.0433 2
WMT 0.0556 0.0494 0.1020 0.0169 0.0111 0.0289 3.7307  0.1502 .0000 0.3956 2
XO 0.0568 0.1612 0.3681 0.0013 0.0086 0.0275 4.1490  0.4080 .0000 0.3141 2

e
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LONG MEMORY AND ASYMMETRIC EFFECTS

TABLE 6. FORECASTINGRESULTS. MEAN ABSOLUTE ERRORS ANDROOT MEAN
SQUARED ERRORS

The table shows for each series the mean absolute errors (MAE) arabtireean squared
errors (RMSE) for the forecasts computed from different models.

MAE
Series HARST HAR HARST+HAR GARCH EGARCH GJR
AA - 0.4725 — 0.6170 0.7082  0.5972
AIG 0.3691 0.3671 0.3653 0.4648 0.4330 0.4648
BA  0.4164 0.4150 0.4135 0.5153 0.5054  0.5297
CAT 0.4069 0.4053 0.4051 0.5604 0.5405 0.5879
GE 0.3666 0.3569 0.3541 0.4949 0.4363 0.4715
GM  0.4390 0.4282 0.4267 0.5001 0.4676  0.4891
HP 0.6456 0.5999 0.6189 0.8768 0.8567 0.8716
IBM  0.3424 0.3444 0.3417 0.5527 0.5175  0.5499
INTC 0.4890 0.4776 0.4812 0.6787 0.6814 0.7411
JNJ  0.3703 0.3679 0.3641 0.4718 0.4550  0.4606
KO 0.3414 0.3441 0.3405 0.4316 0.4046  0.4145
MRK 0.3726 0.3712 0.3705 0.4635 0.4342  0.4628
MSF 0.3695 0.3707 0.3641 0.5761 0.5361 0.5780
PFE  0.4207 0.4186 0.4190 0.4723 0.5310 0.4758
WMT 0.4168 0.4102 0.4050 0.5296 0.5062 0.5194
XON 0.3111 0.3119 0.3096 0.4004 0.4052  0.4001
RMSE
Series HARST HAR HARST+HAR GARCH EGARCH GJR
AA - 0.6808 - 0.8483 0.9668  0.8041
AIG  0.5516 0.5544 0.5489 0.6347 0.6276  0.6264
BA 0.6132 0.6208 0.6139 0.7340 0.6973  0.7556
CAT 0.5962 0.5938 0.5937 0.7750 0.7460  0.8130
GE 0.5481 0.5423 0.5329 0.6869 0.6082  0.6503
GM  0.6731 0.6538 0.6547 0.6829 0.6755 0.6733
HP 0.9328 0.8595 0.8903 1.1188 1.0995 1.1080
IBM  0.5520 0.5479 0.5487 0.7353 0.6671 0.7421
INTC 0.7154 0.6927 0.7020 0.9130 0.9151 1.0613
JNJ  0.5847 0.5826 0.5769 0.7175 0.7089  0.7103
KO 0.5138 0.5147 0.5119 0.6290 0.6013  0.6042
MRK 0.5859 0.5813 0.5816 0.6820 0.6538 0.6795
MSF  0.5429 0.5488 0.5311 0.7584 0.6870 0.7718
PFE 0.6784 0.6694 0.6727 0.7367 0.7995  0.7450
WMT 0.6659 0.6598 0.6517 0.8212 0.7906  0.8086
XON 0.4677 0.4777 0.4700 0.6148 0.6248 0.6144
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TABLE 7. FORECASTINGRESULTS. DIEBOLD-MARIANO TEST.

The table shows for each series ghealue of the modified Diebold-Mariano
test of equal forecast accuracy. We compare the combination of &#&R
HARST models against the HAR model.

HARST + HAR versus HAR HARST versus HAR

Series MAE RMSE MAE RMSE
AA - - - -
AIG 0.2002 0.0638 0.7009 0.3452
BA 0.2149 0.0372 0.6434 0.1500
CAT 0.4466 0.5182 0.7714 0.7813
GE 0.1965 0.0403 0.9466 0.7045
GM 0.2913 0.6125 0.9818 0.9965
HP 1.0000 1.0000 1.0000 1.0000
IBM 0.0075 0.7350 0.1732 0.9428
INTC 0.9863 1.0000 0.9998 1.0000
JNJ 0.0603 0.1144 0.6889 0.5862
KO 0.0096 0.1417 0.1668 0.4258
MRK 0.3391 0.5454 0.7103 0.8744
MSF 0.0058 0.0135 0.4281 0.3431
PFE 0.6153 0.9548 0.8058 0.9870
WMT 0.0665 0.0484 0.8653 0.7413

XO 0.0788 0.0092 0.3939 0.0559
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APPENDIXA. PROOFS OFTHEOREMS

A.1l. Proof of Theorem 1. This is a standard result and the proof will be omitted.
Q.E.D

A.2. Proof of Theorem 2. The result follows directly from the application of Theorem 1.1 in Chen
and Tsay (1993).

Q.ED

A.3. Proof of Theorem 3. It is easy to see tha¥ (x¢, z;;¢) in (5) is continuous in the parameter
vector). This follows from the fact that, for each valueof andz;, f (z¢; vm,cm), m =1,..., M,
in (5) depend continuously ofy,, andc,,. Similarly, G (x, z;; %) is continuous inx; and z;, and
therefore measurable, for each fixed value of the parameter wéctégain, under stationarity, it is
clear thatE[¢:(¢)] < oo, V.

Restrictions (R.1)—-(R.3) in Assumption 3 guarantee that the HARST modelrisifidble, so that
Q() is uniquely maximized a#y,. This completes the proof.

Q.E.D

A.4. Proof of Theorem 4. Following White (1994, page 29)) — 1), if the following conditions
hold:

(1) The parameter spad is compact.
(2) Qr(vp) is continuous imp € ¥. FurthermoreQr(v) is a measurable function af, ¢t =
1,...,T, forally € P.
(3) Q(%) has a unique maximum at,.
(4) Qr(y) = Q).
Condition (1) is satisfied by Assumption 2. Theorem 3 shows that Condit®)rem@ (3) are satis-
fied.

Now setg(v)) = q:(¢) — E [¢:()]. Theorem 3 implies thdk [sup |g(¢)|] < oo. In addition,
peWw

becauseg(v) is stationary withE [g(+))] = 0, by Theorem 3.1 in Ling and McAleer (2003) it follows

that sup ‘T—l ST 9()| = 0,(1) and Condition (4) is satisfied.
pew
Q.ED

A.5. Proof of Theorem 5. To prove the asymptotically normality of the QMLE, we need the following
conditions in addition to those given in the proof of Theorem 4 (see Whi@4(l®age 92)).

(5) The true parameter vectgy, is interior tow.
(6) The matrix

1 (%
Ap(¢) = TZ(8£8($2>

exists and is continuous M.
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(7) The matrixAr () = A (1), for any sequences- such thatp, —— b,
(8) The score vector satisfies

T
730 (2590 2. N0, B,
t=1

9

Condition (5) is satisfied by assumption. Condition (6) follows from the faat ¢h{)) is differ-
entiable of order two ony) € ¥ and the stationarity of the HARST model. Condition (7) is verified
by using the same reasoning as in the proof of Theorem 4 and the restiheafem 3.1 in Ling and
McAleer (2003). Furthermore, non-singularity Af(<,) follows immediately from identification of
the HARST model and the non-singularityBf ;) (see Hwang and Ding (1997)).

Define

VG (x¢,21;%) = —(9G (};;;t; ¥) and
—
0?G (x4, 251
VG (x¢, 285 %9) = W .
TIJ:'%[’()

Using Theorem 2.4 from White and Domowitz (1984), the seque@§teG (x, z:; 1) £+ Obeys the
Central Limit Theorem (CLT) for somé- x 1) vector¢, such thatt’¢é = 1. Assumptions A(i) and
A(iii) of White and Domowitz (1984) hold becausgis a martingale difference sequence. Assumption
A(ii) holds with V = 402¢'E [VG (x4, z1; 1) V'G (x4, 213 1,)]. Furthermore, since any measurable
transformation of mixing processes is itself mixing (see Lemma 2.1 in White and Dibznd984)),
2¢8'VG (x4, 251) € IS @ strong mixing sequence and obeys the CLT. By using the @réivold
device,VQ (x¢, z¢; 1) also obeys the CLT with covariance matiB(,), which isO(1) and non-
singular. This completes the proof.

Q.ED

A.6. Proof of Theorem 6. This is the precise form of the LM test statistic for an additional regime
in the HARST model. Under Assumptions 1-4, the asymptotic distribution of the taltilsc is a
standard result for nonlinear regression models.

Q.E.D
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