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ABSTRACT

In this paper a new model of mixture of distributions is pregd, where the mixing struc-
ture is determined by a smooth transition tree architecturiee tree structure yields a
model that is simpler, and in some cases more interpret#id®, previous proposals in
the literature. Based on the Expectation-Maximization (Eigjorithm a quasi-maximum
likelihood estimator is derived and its asymptotic projsriare derived under mild reg-
ularity conditions. In addition, a specific-to-general rabduilding strategy is proposed
in order to avoid possible identification problems. Both tegneation procedure and the
model building strategy are evaluated in a Monte Carlo erpent. The approximation
capabilities of the model is also analyzed in a simulatigmeeinent. Finally, applications
with real datasets are considered.

KEYWORDS. Mixture models, smooth transition, regression tree, d¢anthl distribution.
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1. INTRODUCTION

Recent years have witnessed a vast development of nonlimearseries techniques
(Tong 1990, Granger and Bevirta 1993). From a parametric point of view, the Smooth
Transition (Auto-)Regression, ST(A)R, proposed by Chan am@TﬂJQSGH and further de-
veloped by Luukkonen, Saikkonen anddsvirta (1988) and Tasvirta (1994), has found a
number of successful applications; see van Dijkasgirta and Franses (2002) for a review.
In the time series literature, the STAR model is a naturakgalization of the Threshold
Autoregressive (TAR) models pioneered by Tong (1978) and) Bord Lim (1980).

On the other hand, nonparametric models that do not makengsisuns about the para-
metric form of the functional relationship between the abkes to be modeled have be-
come widely applicable due to computational advancexdté 1990, Hrdle, Liitkepohl
and Chen 1997, Fan and Yao 2003). Another class of modelsettibl@ functional forms,
offers an alternative that leaves the functional form ofrtHationship partially unspecified.
While these models do contain parameters, often a large nuofiteem, the parameters
are not globally identified. Identification, if achieved)agal at best without imposing re-
strictions on the parameters. Usually, the parametersari@terpretable as they often are
in parametric models. In most cases, these models are lietedpas nonparametric sieve
(or series) approximations (Chen and Shen 1998).

The neural network (NN) model is a prominent example of sudlexable functional
form. Although the NN model can be interpreted as a paramatternative (Kuan and
White 1994, Trapletti, Leisch and Hornik 2000, Medeiros,aBsirta and Rech 2006), its
use in applied work is generally motivated by the matherahtiesult stating that, under
mild regularity conditions, a NN model is capable of appnoeating any Borel-measurable
function to any given degree of accuracy; see, for instardoenik, Stinchombe and White

(1990), Gallant and White (1992), and Chen and White (1998).

IChan and Tong (1986) called the model Smooth Threshold Aeggession.
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The above mentioned models aim to describe the conditioeahrof the series. In terms
of the conditional variance, Engle’s (1982) Autoregresstonditional Heteroskedastic-
ity (ARCH) model, Bollerslev’s (1986) Generalized ARCH (GARCH) sifieation, and
Taylor’s (1986) Stochastic Volatility (SV) model are the sh@opular alternatives for
capturing time-varying volatility, and have motivated armag of extensions (Poon and
Granger 2003, McAleer 2005, Andersen, Bollerslev and DigR606).

However, when the attempt is to model the entire conditiainsgttibution, the mixture-
of-experts (ME) proposed by Jacobs, Jordan, Nowlan antHIifit991) becomes a viable
alternative. The core idea is to have a family of models, Wisdlexible enough to capture
not only the nonlinearities in the conditional mean, bubdts capture other complexities
in the conditional distribution. The model is based on tleaglof Nowlan (1990), viewing
competitive adaptation in unsupervised learning as amattéo fit a mixture of simple
probability distributions. Jordan and Jacobs (1994) psepahe hierarchical mixture-of-
experts (HME). Applications of ME and HME models in time ssrare given by Weigend,
Mangeas and Srivastava (1995) and Huerta, Jiang, and Tg0@,2003). Recently, Car-
valho and Tanner (2005a) proposed the mixture of genedHiizear time series models and
derived several asymptotic results. It would worth mentigrihe Mixture Autoregressive
(MAR) model proposed by Wong and Li (2000,2001).

In this paper we contribute to the literature by proposing@wa nlass of mixture of mod-
els that is based on regression-trees with smooth splits. p@yosal has the advantage
of being flexible but less complex than the HME specificatimmviding possible inter-
pretation for the final estimated model. Furthermore, a Bmmdel building strategy has
been developed and Monte Carlo simulations show that it weekkin small samples. A
guasi-maximum likelihood estimator (QMLE) is describedi ats asymptotic properties

are analyzed.
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The paper proceeds as follows. In Secfibn 2 a brief revievhefliterature on mixture
of models for time series is presented. Our proposal is ptedan Sectiofi|3. In Section
4, parameter estimation and the asymptotic theory are derexdi. The modeling cycle is
described in Sectidn 5. Simulations are shown in Seéfiomé,Sectiorl7 presents some
examples with actual data. Finally, Sectidn 8 concludektethnical proofs are relegated

to the appendix.

2. MIXTURE OF MODELS. A BRIEF REVIEW OF THE LITERATURE

In this section we present the class of models considerddsmaper.

DEFINITION 1. The conditional probability density function (p.d.ff)y:|x:; @), of a ran-

dom variabley; is a Mixture of Models with basis distributions if

(1) yt’Xta Zgz Xta 7Tl yt’Xta )7

wherex, € R is a vector of covariates) = [0',...,0%, v, ... ¢ is a parameter
vector,m;(y:|x; 1,) is some known parametric family of distributions (basisriistions),

indexed by the vector of parameteps, andg;(x;; 8;) € [0, 1] is the weight function.

If 4, is distributed as in{1), then

Ely:|x:] = Zgz X, 0:)Er [yl xe ;] and V{y|x,] = ZQZ x¢; 0;) Vo [y x5 1],

whereE,, andV ., are the expected value and the variance taken with respegt to

The simplest model belonging to this class is the TAR modékne a threshold vari-
able controls the switching between different local Gaarséinear models. An indicator
variable defines which local model is active and only one rhisdactive each time. The
conditional p.d.f. remains Gaussian and the conditionainemits do not depend on the

covariates. Many models have been proposed to overcome lingsations. The MAR
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model of Wong and Li (2000) uses a mixture of Gaussian digiiobs with static weights.
However, this model is still limited because the weights dovary across time (or with the
covariate vector). Wong and Li (1999) suggest a generaizaialled a generalized mix-
ture of autoregressive model (GMARX). This generalizationsiders only two Gaussian
local models and the weights are given by a logistic equatiime GMARX model has
a limited number of local models. The ME model of Jacobs e{1891) describes the
conditional distribution using gated NNs to switch betwéaral nonlinear models. This
specification though very flexible, has a high number of patans and is very hard to
interpret, specify, and estimate. On the other hand, the li\Bree-structured mixture of
generalized linear models, where the weights are given bpadugt of multinomial logit
functions. Each node of the tree can have any number of shitsce the specification
and estimation of the model are also demanding. Furtherrfmréhe most general model
there are no results that guarantee consistency of theatstisn Finally, the model is not
completely interpretable once the subdivisions of the spae done by hyperplanes which,
in turn, are not necessarily interpretable.

To overcome some of the drawbacks caused by a profligate paiaation, Zeevi, Meir
and Adler (1998) proposed the mixture autoregressive (Mixand Carvalho and Tanner
(2005b) considered the mixture of generalized expertschviare simplifications of the
HME model. In both cases the weights are given by a multinblogat function. Proba-
bilistic properties and approximation results were profedoth models; see Zeevi et al.
(1998), Carvalho and Tanner (2005a) and Carvalho and Skey{2G04).

The model proposed in this paper combines the simplicithefdecision trees with the
flexibility of the mixture of models. However, our model isrgler, is less parameterized,
is more easily interpretable and the model building stiaiegwell defined. The tree-
structured mixture of models has a binary tree as the dec#&iicture and the decision

frontier is not a linear combination of the covariates, jus¢ of the covariates each time.
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3. MODEL PRESENTATION

The core idea is to model the weight functignis (I) as a smooth transition regression-
tree model, as in da Rosa, Veiga and Medeiros (2008).

To represent a regression-tree model, we introduce thewilty notation. The root
node is at positio and a parent node at positigrgenerates left- and right-child nodes at
positions2; + 1 and2j + 2, respectively. Every parent node has an associated spabla
Ty, € X, Wheres; € S = {1,2,...,¢}. Let]J andT be the sets of indexes of the parent

and terminal nodes, respectively. Then, any fféean be fully determined by andT.

DEFINITION 2. The random variable; € R follows a tree-structured mixture of models

(Tree-MM) if its conditional probability density functidp.d.f.) f(v.|x;; @) is written as
(2) f(yelxe; 0) Z Bi(xi; 0:)m (yi|xs; Bi%4, 07),
€T
wherex; € R? is a vector of explanatory variable8,is the conditional p.d.f. parameter
vector,r(-) is the Gaussian p.d.f. with parameter vectr= (3',0;), x; = (1,x})’,
g (Utnig) (I=ni,5)(14n4 )
(3) B (Xt7 Hg xsjt77jvcj) 2 [1_g($5j,t;rijcj)} )
Jjel

and

—1 if the path to leafi does not include the parent nogle

(4) ni; =40 ifthe path to leafi includes the right-child node of the parent node

1 if the path to leafi includes the left-child node of the parent node

Let J; be the subset qf containing the indexes of the parent nodes that form the fmath

leaf:. Then,f; is the vector containing all the parametarg = (74, ¢x) such thatk € J,

i € T. Furthermore g(w,, ; i, cx) = [1+ e #@sre=e)] 7,
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4. PARAMETER ESTIMATION

The estimation o is carried out by maximizing the quasi-likelihood of the digyn
functionin [2). In a more general framework we cannot suppbat our probability model
is correctly specified, so we use the Quasi-Maximum Likedth&stimator (QMLE), which
is the same as the Maximum Likelihood Estimator under theecbispecification. Thus,

we can write the conditional quasi-likelihood based on agary; } L, as

T
(5) Lr(0) = log | > Bi(xi; 0;)m (yelxi; ;)

1€T
Numerical optimization is carried out using the EM alganitiof Dempster, Laird and
Rubin (1977). The idea behind the EM algorithm is to maximizeequence of simple
functions which leads to the same solution as maximizingraptex function. This tech-
nique were also used by Jordan and Jacobs (1994), Le, MadiRaftery (1996), Wong
and Li (1999,2000), Huerta, Jiang and Tanner (2001) and @eraand Tanner (2005b).

4.1. Asymptotic Theory. In this section we present a set of asymptotic results with re
spect to the estimator. First, we present a set of assunspéibaut the (unknown) true

probability model.

AssuMPTIONL. The observed data are a realization of a stochastic pro¢égsx;)}~,,
where the unknown true probability modgl= G|[(y:,x;); -] is a continuous density dR,

and the true likelihood function is identifiable and has aqud maximum afl,.

We definef™ as the parameter vector that minimize the Kullback-Leidleergence cri-
terion between the true probability modg|, and the estimated probability modgl;; 6).
Hence, the QMLL@T of 8%, is defined as:

(6) Or = argmaxLr(6).
6co
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ASSUMPTIONZ2. The parameter vectd” is interior to a compact parameter spa@ €

R™ x R?, wherer; = 2(#J]) + (p + 1)(#T), ro = #T, and# is the cardinality operator.

The identifiability of mixture of experts models was shownJiang and Tanner (1999)
for the case where the gating functions are multinomialtfogbince our gating function
is different, the conditions presented there are not adeqifée show in AppendikxJA that

under mild conditions, the model is identifiable such thatftillowing assumption holds.

AsSSUMPTION3. The tree mixture-of-expert structure, as presentedlinig2ijentifiable,
in the sense that, for a sample;; x;}._,, and for@,, 6, € O,

T T

L1 /(b 00) = [ ] £wilxi;02) s aus.
t=1 t=1
is equivalent t@, = 6.

The following theorem establishes the existence of the QMLE

THEOREM 1 (Existence).Under Assumptioris 1[4 3, the QMLE exists &d,(0)] has a

unique maximum a*.

To ensure the consistency of the QMLE, we state additionaditions.
AsSsSUMPTION4. The proces$(y;,x;)}L, is strictly stationary and strong mixing.
ASSUMPTIONS. LetY; = (y, x})’, thenE[Y,Y]] < cc.

THEOREM?2. Under Assumptioris -8, %5 6*.
For asymptotic normality we need the following additionsgamption:

ASSUMPTIONG. E[Y;®Y,; ®Y; ®Y,] < 0.
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THEOREM 3 (Asymptotic Normality). Under Assumptioris [}-6,
VT (éT - 9*) LN (0, A(67)'B(07)A(6°)7)

where

PLr(6)
9006’

0Lr(6)
00

0Lr(6)
06’

A(0") =E

] and B(6") = E

J

There are two approaches for the model selection problemothgsis testing and the

9*

5. MODELING CYCLE

use of a model information criterion (IC). As shown in QuinrglMchlan and Hjort (1987),
the likelihood ratio tests are not applicable because, uhéenull hypothesis of fewer basis
distributions, the model is non-identified and the test dadshave the standard chi-square
asymptotic distribution.

There is also an alternative hypothesis testing methogofoljowing, for example,
Medeiros and Veiga (2005) and Medeiros et al. (2006). Thithouology is based on
a sequence of Lagrange multiplier tests applied to a linedrversion of the model. How-
ever, adapting this approach to mixture of models is noiatriv

We will introduce a specification algorithm based on two ICsyd&an Information
Criterion (BIC) and Akaike Information Criterion (AIC). Both cettia have been used to
select the number of experts; see, among others, Carvalh®aamedr (2005a) and Wong

and Li (1999,2000). The two criteria are defined as

T

@) BIC = -2 log f(y/xt;0) + MlogT
t=1
T o~

®) AIC = =2 log f(yilxs; 0) +2M,
t=1

whereM = 3#J + (p + 2)#T is the number of estimated parameters.
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It is known that, for well behaved models, BIC is consistemtrfmdel selection. Fur-
thermore, when the sample size goes to the infinity, the tragetwill be selected because
it has the smallest BIC with probability tending to one. Hoewhen the model is overi-
dentified, the usual regularity conditions to support tlsutt fail, but Wood, Jiang and
Tanner (2001) present some evidence that, even when we hexidentified models, the
BIC may still be consistent for model selection.

J andT define the tred T with #T local models and let € T be a node to be split.
When we split the nodé we have the new tregI'®) defined byJ®) andT®), where

(9) J® = Ju{k}

(10) TR = {2k+1,2k+2} U(T\ {k}),
whereT \ {k} is the complement ofk} in T. The new parameter vectéf* is defined as

/
(h) —
(11) 6" = v, ...V ¢;1,...,w,§#T<k)],

’ j#ﬂ(k) ’

wherej; € J®) andt; € T®.

The growing algorithm for the first split is the following: )(4et the number of covariates
asp and estimate a linear model with alregressors and compute the value of the IC; (2)
for each covariate,, € x; with so = 1,...,p, estimate the modelT”), where each
terminal node is a linear model with aliregressors, and compute the IC; and (3) select the
model with the smallest IC.

The growing algorithm for thé-th splitis: (1) for eactk € T and for eachr,, € x; with
si = 1,...,p, (@) split the nod&: following (@) and [10), (b) estimate the new parameter
vector@*) as in [11), and (c) compute the IC; (2) select the ff&& with the smallest IC;

(3) if the smallest IC for the tregT*) is greater than the IC of the tré&, then we stop

growing the tree. Case contrary, repeat the steps abovegERi= JT*).
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6. MONTE-CARLO STUDY

Consider the following models:

e Model 1: alinear AR(2) model.
Y = 1.0+ 0-5yt_1 - O'Qyt—Q + Et, E¢ NlD(O7 10)

e Model 2: a Tree-MM model with two AR(4) local models,= {0}, T = {1, 2},

andgo(-; 70, o) = 9(yi—4; 2,3). The local models are:

Y1t = 2.0 — 0'1yt—1 + 0'7yt—2 + O.2yt_4 + €14, g1t ™~ NID(O, ]_O)

Yar = 2.0 + O.zyt—l - O.6yt_2 + O-3yt—3 — O.gyt_4 + €9, Egp v NID(O, 06)

e Model 3: a Tree-MM model with three local AR(2) models,= {0,2}, T =
{1,5,6}, go(:;70, c0) = g(y—2:2,1), g2(+: 72, ¢2) = g(y1—1;2,4), and
yu = 0.5—04y;_1+0.Ty,o+ ey, 1, ~ NID(0,1.0)
Yst = 4.0 + 0.8yt,1 — 0-5yt72 + E5¢, Egt N~ NID(O, 06)

Yor — 8.0 — O~9yt71 —+ 0-2yt72 + E6t, Eet ™~ NID(O, 11)

e Model 4: a Tree-MM model with four local AR(2) model§,= {0,1,2}, T =

{3,4,5,6}, go(:;70,c0) = 9(yi-2:1,1), 91(-; 71, ¢1) = g(We-153,0), g2(+3 72, c2) =
g(y-1;2,4), and

yse = 0.7y;-1 — 0.3y_2 + €3, €3 ~ NID(0,0.7)

Yar = —0.5 — O.4yt_1 + 0.7yt_2 + Edt, Eqt N|D(0, 10)

Yst = 4.0+ O.8yt_1 — 0'5yt—2 + €54, Egt N~ NID(O, O6>

Yt = 8.0 — O.gyt,1 + O.Qyt,Q + E¢t, Eet ™~ NID(O, 11)
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Models 1-4 are used to evaluate the small sample propeftibe QMLE and the mod-

eling cycle strategy. The results are presented in theviolig subsections.

6.1. Parameter estimation. We present the empirical results of the estimation of the pa-
rameters of Models 2—4. We report the mean, the median, énelatd deviation, and the

median absolute deviation around the median (MAD) acro6§ 2@plications. The MAD

-~

is defined as\f AD(0) = median(‘e - mediar@) D

We have simulated Models 2—4 with two different sample siizé&® and 500 observa-
tions. Table§]143 show estimation results for each modeimRhe tables, it is clear that
the estimation turns to be rather precise, with the only ptxae of the slope parameter
which is usually overestimated. This overestimation weytced in Medeiros and Veiga

(2005), and it is caused by the lack of observations arouadr#msition location.

TABLE 1. SMULATED MODEL 2: DESCRIPTIVE STATISTICS OF THE ESTIMATES

The table shows the mean, the standard deviation (SD), tlitameand the
median absolute deviation (MAD) of the estimates of the p&tars of Model 2
over 2000 simulations. 150 and 500 observations are cameside
150 500
Actual Mean SD Median MAD Mean SD Median MAD
% 2.00 506 175 468 0.89 501 165 466 0.83
¢ 3.00 301 023 302 0.15 3.00 0.22 3.00 0.15
o? 100 095 0.14 094 0.09 095 0.13 0.95 0.09
Go1 2.00 2.00 0.11 200 0.07 200 0.10 2.00 0.07
61 -0.10 -0.10 0.04 -0.10 0.03 -0.10 0.04 -0.10 0.03
f1 070 0.70 0.04 0.70 0.02 0.70 0.04 0.70 0.02
P31 0 0.00 0.05 0.00 0.03 0.00 0.04 0.00 0.03
By 020 020 0.06 0.20 0.04 0.20 0.06 0.20 0.04
o 060 031 0.08 031 0.05 0.30 0.08 0.31 0.05
Bz 2.00 199 036 199 0.23 201 034 201 0.20
fi2 020 0.20 0.05 0.20 0.03 0.02 0.72 0.22 0.08
b2 -0.60 -0.60 0.06 -0.60 0.04 -0.60 0.06 -0.60 0.03
b3 030 0.03 0.05 030 0.03 0.03 0.04 0.30 0.03
B -0.30 -0.30 0.06 -0.30 0.04 -0.30 0.04 -0.30 0.04
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TABLE 2. SMULATED MODEL 3: DESCRIPTIVE STATISTICS OF THE ESTIMATES

The table shows the mean, the standard deviation (SD), tltkameand the
median absolute deviation (MAD) of the estimates of the p&tars of Model 3
over 2000 simulations. 150 and 500 observations are caeside
150 500
Actual Mean SD Median MAD Mean SD Median MAD
vw 2.00 541 225 498 1.25 499 1.17 4.86 0.66
¢ 100 097 035 097 0.18 094 020 094 0.12
o? 100 0.87 044 087 0.18 0.97 0.15 096 0.10
Gop 050 063 098 051 0.19 051 0.15 040 0.09
fui1 -0.40 -0.39 0.27 -0.41 0.08 -0.40 0.06 -0.40 0.04
G1 070 062 0.48 0.66 0.10 0.68 0.08 0.69 0.05
v 2.00 547 248 489 1.36 521 164 485 0.88
co 400 392 042 395 014 392 0.2 393 0.13
o2 060 034 009 033 0.05 035 0.04 035 0.03
Gos 4.00 3.99 0.24 4.00 0.14 4.00 0.11 4.00 0.07
fi5 080 080 0.06 080 0.04 0.80 0.03 0.80 0.02
G5 -0.50 -0.50 0.05 -0.50 0.04 -0.50 0.03 -0.50 0.02
o¢ 110 113 034 111 0.18 1.21 015 1.20 0.10
G 8.00 8.09 148 1.09 0.79 8.07 0.62 8.06 0.39
fig -0.90 -0.90 0.21 -090 0.11 -0.90 0.09 -0.90 0.05
b 0.20 0.17 0.22 0.18 0.11 0.18 0.09 0.18 0.06

6.2. Specification Algorithm. We simulate 200 replications of Models 1-4 with two sam-
ple sizes: 150 and 500 observations. Table 4 presents theamwohtimes a model is cor-
rectly (C)/incorrectly (1) specified. We define the model tacherectly specified if the sets
J, T andS = {so, ..., sxy} are equal to the true sels, T, andS,. The tree is incorrectly
specified if any of these sets are different.

The BIC has a better performance then AIC in small and largepkesn As expected,

the performance of the modeling strategy improves as th@lgaesizes increases.

6.3. Approximation Capabilities. We illustrate the ability of the Tree-MM model to ap-
proximate unknown conditional probability density fuets. We simulate two AR(1)-
GARCH(1,1) models and two NN models. We generate 2000 observatiorerawhe first

1000 are used for estimation and the remaining 1000 for bs&mple evaluation.
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TABLE 3. SMULATED MODEL 4: DESCRIPTIVE STATISTICS OF THE ESTIMATES

The table shows the mean, the standard deviation (SD), tltkameand the
median absolute deviation (MAD) of the estimates of the patars of Model 4
over 2000 simulations. 150 and 500 observations are caeside
150 500
Actual Mean SD Median MAD Mean SD Median MAD
vw 1.00 341 1.62 3.07 0.67 3.38 1.14 3.16 0.52
¢ 1.00 098 042 094 0.19 096 0.23 094 0.12
v 3.00 6.07 329 551 231 6.39 3.02 6.12 227
c; 000 004 049 0.04 0.20 0.01 034 0.02 0.15
v 200 544 3.04 469 202 5.13 2.86 4.43 191
c; 400 348 087 3.68 0.40 359 0.67 374 0.29
o7 070 045 029 042 0.08 0.47 0.17 046 0.05
Gos 0.00 -0.02 0.35 -0.02 0.17 -0.02 0.17 -0.01 0.09
fi3 070 068 0.16 0.69 0.08 0.69 0.08 0.69 0.04
B3 -0.30 -0.31 0.10 -0.31 0.05 -0.31 0.05 -0.31 0.03
o7 100 0.87 037 0.85 0.18 095 0.16 094 0.10
Goa -0.50 -0.56 0.46 -0.57 0.28 -0.53 0.22 -0.53 0.15
fus -0.40 -0.40 0.17 -0.40 0.10 -0.40 0.08 -0.40 0.05
By 070 0.67 0.17 0.67 0.10 0.68 0.09 0.68 0.05
o2 060 033 014 031 0.06 0.34 0.05 0.34 0.03
Gos 4.00 400 0.19 400 0.11 400 0.08 4.00 0.05
fis 080 080 0.05 0.80 0.03 0.80 0.02 0.80 0.02
G5 -0.50 -0.50 0.05 -0.50 0.02 -0.50 0.02 -0.50 0.01
o2 110 1.14 0.67 1.04 0.31 1.28 0.37 1.23 0.18
Gos 8.00 7.94 217 8.00 1.08 781 108 7.91 057
b -0.90 -0.86 0.37 -0.88 0.17 -0.84 0.18 -0.86 0.09
b 0.20 0.12 0.29 0.13 0.15 0.16 0.12 0.16 0.07

TABLE 4. SPECIFICATIONALGORITHM.

This table shows the number of cases where the each model
is correctly (C)/incorrectly (1) specified. We consider twit d
ferent samples: 150 and 500 observations. Both the AIC and
BIC are used to select the structure of the models.

150 500
AlC BIC AlIC BIC
Model C I C I c | c |
1 163 37 172 28 197 3 200 O

2 107 93 134 66 193 7 196 4
3 83 117 96 104 150 50 166 34
4 57 143 81 119 123 77 135 65
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We use the coverage test Christoffersen (1998) over a setroémées to evaluate the
coverage. The test is applied to the out-of-sample peridte dorrelation and the mean
squared error (MSE) of the one-step-ahead predictionslsmaiaed to compare the Tree-
MM models with the true data generation process. The Chigsg®n’s (1998) test consists
in two likelihood ratio (LR) tests. The first one is the LR te$tuaconditional coverage
and the second one the LR test of independence.

All the AR(1)-GARCH(l,1) models have the same linear part and distinct GARICHI(

conditional variances. The linear model is:

ye = 0.7y + uy,

whereu; = h;/?¢;, ¢, ~ NID(0, 1), and

e Model 5: h; = 107° + 0.85h;_1 + 0.05u?_;
o Model 6:, = 1075 + 0.90h;_; + 0.085u2_,.

The simulated NN models are the following:

v = 0.140.75y,-1 — 0.05y;_4 + 0.89(0.45y;_1 — 0.89y;_4; 2.24, —0.09)

—0.7¢(0.44y,_1 + 0.89y,_4: 1.12, —0.35) + uy,

Whel’eut = htl/QGt, €t ~~ NID(O, 1), and

e Model 7:h, = 1;
e Model 8:h;, = 1075 + 0.85h,_; + 0.05¢2_,.

We evaluate the conditional coverage over the followinggarcentiles: 90%, 95%,
97.5% and 99%. Tablé 5 shows empirical coverage and thesesfithe Christoffersen’s
(1998) test.LR,. is thep-value of the unconditional coverage test dnf... is thep-value
of the conditional coverage test. From the results, it iarctbat the Tree-MM is able to

model the tail of conditional distribution.



16 ESTIMATION AND ASYMPTOTIC THEORY FOR A NEW CLASS OF MIXTUE MODELS

TABLE 5. EMPIRICAL COVERAGE.

The table shows the empirical coverage andzth@lue of the
Christoffersen test for the estimated AR(1)-GARCH(1,1) and
NN-GARCH(1,1) models.LR,. and LR, are thep-values of
the unconditional conditional coverage tests, respdygtive
Empirical Coverage
90.0 95.0 975 99.0
Est. Percentile 90.39 95.60 97.60 99.20

Model 5 LR, 0.695 0.389 1.000 0.534
LR, 0.223 0.184 0.596 0.202

Est. Percentile 90.76 95.51 97.10 99.00
Model 6 LR, 0.457 0.918 0.215 0.273
LR, 0.542 0.228 0.118 0.273

Est. Percentile 89.30 95.00 97.40 99.20
Model 7 LR, 0.3344 .6878 1.000 .5297

LR,. 0.2939 .6664 .3583 .2349

Est. Percentile 90.60 95.40 97.10 99.00

Model 8 LR, 0.5352 0.5735 0.4385 1.000
LR,. 0.6199 0.6018 0.5317 0.000

Table[6 compares the out-of-sample performance of the attthTree-MM model with
the true NN specification. The correlation row shows the ayercorrelation between
the estimates, MSly and MSE,ee.vv are the average out-of-sample MSE for the NN and
Tree-MM models, respectively. From the results in the taile can see that the correlation
between the estimates are high and the MSEs are very clobettomodels, showing the

approximation capabilities of the Tree-MM models.

TABLE 6. FORECASTINGPERFORMANCERESULTS.

The table shows the forecasting results and the corre-
lation between the true data generating process and the
estimated Tree-MM model.

Model Correlation MSEkn MSEt ee-mm

Model 7 0.88 0.0223 0.0242

Model 8 0.74 2.25 x 1073 2.81 x 1073
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7. EXAMPLES

7.1. Example 1: Canadian Lynx. The first set analyzed is the 10-based logarithm of the
annual record of the numbers of Canadian Lynx trapped in thekbtezie River district
of north-west Canada for the period 1821-1934 (114 obsengti For further details
and background history, see Tong (1990).We report only ékealts for in-sample fitting
because the number of observations is rather small and rmasé grevious studies in
literature have only considered the in-sample analysiss ¢dbmmonly accepted that the
data are cyclical, with a period of 9-10 years and multimibglal

The variables are selected following the methodology of R&efasvirta and Tschernig
(2001). The final model using either AIC or BIC is a 1-split treéhere the transition

variable is they;_, and

90(") = g(yi—2;9.9826,2, 3.2655),
y1r = 0.5465 + 1.319y; 1 — 0.4655y:o + €11 €14 ~ N(0,0.0325),

yor = 0.9892 + 1.5173y,_1 — 0.8832y;_0 + 2oy 2o ~ N(0,0.0493).

We compare the Tree-MM model with the following alternasivan AR(2) model; the
SETAR model of Tong (1990); the MAR model of Wong and Li (200@nd the GMAR
model of Wong and Li (1999). The models MAR and GMAR have a ortof Gaussian
models as the conditional density and the others have a @aussditional density. The
final Tree-MM model has the same number of regimes and the samstion variable as
the models SETAR and GMAR.

All the models have similar empirical coverage. Howeveterns of the conditional

mean fit, the Tree-MM model attains the lowest mean absolube MAE).

7.2. Example 2: Brazilian Financial Dataset. In this section we apply the Tree-MM

model to automatic trading using data from the Brazilianlks®ahange. We compare the
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TABLE 7. EXAMPLE 1: EMPIRICAL COVERAGE.

The table shows the empirical coverage as well as the meatusds
error (MAE) for a set of different models.
Empirical Coverage

Model 50 60 70 80 90 95 MAE
AR(2) 50.00 58.93 68.75 75.89 88.61 92.86 1.99
SETAR 44.86 56.07 69.16 81.31 90.65 95.33 2.27
MAR 52.68 63.39 70.54 82.14 88.39 96.43 2.36
GMAR 47.32 58.93 68.75 82.14 92.86 93.75 2.25
Tree-MM  48.21 57.14 67.86 79.46 89.29 96.43 1.89

results with an NN model estimated with Bayesian regulaongiMacKay 1992), with the
ARMA model, and the rize method (the forecast for any period equals the previeds p
riod’s actual value). We choose an asset which tracks the ES®HNdex (IBOVESPA).
IBOVESPA is an index of the 50 most liquid stocks traded at theBaulo Stock Exchange.
The selected asset is the Petrobras PN (PETR4) (Brazilian @ilp@oy). The observa-
tions cover the period from 01/20/1999 to 12/30/2004 (14G%ecovations). The sample is
divided into two groups. The first one consists of 1227 oketéwas (from 01/20/1999 to
12/30/2003) and is used to estimate the model. The secong gamsists of 249 observa-
tions (from 02/02/2004 to 12/30/2004) and it is used for alusample evaluation.

The set of possible covariates is composed by the first 10dagee log-return of the
asset, the first 10 lags of the volatility, the first 10 lagsted traded volume between 2
days, the first difference of the 10- and 20-days moving @esaf the return (MA10
and MA20, respectively), and the first difference of thedwling 10 exogenous variables:
IBOVESPA, S&P 500 Index (S&P), US Dollar exchange rate (DQI0syear Treasury bill
(T10), C-Bond (C-BOND), the spread between C-Bond and T10 (SOTpr@e (OIL),
Swap 360 (SW360), a set of commodities (CRY) and the Develdpmamtries Stock Index
(BINDEX).

The statistical measures used to evaluate the model arecthie absolute errod{ AE),

the root mean square erroR{/SF), and the correct direction of change€ DC). The
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financial measures are the average ret@hn the annual return*), the accumulate return
(R), the annual volatility §4), the Sharpe indexS(R), the number of trades{7’), and the
percentage of winning trade8/(I"). Furthermore, we present the coverage of the model
and the statistics of the coverage for the NN and Tree-MM rsodehe trading strategy
is the following. We sell the stock every time the forecasttdrn is negative and we buy
when the forecasted return is positive. Tdble 8 shows thétses

We first select the set of regressors using the procedur@gedy Rech et al. (2001).
The final Tree-MM model is given by:

go(-) = g(v_1;5.2572,2,0.0318),
Yy = —7.9906 x 107* — 0.0542y,_1 + 0.0775v,_1 + 5.0897 x 10~ *¢q,_,
—3.6653 x 107°M A10 + 0.0180CRY +ey; &1 ~ N(0,1.9374 x 107%),
Yo = —6.956 x 107 4 0.3382y,_1 + 0.1673v,_1 + 1.5762 x 107 3¢,_,

—1.6057 x 107°M A10 + 0.0167CRY + &5 9 ~ N(0,6.5584 x 107*).

The estimated NN model has two hidden units and uses the wholef variables. The
Tree-MM model, the NN model and the linear model have sinpknformance accordind
to the statistical measures. However, the financial measadiécate that the Tree-MM

model has the best performance among the competing models.

8. CONCLUSIONS

In this paper we proposed a new mixture of models based onthrtraasition regression
trees. A quasi-maximum likelihood estimator was develogadlits asymptotic properties
were derived under mild regularity conditions. A model tirf strategy was also consid-
ered. Monte Carlo simulations gave strong support for therthdeveloped here, even in

small samples. Two applications with real data were useliLigtriate the model.
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TABLE 8. STATISTICAL AND FINANCIAL RESULTS

This table shows the mean absolute ertbfAF), the
root mean square erroR(/ SFE), the correct direction
of change ¢'DC), and the averagg), the annual R*),
and the accumulated?(’) returns, respectively. The ta-
ble also shows the annual volatility{), the Sharpe in-
dex (SR), the number of trades{T"), and the percent-
age of winning trades{’T).
ARMA  Naive NN TREE-MM

MAE 0.012 0.016 0.012 0.012

RMSE 0.017 0.022 0.017 0.017

CDC 60.48 58.07 65.73 62.50

R 0.68 0.50 1.65 1.45
RA 41.64  26.38  60.47 61.69
RC 4098 2596 59.51 60.71
o 2445 2259  18.47 18.31
SR 1.70 1.17 3.27 3.37
#T 60 52 36 42

wT 55.00% 46.67% 75.00% 76.19%

APPENDIXA. IDENTIFIABILITY

Let JT be a tree with set§, T andS, whereS is the set of indexes;, Vj € J and
parameter vecta. We define a subtreET* as the tree beginning at nodewith the sets
Jk C J, T C TandS* C S, wherei € JT" < k € J; U {i} and parameter vect®". For

example, assume the trg& = {0,1,2,3,4,5,6, 11,12} then]JT? = {2,5,6,11,12}.

ASSUMPTIONT. Let fi(y:|x;; 8%) be the conditional p.d.f. of the subtrg&®. ThenVk e

I, o1 (yelxe; 07F1) # farra(yelxe; 07F2).

This assumption guarantees that our tree is irreducibledrsénse that any split cannot

be changed by a subtree or by a local model.
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ASSUMPTIONS. We assume that for any trg@ and all sub-tree§T*: (1) v, > 0,Vj € J;

(2)Vj € J*Hif s; = s thenc; < ¢ (3) V) € J*72,if s; = 54 thenc; > ¢.

These assumptions together ensure that theJs@sndS uniquely specify any tree.

LEMMA 1. Under Assumption${7) and (8), a tr® is uniquely specified and the param-

eter vector® has a unique representation.

PROOF. Suppose that for any nodec J, for1(y:|x:; 0*) = forro(ye|xs; 6%12) such
that fi = gx () fors1 + (1 — gr(+)) fors2 = fart1 = fars2. HENce, we can change the node
k by the node€k + 1 or 2k + 2. If for1(-) # forso(+), VE € J, then the tree cannot be
reduced, so itis irreducible.

Now, suppose there is an irreducible tdge On the first split ag, ¢y can assume any
value inR. Now consider the sub-treé&’ andJT?. Following the condition[{8), on the
next split ats, = so, k € J', ¢, can assume any value {R-oo, co) and on the next split
ats; = so,l € J?, ¢, can assume any value iy, o). So, the values of, and¢; cannot
be interchanged. Repeating this argument for all splits,camdidering that the transition
has the same shape (which is guaranteed by the constramtheves), we show that any

irreducible tree under Assumptidd (8) is uniquely specified
Q.E.D.

The next theorem gives the conditions under which the Tré&+ivbdel is identifiable.

THEOREM 4. Under Assumption${7) antl(8), and assuming th@k|x;; ) is uniquely
identified by a parameter vectar, model[2) is identifiable, in the sense that, for a sample
{ys; x:}_,, and for@,, 8, € ©

T T

Hf(yt|xt; 6,) = Hf(yt|xt;92) ,Q.S.

t=1 t=1
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is equivalent td@, = 6.

PROOF. Suppose thaf (y:|x:; 01) = f(y:|x:; 02), for any sequencéy;; x;}_,. Therefore,
(A1) Z Bi(@s,; 01)m (ye|xe; by;) = Z Bi(ws;; 020) 7 (ya|x15 )
€T i€T2
According to LemmallT, = T, = T. Furthermore, ifyy,;, = v, thenm(y|xs; ¥y;) =
T(yexe; o) @NAD ", o (Bi(+; 015) — Bi(+; 02:))m (ye|x4590;) = 0, wherey,; = ¢, = 1.
We have to show thaB;(-; ;) — B;(; 05;) = 0. Following the definition ofB;(-; -) in
(3) and the definition of the logistic function, we can wrigg-; -) as a product of logistic

functions. Hencego(; v10) [1ep. 91 (5 v1k) = 0(5v20) [Ties, gk (5 v2k)-

If we showg(-; v10) = go(+; V20), then we can show iteratively thBt(-; 601;) = B;(-; 62;),

. _ . 1 _ 1 . . .
go(;v10) = go(+;v90), and T CveTy B T T which is true only if

(710, €10) = (720, €20)-
Concluding, we have shown thAty,|x;; 61) = f(y:|x¢; 02) implies@, = 0.

Q.E.D.

APPENDIXB. STATIONARITY AND GEOMETRIC ERGODICITY

It is important to know under which conditions a Tree-MM pees with only autore-
gressive local models is stationary. Some results on thdistaf mixture of experts were
shown in Zeevi et al. (1998) for the case of a MixAR d) model. We can use similar
results because the behavior of the multinomial logisticbthe B(-) functions are equiv-
alent.

Seta;, = mag;\@ﬂ, k=1,...,p, wheres, is thek-th component of3,.
1€

THEOREMS. Let{y,}:>o follow a Tree-MM model(2) with AR) local models. Assume

that the polynomial
p
P(z) = 2% — Zakzd’k ; ze€C
k=1



ESTIMATION AND ASYMPTOTIC THEORY FOR A NEW CLASS OF MIXTURE NDDELS 23
has all its zeros in the open unit disk,< 1. Then the vector process has a unique

stationary probability measure, and is geometrically etigo

PROOF To use the results of Zeevi et al. (1998), we need to show samkarities between
the multinomial logit and thé3(-) functions. Sef3(!) as the left most expert of the tree and
BY) as the right most exper3(!) is a product oft — g(-) functions andB(”) is a product
of ¢(-) functions. AnyBY) for j = 2,...,.J — 1 has at least one terg(-) and one term
1 —g(-). We can show the equivalence of the proofs if we satisfy theviing conditions:
(i) BY) — 1 fory,u — —oo; (i) BY — 0for z,u) — oo; (i) BY) — 1forz )y — oo;
(iv) BY) — 0 for z ) — —oo; and (v)BY) — 0 for z ) — Foo.

We know thatg(x;,v;) — 1 for z,, — oo andg(x;,vy) — 0 for z;, — —oo. Thus,
1 — g(x¢,vi)] — 0forz,, — oo, [1 — g(x¢,v,)] — 1forz,, — —oo, and

lim BY()= (ll)irﬁnfoOH[l g0 =1] (})ignfoo[l —9()] =1,

T (1) 7 To0

such that Condition (i) holds. Conditions (ii)—(v) can be fied using the same steps.

Q.E.D.

APPENDIXC. PROOFS OFTHEOREMS

We follow White (1992), to prove the existence, consistenuy asymptotic normality
of the QMLE. Besides, we define some notation to make the poeéser.

Define f, = f(ylxi:0), fi = fyelxi: 07), me = m(yelxsw,), mh = mlyelxi; ),
By = Bi(x4;0;), and B}, = B;(x4;60;). Furthermore, define recursively,, = (1 —

9(xs, s Vk)) fars1t + 9(xs, ;s Vi) foryoy, fOrall k in J, and fy. , = 7y, for all & in T,

C.1. Proof of Theorem[1. We need to satisfy Assumptions 2.1, 2.3 and 2.4 of Theorem
2.13 in White (1992) and show thef(0)| < oo with 8 being the unique maximum of
Lr(0). Assumption 2.1 is satisfied by Assumptidn 1, and Assumpi8nis satisfied by
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Assumptiori 2 and Lemnid 2. Assumption 2.4 &4(0)| < oo are satisfied by Lemnia 2.
So we need to show tha&l-(0) has a unique maximum &t.

First, we write the maximization problem as follows:

max [£7(8) — £1(6°)] = maxE {log% _ jf— _ } .

Furthermore, for any: > 0, m(x) = = — log(x) < 0, then

E [1og%—fiﬂ <0.

Given thatm(x) archives its maximum at = 1, E[m(z)] < E[m(1)] with equality
holding almost surely only if; = f; with probability one. By the mean value theorem, it

is equivalent to show that

,0log f;

o9

(C.2) 0 — 6%

almost surely. A straightforward application of Lemiha 3whdhat it happens if, and only

if, @ = 6" with probability one, which completes the proof.

Q.E.D.

C.2. Proof of Theorem[2. We must satisfy Assumptions 2.1, 2.3, 2.4, 3.1, and 3.2’ of
Theorem 3.5 in White (1992). Assumptions 2.1, 2.3, 2.4 anda3e?satisfied by Assump-
tions[1£8. Assumption 3.1 states that: [fg)log f;) < oo, V¢; (b) Eg(log f;) is continuous
in ©; and (c){log f:} obeys the uniform law of large numbers (ULLN).

It is clear thatEg(log f;) < logEg(f;) < log Eg(sgpft). But sgpft = A < oo, then

log [Eg(supft)] = logA < oo and (a) is satisfied. In additioeg(-), G, and f; are

t
continuous, measurable, and integrable functions;se- G, log f; is also continuous,
measurable, and integrable. Thehj.dy is continuous and (b) is satisfied. Finally, (c) is

satisfied by Lemmal8.
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Q.E.D.

C.3. Proof of Theorem[3. We must satisfy Assumptions 2.1, 2.3, 3.1, 3.2', 3.6, 3,8®),
3.9 and 6.1 in White (1992). Assumptions 2.1, 2.3, 3.1, 3.@'satisfied by Assumptions
[IH8 (see proof of Theorenh 2). Assumption 3.6 is satisfied lmgrhel2, Assumption 3.7(a)
is satisfied by Lemm@a 5, Assumption 3.8 by Lemias 6[and 8, Asgam3.9 by Lemma
[7, and Assumption 6.1 is shown here.

Assumption 6.1 requires théﬂ”l/%?gft

9*} obeys a central limit theorem with covari-
ance matrix3(0*), whereB(6*) is O(1) and uniformly positive definite. We must show the

following to satisfy Assumption 6.1: (&)~ 3./, 9y filo- 0 filo- “> E(Oo filo- 0o filo);

(b) the sequence is strictly stationary.
Condition (a) is readily verified by Lemmas 8 dnd 5. Conditiopigbsatisfied by As-

sumptions ¥ and6. Hence, satisfying these assumptionsssh# follows.

Q.E.D.

APPENDIXD. LEMMAS

LEMMA 2. Under Assumption$2)3(3)(v:|x:; @) is a measurable, limited, positive and

continuously differentiable function &f; = [y;, x;|' on ©.

PROOF. Trivially, 7(y:|x; ;) andg(x,,.; v;) are continuous, mensurable, finite, positive
and differentiable functions o¥’,. The functionf(y,|x;; €) is a sequence of sums and
products of these functions. As a resylty;|x;; @) is a continuous, mensurable, finite,

positive and differentiable function &f’,.

Q.E.D.

LEMMA 3. Letd be a constant vector with the same dimensiof.ofhen, it follows that

U 810gft o
d( 90 )_0 a.s.
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if, and only if,d = 0.

50 ——— = 0. From LemmaZR, we know tha} > 0.

PROOE First, writed’
( f: 00

0logft> —d 1 0f;
Hence,

87Ti
d=% =0 and [fort1,69kt — forr2e(1 — Gre)]

,Ol=7r (Y — )]
5, ¢

al/k

=0,

which are both functions af;. By the non-degeneracy condition, and supposinghist

not null for all¢, d'%% = 0 if, and only if, d = 0.

Q.E.D.
LEMMA 4. Under Assumptiorid P] 5 ahd B(log f;) < oc.

PROOF Write log f; = log ), .p Bumiy < log) ¢ < log#T + logsup;cr 7. Let
e = m(y|xe;X,87,07) = sup;er . Then,logmp = —%log 21o? — ﬁ(mé,@l — ).

Under AssumptionS] 2 afid B, [log ;] = —3 log 207 — ;5B [(x)8; — y:)?] < oo.
I

Q.E.D.

LEMMA 5. Under Assumptioris ] @, 5 aht 6,

dlog f, dlog f, 0log f;
E( 50 )<oo and E( 20 20’ < 00

PROOF Letdy = . Itis clear that

1 1
(D.3) dplog fr = —0Ouf; = 7, Z TitOpBit + BiuOpmit < Ay s Z OgBi + Ap Z OpTrit,
t t

f €T €T €T
whereA, ; = sup,(f; 'my) < oo andAp = sup; fi ' < oo. Setdy, = 9/, 0, =
d/0v;, andA, = sup, ;. Hence,

(D4) awiﬂ',;t = Witawi IOg Tt S Aﬂawi 10g Tity

(D.5) ,,Bix = Bu(—gjt)(1 — g;0)0,[—7i(xs, — ;)] < |00, [=5(xs;, — ¢5)]] -
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As v, = [Boi, - - -, Bpi, 0], the right size of[(D}4) can be written as

fkt()?;/@ - yt)
2 ’

0;

e
(D.7) Adlogmy = A, (— L &B—w) >

: 2 4
: 207 20;

(D.6) A0, logmy = —Ag

wherezy, is thek-th element of the vectox,.

Using the same argument, we can write the right side of eguéld.B) as

9

(D.8) |0, [=(zs, — 3)l] = |—(zs, — ¢5)

(D.9) |0, (=i (s, — ]| = Il

It is readily verified that, under Assumptions[2, 4 and 5, tkeeeted values of (D16)
— (D.9) are finite. Furthermore, under Assumption 6, the etqubvalue of any product

between these equations is also finite.

Q.E.D.

LEMMA 6. Under Assumptioris 2] @, 5 ahHB(0? log f;/0000") < oc.

9

= 5000 1t is clear that

PROOF Setdyy

(D.10) e Log f; = —0g log fi0p log fi + f, ' gt fr.

Using the product law of differentiation, we can wrillgy f; as a sum of products of
Og By and Oy, With Ogg B;; anddyer log ;. Using the results of Lemmnid 5, the expected
value of the product of any two of these derivatives is finitdnerefore, we must show
that E[Oge Biz] < oo andE[Jge log m;;] < oo. Considering thatp; andt; do not have
elements in common, and th&}, depends only on the vectors, j € J;, we can write

these derivatives in terms 8§, ., andd, .. . Butap, = [Boi, - - -, By, 07] andv; = [, ¢;]'.
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Then,

(Dll) aﬁ“gkilOgﬂ'it = —O'Z-_foiktflt,

(D.12) 8ﬁlio§l097ﬂ‘t = 0;457115 (X8 — ),

(D13) aafaglog’/rit = (20?)_10—;8(5(;/8 - yt)27

(D.14) O Bit| < Oy [= (s, — )]0 [ (25, — ¢5)]| -

Under Assumptions| 2] 4 and 5, the expected values of (D [D114) are finite.

Q.E.D.
LEMMA 7. Under Assumptiorid 2] @] 5 ahdB,0* log f;/06006'|,-) is negative definite.

PROOF. If E(9? log f;/0006'

¢~ ) IS negative definite, thelog f; has a maximum i®. We
know by Lemma B thalbg f; has only one maximum or minimum {®; thus we only have
to show thatf; must have a maximum.

Trivially, the Gaussian functions;; have a maximum. If we multiply by a constant or
monotone functions or add functions with a maximum, the fiancstill has a maximum.
The logistic function is a monotone function (in relationtoparameters and the variable).

Hence,B;;m;; has a maximum anfl has a maximum, an#l(9? log f; /0606’

¢+ ) IS negative

definite.

Q.E.D.

LEMMA 8. Under Assumptiorls 2] & 5 afitl 6, it follows that: Ta) >, f; “> E(f,);
(BTS2, Do fi “3 B(0o fr); @and ()~ Y01, Ooor fi 3 B0 f1).

PROOF. First we must show thaf—! Ethl v, “2 E(y,). Oncey, is a mixing process, we
just need to show that (B (T‘1 ST yt> = E(y,) and (i) V (T‘1 ST yt) < 00. Asy,

is stationary, (i) is trivially satisfied and s E(y,y; 1) < A < oo, (ii) is satisfied.
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Lemmd 2 ensures thdt, 9, f; anddye f; are continuous functions gf given. Besides,
Lemmad #, b and 6 guarantee that the expected value is aleo fince the functions are

continuous and the expected value is finite, we can extencethdts ofy; for f;, dy f; and

Oper f1, thereby completing the proof.

Q.E.D.
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