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ABSTRACT: In this paper we propose a flexible model to capture nonlinearities and long-range depen-

dence in time series dynamics. The new model is a multiple regime smooth transition extension of the

Heterogenous Autoregressive (HAR) model, which is specifically designed to model the behavior of

the volatility inherent in financial time series. The model is able to describe simultaneously long mem-

ory, as well as sign and size asymmetries. A sequence of tests is developedto determine the number

of regimes, and an estimation and testing procedure is presented. Monte Carlo simulations evaluate

the finite-sample properties of the proposed tests and estimation procedures. We apply the model to

several Dow Jones Industrial Average index stocks using transactionlevel data from the Trades and

Quotes database that covers ten years of data. We find strong supportfor long memory and both sign

and size asymmetries. Furthermore, the new model, when combined with the linearHAR model, is

viable and flexible for purposes of forecasting volatility.
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2 LONG MEMORY AND ASYMMETRIC EFFECTS

1. INTRODUCTION

Given the rapid growth in financial markets and the continual development of new and more com-

plex financial instruments, there is an ever-growing need to understand the theoretical and empirical

processes underlying the volatility in financial time series. It is well known that the daily returns of

financial assets, especially of stocks, can be extremely difficult to predict, although the volatility of the

returns seems to be relatively more straightforward to forecast. Thus, it ishardly surprising that finan-

cial econometrics, and particularly the modelling of financial volatility, has played such a central role

in modern pricing and risk management theories. Andersen, Bollerslev, Christoffersen, and Diebold

(2007) provide a recent overview of the literature.

There is, however, an inherent problem in using models where the volatility measure plays a central

role. The conditional variance is latent, and hence is not directly observable. Early classes of volatil-

ity models used squared daily returns as a measure of volatility. However, asthis measure is very

noisy, volatility was specified as a latent variable in different models. Useful and popular examples

of such models are the (Generalized) Autoregressive Conditional Heteroskedasticity, or (G)ARCH,

model of Engle (1982) and Bollerslev (1986), various stochastic volatility models (see, for example,

Taylor (1986)), and the exponentially weighted moving averages (EWMA)approach, as advocated

by the Riskmetrics methodology (J. P. Morgan 1996). McAleer (2005) gives a recent exposition of a

wide range of univariate and multivariate, conditional and stochastic, models of volatility, and Asai,

McAleer, and Yu (2006) provide a review of the rapidly growing literatureon multivariate stochastic

volatility models. However, as observed by Bollerslev (1987), Malmsten andTer̈asvirta (2004), and

Carnero, Pẽna, and Ruiz (2004), among others, most of the latent volatility models have been unable to

capture simultaneously several important empirical features that are inherent in financial time series.

An empirical regularity which standard latent volatility models fail to describe adequately is the low,

but slowly decreasing, autocorrelations in the squared returns that areassociated with the high excess

kurtosis of returns. In this sense, the assumption of Gaussian standardized returns has been refuted

in many studies, and heavy-tailed distributions have been used instead. Furthermore, there is strong

evidence of long-range dependence in the conditional volatility of financial time series. One possible

explanation of long memory is aggregation. Volatility is modelled as a sum of different processes, each

with low persistence. The aggregation induces long memory, as noted by Granger (1980), LeBaron

(2001), Fouque, Papanicolaou, Sircar, and Sølna (2003), Davidson and Sibbertsen (2005), Hyung,

Poon, and Granger (2007), and Lieberman and Phillips (2007).

On the other hand, the literature has also documented asymmetric effects in volatility. Starting with

Black (1976), it has been observed that there is an asymmetric responseof the conditional variance of

the series to unexpected news, as represented by shocks. Financial markets become more volatile in

response to “bad news” (or negative shocks) than to “good news” (or positive shocks). Goetzmann,

Ibbotson, and Peng (2001) found evidence of asymmetric sign effects involatility as far back as 1857

for the NYSE. They report that unexpected negative shocks in monthly returns of the NYSE from 1857

to 1925 increase volatility almost twice as much as do equivalent positive shocks in returns of a similar
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magnitude. Similar results were also reported by Schwert (1990). The above mentioned asymmetry

has motivated a large number of different asymmetric latent volatility models.

However, most volatility models have been unable to describe simultaneously both nonlinear effects

and long memory. The statistical consequences of neglecting or misspecifying nonlinearities have been

discussed in the context of structural breaks in the GARCH literature by Diebold (1986), Lamoureux

and Lastrapes (1990), Mikosch and Starica (2004), and Hillebrand (2005), and in the literature on

long memory models by Lobato and Savin (1998), Diebold and Inoue (2001), Granger and Teräsvirta

(2001), Granger and Hyung (2004), and Smith (2005). Neglected changes in levels or persistence

induce estimated high persistence, which has often been called “spurious”high persistence (see also

Hillebrand and Medeiros (2007) for a recent application).

In the opposite direction, it is also possible to misinterpret data-generating high persistence (in the

form of long memory or unit roots) for nonlinearity. Spuriously estimated structural breaks have been

reported for unit root processes by Nunes, Kuan, and Newbold (1995) and Bai (1998), and have been

extended to long memory processes by Hsu (2001).

The search for an adequate framework for the estimation and prediction ofthe conditional variance of

financial asset returns has led to the analysis of high frequency intraday data. Merton (1980) noted that

the variance over a fixed interval can be estimated arbitrarily, although accurately, as the sum of squared

realizations, provided the data are available at a sufficiently high sampling frequency. More recently,

Andersen and Bollerslev (1998) showed that ex post daily foreign exchange volatility is best measured

by aggregating 288 squared five-minute returns. The five-minute frequency is a trade-off between

accuracy, which is theoretically optimized using the highest possible frequency, and microstructure

noise, which can arise through the bid-ask bounce, asynchronous trading, infrequent trading, and price

discreteness, among other factors (see Madhavan (2000) and Biais, Glosten, and Spatt (2005) for recent

reviews).

Ignoring the remaining measurement error, which can be problematic, the expost volatility essen-

tially becomes “observable”. Andersen and Bollerslev (1998), Hansenand Lunde (2005), and Patton

(2005) used the realized volatility to evaluate the out-of-sample forecasting performance of several

latent volatility models. As volatility becomes “observable”, it can be modelled directly, rather than

being treated as a latent variable. Based on the theoretical results of Andersen, Bollerslev, Diebold,

and Labys (2003), Barndorff-Nielsen and Shephard (2002), andMeddahi (2002), several recent studies

have documented the properties of realized volatilities that are constructed from high frequency data.

In this paper, we propose a simple model that merges long memory and nonlinearities. The new

specification is a multiple regime generalization of the Heterogeneous Autoregression (HAR) that was

suggested by Corsi (2004). The HAR model is inspired by the Heterogeneous Market Hypothesis and

the asymmetric propagation of volatility between long and short time horizons. The HAR model has

been applied with success in modelling and forecasting realized variance (Andersen, Bollerslev, and

Diebold 2007). The new model is called the Heterogeneous Autoregression with Multiple-Regime
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Smooth Transition (HARST) model, which combines ingredients from the HAR and the Smooth Tran-

sition Autoregressive (STAR) models (Chan and Tong 1986, Teräsvirta 1994). The HARST model has

the main advantage of modelling simultaneously long-range dependence, as well as incorporating sign

and size asymmetries in a simple manner. The choice of the variable that drivesthe regime switches

makes it possible to describe interesting dynamics, such as general asymmetry and leverage. The num-

ber of regimes is determined by a simple and easily-implemented sequence of teststhat circumvents the

identification problem in the nonlinear time series literature, and the model estimationand testing pro-

cedure is analysed. A Monte Carlo simulation evaluates the finite-sample properties of the proposed

modelling cycle. An empirical application with 16 stocks from the Dow Jones Industrial Average

(DJIA) gives strong support in favor of the new model. In particular, evidence is shown of long-range

dependence and both sign and size asymmetries in the realized volatility of the series. Finally, the

combination of the linear and nonlinear HAR models produces superior one-day-ahead forecasts.

The paper is organized as follows. Section 2 introduces the theoretical foundations and describes the

salient features of realized volatility. Section 3 presents the model and discusses estimation issues. A

formal test for an additional regime is introduced in Section 4. Section 5 describes the model building

procedure, in which the number of regimes is determined by a simple and easily-implemented sequence

of tests. Monte Carlo simulations are presented in Section 6. The empirical results are discussed in

Section 7. Section 8 gives some concluding comments.

2. REALIZED VOLATILITY

Suppose that at dayt the logarithmic prices of a given asset follow a continuous time diffusion:

(1) dp(t + τ) = µ(t + τ) + σ(t + τ)dW (t + τ), 0 ≤ τ ≤ 1, t = 1, 2, 3, . . . ,

wherep(t + τ) is the logarithmic price at time(t + τ), µ(t + τ) is the drift component,σ(t + τ) is the

instantaneous volatility (or standard deviation), anddW (t + τ) is standard Brownian motion.

Andersen, Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielsen and Shephard (2002) showed

that the daily compound returns, defined asrt = p(t) − p(t − 1), are Gaussian conditionally on

Ft = σ(p(s), s ≤ t), theσ-algebra (information set) generated by the sample paths ofp, such that

(2) rt|Ft
∼ N

(∫ 1

0
µ(t − 1 + τ)dτ,

∫ 1

0
σ2(t − 1 + τ)dτ

)
.

The termIVt =
∫ 1
0 σ2(t − 1 + τ)dτ is known as theintegrated variance, which is a measure of the

day-t ex post volatility. In this sense, the integrated variance is the object of interest.

In practical applications, prices are observed at discrete and irregularly spaced intervals. There are

several ways of sampling the data. Suppose that at a given dayt, we partition the interval [0,1] in

subintervals, and define the grid of observation timesG = {τ1, . . . , τn}, 0 = τ0 < τ1 < · · · , τn = 1.

The length of theith subinterval is given byδi = τi − τi−1. The most widely used sampling scheme

is calendar time sampling (CTS), where the intervals are equidistant in calendar time, that isδi = 1/n.

Setpi,t, t = 1, . . . , n, to be theith price observation during dayt, such thatrt,i = pt,i − pt,i−1 is the
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ith intra-period return of dayt. Realized variance is defined as

(3) RVt =
n∑

i=1

r2
t,i.

Realized volatility is the square-root ofRVt.

The search for asymptotically unbiased, consistent and efficient methodsfor measuring realized

volatility in the presence of microstructure noise has been one of the most active research topics in fi-

nancial econometrics over the last few years. While early references inthe literature, such as Andersen,

Bollerslev, Diebold, and Ebens (2001), advocated the simple selection of an arbitrary lower frequency

(typically 5-15 minutes) to balance accuracy and the dissipation of microstructure bias, a procedure that

is known as sparse sampling, some recent articles have developed estimators that dominate this pro-

cedure. These contributions fall in several categories: some examples are the selection of an optimal

sampling frequency in sparse sampling, as in Bandi and Russell (2005a,2005b, 2006), the subsampling

method, as in Zhang, Mykland, and Aı̈t-Sahalia (2005), the kernel-based estimators of Zhou (1996),

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006a, 2006b), and Hansen and Lunde (2006) and

MA filtering, as in Hansen, Large, and Lunde (2007). McAleer and Medeiros (2007) review these and

other methods, and provide a comparison of the alternative methods.

Three consistent methods of estimation are presently available: the realized kernel estimators of

Barndorff- Nielsen, Hansen, Lunde and Shephard (2006a, 2006b), the modified MA filter of Hansen,

Large, and Lunde (2007), and the two time scales realized volatility estimator ofZhang, Mykland, and

Aı̈t-Sahalia (2005), which is our choice for the empirical part of this paper.Aı̈t-Sahalia, Mykland, and

Zhang (2005) show that the estimator works well when the hypothesis of independent microstructure

noise is violated, is stable with regard to the choice of grids, and yields estimatesthat are close to the

more efficient but also more computationally-demanding Multi-Scale approachof Zhang (2005).

Several salient features of realized volatility have been identified in the literature:

(1) the unconditional distribution of daily returns exhibits excess kurtosis;

(2) daily returns are not autocorrelated (except for the first order,in some cases);

(3) daily returns that are standardized by the realized variance measureare almost Gaussian;

(4) the unconditional distribution of realized variance and volatility is distinctly non-normal, and

is extremely right-skewed;

(5) realized volatility does not seem to have a unit root, but there is strong evidence of fractional

integration.

On the other hand, the natural logarithm of the volatility has the following empirical regularities:

(1) the logarithm of realized volatility is close to normal;

(2) the logarithm of realized volatility displays long-range dependence.

The model described in Section 3 aims to model not only long-range dependence found in realized

volatility but also describe risk-return asymmetries as documented in the latent volatility literature.
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3. LONG MEMORY AND NONLINEARITY IN REALIZED VOLATILITY

3.1. A Brief Review of the Literature and Stylized Facts. As observed in the Introduction, several

nonlinear conditional and stochastic volatility models have been proposed in the literature to describe

asymmetries in volatility. In most of these models, volatility is a latent variable. Nelson(1991) pro-

posed the Exponential GARCH (EGARCH) model, in which the natural logarithm of the conditional

variance is modelled as a nonlinear ARMA model, with a term that introduces asymmetry in the dy-

namics of the conditional variance, according to the sign of the lagged returns. Glosten, Jagannathan,

and Runkle (1993) proposed the GJR model, where the impact of the laggedsquared returns on the

current conditional variance changes according to the sign of the pastreturn. A similar specification,

known as the Threshold GARCH (TGARCH) model, was developed by Rabemanjara and Zakoian

(1993) and Zakoian (1994). Ding, Granger, and Engle (1993) discussed the Asymmetric Power ARCH

model, which nests several GARCH specifications (see Ling and McAleer (2002) for a derivation of

the necessary and sufficient moment conditions).

Engle and Ng (1993) popularized the news impact curve (NIC) as a measure of how new infor-

mation is incorporated into volatility estimates. The authors also developed formalstatistical tests to

check the presence of asymmetry in the volatility dynamics. More recently, Fornari and Mele (1997)

generalized the GJR model by allowing all the parameters to change according to the sign of the past

return. Their proposal is known as the Volatility Switching GARCH (VSGARCH) model. Based on

the Smooth Transition AutoRegressive (STAR) model, Hagerud (1997) and Gonzalez-Rivera (1998)

proposed the Smooth Transition GARCH (STGARCH) model. While the latter only considered the

Logistic STGARCH (LSTGARCH) model, the former discussed both the Logisticand Exponential

STGARCH (ESTGARCH) alternatives. In the logistic STGARCH specification, the dynamics of

volatility are very similar to those of the GJR model and depends on the sign of thepast returns.

The difference is that the former allows for a smooth transition between regimes. In the EST-GARCH

model, the sign of the past returns does not play any role in the dynamics of the conditional variance,

but it is the magnitude of the lagged squared return that is the source of asymmetry.

Anderson, Nam, and Vahid (1999) combined the ideas of Fornari and Mele (1997), Hagerud (1997),

and Gonzalez-Rivera (1998) and proposed the Asymmetric Nonlinear Smooth Transition GARCH

(ANSTGARCH) model, and found evidence in support of their specification. Medeiros and Veiga

(2004) proposed the Flexible Coefficient GARCH (FCGARCH) model, which is a multiple regime

generalization of several models in the literature. The authors found strong support of sign and size

asymmetries in volatility. Furthermore, an empirical example with ten stock indexes shows evidence

of two regimes for six series and three regimes for other four series. Furthermore, for all series with

three regimes, the GARCH model associated with the first regime, representing very negative returns

(“very bad news”), is explosive. The model in the middle regime, related to tranquil periods, has a

slightly lower persistence than the standard estimated GARCH(1,1) models in the literature. Finally,

the third regime, representing large positive returns, has an associated GARCH(1,1) specification that

is significantly less persistent than the others.
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Inspired by the Threshold Autoregressive (TAR) model, Li and Li (1996) proposed the Double

Threshold ARCH (DTARCH) model. Liu, Li, and Li (1997) generalized themodel and proposed the

Double Threshold GARCH (DTGARCH) process to model both the conditional mean and conditional

variance as threshold processes. More recently, based on the regression tree literature, Audrino and

Bühlmann (2001) proposed the Tree Structured GARCH model to describe multiple limiting regimes

in volatility. Caporin and McAleer (2006) developed a dynamic asymmetric univariate GARCH model.

When the regime switches are driven by a Markov Chain, the main references are Hamilton and Susmel

(1994), Cai (1994), and Gray (1996).

In the class of stochastic volatility (SV) models, several asymmetric models havebeen developed.

One of the first references is Harvey and Shephard (1996). So, Lam, and Li (1998) and Kalimipalli and

Susmel (2007) discussed SV models with Markovian regime switches, while So, Li, and Lam (2002)

considered a threshold SV specification. Asai and McAleer (2005) proposed a dynamic asymmetric

leverage model that accommodates the direct correlation between returns and volatility as well as sign

and size threshold effects, and Omori, Chib, Shephard, and Nakajima (2007) developed an SV model

with leverage (see also Asai and McAleer (2006, 2007) for differentasymmetric SV models). Yu

(2005) also considered a SV model with leverage effects. Cappuccio, Lubian, and Davide (2006) pro-

vided empirical evidence on asymmetry in financial returns using a simple stochastic volatility model

which allows a parsimonious yet flexible treatment of both skewness and heavy tails in the conditional

distribution of returns.

With respect to long memory, Baillie, Bollerslev, and Mikkelsen (1996) is one of the main references.

The authors proposed the Fractionally Integrated GARCH (FIGARCH) model as a viable alternative

to model long range dependence in volatility. Giraitis, Robinson, and Surgailis(2004) considered the

Leverage ARCH (LARCH) model and discussed both leverage and long memory effects in volatility.

Breidt, Crato, and de Lima (1998), Hurvich and Ray (2003), Jensen (2004), and Deo, Hurvich, and Lu

(2006) discussed the specification and estimation of SV models with long memory.

In the realized volatility literature, most of the early contributions considered only linear long mem-

ory models. Martens, van Dijk, and de Pooter (2004) were the first to introduce simultaneously long-

range dependence, asymmetries and structural breaks into a realized volatility model. The authors also

evaluated the relevance of the days of the week and presented a detailed and exhaustive empirical ap-

plication. Their specification belongs to the class of nonlinear Autoregressive Fractionally Integrated

(ARFI) models. However, they did not consider tests of linearity or the presence of more than two lim-

iting regimes. More recently, Scharth and Medeiros (2006) proposed a multiple regime tree structure

model to describe the behavior of realized volatility, where past cumulative returns drive the regime

switches. Although a formal model building procedure was developed, theproposed specification did

not take into account possible long memory that might be caused by aggregation, among other possibil-

ities. The authors considered that the long range dependence is causedby regime switches. Hillebrand

and Medeiros (2006) suggested a model that generalizes the approachdeveloped in Martens, van Dijk,

and de Pooter (2004) by merging fractionally integrated process with nonlinearity and asymmetry. The
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authors also considered a volatility-in-mean effect and developed a formal test of linearity following

the ideas in van Dijk, Franses, and Paap (2002). However, the estimation of the fractional integration

parameter can prove very difficult and noisy.

In this paper we extend the ingredients of Martens, van Dijk, and de Pooter(2004), Scharth and

Medeiros (2006), and Hillebrand and Medeiros (2006), and proposea model that accommodates long-

range dependence in a very simple manner for straightforward estimation. Asymmetries and nonlin-

earity are developed in a smooth transition environment. A formal sequence of tests is described in

order to determine the number of limiting regimes. Furthermore, external exogenous variables can be

incorporated into the model structure in a straightforward way.

3.2. Model Specification. The Heterogenous Autoregressive (HAR) model was proposed by Corsi

(2004) as an alternative to model and forecast realized volatilities, and is inspired by the Heterogenous

Market Hypothesis of M̈uller, Dacorogna, Dav, Olsen, Pictet, and Ward (1993) and the asymmetric

propagation of volatility between long and short horizons. Corsi (2004)defines the partial volatility

as the volatility generated by a certain market component, and the model is an additive cascade of

different partial volatilities (generated by the actions of different types of market participants). At each

level of the cascade (or time scale), the unobserved volatility process is assumed to be a function of

the past volatility at the same time scale and the expectation of the next period values of the longer

term partial volatilities (due to the asymmetric propagation of volatility). Corsi (2004) showed that by

straightforward recursive substitutions of the partial volatilities, this additive volatility cascade leads to

a simple restricted linear autoregressive model with the feature of considering volatilities realized over

different time horizons. The heterogeneity of the model derives from thefact that at each time scale,

the partial volatility is described by a different autoregressive structure.

In this paper, we generalize the HAR model by introducing multiple regime switching. The proposed

model is defined as follows.

DEFINITION 1. Let

(4) yt,h =
yt + yt−1 + yt−2 + · · · + yt−h+1

h
,

h ∈ Z+, ι = (ι1, . . . , ιp)
′ ∈ Z

p
+ be a set of indexes whereι1 < ι2 < · · · < ιp, and xt =(

1, yt−1,ι1 , . . . , yt−1,ιp

)′ ∈ R
p+1. A time series{yt}T

t=1 follows a Multiple-Regime Smooth Transi-

tion Heterogenous Autoregressive (HARST) model withM + 1 limiting regimes if

(5) yt = G(xt, zt;ψ) + εt = β′
0xt +

M∑

m=1

β′
mxtf(zt; γm, cm) + εt,

whereG(xt, zt;ψ) is a nonlinear function of the variablesxt andzt, and is indexed by the vector of

parametersψ ∈ R
(M+1)(p+1)+2M , f(zt; γm, cm) is the logistic function given by

(6) f(zt; γm, cm) =
1

1 + e−γM (zt−cm)
,

andεt is a random noise.



LONG MEMORY AND ASYMMETRIC EFFECTS 9

Typical values for the hyper-parameterh in equation (5) are: one (daily volatility), five (weekly

volatility), and 22 (monthly volatility). The main advantage of the HARST model is that it can capture

both long-range dependence and regime switches (and hence asymmetric effects) in a very simple way.

It is clear thatf (zt; γm, cm) is a monotonically increasing function, such thatf (zt; γm, cm) → 1

as zt → ∞ andf (zt; γm, cm) → 0 as zt → −∞. The parameterγm, m = 1, . . . , M , is called

theslope parameterand determines the speed of the transition between two limiting regimes. When

γm → ∞, the logistic function becomes a step function, and the HARST model becomes athreshold-

type specification. The variablezt is known as thetransition variable. There are several possible

choices forzt. For example, suppose thatyt is the logarithm of the realized volatility and setzt = rt−1,

wherert−1 is the return of a given asset at timet − 1. Hence, the differences in the dynamics of

the conditional variance are modelled according to the sign and size of the shocks in previous returns,

which represent previous “news”.

The number of limiting regimes is defined by the hyper-parameterM . For example, suppose that

in (5), M = 2, c1 is highly negative, andc2 is very positive, so that the resulting HARST model

will have 3 limiting regimes that can be interpreted as follows. The first regime maybe related to

extremely low negative shocks (or “very bad news”) and the dynamics ofthe volatility are driven by

yt = β′
0xt + εt as f (rt−1; γm, cm) ≈ 0, m = 1, 2. In the the middle regime, which represents

low absolute returns (or “tranquil periods”),yt = (β0 + β1)
′
xt + εt asf (rt−1; γm, cm) ≈ 1 and

f (rt−1; γ2, c2) ≈ 0. Finally, the third regime is related to high positive shocks (or “very good news”)

andyt = (β0 + β1 + β2)
′
xt + εt, asf (rt−1; γi, ci) ≈ 1, i = 1, 2.

Another interesting choice iszt = yt−k or zt = yt−k,t−1. In the case whereyt is the logarithm

of the realized volatility, this particular choice of transition variable means that regime switches are

driven by past volatility. Past cumulated returns are also a suitable candidate for transition variables as

discussed in Scharth and Medeiros (2006). As the speed of the transitions between different limiting

HAR models is determined by the parameterγm, m = 1, 2, the multiple regime interpretation of the

HARST specification will become clearer as the transitions (γm ≫ 0) become more abrupt1.

The following examples illustrate interesting situations. The daily return of a given asset is given by

rt, r22,t is the cumulated return over the last 22 days,σt is logarithm of the daily volatility, and{ut}
is a sequence of independently and normally distributed random variables.Consider the following

specifications.

1If zt = t, the model accommodates smoothly changing parameters. In the limitγm → ∞, m = 1, . . . , M , we have an
HAR model withM structural breaks. However,zt = t will not be considered in this paper as the asymptotic theory has to
be changed.
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(1) Example 1:

rt = exp(σt)ut, ut ∼ NID(0, 1)

σt = 0.01 + 0.95σt−1−
(0.006 + 0.60σt−1 − 0.25σt−1,5 − 0.15σt−1,22) f(rt−1; 5,−3.0)+

(0.004 + 0.30σt−1 − 0.16σt−1,5 − 0.09σt−1,22) f(rt−1; 5, 2.5) + εt,

εt ∼ NID
(
0, 0.52

)
.

(7)

(2) Example 2:

rt = exp(σt)ut, ut ∼ NID(0, 1)

σt = 0.05 + 0.95σt−1−
(0.035 + 0.58σt−1 − 0.27σt−1,5 − 0.21σt−1,22) f(r22,t−1; 4,−10)+

(0.03 + 0.30σt−1 − 0.20σt−1,5 − 0.18σt−1,22) f(r22,t−1; 4, 13) + εt,

εt ∼ NID
(
0, 0.252

)
.

(8)

In both cases above, current volatility depends on past daily volatility, as well as on weekly and

monthly past volatilities. In the first example, when the returns are very negative, the logarithm of

the volatility is given by a very persistent first-order autoregressive model and longer lags have no

influence in the volatility dynamics, such thatσt = 0.010 + 0.95σt−1 + εt. During “tranquil periods”,

the logarithm of the volatility follows an HAR model, where weekly and monthly averages influence

current values, namelyσt = 0.004 + 0.35σt−1 + 0.25σt−1,5 + 0.15σt−1,22 + εt. When the lagged

return is very positive, the effects of the first lag are dominant, such thatσt = 0.008 + 0.65σt−1 +

0.09σt−1,5 + 0.06σt−1,22 + εt. In the second example, the monthly returns influence the dynamics of

volatility and the regime switches are not as frequent as in Example 1.

Figures 1 and 2 show one realization with 3000 observations of the returnsand the logarithm of the

volatility when the data are generated as in Examples 1 and 2, respectively. It is clear from the graphs

that the generated series have strong volatility clustering and extreme observations. Table 1 shows

the descriptive statistics for 1000 replications of equations (7) and (8). The table shows the mean,

median, standard deviation, minimum and maximum values of the following statistics: mean, standard

deviation, kurtosis, and skewness of the simulated daily returns; sum of thefirst 500 autocorrelations

of the absolute and squared daily returns; the GPH (Geweke and Porter-Hudak 1983) estimator of the

fractional difference parameter for the absolute returns, squared returns, and log volatility; and the

correlation coefficient between the volatility and the lagged return.

Several interesting facts emerge from Table 1. First, in both examples the returns have excess kur-

tosis and positive skewness. Note that, even with Gaussian errors, the kurtosis coefficient can be much

greater than three. In both cases, the volatility process displays long-range dependence. Note that the

average estimate of thed parameter is close to the 0.4 usually documented in the empirical literature.
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FIGURE 1. Upper panel: one realization of daily returns for Example 1. Lower panel:
one realization of the logarithm of the daily volatility for Example 1.

In the first case, there is also a small negative correlation between the lagged return and the volatility

process, which indicates the presence of leverage.

3.3. Probabilistic Properties. Deriving necessary and sufficient conditions for stationarity and geo-

metric ergodicity of the HARST model is not trivial as it will depend on the particular choice of tran-

sition variables and the distribution of the errors. However, it is possible to find a set of sufficient

conditions. The core idea is to analyse the HAR model as a restricted (AR) autoregressive model.

First, consider the linear HAR specification as follows.

(9) yt = β00 + β01yt−1,ι1 + β01yt−1,ι2 + · · · + β0pyt−1,ιp + εt.

It is easy to show that (9) is a restricted AR model given as

yt = φ0 + φ1yt−1 + · · · + φ1yt−ι1 + φ2yt−(ι1+1) + · · · + φ2yt−ι2

+ φ3yt−(ι2+1) + · · · + φ3yt−ι3 + · · · + φpyt−(ιp−1+1) + · · · + φpyt−ιp + εt,
(10)

whereφ0 = β00 andφj =
∑p

i=j β0i, j = 1, . . . , p.

THEOREM 1. Suppose that the process{yt} is generated by a HAR model as in (9), where the errors

are formed by a sequence{εt} of zero mean independent and identically distributed random variables

with E(ε2
t ) = E(ε2

t |Ft−1) = σ2 < ∞. Ft is theσ-algebra formed by the information available to
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FIGURE 2. Upper panel: one realization of daily returns for Example 2. Lower panel:
one realization of the logarithm of the daily volatility for Example 2.

time t. The process{yt} is strictly stationary and geometric ergodic if , and only if, the roots of the

polynomial

1 − φ1z − . . . − φ1z
ι1 − φ2z

ι1+1 − . . . − φ2z
ι2 − . . . − φpz

ιp−1+1 − . . . − φpz
ιp = 0

are outside the unit circle.

Following the same reasoning as above, the HARST model can be written as a restricted version of

the Functional-Coefficient Autoregressive (FAR) model proposed byChen and Tsay (1993) given by

yt = φ0(zt) + φ1(zt)yt−1 + · · · + φ1(zt)yt−ι1 + φ2(zt)yt−(ι1+1) + · · · + φ2(zt)yt−ι2

+ φ3(zt)yt−(ι2+1) + · · · + φ3(zt)yt−ι3 + · · · + φp(zt)yt−(ιp−1+1) + · · ·
+ φp(zt)yt−ιp + εt,

(11)

whereφ0(zt) = β00+
∑M

m=1 βm0f(zt; γm, cm) andφj(zt) =
∑p

i=j

[
β0i +

∑M
m=1 βmif(zt; γm, cm)

]
,

j = 1, . . . , p.

Direct application of Theorem 1.1 in Chen and Tsay (1993) enables us to state the following result.

THEOREM 2. Suppose that the process{yt} is generated by a HARST model as in (5) where|βk| <

∞, k = 0, . . . , M , such that|φj(zt)| ≤ cj =
∣∣∣
∑p

i=j

(
β0i +

∑M
m=1 βmi

)∣∣∣ < ∞, j = 1, . . . , p.

Furthermore, assume that the errors are formed by a sequence{εt} of zero mean independent and



LONG MEMORY AND ASYMMETRIC EFFECTS 13

identically distributed random variables withE(ε2
t ) = E(ε2

t |Ft−1) = σ2 < ∞. Ft is theσ-algebra

formed by the information available to timet. The process{yt} is strictly stationary and geometric

ergodic if the roots of the polynomial

1 − c1z − . . . − c1z
ι1 − c2z

ι1+1 − . . . − c2z
ι2 − . . . − cpz

ιp−1+1 − . . . − cpz
ιp = 0

are outside the unit circle.

It is clear that the condition of Theorem 2 is very strict. However, in orderto relax this condition and

the assumptions about the error term, it is important to make additional assumptions about the transition

variable. Although important, this is beyond the scope of this paper and is leftfor future research. In

practical applications, the estimated model can be checked for stationarity through simulation. In the

following sections, we will assume that the process{yt} is stationary and ergodic.

3.4. Parameter Estimation. In this section we discuss parameter estimation of the HARST model

and the corresponding asymptotic theory. Consider the following assumptionabout the data generating

process (DGP).

ASSUMPTION1 (Data Generating Process).The observed sequence of real-valued dependent variable

{yt}T
t=1 is a realization of a stationary and ergodic stochastic process on a completeprobability space

that can be well approximated by the HARST model, as in (5), such that thesequence{εt}T
t=1 is formed

by random variables drawn from an absolutely continuous (with respect toa Lebesgue measure on

the real line), positive everywhere distribution withE(εt) = E(εt|Ft−1) = 0, E(ε2
t ) = σ2 < ∞ and

E(ε2
t |Ft−1) = σ2

t > 0, ∀ t. Furthermore, lim
T→∞

1
T

∑T
t=1 σ2

t = σ2 < ∞. Ft is theσ-algebra formed by

the information available to timet.

Note that only mild restrictions are imposed on the error term, without assuming any particular

distribution. However, it is assumed that the conditional mean can be adequately described by a HARST

specification.

We make the following assumptions about the vector of parameters.

ASSUMPTION2 (Parameter Space).The true parameter vectorψ0 ∈ Ψ ⊆ R
(M+1)(p+1)+2M is in the

interior of Ψ, a compact and convex parameter space.

ASSUMPTION3 (Identifiability). The parametersγm andcm, m = 1, . . . , M , satisfy the restrictions:

(R.1) γm > 0;

(R.2) −∞ < c1 < · · · < cM < ∞;

(R.3) The elements of the vectorβm do not vanish jointly, for allm = 1, . . . , M .

Assumption 2 is standard and Assumption 3 guarantees that the HARST model isidentified. More

specifically, Restriction (R.1) eliminates identification problems caused by the fact thatf(zt; γm, cm) =

1 − f(zt;−γm, cm), m = 1, . . . , M , and Restriction (R.2) avoids permutation of theM logistic func-

tions in (5).
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The vector of parametersψ is estimated by nonlinear least squares, which is equivalent to the quasi-

maximum likelihood method. The estimator is given by

ψ̂ = argmin
ψ∈Ψ

QT (ψ) = argmin
ψ∈Ψ

1

T

T∑

t=1

qt(ψ),

whereqt(ψ) = [yt − G(xt, zt;ψ)]2.

DefineQ(ψ) = E[qt(ψ)]. In the following theorems, we state the existence, consistency and as-

ymptotic normality of the estimator̂ψ. The existence result is based on Theorem 2.12 in White (1994),

which establishes that, under certain conditions of continuity and measurabilityof the least squares

function,Q(ψ) exists.

THEOREM3 (Existence).Under Assumptions 1 and 2,Q(ψ) exists, is finite, and is uniquely maximized

atψ0.

In White (1981) and White and Domowitz (1984), the conditions that guarantee consistency of the

nonlinear least squares estimator are established. In the context of stationary time series models, the

conditions that ensure the consistency result are established in White (1994) and Wooldridge (1994).

In what follows, we state and prove the theorem of consistency of the estimators of the HARST model.

THEOREM 4 (Consistency).Under Assumptions 1–3,̂ψ
p−→ ψ0.

The asymptotic normality result is also based on the results in White (1994) and Wooldridge (1994).

THEOREM 5 (Asymptotic Normality).Under Assumptions 1–3, it follows that
√

T
(
ψ̂ −ψ0

)
d−→ N

(
0,A(ψ0)

−1
B(ψ0)A(ψ0)

−1
)
,

where

A(ψ0) = E


−∂2qt(ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ0


 and

B(ψ0) = E


T

∂QT (ψ)

∂ψ

∣∣∣∣∣
ψ

0

∂QT (ψ)

∂ψ′

∣∣∣∣∣
ψ

0


 ≡ 1

T

T∑

t=1

E


∂qt(ψ)

∂ψ

∣∣∣∣∣
ψ

0

∂qt(ψ)

∂ψ′

∣∣∣∣∣
ψ

0


 .

4. DETERMINING THE NUMBER OF REGIMES

The number of regimes in the HARST model, as represented by the number of transition functions

in (5), is not known in advance and should be determined from the data. Inthis paper we tackle

the problem of determining the number of regimes of the HARST model with a “specific-to-general”

modelling strategy, but circumvent the problem of identification in a way that controls the significance

level of the tests in the sequence and computes an upper bound to the overall significance level.

The following is based on the assumption that the errorsεt are Gaussian, but the results will be made

robust to non-normal errors.
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Consider an HARST model as in (5) withM limiting regimes, defined as

(12) yt = β′
0xt +

M−1∑

m=1

β′
mxtf (zt; γm, cm) + εt.

The idea is to test the presence of an additional regime, as represented byan extra term in (12) of

the formβ′
Mxtf (zt; γM , cM ). A convenient null hypothesis isH0 : γM = 0, against the alternative

Ha : γM > 0. Note that model (12) is not identified under the null hypothesis. In orderto remedy this

problem, we follow Ter̈asvirta (1994) and expand the logistic functionf (zt; γM , cM ) into a third-order

Taylor expansion around the null hypothesisγM = 0. After merging terms, the resulting model is2

(13) yt = β̃
′

0xt +
M−1∑

m=1

β′
mxtf (zt; γm, cm) +α′

1xtzt +α′
2xtz

2
t +α′

3xtz
3
t + ε∗t ,

whereε∗t = ε∗t +R(zt; γM , cM ), R(zt; γM , cM ) is the remainder,̃β0 = β0+
(

1
2 − γM cM

4 − γ3

M
c3
M

96

)
βM ,

α1 =
(

γM

4 +
γ3

M
c2
M

32

)
βM ,α2 = −γ3

M
cM

32 βM , andα3 =
γ3

M

96 βM .

Consider the following additional assumption.

ASSUMPTION4 (Moments).E
(
xtx

′
tz

δ
t

)
< ∞, for δ > 6.

UnderH0, R(zt; γM , cM ) = 0 and we can state the following result:

THEOREM 6. Under Assumptions 1–4, the LM statistic given by

(14) LM =
1

σ̂2

T∑

t=1

ε̂tv
′
t





T∑

t=1

vtv
′
t −

T∑

t=1

vtĥ
′
t

[
T∑

t=1

ĥtĥ
′
t

]−1 T∑

t=1

ĥtv
′
t





−1
T∑

t=1

vtε̂t,

where σ̂2
t = 1

T

∑T
t=1 ε̂ 2

t , {ε̂t}T
t=1 is the estimated sequence of residuals under the null hypothesis,

vt =
(
x
′
tzt,x

′
tz

2
t ,x

′
tz

3
t

)′
, and

ĥt =

(
x
′
t,x

′
tf(zt; γ̂1, ĉ1), . . . ,x

′
tf(zt; γ̂M−1, ĉM−1),

β̂
′

1xt
∂f(zt; γ̂1, ĉ1)

∂γ1
, . . . , β̂

′

M−1xt
∂f(zt; γ̂M−1, ĉM−1)

∂γM−1
,

β̂
′

1xt
∂f(zt; γ̂1, ĉ1)

∂c1
, . . . , β̂

′

M−1xt
∂f(zt; γ̂M−1, ĉM−1)

∂cM−1

)′

,

asymptotically has aχ2 distribution with3(p + 1) degrees of freedom under the null hypothesis.

Under the normality assumption, the test can be performed in stages, as follows:

2If zt is an element ofxt =
�
1, yt−ι1,t−1, . . . , yt−ιp,t−1

�
′

, then the resulting model should be

yt = eβ′

0
xt +

M−1X
m=1

β
′

mxtf (zt; γm, cm) + α′

1extzt +α′

2extz
2

t + α′

3extz
3

t + ε
∗

t ,

whereext =
�
yt−ι1,t−1, . . . , yt−ιp,t−1

�
′

.
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(1) Estimate model (5) underH0 and compute the sequence of residuals{ε̂t}T
t=1. When the sample

size is small, numerical problems in applying the quasi-maximum likelihood algorithm may

lead to a solution such that the residual vector is not orthogonal to the gradient matrix of

G(xt, zt; ψ̂). This has an adverse effect on the empirical size of the test. In order to circumvent

this problem, we regress the residualsε̂t on ĥt and compute the sum of squared residuals,

SSR0 =
∑T

t=1 ε̃ 2
t . The new residuals,{ε̃t}T

t=1, are orthogonal tôht.

(2) Regress̃εt on ĥt andvt, and compute the sum of squared residuals,SSR1.

(3) Compute the LM statistic:

(15) LMχ = T
SSR0 − SSR1

SSR0
,

or the F statistic:

(16) LMF =
(SSR0 − SSR1)/3(p + 1)

SSR1/[T − (3M − 5)(p + 1)]
.

UnderH0, LMχ is asymptotically distributed asχ2 with 3(p+1) degrees of freedom andLMF has

an asymptotic F distribution with3(p + 1) andT − (3M − 5)(p + 1) degrees of freedom.

Although the test statistic is constructed under the assumption of normality, it is straightforward

to follow Lundbergh and Teräsvirta (2002) and consider a robust version of the LM test against non-

normal errors. The robust version of the test statistic can be constructed following Procedure 4.1 in

Wooldridge (1990). The test statistic can be calculated as follows:

(1) As above.

(2) Regresŝvt on ĥt and compute the residual vectors,r̂t, t = 1, . . . , T .

(3) Regress 1 onεtr̂t and compute the residual sum of squares, SSR. The test statistic given by:

(17) LMR = T − SSR

has an asymptoticχ2 distribution withkx degrees of freedom under the null hypothesis.

5. MODEL SELECTION

The modelling cycle of the HARST model involves three steps, namely specification, estimation,

and model evaluation. The specification consists of three decisions:

(1) choice of relevant variables;

(2) selection of the transition variable; and

(3) determination of the number of regimes.

In addition to the set of lagged variables as defined in (5), other possible candidate variables are sets

of (weakly) exogenous variables. For example, in the context of volatility forecasting, these variables

may be dummies for the days of the week and dates of macroeconomic announcements. The set of

lagsι in the HARST model should be determined first. There are several ways ofselecting the relevant

variables. In the STAR literature, is common to select the set of relevant variables using information

criteria, making use of a linear approximation to the true DGP. This is also a possibility for the HARST
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specification. However, as noted in Pitarakis (2006), this method may have an adverse effect on the

final model specification. An alternative approach, which is adopted here, is to consider ak-th order

polynomial approximation to the nonlinear component of the DGP, as proposed in Rech, Ter̈asvirta,

and Tschernig (2001), and applied with success in Medeiros, Teräsvirta, and Rech (2006), Medeiros

and Veiga (2005), and Suarez-Fariñas, Pedreira, and Medeiros (2004). As the logistic functions in (5)

depend only on the scalar variablezt, the polynomial approximation can be simplified dramatically as

follows 3:

(18) yt = α′
0xt +α′

1xtzt +α′
2xtz

2
t +α′

3xtz
3
t + · · · +α′

kxtz
k
t + ε∗t ,

whereε∗t = εt + R(xt, zt;ψ). In this paper we choose a third-order polynomial approximation.

In equation (18), every product of variables involving at least one redundant variable inxt has the

coefficient set equal to zero. The idea is to sort out the redundant variables by using this property of

(18). In order to do so, we first regressyt on all the variables on the right-hand side of equation (18),

assumingR(xt, zt;ψ) = 0, and compute the value of a model selection criterion (MSC), such as AIC

or BIC. This leads to the removal of one variable from the original vector,xt. Then regressyt on

all the remaining terms in the corresponding polynomial, and again compute the value of the MSC.

This procedure is repeated sequentially by omitting each variable in turn, andcan be continued by

simultaneously omitting two regressors in the original model, and proceeding until the vectorxt is just a

constant. The combination of variables is chosen to yield the lowest value of the MSC. Rech, Ter̈asvirta,

and Tschernig (2001) showed that the procedure works well in small samples when compared with well

known nonparametric techniques. Furthermore, the procedure can be applied successfully even in large

samples when nonparametric model selection is not computationally feasible.

The selection of the transition variable is determined by testing linearity for different possible

choices ofzt
4. We choose the transition variable that minimizes thep-value of the test. Finally, the

number of regimes is determined by the sequence of LM tests, as described inSection 4.

We now combine the above procedure into a coherent modelling strategy thatinvolves a sequence

of LM tests. The idea is to test a linear HAR model against an alternative HARST model with more

than one regime at aλ1 level of significance. In the event that the null hypothesis is rejected, HARST

with two regimes is estimated and than tested against an alternative with more than tworegimes. The

procedure continues testingJ regimes against alternative models withJ∗ ≥ J + 1 regimes at signifi-

cance levelλJ = λ1 CJ−1 for some arbitrary constant0 < C < 1. The testing sequence is terminated

at the first non-rejection outcome, and then the number of additional regimes, M , for the HARST spec-

ification is estimated bŷM = J̄ − 1, whereJ̄ refers to how many testing runs are necessary to lead

to the first non-rejection result. By reducing the significance level at each step of the sequence, it is

possible to control the overall level of significance, and hence to avoid excessively large models. The

Bonferroni procedure ensures that such a sequence of LM tests is consistent, and that
∑J̄

J=1 λJ acts as

an upper bound on the overall level of significance. As for the determination of the arbitrary constant

3Although the motivation is different, this approximation is rather similar to the one used in Section 4.
4The transition variable may also be selected by minimizing the MSC in expression (18).
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C, it would be sensible practice to perform the sequential testing procedurewith different values ofC

to avoid selecting models that are too parsimonious.

Estimation of the parameters of the model will be determined by nonlinear least squares, which is

equivalent to quasi-maximum likelihood estimation, as discussed in Section 3.4.

What follows is evaluation of the final estimated model. Time series models are typically evaluated

by their out-of-sample predictive performance. However, a sequenceof neglected nonlinearity tests

can also be interpreted as model evaluation tests. The construction of tests for serial correlation, in the

spirit of Eitrheim and Ter̈asvirta (1996) and Medeiros and Veiga (2003), is also possible.

6. MONTE CARLO SIMULATION

The goal of this section is to evaluate the finite sample performance of the modelling cycle, as

described in the previous section. We simulated two different specificationsas follows:

(1) Model 1: HARST (Asymmetric effects)

rt = exp(σt)ut, ut ∼ NID(0, 1)

σt = 0.010 + 0.95σt−1−
(0.006 + 0.60σt−1 − 0.25σt−1,5 − 0.15σt−1,22) f(rt−1; 5,−3.0)+

(0.004 + 0.30σt−1 − 0.16σt−1,5 − 0.09σt−1,22) f(rt−1; 5, 2.5) + εt,

εt ∼ NID
(
0, 0.52

)
.

(19)

(2) Model 2: HARST (Asymmetric effects)

rt = exp(σt)ut, ut ∼ NID(0, 1)

σt = 0.05 + 0.95σt−1−
(0.035 + 0.58σt−1 − 0.27σt−1,5 − 0.21σt−1,22) f(r22,t−1; 4,−10)+

(0.03 + 0.30σt−1 − 0.20σt−1,5 − 0.18σt−1,22) f(r22,t−1; 4, 13) + εt,

εt ∼ NID
(
0, 0.252

)
.

(20)

The simulated models have been analyzed in Examples 1 and 2 in Section 3, and each has three

regimes. In the first model the regime switches are more frequent as the transition variable is the past

return, while in the second model the switches are less frequent and the model spends a larger fraction

of time in each regime. We consider different sample sizes for each model: 300, 500, 1000, 1500, 3000

and 5000. It should be noted that, in financial applications, 300 and 500 observations comprise rather

small samples. Most of the datasets, especially those dealing with high frequency data, have more than

2000 observations. We simulate each specification 1000 times, with two different values of the starting

significance level of the sequence of tests, namely 0.05 and 0.10, and halve the level of significance at
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each step. It is important to mention that the tests for the third regime are conducted at the 0.025 and

0.05 levels, respectively.

Table 2 presents the results concerning the determination of the number of regimes. The table shows

the frequency of correctly selecting the number of regimes under the correct choice of explanatory

variables in the model. The number in parentheses is the frequency of underfitting. Several facts

emerge from the table. Both the robust and non-robust sequence of tests seem to be consistent, as the

frequency of success increases with the sample size. Furthermore, as expected, the procedure is more

accurate when the first model is considered, as the switches are far morefrequent. It is also clear that

the procedure is conservative as the frequency of underfitting is veryhigh. Finally, the procedure works

well for the typical sample sizes that are observed in financial applications.

7. EMPIRICAL APPLICATION

7.1. The Data. The empirical analysis focuses on the realized volatility of sixteen Dow JonesIndus-

trial Average index stocks: Alcoa, American International Group, Boeing, Caterpillar, General Electric,

General Motors, Hewlett Packard, IBM, Intel, Johnson and Johnson, Coca-Cola, Microsoft, Merck,

Pfizer, Wal-Mart and Exxon. The raw intraday data are constituted of tick-by-tick quotes extracted

from the NYSE Trade and Quote (TAQ) database. The period of analysisstarts in January 3, 1994, and

ends in December 31, 2003. Trading days with abnormally small trading volumeand volatility caused

by the proximity of holidays (for example, Good Friday) are excluded, leaving a total of 2541 daily

observations.

We start by removing non-standard quotes, computing mid-quote prices, filtering possible errors,

and obtaining one second returns for the 9:30 am to 4:05 p.m. period. Following the results of Hansen

and Lunde (2006), we adopt theprevious tickmethod for determining prices at precise time marks.

Based on the results of Hasbrouck (1995), who reports a median 92.7% information share at the NYSE

for Dow stocks, and Blume and Goldstein (1997), who conclude that NYSEquotes match or determine

the best displayed quote most of the time, we use NYSE quotes (or NASDAQ, for Microsoft and Intel)

if they are close enough to the time marks in relation to other updates.

In order to estimate our measure of the daily realized volatility, we use the two time scales estimator

of Zhang, Mykland, and Äıt-Sahalia (2005) with five-minute grids. The final dependent variable is the

daily logarithm of the realized volatility. As in Martens, van Dijk, and de Pooter (2004) and Scharth and

Medeiros (2006) we also consider dummies for the days of the week and dummies for the following

macroeconomic announcements: Federal Open Market Committee meetings (FOM), The Employment

Situation Report from the Bureau of Labor Statistics (ESR), CPI and PPI.

Data are used from 1993 to 1999 in order to estimate the models, and from 2000 to 2003 to evaluate

the forecasting performance of the different specifications. The estimated models have the following

structure.

(21) log(RVt) = α′
wt + β′

0xt +
M∑

m=1

β′
mxtf(zt; γm, cm) + εt,
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where log(RVt) is the logarithm of the daily realized volatility computed as described above,wt

is a vector containing selected dummies for the days-of-the-week and announcement dates,xt =(
1, log(RVt−1,ι1), . . . , log(RVt−1,ιp)

)′
, f(·) is the logistic function as in (5), andzt is the past return

(rt−1).

7.2. Model Specification and Estimation. We start by selecting the relevant explanatory variables.

All the variables are selected according to the procedure described in Section 5 using BIC. In order to

keep interpretability of the selected lags and to avoid serious “data mining” problems, we consider the

following set of possible lags:X = {1, 2, 5, 10, 15, 22}. Table 3 shows the selected variables. Several

interesting facts emerge from the table. First, for ten of 16 series, the selected lags are 1, 5, and 22,

meaning that daily, weekly, and monthly volatility are highly relevant. Second, announcement effects

are selected as explanatory variables in seven cases. The most importantannouncement seems to be

the Federal Open Market Committee meetings. Finally, there is not a clear pattern with respect to the

presence of the days-of-the-week dummies in the model.

After selecting the relevant variables, we continue estimating a linear HAR model. Table 4 shows

several statistics for the estimated model. The table shows thep-values for the following tests: LM

test for residual serial autocorrelation of orders 1, 5, and 10; LM test for ARCH effects of orders 1, 5,

and 10; Jarque-Bera test for normality of the residuals; and finally the linearity test against the HARST

alternative. As one of our main goals is to model asymmetries and leverage in thevolatility dynamics,

we fix the transition variable to be the past daily return,rt−1. We report both robust and non-robust

versions of the linearity test. We have also tested linearity choosing other transition variables, such as

past daily, weekly, and monthly volatilities. However, the best and more significant results are obtained

with the past daily return as the transition variable.

According to the results in Table 4 and at a 5% significance level, the linear HAR model fails

to account for serial correlation in 8 of the 16 series. In addition, there isevidence of conditional

heteroskedasticity in 12 of 16 series (which may be due to nonlinear effects). Furthermore, normality

is strongly rejected in all cases. For this reason, we will use the robust sequence of LM tests to specify

the HARST model.

Finally, we estimate the HARST model for each series. The dummies for the announcement dates

and days-of-the week enter only in the linear part of the model. The resultsare shown in Table 5, which

presents the following diagnostic statistics:p-value of the test of remaining nonlinearity (additional

regimes),p-value of the LM residual serial correlation test,p-value of the LM test for ARCH effects,

andp-value of the Jarque-Bera test for normality. Only for ALCOA (AA) is there no evidence of more

than a single regime. For all the other series there is strong evidence of two regimes, with the exception

of Microsoft, where we find evidence of three regimes.

From the results presented in Table 5, there is still some evidence of residual autocorrelation in

some cases, although, for most of the series, the HARST model correctly describes the dynamics of

the logarithm of the realized volatility. One interesting fact is that now 8 of 16 series do not have

conditional heteroskedasticity. However, normality is still strongly rejected.
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Figure 3 displays the estimated transition functions. It is interesting to note that inall cases the

asymmetry is not around zero returns, as is strongly advocated in the literature. The regime switches

are associated with very negative past returns (or “very bad news”). The smoothness of the transition

varies according to each series. In some cases, Caterpillar for example,the transition is abrupt. In

others, such as General Electric, the transition is very smooth.

7.3. Forecasting Results.After estimating the HARST model for each series, the one-day ahead fore-

casts are computed. The forecasting performance of the HARST model is compared with the following

competing specifications: Linear HAR, linear ARFIMA, GARCH, GJR, and EGARCH models. In

addition, the forecast combination of a simple model average of the linear HARand HARST models is

examined. As the regime switches are associated with very negative returns, the benefits of using the

nonlinear model should become apparent only in periods following very negative returns, such that a

combination of forecasts will improve the performance of both models.

The results are reported in Tables 6 and 7. Table 6 presents the mean absolute errors (MAE) and

the root mean squared errors (RMSE) for the forecasts from the different models. It can be seen from

the table that the forecasting performance of the HARST model is not significantly better than from

the linear HAR model in most cases. However, this is likely for the reasons given previously. When

the HAR and HARST models are combined, the forecasting performance improves. When compared

with the alternative latent volatility models, the performance of both the HAR and HARST models is

far superior.

In order to determine if the combination of the linear HAR and HARST models generates more

accurate one-step-ahead forecasts than does the linear HAR model, we apply the modified Diebold

and Mariano (1995) test of Harvey, Leybourne, and Newbold (1997) to these series of forecasts. In

Table 7, the p-values of the test are shown. We compare forecast differences using both the absolute

value loss function (MAE) and the quadratic loss function (RMSE). Concerning the absolute errors,

the combination of models delivers superior forecasts in six cases. In seven cases, the forecasts are

not statistically different, and in only two cases does the linear HAR model perform the best. When

squared errors are considered, the combination of models produces better forecasts in six cases, the

forecasts are not statistically different in a further six cases, and in three cases the linear HAR has the

best performance. In a direct comparison of the linear HAR and HARST models, the forecasts are not

statistically different in 12 cases.

8. CONCLUSION

This paper developed a new flexible nonlinear model that can simultaneouslydescribe long-range

dependence and asymmetries in time series dynamics. The model is a generalization of the Heteroge-

nous Autoregression (HAR) model and is called the Multiple Regime Smooth Transition Heterogenous

Autoregressive (HARST) model. Following results in the nonlinear time seriesliterature, we developed

an estimation and testing procedure, including an easily implemented sequence of Lagrange multiplier
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tests to determine the number of regimes in the model. A modelling cycle was proposed, and simula-

tions were used to evaluate the finite sample performance of the estimation and testing methods. The

new model was used to describe and forecast realized volatility of high frequency financial time series,

and the empirical results indicated strong practical support for the model.
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TABLE 1. DESCRIPTIVESTATISTICS.

The table shows the mean, median, standard deviation, minimum, and maximum of the following statistics: mean, standard deviation, kurtosis, and skewness
of the simulated daily returns; sum of the first 500 autocorrelations of the absolute and squared daily returns,

P
500

j=1
ρj(|rt|) and

P
500

j=1
ρj(r

2

t ), respectively;
the GPH (Geweke and Porter-Hudak 1983) estimator of the fractional difference parameter for the absolute returns, squared returns, and log volatility, d(|rt|),
d(r2

t ), andd(σt), respectively; and the correlation coefficient between the volatility and thelagged return,ρ(exp(σt), rt−1). The number of ordinates in the
GPH estimator is set asl = 30000.5.

Example 1

Mean Std. Dev. Kurtosis Skewness
∑

500

j=1
ρj(|rt|)

∑
500

j=1
ρj(r

2

t ) d(|rt|) d(r2

t ) d(log(σt)) ρ(exp(σt), rt−1)

Mean -0.0012 1.8320 45.954 0.1233 1.6937 0.7408 0.1562 0.0872 0.2261 -0.0929
Median 0.0003 1.7859 21.763 0.0911 1.2936 0.4957 0.1549 0.0751 0.2308 -0.0830
Std. Dev. 0.0325 0.2510 99.464 2.8956 2.0315 1.0996 0.1052 0.1063 0.0963 0.0805
Minimum -0.1314 1.3649 7.4699 -23.127 -1.8592 -1.2114 -0.2629 -0.2487 -0.0926 -0.6373
Maximum 0.0902 3.7018 1,341.1 30.325 12.3670 7.1483 0.51930.5612 0.5125 0.1719

Example 2

Mean Std. Dev. Kurtosis Skewness
∑

500

j=1
ρj(|rt|)

∑
500

j=1
ρj(r

2

t ) d(|rt|) d(r2

t ) d(log(σt)) ρ(exp(σt), rt−1)

Mean 0.0006 1.3429 11.006 0.0620 2.2571 1.7958 0.2690 0.2142 0.3904 -0.0137
Median 0.0011 1.3218 6.0657 0.0543 1.7360 1.4124 0.2676 0.2068 0.3940 -0.0096
Std. Dev. 0.0236 0.1263 20.469 0.7025 2.5185 1.8799 0.1104 0.1184 0.1012 0.0407
Minimum -0.0924 1.1255 3.8245 -9.2266 -3.1003 -2.0112 -0.0745 -0.1068 0.0301 -0.2990
Maximum 0.0729 2.2681 242.14 8.1517 18.278 13.102 0.8205 0.7679 0.7656 0.1051
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TABLE 2. SIMULATION RESULTS: NUMBER OF REGIMES.

Relative frequency of selecting correctly the number of regimes of the model based on 1000 replications
with different sample sizes. The number between parenthesis is the frequency of underfitting (selection of
fewer regimes).

Initial significance level: 0.05
300 observations 500 observations

Model True Value Non-Robust Test Robust Test Non-Robust Test Robust Test
1 3 0.05 (0.95) 0 (1) 0.07 (0.92) 0.01 (0.99)
2 3 0.02 (0.98) 0.01 (0.99) 0.03 (0.97) 0.02 (0.98)

1000 observations 1500 observations
Model True Value Non-Robust Test Robust Test Non-Robust Test Robust Test

1 3 0.19 (0.80) 0.06 (0.94) 0.30 (0.69) 0.14 (0.86)
2 3 0.06 90.93) 0.04 (0.96) 0.10 (0.90) 0.04 (0.96)

3000 observations 5000 observations
Model True Value Non-Robust Test Robust Test Non-Robust Test Robust Test

1 3 0.56 (0.43) 0.41 (0.59) 0.86 (0.12) 0.76 (0.24)
2 3 0.17 (0.82) 0.10 (0.89) 0.28 (0.71) 0.13 (0.87)

Initial significance level: 0.10
300 observations 500 observations

Model True Value Non-Robust Test Robust Test Non-Robust Test Robust Test
1 3 0.07 (0.93) 0.01 (0.99) 0.10 (0.88) 0.02 (0.98)
2 3 0.03 (0.96) 0.01 (0.99) 0.09 (0.90) 0.04 (0.96)

1000 observations 1500 observations
Model True Value Non-Robust Test Robust Test Non-Robust Test Robust Test

1 3 0.25 (0.73) 0.09 (0.91) 0.34 (0.65) 0.20 (0.80)
2 3 0.12 (0.86) 0.06 (0.93) 0.17 (0.82) 0.09 (0.91)

3000 observations 5000 observations
Model True Value Non-Robust Test Robust Test Non-Robust Test Robust Test

1 3 0.68 (0.31) 0.52 (0.48) 0.90 (0.09) 0.85 (0.15)
2 3 0.21 (0.78) 0.16 (0.83) 0.34 (0.62) 0.25 (0.73)
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TABLE 3. SELECTED VARIABLES.

The table shows for each series the selected lags inι in (5) and indicates whether or not announcement
effects and days-of-the-week dummies are included in the model specification. FOM indicates the dates
of the Federal Open Market Committee meetings, ESR is related to the announcement of The Employment
Situation Report, and CPI and PPI indicate the dates of the announcement of the CPI and PPI, respectively. We
omit the dummy for Friday to avoid perfect collinearity as our model includes a constant in its specification.

Series Lags FOM ESR CPI PPI Monday Tuesday Wednesday Thursday
AA 1, 5, and 22 No No No No No Yes No No
AIG 1, 5, and 22 No No No No No No No No
BA 1, 5, and 22 No No No No No No No No
CAT 1 and 15 Yes No No No No No No No
GE 1, 5, and 22 Yes No No No Yes No Yes No
GM 1 and 10 No No No No No No No No
HP 1, 5, and 22 Yes No No No No No No Yes

IBM 1, 5, and 22 Yes No No No No No Yes No
INTC 1, 5, and 22 No Yes Yes Yes No No No No
JNJ 1, 5, and 15 No No No No No No No No
KO 1, 5, and 15 No No No No No No No No

MRK 1, 5, and 22 Yes No No No No No Yes No
MSF 1, 5, and 22 No Yes No No No No No No
PFE 1 and 10 No No No No No No No No

WMT 1, 2, and 10 Yes No No No No No No No
XON 1, 5, and 22 No No No No No No No Yes
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TABLE 4. LINEAR HAR MODEL: DIAGNOSTIC TESTS.

The table shows for each series thep-values for the following tests: LM test for residual serial autocorrelation of orders 1, 5, and 10; LM test for
ARCH effects of order 1, 5, and 10; the Jarque-Bera test for normality; and finally, the linearity test against the HARST alternative usingrt−1 as
transition variable. The table also reports estimates for the residuals kurtosis and skewness.

Serial Correlation ARCH Normality Linearity Test
Series 1 5 10 1 5 10 Kurtosis Skewness Jarque-Bera Non-RobustRobust
AA 0.2005 0.6551 0.6749 0.3076 0.7205 0.8943 4.0196 0.4018 0.0000 0.0021 0.1016
AIG 0.1866 0.2808 0.4959 0.3485 0.1760 0.1198 3.9749 0.0105 0.0000 0.0000 0.0000
BA 0.0294 0.0891 0.2338 0.1540 0.1396 0.2598 5.1427 0.7398 0.0000 0.0000 0.0002
CAT 0.0772 0.0878 0.4366 0.2165 0.4454 0.6576 4.1846 0.3151 0.0000 0.0000 0.0014
GE 0.8184 0.0010 0.0011 0.0000 0.0001 0.0027 4.1731 0.3512 0.0000 0.0000 0.0000
GM 0.0292 0.1359 0.1601 0.0000 0.0000 0.0000 8.4597 0.0494 0.0000 0.0000 0.0004
HP 0.8155 0.8511 0.7802 0.0474 0.0226 0.0292 3.4459 0.2120 0.0000 0.0080 0.0042

IBM 0.3504 0.1704 0.0471 0.0038 0.0588 0.0973 4.1146 0.6374 0.0000 0.0000 0.0000
INTC 0.8656 0.9396 0.9611 0.0000 0.0000 0.0010 4.8292 0.1013 0.0000 0.0000 0.0000
JNJ 0.1568 0.7515 0.7011 0.0006 0.0035 0.0140 4.8042 0.51940.0000 0.0000 0.0000
KO 0.0275 0.0493 0.1128 0.0000 0.0000 0.0000 5.4411 0.5049 0.0000 0.0000 0.0006

MRK 0.1103 0.0101 0.0034 0.0000 0.0001 0.0004 4.4371 0.4482 0.0000 0.0000 0.0001
MSF 0.0123 0.0576 0.1785 0.0000 0.0000 0.0004 4.4653 -0.0350 0.0000 0.0000 0.0000
PFE 0.0457 0.1398 0.2206 0.0049 0.0077 0.0325 4.7666 0.49080.0000 0.0000 0.0049

WMT 0.0781 0.1209 0.0973 0.0000 0.0000 0.0001 4.0922 0.2602 0.0000 0.0000 0.0000
XON 0.0069 0.1075 0.1432 0.0001 0.0007 0.0016 4.1868 0.4313 0.0000 0.0000 0.0080
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TABLE 5. HARSTMODEL: DIAGNOSTIC TESTS.

The table shows for each series thep-values for the following tests: LM test for residual serial autocorrelation of orders 1, 5, and 10; LM test for ARCH
effects of order 1, 5, and 10; Jarque-Bera test for normality of the residuals; and finally the remaining nonlinearity test (robust version). The table also shows
the kurtosis and skewness for the estimated residuals.

Serial Correlation ARCH Normality Remaining Number of
Series 1 5 10 1 5 10 Kurtosis Skewness Jarque-Bera Nonlinearity Regimes
AA 0.2005 0.6551 0.6749 0.3076 0.7205 0.8943 4.0196 0.4018 0.0000 0.1016 1
AIG 0.0643 0.1654 0.3805 0.4938 0.1863 0.1485 4.0691 0.0121 0.0000 0.5553 2
BA 0.0545 0.0590 0.1799 0.1644 0.2947 0.4262 5.1785 0.7496 0.0000 0.1229 2
CAT 0.0529 0.0785 0.3722 0.3529 0.4661 0.6939 4.0072 0.2700 0.0000 0.1364 2
GE 0.0566 0.0066 0.0139 0.8282 0.2193 0.5961 3.8596 0.2246 0.0000 0.0275 2
GM 0.1526 0.7447 0.1778 0.7072 0.9948 0.9990 8.8480 -0.10850.0000 0.0370 2
HP 0.1527 0.1693 0.3740 0.0203 0.0155 0.0294 3.3080 0.1683 0.0014 0.2538 2

IBM 0.0611 0.2651 0.0506 0.0909 0.2743 0.3694 4.1327 0.6122 0.0000 0.3097 2
INTC 0.3359 0.5605 0.7286 0.0000 0.0018 0.0206 4.7615 0.0506 0.0000 0.1122 2
JNJ 0.0580 0.1140 0.3196 0.0001 0.0023 0.0145 4.5882 0.43610.0000 0.0662 2
KO 0.0573 0.1017 0.3312 0.0000 0.0000 0.0006 5.3710 0.2829 0.0000 0.2093 2

MRK 0.1048 0.1128 0.0810 0.0460 0.0512 0.3181 4.3829 0.3893 0.0000 0.0866 2
MSF 0.0004 0.0067 0.0133 0.0001 0.0008 0.0071 4.6288 -0.0695 0.0000 0.1550 3
PFE 0.0111 0.0564 0.0882 0.0022 0.0129 0.0485 4.7709 0.41970.0000 0.0433 2

WMT 0.0556 0.0494 0.1020 0.0169 0.0111 0.0289 3.7307 0.1502 0.0000 0.3956 2
XO 0.0568 0.1612 0.3681 0.0013 0.0086 0.0275 4.1490 0.4080 0.0000 0.3141 2
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TABLE 6. FORECASTINGRESULTS: MEAN ABSOLUTE ERRORS ANDROOT MEAN

SQUARED ERRORS.

The table shows for each series the mean absolute errors (MAE) and theroot mean squared
errors (RMSE) for the forecasts computed from different models.

MAE
Series HARST HAR HARST + HAR GARCH EGARCH GJR
AA – 0.4725 – 0.6170 0.7082 0.5972
AIG 0.3691 0.3671 0.3653 0.4648 0.4330 0.4648
BA 0.4164 0.4150 0.4135 0.5153 0.5054 0.5297
CAT 0.4069 0.4053 0.4051 0.5604 0.5405 0.5879
GE 0.3666 0.3569 0.3541 0.4949 0.4363 0.4715
GM 0.4390 0.4282 0.4267 0.5001 0.4676 0.4891
HP 0.6456 0.5999 0.6189 0.8768 0.8567 0.8716

IBM 0.3424 0.3444 0.3417 0.5527 0.5175 0.5499
INTC 0.4890 0.4776 0.4812 0.6787 0.6814 0.7411
JNJ 0.3703 0.3679 0.3641 0.4718 0.4550 0.4606
KO 0.3414 0.3441 0.3405 0.4316 0.4046 0.4145

MRK 0.3726 0.3712 0.3705 0.4635 0.4342 0.4628
MSF 0.3695 0.3707 0.3641 0.5761 0.5361 0.5780
PFE 0.4207 0.4186 0.4190 0.4723 0.5310 0.4758

WMT 0.4168 0.4102 0.4050 0.5296 0.5062 0.5194
XON 0.3111 0.3119 0.3096 0.4004 0.4052 0.4001

RMSE
Series HARST HAR HARST + HAR GARCH EGARCH GJR
AA – 0.6808 – 0.8483 0.9668 0.8041
AIG 0.5516 0.5544 0.5489 0.6347 0.6276 0.6264
BA 0.6132 0.6208 0.6139 0.7340 0.6973 0.7556
CAT 0.5962 0.5938 0.5937 0.7750 0.7460 0.8130
GE 0.5481 0.5423 0.5329 0.6869 0.6082 0.6503
GM 0.6731 0.6538 0.6547 0.6829 0.6755 0.6733
HP 0.9328 0.8595 0.8903 1.1188 1.0995 1.1080

IBM 0.5520 0.5479 0.5487 0.7353 0.6671 0.7421
INTC 0.7154 0.6927 0.7020 0.9130 0.9151 1.0613
JNJ 0.5847 0.5826 0.5769 0.7175 0.7089 0.7103
KO 0.5138 0.5147 0.5119 0.6290 0.6013 0.6042

MRK 0.5859 0.5813 0.5816 0.6820 0.6538 0.6795
MSF 0.5429 0.5488 0.5311 0.7584 0.6870 0.7718
PFE 0.6784 0.6694 0.6727 0.7367 0.7995 0.7450

WMT 0.6659 0.6598 0.6517 0.8212 0.7906 0.8086
XON 0.4677 0.4777 0.4700 0.6148 0.6248 0.6144
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TABLE 7. FORECASTINGRESULTS: DIEBOLD-MARIANO TEST.

The table shows for each series thep-value of the modified Diebold-Mariano
test of equal forecast accuracy. We compare the combination of HARand
HARST models against the HAR model.

HARST + HAR versus HAR HARST versus HAR
Series MAE RMSE MAE RMSE
AA – – – –
AIG 0.2002 0.0638 0.7009 0.3452
BA 0.2149 0.0372 0.6434 0.1500
CAT 0.4466 0.5182 0.7714 0.7813
GE 0.1965 0.0403 0.9466 0.7045
GM 0.2913 0.6125 0.9818 0.9965
HP 1.0000 1.0000 1.0000 1.0000

IBM 0.0075 0.7350 0.1732 0.9428
INTC 0.9863 1.0000 0.9998 1.0000
JNJ 0.0603 0.1144 0.6889 0.5862
KO 0.0096 0.1417 0.1668 0.4258

MRK 0.3391 0.5454 0.7103 0.8744
MSF 0.0058 0.0135 0.4281 0.3431
PFE 0.6153 0.9548 0.8058 0.9870

WMT 0.0665 0.0484 0.8653 0.7413
XO 0.0788 0.0092 0.3939 0.0559
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APPENDIX A. PROOFS OFTHEOREMS

A.1. Proof of Theorem 1. This is a standard result and the proof will be omitted.

Q.E.D

A.2. Proof of Theorem 2. The result follows directly from the application of Theorem 1.1 in Chen

and Tsay (1993).

Q.E.D

A.3. Proof of Theorem 3. It is easy to see thatG (xt, zt;ψ) in (5) is continuous in the parameter

vectorψ. This follows from the fact that, for each value ofxt andzt, f (zt; γm, cm), m = 1, . . . , M ,

in (5) depend continuously onγm and cm. Similarly, G (xt, zt;ψ) is continuous inxt andzt, and

therefore measurable, for each fixed value of the parameter vectorψ. Again, under stationarity, it is

clear thatE[qt(ψ)] < ∞, ∀ t.

Restrictions (R.1)–(R.3) in Assumption 3 guarantee that the HARST model is identifiable, so that

Q(ψ) is uniquely maximized atψ0. This completes the proof.

Q.E.D

A.4. Proof of Theorem 4. Following White (1994, page 29),ψ
p−→ ψ0 if the following conditions

hold:

(1) The parameter spaceΨ is compact.

(2) QT (ψ) is continuous inψ ∈ Ψ. Furthermore,QT (ψ) is a measurable function ofyt, t =

1, . . . , T , for allψ ∈ Ψ.

(3) Q(ψ) has a unique maximum atψ0.

(4) QT (ψ)
p−→ Q(ψ).

Condition (1) is satisfied by Assumption 2. Theorem 3 shows that Conditions (2) and (3) are satis-

fied.

Now setg(ψ) = qt(ψ) − E [qt(ψ)]. Theorem 3 implies thatE

[
sup
ψ∈Ψ

|g(ψ)|
]

< ∞. In addition,

becauseg(ψ) is stationary withE [g(ψ)] = 0, by Theorem 3.1 in Ling and McAleer (2003) it follows

that sup
ψ∈Ψ

∣∣∣T−1
∑T

t=1 g(ψ)
∣∣∣ = op(1) and Condition (4) is satisfied.

Q.E.D

A.5. Proof of Theorem 5. To prove the asymptotically normality of the QMLE, we need the following

conditions in addition to those given in the proof of Theorem 4 (see White (1994, page 92)).

(5) The true parameter vectorψ0 is interior toΨ.

(6) The matrix

AT (ψ) =
1

T

T∑

t=1

(
∂2qt(ψ)

∂ψ∂ψ′

)

exists and is continuous inΨ.
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(7) The matrixAT (ψ)
p−→ A(ψ0), for any sequenceψT such thatψT

p−→ ψ0.

(8) The score vector satisfies

1

T

T∑

t=1

(
∂qt(ψ)

∂ψ

)
D−→ N(0,B(ψ0)).

Condition (5) is satisfied by assumption. Condition (6) follows from the fact that qt(ψ) is differ-

entiable of order two onψ ∈ Ψ and the stationarity of the HARST model. Condition (7) is verified

by using the same reasoning as in the proof of Theorem 4 and the results ofTheorem 3.1 in Ling and

McAleer (2003). Furthermore, non-singularity ofA(ψ0) follows immediately from identification of

the HARST model and the non-singularity ofB(ψ0) (see Hwang and Ding (1997)).

Define

∇G (xt, zt;ψ0) ≡
∂G (xt, zt;ψ)

∂ψ

∣∣∣∣∣
ψ=ψ

0

and

∇2G (xt, zt;ψ0) ≡
∂2G (xt, zt;ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ=ψ

0

.

Using Theorem 2.4 from White and Domowitz (1984), the sequence2ξ′∇G (xt, zt;ψ0) εt obeys the

Central Limit Theorem (CLT) for some(r × 1) vectorξ, such thatξ′ξ = 1. Assumptions A(i) and

A(iii) of White and Domowitz (1984) hold becauseεt is a martingale difference sequence. Assumption

A(ii) holds with V = 4σ2ξ′E [∇G (xt, zt;ψ0)∇′G (xt, zt;ψ0)]. Furthermore, since any measurable

transformation of mixing processes is itself mixing (see Lemma 2.1 in White and Domowitz (1984)),

2ξ′∇G (xt, zt;ψ0) εt is a strong mixing sequence and obeys the CLT. By using the Cramér-Wold

device,∇Q (xt, zt;ψ) also obeys the CLT with covariance matrixB(ψ0), which is O(1) and non-

singular. This completes the proof.

Q.E.D

A.6. Proof of Theorem 6. This is the precise form of the LM test statistic for an additional regime

in the HARST model. Under Assumptions 1-4, the asymptotic distribution of the LM statistic is a

standard result for nonlinear regression models.

Q.E.D
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