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ABSTRACT. In this paper, we propose a class of ACD-type models that accommodates
overdispersion, intermittent dynamics, multiple regimes, and sign and size asymmetries
in financial durations. In particular, our functional coefficient autoregressive conditional
duration (FC-ACD) model relies on a smooth-transition autoregressive specification. The
motivation lies on the fact that the latter yields a universal approximation if one lets the
number of regimes grows without bound. After establishing that the sufficient conditions
for strict stationarity do not exclude explosive regimes, we address model identifiability as
well as the existence, consistency, and asymptotic normality of the quasi-maximum like-
lihood (QML) estimator for the FC-ACD model with a fixed number of regimes. In addi-
tion, we also discuss how to consistently estimate using a sieve approach a semiparametric
variant of the FC-ACD model that takes the number of regimes to infinity. An empirical
illustration indicates that our functional coefficient model is flexible enough to model IBM
price durations.
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1. INTRODUCTION

There has recently been a great interest in the implications of price durations in empirical
finance. Most empirical analyses use one of the several extensions of Engle and Russell's
(1998) linear autoregressive conditional duration (ACD) model that abound in the litera-
ture. Fernandes and Grammig (2006) consider a family of ACD-type models that relies on
asymmetric responses to shocks and on a Box-Cox transformation to the conditional du-
ration process. Their family encompasses most ACD-type models in the literature, though
there are a few exceptions. Zhang, Russell, and Tsay (2001) argue for a nonlinear ver-
sion based on self-exciting threshold ACD processes, whereas Meitz gsyifter (2006)
propose the smooth transition and the time-varying ACD models. This paper puts for-
ward a novel class of ACD-type models based on logistic smooth-transition autoregressive
processes with multiple regimes. In particular, our functional coefficient autoregressive
conditional duration (FC-ACD) model not only nests the ACD-type processes proposed by
Meitz and Teasvirta (2006), but may also serve as the basis for a semiparametric approach
if one lets the number of regimes to grow without bounds.

We first address the theoretical aspects of the FC-ACD process with a fixed number
of regimes. In particular, we establish sufficient conditions for strict stationarity and for
the existence of higher-order moments. It turns out that the conditions are quite mild in
that they do not exclude duration processes with explosive regimes. As in Medeiros and
Veiga (2004), we show that explosive regimes may entail very interesting dynamics. In
particular, strictly stationary FC-ACD processes with explosive regimes are particularly
suitable to model intermittent dynamics: The system spends a large fraction of time in a
bounded region, but sporadically develops an instability that grows exponentially for some
time and then suddenly collapses.

We then move to establishing sufficient conditions for model identifiability as well as
for the existence, consistency, and asymptotic nhormality of the quasi-maximum likelihood
(QML) estimator. We derive consistency and asymptotic normality under first- and second-
order moment conditions, respectively. Finally, we develop a sequence of simple Lagrange
multiplier (LM) tests to determine the number of limiting regimes. Although we derive the
tests using the exponential distribution as reference, we also discuss a robust version so as

to cope with non-exponential errors.



We also consider a semiparametric version of the FC-ACD model in which the num-
ber of extra regimed/ increases with the sample size. The motivation rests on the fact
that the logistic smooth transition autoregressive process Mith~ oo acts as a univer-
sal neural-network approximation (Hornik, Stinchcombe, and White, 1989). The resulting
semiparametric model encompasses most first-order ACD-type models in the literature,
despite the fact we impose some restrictions on the functional coefficients specification to
achieve identification of the nonparametric term as well as to ensure stationarity and geo-
metric ergodicity. To estimate the semiparametric model, we rely on a regularization pro-
cedure that penalizes the log-likelihood function as one increases the number of regimes.
In particular, we employ Chen and Shen’s (1998) results to provide asymptotic justification
for the resulting sieve estimator.

We thus deem that we contribute to the literature in several aspects. First, in contrast
to Meitz and Teasvirta’s (2006) smooth transition ACD framework, our FC-ACD spec-
ification permits modeling more than two limiting regimes as well as explosive regimes.
Second, our framework allows for statistical inference as to what concerns the number of
regimes, and hence it is not necessary to impose a priori a certain number of regimes as
in Zhang, Russell, and Tsay (2001). Third, we also consider the case in which the num-
ber of regimes to increase with the sample size, so as to obtain a sieve approximation for
the conditional duration process. Finally, we demonstrate the practical usefulness of the
FC-ACD specification by modeling IBM price durations. The main motivation lies on the
fact that early findings clearly reject many of the extant ACD-type specifications in the lit-
erature (see Fernandes and Grammig, 2006). We show that allowing for multiple regimes
facilitates substantially the task of reaching a congruent specification for the IBM price
durations.

The remainder of the paper is organized as follows. Section 2 outlines the statistical
properties of the FC-ACD process, whereas Section 3 deals with quasi-maximum likeli-
hood estimation for a known fixed number of regimes. Section 4 then proposes a sequential
testing procedure to determine the unknown number of regimes. Section 5 next considers
a semiparametric version of the FC-ACD model by letting the number of regimes increase
with the sample size. Section 6 collects the findings of the empirical application that we

carry out aiming to model IBM price durations. Section 7 summarizes the main results and



offers some concluding remarks. We collect all technical details concerning the derivations,

including proofs and lemmas, in the Appendix.

2. A FUNCTIONAL COEFFICIENTACD PROCESS

Let the durationz; = t; — t;_, denote the time spell between two events occurring at
timest; andt; ;. For instance, we define price duration as the time interval necessary to
observe a cumulative change in the mid-price of at least some given value. To account for
the serial dependence that characterizes financial duration data, we assume that durations

follow an accelerated time failure process.

AsSSUMPTIONL. Letx; = v;¢;. The sequencée;; i € Z} of iid random variables has
a continuous density functiofi > 0 in [0,00), with E (¢; | ;—1) = 1, whereF;_, is
the information set available at timg_,. Also,; = E (z; | F;_1) is independent of

{Ei, €i+1y - - }

Assumption 1 is standard in the literature (see discussion in Drost and Werker, 2004).
Engle and Russell's (1998) ACD model assumes a linear specification for the conditional
expected duration, vizy; = w + ax;—1 + S;—1. Bauwens and Giot (2000) propose a
logarithmic version of the ACD model with a similar autoregressive structure for the log
rather than for the level of the expected duration so as to ensure the positivity of the duration
process. In this paper, we propose a more flexible model based on a functional coefficient

specification.

DEFINITION 1. The durationz; follows a functional coefficient autoregressive conditional
duration (FC-ACD) process witi/ + 1 regimes ifx; = ; ¢;, wheree; and v; satisfy

Assumption 1 and

log; = w(logx;—1) + a(logx;_1)log x;—1 + B(log x;_1) log 1;_1 Q)
with
M
w(logz;) = wo+ Z W G (log ;) 2
m=1
M
a(logz;) = ay+ Z o, G (log ;) 3)
m=1

M
Blloga;) = Bo+ Y Bm Gm(logm), @)
m=1
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and
1

14 exp [—’ym (log T; — cm)] ' ©)

Gm(logl'i) = G(Ingi§ ’Ymvcm) =

The FC-ACD process belongs to the class of logistic smooth transition autoregressive

models. The parameter vector is

/
0:(Wo,-.-,CL)J\J,OZ(),.-.,OZAJ,HO,--.7BM7C17.-.,CM7'}/1,-~-,'7]M) .

The slope parameters,, (m = 1,..., M) controls the smoothness of the regime transi-
tions: e.g.G. (log z;) converges to a step function as grows without bound. Equation

(5) also implies that log-durations determine the weights at which each regime contributes
to the overall dynamics of the process at time Alternatively, one may could think of
distinct transition variables, e.g., the log of the expected duration. The resulting model thus
is quite similar to Zhang, Russell, and Tsay’s (2001) self-exciting threshold ACD specifica-
tion. The main differences are that we allow for smooth transitions and that, as in Bauwens
and Giot (2000), we model the log rather than the level of the expected duration so as to
avoid positivity constraints on the parameter space.

The FC-ACD specification entails several advantages. First, the condition we derive in
Subsection 2.1 for strict stationarity does not rule out the presence of explosive regimes.
The latter is interesting because it may give way to the moderately high, but very persis-
tent, autocorrelation structure that seems to characterize financial duration data. Second,
our specification nests the threshold ACD-type processes put forth by Meitz asVirex
(2006). Third, as in Medeiros and Veiga (2000), one may interpret (2) to (4) as a single-
hidden layer neural network with/ hidden units. It thus follows that the FC-ACD specifi-
cation admits a semiparametric variant by letting the number of regimes increase with the
sample size. A neural network with a large number of hidden units indeed approximates
arbitrarily well any Borel-measurable function (Hornik, Stinchcombe, and White, 1989).

To establish the statistical properties of the FC-ACD process, we require a standard

regularity condition on the error term and on the parameter space.

ASSUMPTION2. The error termg; is such thaff [log ¢;| < oo andE |¢;|* < oo for some

integerk > 4.

ASSUMPTION3. The vecto# is interior to the compact parameter spa@eC R>M+3,
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The asymptotic normality of the QML estimator depends heavily on the fourth-moment
requirement in Assumption 2. If the interest lies only on the consistency of the QML

estimator, then it suffices to assume that the finiteness of the second moment.

2.1. Statistical properties: Strict stationarity. Letu; = (log;,loge;)’. Itis easy to

see thafu;; i € Z} is a Markov chain with homogenous transition probability in view that
wir1 = F (us; 0) + €441, (6)
whereF (u;; 0) = [F (u;; 6), 0" with
F (u;; 0) = w(logz;) + [a(log x;) + B(log x;)] log z; + a(log z;) log €;,
ande; = [0, log¢;])’. We are now ready to establish our first theoretical result.

THEOREM1. Suppose that the duratian follows a FC-ACD process with/ + 1 regimes
satisfying Assumptions 1 and 2Af < 1, Ay; < 1,andAq Ay < 1, whereAy = ap+ 5
andA,; = Z%:o (am + Bm), then strict stationarity holds for the duration process and

E |log z;|* < .

The sufficient condition in Theorem 1 is intuitive and simple despite not only the highly
nonlinear nature of the model but also the extant sufficient conditions in the literature
(Meitz and Saikkonen, 2004; Meitz, 2005; Fernandes and Grammig, 2006). As in thresh-
old autoregressive models (Tong, 1990), it suffices to impose constraints only on the two
polar regimes. In particular, it allows strictly stationary and ergodic FC-ACD processes to
have explosive regimes. This is of particular interest given that such processes are suitable
to model intermittent dynamics (Medeiros and Veiga, 2004). An ergodic FC-ACD process
with explosive regimes indeed spends a large fraction of time in a bounded region, though
it sporadically develops an instability that grows exponentially for some time and then sud-
denly collapses. As we illustrate in Example 1, even though we only consider first-order
specifications, the FC-ACD process admits a highly persistent behavior with moderate val-

ues for the autocorrelation function, especially in the presence of explosive regimes.

ExAaMPLE 1. Consider a FC-ACD process with three limiting regimes, exponential errors,
and parametersyy = 0.005, w; = —0.9, wy = 3, ag = 0.09, a; = —0.05, as = —0.05,
Bo = 0.9, B = 0.6, B2 = —0.5, 1 = 1000, 7o = 100, ¢; = —2, and¢, = 1. The

2

condition for strict stationarity holds given thally = ag+ 8y = 0.99, A2 = >0 (oo +

Bm) = 0.99 and Ay A» = 0.9801, despite the explosiveness of the second regime. Figure
6
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FIGURE 1. Simulated path and autocorrelation function of a FC-ACD
process with three limiting regimes, exponential errors, and parameters
W = 0005, w1 = —0.9, W = 3, Qg = 009, a1 = —0.05, g = —0.05,

60 = 0.9, 51 = 0.6, ﬁg = —0.5, Y1 = 1000, Yo = 100, ¢4 = —2, and

Coy = 1.

1 depicts a simulated path of such duration process and the corresponding autocorrelation

function up to the 200th lag.

3. QUASI-MAXIMUM LIKELIHOOD ESTIMATION

In this section, we carefully address the parametric estimation of the FC-ACD model.
To avoid further distributional assumptions, we invoke quasi-maximum likelihood (QML)
methods. After describing the setting, we derive the conditions for model identification as
well as for the consistency and asymptotic normality of the QML estimator.

The derivation of the semiparametric ACD model in Drost and Werker (2004) clarifies
that adaptiveness occurs if and only if the error distribution belongs to the two-parameter
gamma family with unit mean. It actually turns out that the exponential and gamma scores
are proportional, and hence there is no efficiency loss in restricting attention to the ex-
ponential distribution. This means that the QML estimator is consistent only if we write

the likelihood as if under the assumption of exponential (or standard gamma) distribution
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(Bickel, 1982). The quasi-log-likelihood thus reads

L&
Ln(0) = ~ Zéi(e)v (7)

where
£i() = —logth; — 1/272
We treat the unobservable sequetite_;,v_;); i € N} as constant rather than random.
The quasi-log-likelihood is thus suitable for practical applications given that it is not con-
ditional on the true initial valuéxg, v).
To derive the asymptotic properties of the QML estimator, it is convenient to work also
with the unobserved proce$ér,, ;, ., ; ¢ € Z}, which satisfies

Ty,i = wu,i €u,i

log ¥u,i = wo + o log xy i—1 + Bo 10g 1 i—1

(8)
M
+ Z [wm + am, log Ty i—1 + ﬂm Ingu,i—l Gm(IOg xi)-
m=1
The unobserved quasi-log-likelihood conditionalBp= (xzg,z_1,2_2,...) iS
1 N
Lun(0) =+ izzleu,iw), ©)

with ¢, ;(0) = —log vy, — fwu As is apparent, the primary difference betwe&n(6)

andL, (@) is that the latter is conditional on an infinite series of past observations. For

the same technical reasons, we also consider the unfeasible QML estimator based on (9).

Let
. 1 Y
Oy = argmax Ly (0) = argmax — 2,(0), 10
N ege@ ~(0) ege@) N;() (10)
and
~ 1 X
0, N = argmax L, n(0) = argmax — Zéu,i(O). (11)
) oco N =

Subsection 3.1 next discusses the existencé(éf = E [¢, ;(0)], so as to tackle the
identifiability of the FC-ACD model in Subsection 3.2. Subsection 3.3 then derives the con-
sistency and asymptotic normality of the QML estimators in (10) and (11) under second-

and fourth-order moment conditions, respectively.

3.1. Existence of the QML estimator. It is easy to appreciate that the QML estimator

exists only if£(0) = E [¢,;(0)] exists. The next result immediately follows from White’s
8



(1996) Theorem 2.12, which establishes théf) exists under certain continuity and mea-

surability conditions on the quasi-log-likelihood function.

THEOREM?Z2. If the durationz; follows a strictly stationary and ergodic FC-ACD process
with M + 1 regimes, then, for any parameter vectbe ©, £(6) exists and is finite under

Assumptions 1 and 3.

3.2. ldentifiability of the model. A fundamental problem that usually haunts nonlinear
econometric models is the lack of identifiability of the empirical loss function. To carry out
statistical inference, we must first show tligtis the unique maximizer of (). It turns

out, however, that we achieve neither global nor local identification of the FC-ACD model
without imposing some parametric constraints.

There are three reasons for the model unidentifiability. First, as the multiple regimes
correspond to hidden units in neural networks, they are interchangeable. This means that
the empirical loss function of the FC-ACD specification is invariant to regime permuta-
tions, and hence there af&/ + 1)! equal local maxima for the quasi-log-likelihood in (7).

See Sussman (1992) and Suarezfiemj Pedreira, and Medeiros (2004) for a discussion.

Second, the logistic function in (5) is such that
G(log zi; Yy cm) = 1 — G(log Ti; —Ym, Cm).

This property evidently compromises model identifiability. Third, identifiability also re-
lates to model reducibility as it automatically imposes constraints on the vector of pa-
rametersd,, = (Wm, Qm,Bm, Ym,cm) that defines the extra regimes of the FC-ACD
model(m = 1,...,M). For instance, it is not possible to identify the logistic parame-
ters (Ym, cm) if (Wm, @m, Bm)’ = 0, whereagwy,, am, Om, cm)’ May take on any value
without affecting the value of the quasi-log-likelihood functiorif = 0. We then restrict

the parameter spaég so as to circumvent such problems.

ASSUMPTION4. The parameter spad® is such that any vectd@® € O satisfies

Cl:c<c <...<cpy < cforsome finite constantsande;
C2: vy, >0form=1,..., M and

C3: (Wm, Qm, Bm) # 0 for somem € {0,..., M}.

THEOREM 3. Assumptions 1 to 4 ensure the global identifiability of the FC-ACD model

and that£(6) has a uniqgue maximum &f.
9



Despite the fact that Assumption 4 is not verifiable, one may alleviate the risk of irrele-

vant regimes by carrying out a sequence of LM tests (see Section 4).

3.3. Asymptotic theory. Our interest lies on the large sample properties of the QML es-
timator given by (10). To derive the next result, we first establish that the unfeasible QML
estimator in (11) converges in probability g and then show that the difference between

the two QML estimators shrinks to zero as the sample Sizgows without bound.

THEOREM4. Under Assumptions 1 to 4, the QML estimators in (10) and (11) are consis-

tent, i.e.,@uw 2 0, andﬁN 2 0,, for strictly stationary FC-ACD models.

To complete the asymptotic characterization of the QML estimator, we first introduce

some notation and then establish the asymptotic distribution of the QML estimator. Let

Y
y

N
1 04,,.:(0)
Bo=% ; E ( 06
and denote their empirical counterparts by
0% log 1; AT Olog1; Olog;
06 06’ U, ;00 06’

0920,,:(0)
06 06’

Ay=E

04,,.:(0)

1 N

AN<0>—N;{

N 2
_ 1 i\ Ology; dlogh
Br(0) =5 ; (wi 1) 06 00"

We are now ready to state that the QML estimator weakly converges to a Gaussian distri-

bution with the usual asymptotic covariance matrix (White, 1982).
THEOREMS. Under the conditions we assume in Theorem 4, it follows that

VN (Bx —00) 2 N (0,A;'BoAY) (12)
and thatAN(aN) andBN(aN) consistently estimatA, and B, respectively.

3.4. Optimization algorithm. As in any smooth-transition specification, the likelihood
function of the FC-ACD model is very likely flat, especially for the transition parameters.
This means that one must carry out the optimization in a very careful fashion. That is why
we initially employ a genetic algorithm based on a population of 500 sets of initial values
for the parameters that meet the strict stationarity conditions in Theorem 1. We then switch
to the BFGS nonlinear-optimization algorithm using as initial values the solution of the

genetic-algorithm procedure.
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4. DETERMINING THE NUMBER OF REGIMES

As the FC-ACD specification in Definition 1 depends on the unknown number of extra
regimesM, statistical inference must come into play. One solution is to carry out a sequen-
tial procedure in which we start with a small model and then decide whether it pays off to
add more regimes using some model selection criterion. This typically boils down to some
sort of likelihood ratio testing, where the particular choice of the model selection criterion
determines the asymptotic significance level of the test (se&sVieta and Mellin, 1986).

There is a serious drawback in such approach, however. Suppose the data generating
mechanism is a FC-ACD process witl regimes. Applying a model selection criterion to
decide whether to consid@r + 1 regimes requires the estimation of an unidentified model
with M logistic functions. It thus is impossible to estimate the parameters in a consistent
manner, so that numerical problems likely arise in the QML estimation. Besides, the lack
of identification under the alternative hypothesisiéf+ 1 regimes also contaminates the
likelihood ratio statistic, which does not converge to the ugdalistribution under the null
hypothesis of\/ regimes.

We therefore take a different approach to determining the number of regimes of the
FC-ACD model. Although we keep relying on a specific-to-general modeling strategy, we
circumvent the identification problem using sequential LM-type tests. Our sequential test-
ing procedure controls for the significance level of the individual tests using Bonferroni's
upper bound for the overall significance level. In what follows, we discuss our framework
assuming exponential errors and then show how to robustify the procedure so as to cope
with nonexponential errors.

Consider an ergodic FC-ACD process with+ 1 regimes as in (1)—(5). To test whether

it is necessary to include the term corresponding tq ftfe+ 1)th regime, viz.
(war + anrlog i1 + Barlog i) Gur(log i1 Yar, car), (13)

we define the null and alternative hypothesedtas: vay = 0 and Hpyy1: var > 0,
respectively. To remedy the lack of identification of the FC-ACD model wifh+ 1
regimes under the null, we expand the logistic functiogy aroundy,; = 0 as in Meitz

and Teasvirta (2006).
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A first-order Taylor expansion d; aroundy,,; = 0 then yields

log ; = Qo + &g log ;1 + By log ;1

M—1
+ > [wm + amlog i1 + B log i 1] G (log ;1) (14)

m=1

+ 61 log i1 log z;—1 + 62 (log z;-1)* + O (va;) »
where@y = wo + swn — FwMYMCM, Go = g + 3o + $ym(wn — anenr),
Bo = Bo + % Bu — L Buvmen, 61 = L Buya, anddy = L apyar. Under the null
of Hys: vp = 0, the specification in (14) reduces to the FC-ACD model withregimes.
Before stating the next result, we first establish some notation.¢Let [6', 5] with
d = (01,d2)". The QML estimator ofp under the null hypothesis ofly;: vos = 0
is ZSN = [§N,O]. Let 127 = (ZSN) denote the estimate of the expected conditional
duration under the null and; = a‘giiwi -

=By

with respect tap evaluated at the QML estimatarN. Although 31- is recursive in that it

correspond to the derivative ddg v,

depends orfli_l, it is straightforward to calculate it as a function of the initial value
of the duration process as in Medeiros and Veiga (2004). We are now ready to state the

asymptotic distribution of the LM statistic to tekt,;: vy, = 0 againstH;41: yar > 0.

THEOREMG. Letthe duratione; follow a strictly stationary and ergodic FC-ACD process
with M regimes. Assumptions 1 to 4 ensure that
N oo N N “1rn . R
LM =N [Z (QZ - 1) di] (Z d; di> [Z (1; - 1) di] (15)
i=1 i i=1 i=1 i

has an asymptotig? distribution under the null ofH,;: vas = 0.

To avoid the exponential assumption, one may consider a robust version of the LM
test that is suitable to nonexponential errors, as in Meitz andsVeta (2006), using the
tools in Wooldridge (1990, Procedure 4.1). The three steps of the resulting robust testing

procedure are as follows.

(1) Estimate the FC-ACD model under the null (witth regimes).
d d ;
(2) Regressgy log wi](b:% on 55 log wi|¢:% and compute the vector of residuals
rifori=1,...,N.
(3) Regress 1 or(xi/z@- — 1) 7; and compute the resulting sum of squared residuals
SSR. The robust test statistichA/z = N —SSR has an asymptotigs distribution

under the null hypothesis dfi ;.
12



We now combine the above statistical ingredients into a coherent modeling strategy that
involves a sequence of robust LM tests. The idea is to test a FC-ACD model with only
one regime against an alternative model with two regimes at the significancellevel

In the event we reject the null, we keep testing FC-ACD specifications svitagimes
against alternative models with+ 1 regimes at the significance levg}y = \; C*~7 for

some arbitrary constaidt > 1. We terminate the testing sequence at the first nonrejection
outcome and then estimate the number of extra regiiiesf the FC-ACD specification

by M = J — 1, whereJ refers to how many testing runs are necessary to lead to the
first nonrejection result. By reducing the significance level at each step of the sequence,
we are able to control the overall significance level and hence to avoid excessively large
models. The Bonferroni procedure indeed ensures that such sequence of robust LM tests is
consistent and thazjfz1 Ay acts as an upper bound for the overall significance level. As
for the selection of the arbitrary constarit it is good practice to carry out the sequential

testing procedure with different values@fso as to avoid models that are too parsimonious.

5. A SEMIPARAMETRIC VARIANT

In this section, we take benefit from the fact that the logistic smooth transition autore-
gressive specification in (2) to (4) corresponds to a single-hidden layer neural network
with M hidden units. This implies that, &/ is large enough, it approximates arbitrarily
well any Borel-measurable function (Hornik, Stinchcombe, and White, 1989; Chen and
White, 1998). We therefore consider a semiparametric version of the FC-ACD model in
which the number of extra regiméd increases with the sample size. To emphasize the
dependence on the sample size, we denote the number of extra regimég Iy this

section.

DEFINITION 2. The durationz; follows a semiparametric FC-ACD procesif = v; €;,

wheree; and; satisfy Assumption 1 and
log¢; = w(log ;1) + B log ¥ 1 (16)

with |5] < 1 andw(:) < oo belonging to the functional spadé of continuous bounded

functions.

This definition complements well Drost and Werker’s (2004) semiparametric approach,

whose focus is on the error distribution rather than on the specification of the conditional
13



expected duration. It indeed encompasses most first-order ACD-type models in the litera-
ture, despite the fact that we impose three restrictions on the functional coefficients speci-
fication. First, we confine attention to duration processes that satisfy strict stationarity with
finite second moments, geometric ergodicity, ghemixingness with exponential decay

by assuming that(-) is bounded and thap| < 1 (see Meitz and Saikkonen, 2004). This
ensure that we may apply Chen and Shen’s (1998) asymptotic theory for sieve extremum
estimates in the context of weakly dependent data.

Second, we eliminate the slope functional coefficient in (1) —déz)  — to achieve
identification of the nonparametric component in (16). Third, we restrict the recursiveness
of the conditional expected duration process by assumingstisatonstant across regimes.
This simplifies matters a lot for it permits rewriting the semiparametric FC-ACD model as

a tractable nonlinear AR model of infinite order, namely,

logz; = w(logz;_1)+ B logi;_1 +loge;

(o)
= Zﬁj w(logzi—1-;) + loge;. a7)
3=0

As the largeness of the functional sp&¢enay compromise the estimation, we approx-
imate H with a sequencé{y of sieve spaces (Grenander, 1981; Chen and Shen, 1998)
that becomes dense i as the sample size increases. As the sieve spaces correspond to
finite-dimensional parameter spaces, they only require parametric estimation. In particular,

we approximate any function € H with wy € Hy, where
wp ) + Z Wi GV () (18)

andGS,J,V)(J is the logistic function in (5) with parametafgy) andyan). Makovoz (1996)
demonstrates that the approximation error is suchlfibgt— w || = O (Mg,%_ﬁ) , Where
d is the dimension of the domain of the functiorand||- || denotes thd.? norm.

The resulting vector of parameters then is

N N N N N
0(N): (wé ) wng\zvcg )7' CSV[,\),WA )7"'7’7]&11\,’6)

Instead of alluding to the sequengéy of sieve functional spaces, we may sometimes
refer to the corresponding sequertggy of sieve parameter spaces so as to emphasize the

parametric nature of the estimation problem. In accordance with the sieve literature, we

14



then approximate the first term of the right-hand side of (17) by

JIN

log ™ =" 3wy (log zi-1-;). (19)

j=0
This means that we actually employ two sieve approximations. The first truncates the
infinite summation in (17) by means dfy, whereas the second relates to the finite number
of extra regimed/y in the neural network. The next result documents the conditions under
which our semiparametric approach is consistent. The proof is straightforward, relying on
the fact that (19) converges to the first term of the right-hand side of (17) as/koéimd

My go to infinity with the sample size.

THEOREM 7. If the duration process; satisfies the conditions in Definition 2, the sieve

approximation error is negligible as long aby — oo and M3, log My = O(N).

To avoid overfitting, we take a regularization approach by penalizing the empirical loss
function so as to control for the number of extra regimég (i.e., the number of hidden
units in the neural-network approximation) as well as for the number of Jags the

nonlinear AR representation. Let

Ln(Ony) = Zew) (0n)) s (20)

where

Ay IS a regularization factor that shrinks to zero as the sample size increases. The sieve

EZ(‘N) (O(N)) = —1ngz‘(N) - 1}[}(1\[)

7

estimator then is

0 N argmax — E(N) (22)
- om0 IV Z

Given thatl (8(n)) = E [El(.N) (H(N))} is uniquely identified, the sieve estimator in (21)

is well defined and hence Chen and Shen’s (1998) results hold.

6. REVISITING IBM PRICE DURATIONS

In this section, we estimate the FC-ACD model for the price durations of the IBM stock
traded on the New York Stock Exchange (NYSE) from September to November 1996. In
contrast to Zhang, Russell, and Tsay’s (2001) empirical analysis of IBM durations, we do
not fix the number of regimes in that we let the data determine the proper number of regimes

using either a sequence of LM-type tests or a regularization approach in the parametric
15
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FIGURE 2. The first plot displays the time series of IBM price durations
from September to November 1996, whereas the second plot exhibits
its sample autocorrelation function up to 200 lags. The data correspond
to diurnally adjusted durations; = D,/o(t;), where D; is the plain
duration in seconds angl-) denotes the diurnal factor determined by
first averaging the durations over thirty minutes intervals for each day of
the week and then fitting a cubic spline with nodes at each half hour.

and semiparametric contexts, respectively. We define price duration as the time interval
necessary to observe a cumulative change in the mid-price of at least $0.125. The main
interest in models for price durations is due to the fact that they permit retrieving intraday
estimates of the instantaneous volatility of the price process (Engle and Russell, 1998).
Apart from the opening auction, NYSE trading is continuous from 9:30 to 16:00. We re-
move all durations between events recorded outside the regular opening hours of the NYSE
as well as overnight spells. Itis well known that financial durations feature a strong time-of-
the-day effect. We therefore consider diurnally adjusted duratigrs D;/o(t;), where
D; is the plain price duration in seconds apd) denotes the diurnal factor determined
by first averaging the durations over thirty minutes intervals for each day of the week and
then fitting a cubic spline with nodes at each half hour. The resulting (diurnally adjusted)

durations serve as input for the remainder of the analysis.
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A comparison between price and trade durations mirrors the fact that the IBM stock is
very liquid. In particular, more than 75% of the trade durations do not exceed 30 seconds
and it takes several transactions to alter the mid-quote price by at least $0.125. The sample
size indeed reduces from 60,454 to 6,728 observations once we filter the data to compute
price durations. Table 1 describes the main statistical properties of the IBM price durations.
We compute descriptive statistics for both plain and diurnally adjusted data for two sub-
samples. We employ the first subsample with 4,484 observations for estimation purposes,
reserving the second subsample with 2,244 observations for out-of-sample analysis.

The distributions of the price durations in the first and second subsamples are substan-
tially different, regardless of the time-of-the-day adjustment. For instance, if one restricts
attention to the diurnally adjusted series, the first-subsample mean, standard deviation, first
quartile, and median are about twofold their counterparts in the second subsample. In
addition, the third quartile declines by more than one half from the first to the second sub-
sample, whereas the maximum value in the first subsample is threefold the maximum in
the second subsample. The minimum value and overdispersion are the only statistics that
remain approximately constant across subsamples.

The evidence in favor of overdispersion is also robust to the time-of-the-day effect. The
latter feature ensures that it is not an artifact due to data seasonality. Figure 2 displays
the diurnally adjusted series of IBM price durations as well as its sample autocorrelation
function up to 200 lags. It reveals that IBM price durations are very persistent in that there
are significant positive values in the sample autocorrelation function at very high orders.
Altogether, the combination of overdispersion and persistent autocorrelation in IBM price
durations warrants the estimation of FC-ACD models with multiple regimes.

We then estimate by quasi-maximum likelihood the FC-ACD model of first order using
the exponential distribution as reference. Table 2 reports the estimation and testing results
for models with one and two regimes given that our modeling cycle strategy indicates
that IBM price durations feature only two limiting regimes. The LM test for additional
regimes indeed does not reject the null of only two limiting regimes at the usual levels
of significance. Although the transition between the two regimes is very abrupt given the
large value ofy;, Figure 3 shows that there are enough observations (i.e., about 200 data
points) within the transition phase to estimate the parameters of the logistic function with
reasonable precision.

17
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FIGURE 3. The graph plots the logistic function in (5) against the sample
values of the transition variable fef = 0.3210 and~y = 496.99. The
transition variable is the past value of the logarithm of the diurnally ad-
justed IBM price duration, whereas the sample consists of the first 4,484
observations from the period ranging from September to November
1996.

The first regime is extremely persistent, willy = & + Bg = 0.9909, whereas persis-
tence subsides in the second regime givenzﬁaat: Qo+ +Bo +[31 = 0.8696. The less
persistent second regime mostly affects larger durations in vievethét; ) = 1.3784 lies
slightly above the sample mean of the IBM price durations, at the 78% percentile. This is
somewhat in line with the evidence put forth by Zhang, Russell, and Tsay (2001), though
they assume nonsmooth transitions between three fixed (rather than estimated) regimes in
their threshold ACD model.

The results for the FC-ACD model with one regime, which corresponds to Bauwens
and Giot's (2000) logarithmic ACD model, show that ignoring the second regime affects
substantially the analysis of persistence. The persistence of the one-regime model is a
convex combination of the very distinct degrees of persistence that characterize the first
and second regimes of the FC-ACD model. In particular, it is closer to the persistence
in the first regime, which seems to prevail for 3,117 out of the 4,484 observations of the
in-sample period. Allowing for the second regime not only entails a better picture of the
persistent nature of IBM price durations, but also substantially improves both the in-sample

and out-of-sample fits as measured by the quasi-likelihood function values.
18
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FIGURE 4. The plot displays the actual and fitted values of the IBM
price durations from September to November 1996. Actual values are
in gray, corresponding to diurnally adjusted IBM price durations. Fitted
values are in black, relating to the estimates of the expected duration of
the FC-ACD model with two regimes for the parameter values in Table
1. The dashed vertical line marks the sample splitting for estimation and
forecasting purposes.

Figure 4 displays the actual and fitted values of the IBM price duration for the full sam-
ple. Although the fitted values are not as volatile as the realizations of the IBM price dura-
tions, it is evident that it tracks well the movements in the latter series. The in-sample and
out-of-sample correlations between the actual and fitted log-values are quite reasonable,
namely, 0.3832 and 0.3069, respectively. They add up to an overall correlation between
actual and fitted log-values of 0.4391 in the full sample. Furthermore, the in-sample and
out-of-sample residuals of the FC-ACD model with two regimes also have well-behaved
distributions in that their mean and standard deviation are close to unity (as expected given
the exponential benchmark). The in-sample residuals have a mean of 1.0001 with a stan-
dard deviation of 1.1536, whereas the mean and standard deviation of the out-of-sample
residuals are 0.8949 and 1.0152, respectively. The overdispersion coefficients of the in-
sample and out-of-sample residuals are respectively 1.1536 and 1.1344, and hence well
below the overdispersion that we report in Table 1 for the IBM price durations.

To check for misspecification, we also inspect whether the in-sample and out-of-sample
residuals display any serial correlation by looking at the sample autocorrelation function

up to 200 lags. Table 2 documents that the FC-ACD model with two regimes does a much
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better job in accounting for the serial dependence in the IBM price durations than Bauwens
and Giot’s (2000) logarithmic ACD model. The residual autocorrelation reduces by a pal-
pable amount as one allows for the second regime. The decline is particularly strong for
the in-sample residuals in that their maximum autocorrelation (in magnitude) for the one-

regime model is about twofold the one of the FC-ACD model with two regimes.

7. CONCLUSION

This paper proposes a functional coefficient ACD model that accommodates overdis-
persion, intermittent dynamics, multiple regimes, as well as sign and size asymmetries in
financial durations. In particular, we rely on a very flexible smooth-transition autoregres-
sive specification with multiple regimes. The motivation lies on the fact that it gives way
to a semiparametric version of the model as the number of regimes goes to infinity. We
formally address how to consistently estimate the parametric FC-ACD model with fixed
number of regimes by quasi-maximum likelihood as well as the semiparametric counter-
part using a sieve approach.

An empirical illustration indicates that our functional coefficient specification is flexible
enough to model IBM price durations in a congruent manner. This is in stark contrast with
the alternative model with a single regime, whose residuals display much larger autocorre-
lations. In addition, we also evince that the FC-ACD model with two regimes outperforms
the one-regime model in goodness-of-fit terms both in-sample and out-of-sample. This is of
particular interest because the FC-ACD model with one regime corresponds to the popular

logarithmic ACD model by Bauwens and Giot (2000).
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APPENDIXA. PROOFS

Proof of Theorem 1. We start by casting the FC-ACD process with multiple regimes into a smooth
transition autoregressive moving average (STARMA) representation.olat = w(logx;—1),

@;—1 = a(logz;_1), andB;_1 = B(logz;_1). It follows from (1) that the duration process has
the following STARMA(1,1) representation:

logz; = @i—1 + @i—1+ Bi—1 logzi_1 +loge; — Bi—1logei_1. (A1)

Following similar steps to Zhang, Russell, and Tsay (2001), it is straightforward to show that the
Markov chain in (6) is a-irreducible T-chain. This means that we may apply Tweedie’s (1975) drift
criterion to derive sufficient conditions for strict stationarity. In addition, Ling’s (1999) Theorem 4.1
implies that the strict stationarity of the functional coefficient ARMA model depends exclusively on
its autoregressive part, and hence we confine attention to the analogous STAR(1) procégsilith
regimes

yi = i1+ Cic1yio1 + i, (A.2)

— P]M = P]M [P

wherer; 1 = vo+ ;1 Um Gm(¥:i),Gi—1 = G+ ;1 $m Gm(yi—1), and the error terny, is iid
with E |¢;| < oco. The sufficient conditions for strict stationarity that we derive are exactly the same
for TAR(1) processes (see, e.g., Chen and Tsay, 1991), though our derivation differs in view that (A.2)
involves smooth transitions. For amy: > 0, there exists a &ositive constafit> max{|c|,|c|}
suchthat(;—1 — (o < ecforanyy,_1 < —Cand (-1 — M_ ¢m < ecforanyy,—; > C.
It then follows that

Yi = Vic1+ 1(y,_<—cy Gim1Yim1 + Ly, <0y Gi-1Yi-1 + iy, >0y Cio1 i1 + i

where1 4 is the indicator function that takes value oneAfis true and zero, otherwise. Taking
absolute values of both sides gives way to

lyil < Lo+1gy, <—c} Cio1 |yi—1] + 1y, >0y Cio1 |yi1] + |si
Lo+ Gy [yl + il

] >
it (ol + Lo)

k=1

IA

Q;_
LG sl + L,

IA

Yol

P . "
where¢t, = 1y, <oy ([G] +ec) + 1y, >0} M_¢m +ec andLc is a positive

constant that exceedis; 1|+ 1y, ,<—c} ¢i—1 C. We then take conditional expectation yielding

Qi .. > h Q. .. !
E Jyil wo < [wlE “20¢ v +  E (al+Le) T2, ¢ v +Ela|+Le
k=1
b #
_ Qi1 4 Lo R QL
- |y0‘E j:OC]’ Yo +LC 1+ E j:kgj Yo B

k=1
whereLy = E|1| + Le. We now have four cases to evaluate according to the siggs ahd
(v = fff:o Cm- In the first case, we considés > 0 and{. > 0. It then holds that
E lyil vo < |wlE & wo +Lc
ol 1gyo<—cy (IS0l + €c) + Liyo>cy (1G] +ec) + Lo,

IN

and hence
E |yi] yo<—=C < |yo|(|¢o] +ec)+ Lec.
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If 0 < (o < 1, itis always possible to choose: < 1 — |{o|, S0 that Tweedie’s (1975) drift criterion
holds. Analogously,
E |y1] yo>C <|yo| (I¢| +ec) + Le,
and so the same result followslif< ¢, < 1. In the second case, we assume taat. 0 and(. < 0.
It then follows that
E ly2| vo <I|polE G ¢ wo +Le 1+4E & o
where
E G o = Pry<—C yo<—C ([l +ec)

+Pryi >C yo<—C (|Co] +ec) (|¢] +ec). (A.3)
However, for anyuc > 0, there exists some constafitthat bounds from above the first term of the
right-hand side of (A.3). This means that

E "6 v < (1G] +ee) (G| +ec) +ac

Cols + (|Co| + [¢]) ec + €& + ac

satisfies Tjastheim’s (1990) criterion (i.e., it does not exceed orgg} if < 1 given that bothe~ and
ac are arbitrarily small. As before, the same reasoning applies to the case inwhield, yielding
exactly the same condition. Finally, the third and fourth cases are symmetrical and hence we consider

only the case ofp < 0and0 < ¢, < 1. Lettingh = infiez, (o (™" < 1, observe that
" #
E |yn < |wl|E Q-1 o+ + L 1+ME Qi ot
Yrl Yo < |Yo i—0 G Yo c =k G Yo
k=1
The argumenP;?:_O1 (f will differ from zero only for the paths ¢ ,...,¢ , whose values are

all greater thar”' in magnitude. To avoid a burdensome notation, we denote these pags with
j=1,...,2" Itthen ensues that

Q,_ a; .
Ml g = (1ol +ec)™ (1G] +ec) Pr Py yo

j=1

E
P, P, o _
wherea; = | 1y, ,<—cyandb; = [ 1y, ,>cy. As before, it is straightforward to
show that, forlyo| > C, the probability of{y, < —C'} is arbitrarily small forany =1,...,h — 1
and Tjgstheim’s (1990) criterion depends exclusively on the valu¢g@f+ ec) and(|¢«| + ec).

Iltindeed turns outthd®  ~"~ ¢ yo < 1forany0 < (. < 1suchthat(y¢l™" < 1.

Q.ED.

Proof of Theorem 2. The model given by (1)—(5) is continuous in the parameter vettiven that,
for any value oflog z;, the logistic function in (5) depends in a continuous mannef,Qrandc,, .
Similarly, the model is also continuous ing x;, and hence measurable for any fixed value of the

parameter vecta®. The stationarity condition of Theorem 1 then ensureskhatup log [¢).,:| IS
0cO

finite, and thusE |¢..,:(8)| < oo for everyd € ©.

Q.ED.

Proof of Theorem 3. Letz; = [1,logx;—1,log ¢ 1], ¢; = [w;, y, 3] forj = 0,..., M and
P = (Ym,cm) form = 1,..., M. The parameter vector & = (@, ..., 01, Pl
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h i,
Consider now another parameter vedos $;7...,$'M,p’17...,p’M such that

/ X / . _ I X / )
¢’0Zi + d)mzi G(lOg Ti—1; pm) - $0Zi + &mzi G(log Ti-1; pz) (A4)
m=1 m=1

To show global identifiability of the FC-ACD model, we must demonstrate that Assumption 4 ensures
that (A.4) holds if and only i = 8. It follows from (A.4) that

e O
bozi — Bozi —  $;2iG logzi_iip; =0, (A5)
j=1

wherep, = p,forj =1,....M,p;, = p,  forj = M+1,....2M, ¢, = ¢, for j =
1,..., M, and&&j =¢;_pforj=M+1,...,2M. For the sake of notation simplicity, let ; =
¢ logzi_1;p; forj=1,...,2M. Hwang and Ding's (1997) Lemma 2.7 implies thatpif and
©j, are not sign-equivalent fgh € {1,...,2M} andj. € {1,...,2M}, (A.5) holds if and only if
b0, 8, andq?)j jointly vanish for everyj € {1,...,2M}. Conditions C2 and C3 in Assumption 4
however preclude that possibility because they guarantee that there are no irrelevant limiting regimes.
Although this means that;, andy;, must be sign-equivalent, they must also come from different
models; otherwise it would contradict C2 in Assumption 4. There thus gxist {0,..., M} and
jo € {M +1,...,2M} such thatp;, andy;, are sign-equivalent. Assumption 4 implies that (A.4)
holds only if¢,, = &,, and6,, = 8,,, m = 1,..., M given that C1 rules out the permutation
of regimes. It now remains to show th@§ uniquely maximizes the log-likelihood functiofy(0).
Letting v;(60) = x;/€:(680) denote the true conditional duration process, one may rewrite, as in
Lumsdaine (1996), the maximization problem as

$i(0o) _ %i(60) |
wu,i wu,i
In addition, for anyy > 0, m(y) = y — log(y) < 0, so that

B logw ¥i(60) <o.

1/Ju,¢ wu,i
Given thatm(y) achieves its maximum at= 1, E[m(y)] < E[m(1)] with equality holding almost
surely only iflog 1;(68¢) andlog,, ; coincide with probability one. By the mean value theorem,
this is equivalent to showing that

max [L£(0) — L(080)] = max E log

0log Yu,;
00

with probability one. A straightforward application of Lemma 1 then shows that this happens if and

(8 — 60) =0

only if & = 8¢, completing the proof.
Q.E.D.

Proof of Theorem 4. To show thabu,N converges in probability t6, it suffices to verify whether

Newey and McFadden’s (1994) regularity conditions hold under Assumptions 1 to 4. Assumption 3
takes care of their first condition, which relates to the compactness of the parameter space. Theorems
2 and 3 ensure the validity of their second and third conditions, which require the log-likelihood
function to be continuous in the parameter ve@&pwith a unique maximum &, and measurable

with respect to the duration proceés;, i € N} for all 8 € ©. Finally, Lemma 2 fulfills the
requirements of their last condition, i.&,, x(8) = £(6). This means thal, x = 6o, so that

it now remains to demonstrate thall y — bqu 2. 0. We do that in Lemma 3 by showing that

sup |Lu.n(8) — Ln(0)] 2 0, and hencdn 2 6.
0cO

23



Q.ED.

Proof of Theorem 5. As before, we first tackle the asymptotic normality of the QML estimator
that hinges on the unobserved log-likelihood function x (@) and then employ Lemmas 3 and 5
to extend the result for the QML estimator based on the observed log-likelihood funEti¢8).
Asymptotic normality of the QML estimator requires four additional regularity conditions. First, the
true parameter vectdl, must lie in the interior of the parameter spa&e Second, the matrix

1 X 9%(0)
N _, 0000

1=

An(0) =

exists and is continuous i®. Third, the matrixA x (0) L, A for any sequencé y such that
O~ 2 0,. Fourth, the score vector satisfies

11X a(0)
N 90

i=1

< N(0,By).

We next verify these conditions. Assumption 3 ensures that the first condition holds, whereas Lemma
5 substantiates the third condition. The second condition follows from the stationarity of the FC-
ACD model and from the fact thdt () is twice differentiable o® € ©. In fact, A, andB, are
nonsingular due to the model identifiability (see Hwang and Ding, 1997). Finally, Lemma 4 shows
that the score condition also holds, completing the proof.

Q.ED.

Proof of Theorem 6. The local approximation to the instantaneous quasi-log-likelihood function in
a neighborhood ok, is £;(0) = — log 1:(0) — x; /1:(0). Let & = [0}, @3] with

01 = @&o,w1,...,WM-1,00,01,...,0M-1,P0,81,--, BM—1,Cl,- .., CM 1,715+, YM—1

andf, = (41, 02) . The resulting score vector thus is

1 1
X o :(0) TOX . Vi
a(6) = a(61),a(0:) "= s = —-1
i=1 % Zz(e) i=1 Yi u;
with v; = dlogv;(0)/061 andu; = dlog1);(0)/902. whereas the information matrix reads
B 9%0:(0) 1 O O T o 1 0y
A0) =E ~ o008 " ©° W2 00 80" ¢ ;060 o 98
" #
_ L Oy O . Vivi viuj
=E ¥? 90 06 =K wv, uu]

Consider next the consistent estimator for the information mat«i&) given by
1

’ !
1 X ViV, Vil

AN(0) =
~(0) 2N i1 wv, u;uj
and letd; = (v, u})’. As in Godfrey (1988, page 16), tHel/ statistic thus is
h i
LM = q(e)ll}lo AN (0)|H0 q(9)|}n0
" ” "L "
x X P
=N 21 d d.d; 1 d
=1 q/jl =1 =1 w7

To complete the proof, it then suffices to apply Lemmas 4 and 5.

Q.ED.
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Proof of Theorem 7. It suffices to observe that the approximation error consists of

x< > _
log ™ —loghi = B’ (@jn — @) — B @,

3=0 Jj=JIN+1
wherew; = w(logzi—1—;) andw; v = wn (log z;—1—;). The first term refers to the approximation
error due to the finite number of regimes in the neural network, whereas the second term relates to
the approximation error due to the lag truncation. Lemma 6 shows that the latter is at most of order
O, B7~ , hence it remains to show that the former approximation error is also negligible. This
indeed holds for a suitable choice dfx. Chen and Shen (1998) show thiat; ;v — @; || is at most
of orderO, [N/log N]™*/3 provided thatM3 log My = O(N), whereas the sieve extremum
estimator fors is root-NV consistent and asymptotic normal.

Q.ED.
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APPENDIXB. LEMMAS

LEMMA 1. Suppose that; follows a FC-ACD process with/ + 1 regimes given by (1)—(5) that
satisfies Assumptions 1 to 4. Létbe a constant vector with the same dimensiofi.asthen follows
that

610g ’(/Ju,i

/
d o0

=0 a.s.

ifand only if d = 0.

ProOF We follow the same reasoning as in the proof of Lumsdaine’s (1996) Lemma 5. Define
&, = 0log; /00 andG o i = G(log 245 vm, cm). Itis straightforward to show that

&, = B(logxi—1)§;_ 1 + Ki-1,

where
Ki—1 = 1, logmi—l, 10g?/11—1, G1,i—17 ey GM,i—l,

Gri—1logxi—1, ..., Gmi—1logzi—1, Gii—1logvi—1, ..., Gai—1loghi—1,

0G1,i—
(w1 + a1logzi—1 + B1logi—1) %

g ey

0G M i—1
Ooym
0G1,i-1
SRR
#,
0G M i1
dcum

(wm + anrlogxi—1 + Barloghi—1)

)

(w1 + a1logzi—1 + Bilogi—1)

I

(wn + anrlog i1 + B logi—1)

so thatd’¢;, = d'B(logx;—1)€;_; + d'k;—1. It then follows by assumption that'é, = 0 and
d’¢,_, = 0 with probability one, implying thadl’x,;_1 = 0 with probability one. In view thak; is
nondegeneratel’ ¢, = 0 with probability one if and only id = 0.

Q.E.D.

LEMMA 2. If z; follows a FC-ACD process witil/ + 1 regimes given by (1)—(5) that satisfies
Assumptions 1 to 4, thesup | L.~ (0) — L(0)| 2 0.
0co

PROOF We derive this result by building on the proof of Lemma 4.3 in Ling and McAleer (2003).
Let g(X;,0) = £,:(0) — E[..:(0)], whereX; = (z;,xi—1,2i—2,...). Theorem 2 implies

thatE sup |g(X:,0)] < oco. The result then ensues from the fact that Theorem 3.1 in Ling and
6co

P
McAleer (2003) implies thaglelg N7? fil 9(Xi,0) = o0p(1) inview thatg(X, ) is stationary
with zero mean.

Q.ED.

LEmMA 3. If z; follows a FC-ACD process witid/ + 1 regimes given by (1)—(5) that satisfies
Assumptions 1 to 4, thesup | L., n(0) — Lx(8)] 2 0.
0c®

PrRoOOF We follow the proof of the first result in Lumsdaine’s (1996) Lemma 6. The conditions in
Theorem 1 ensure thaig v, o is well defined and that, as the constant> oo,

Pr sup (logt¢u,0) >k — 0.
0co
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Combining (7) and (9) gives way to

Y
log ¥u,; — log 1 = (logu,0 —logto)  B(log ;).

Jj=1

Defining two finite positive constantsands such thatog ; > § andg(log z;) < 6 then leads to

X o X o
0< N~Y2 log —w“’z < N2 log qu,z
i=1 Vi i=1 Vi
o . #,
_ N71/2 Xl wu, ﬂ 1 )
7 (log z5)
i=1 =1
" ‘ #,
N1y Yo Y
< o5 Bllog ;)
= i=1j=1

The upper bound of the latter expression converges in probability uniformly to zero by Theorem 1
and Slutsky’s Theorem, and hence
" #
X
Pr sup [log tu,s —logys| >k — 0

0€® ,_,;

as the sample size grows for any constant 0. It remains to show that
Z; Z;

>
sup N2 - = Ey
0co i1 Yui i

To that end, we first observe that

N_1/2X T Yi —Yui #p<# X|x-(¢-_w )|#p
i=1 ' ¢U,z¢z - NP/2§2P i AN w,i
9 -1 i1

Define& = (Yo — ¢u0) Q;:l B(log x;) . Under the conditions of Theorem 1, the duration pro-
cess is a strictly stationary and ergodic withe;| < co. In addition, it holds thatsup |¢;| < Chw,

1<i<N
P <i<
whereCy is some finite constant, angl N |&] = 0p(1). To conclude the proof, it now suffices
to apply Ling and McAleer’s (2003) Lemma 4.5 to show that * fvzl x:& = op(1), and hence
" #
1 X Y P »
No/2g% zi (Yo —Yuo)  B(logz;) 0.
= =1 j=1
Q.E.D.
h i

LEMMA 4. The conditions of Theorem 5 ensure not only ﬂbata% 2;(0) exists and is finite,

but also thaiBy is finite and positive definite, and that

0=0,

1 X o)
\/N i=1 80 0=0(

k3

< N(0,By).

h i

PROOF The existence oE -2 £;(6)

Theorem 1. Letting then

Oy, (0
Vo gu,i = % and Vo 10g wu,i =

9—p, < oo immediately follows from the conditions of

dlogYu,
6=60 06 6=60
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yields
VoluiVoly, = € —2¢+1 Vologiy,: Vologib, ;.
Letd < oo be a positive constant such tHag v, ; > . Under the strict stationarity condition of
Theorem 1, we may employ the same reasoning as in the proof of Lemma 1 in Boussama (2000),
giving way to
E Vologu,: Vologt,, < Ki,

whereK is a constant matrix with finite elements, and
E VoluiVoly, <KiE ¢ —26+1 =Ki(u2—1),

which is finite given thafus = E ¢ < oo. This means thaBy is finite. The conditions of
Theorems 1 and 3 also ensure tli&f is positive definite. It now remains to show the asymptotic
normality of the score vector. Lefx =  k'Vo/.,;, wherek is a constant vector. It then
follows thatSx is a martingale with respect to the filtratiofi with a positive expected value, and
hence

N7Y28y 4 N 0,k Bok

by Stout’s (1974) central limit theorem. A straightforward application of the @rawold device
then yields

X 00u,:(0)

i=1 90 0=06¢
whereas it is also possible to show, as in the proof of Lemma 3, that

NT/? < N (0,Bo),

—1/2 X 00.,:(0) 0¢;(0) »
N _— — = 0.
i 00 0=0, 00 0=0
We thus conclude that
N OO N0, B),
_ 00 4,
=1 0

completing the proof.

Q.ED.

LEMMA 5. Under the conditions of Theorem 5, both

1 X 92,.(0) 8%0..:(6) 1 X 9%0,.(0)  9%4:(6)
sup — —~ —E . and sup — ~ — 7
gce N i 0000 0000 oce N i 0000 0000

converge in probability to zero.

ProOOF If we define

0%0.,:(0) 2 0 log tu,i
V24, = Lowild) and  Vilogth, = —otwt :
0T 700067 4y, olog ¥, 9000"  4_,,
then
Vil = Ji_ —1 VZlogthui — Jﬁ Vo log ¥, Vo log i, ;.

BecauseV3 log 1, ; consists exclusively of second-order terms, it ensues from the conditions of
Theorem 1 thaE VZlogi.: < Ka, whereKs is a constant matrix with finite elements. This
implies that
Volui < (6, — 1)Ko — € Ky,
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sothatE V3¢, isfinite. By Theorem 3.1 in Ling and McAleer (2003),

X 92, 2)
sup 1 0%y.,:(0) E 0%4..,:(0)

— 2 un\F) | w7 P,
oco N _, 0000’ 0600’

We omit the proof of the second result given that it very much resembles the proof of Lemma 3.
Q.E.D.

LEMMA 6. If the semiparametric FC-ACD process is stationary with finite second moments and
[—mixing with exponential decay, the approximation error due to the lag truncation is negligible in
that
Bajn<0, BN . (B.6)

J=JIN+1
PrROOF We first show that both the expectation and variance of the left-hand side of (B.6) converge
to zero as the sample size increases and then complete the proof applying Chebyshev’s inequality.
Stationarity implies that

(@) 1
> ) <X ) gIn+1
E@ B’ wjnA =E (@1,n5) p=E(@n) 7
j=Jn+1 j=Jn+1 -8
and that
(@) 1
V@ ﬁj LD]',NA: ﬂQJV(@j’N) + 2 BJ-"—kCOV(Q]’,N,@k,N) .
j=JIn+1 j=JnN+1 IN+1<j<k<oo

The first term of the right-hand side is of ord@r 8>/~ . As for the second term, we take benefit
from the fact that, by assumption, the semiparametric FC-ACD proc@ssisxing with exponential

decay to show that it is at most of the same order as the first term. In particular, the fact that the mixing
coefficient is of orde® 7" , with 0 < 5 < 1, implies that

XX XX

; i 5 i
ﬂJ+kCOV(‘I}j,N7‘Dk,N) < V(@1,n) 51+’“7]1+5(1 k)
IN+1I<j<k<oo IN+1I<j<k<oco
X LS5 X 5 k
= V(on) B nTie? Bn 13
j=Jn+1 k=j+1
_ s JHl
> s Bn e
= V(‘DLN) Bjnﬁ]ﬁ
j=JIn+1 1-p8n 13
_ s
_ V@) gy T X 3%
- — 5
L=0Bn 5 —gy+1
_ 5
_ V@) g et 2w
b

1By T (1-p6?)

for somed > 0. This means that the expectation and standard deviation of (B.6) are both at most
of orderO 7~ , and hence the approximation error due to the lag truncation is at most of order
O, (7N by Chebyshev’s inequality.

Q.E.D.
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Table 1
Descriptive statistics of IBM price durations

Price durations refer to the time interval necessary to observe a cumulative change in the mid-price of at
least $0.125. We document the descriptive statistics for both plain and diurnally adjusted durations for
the period running from September to November 1996. The latter correspongdstd); /o(t;), where

D; is the plain duration in seconds ap@) denotes the diurnal factor as measured by first averaging the
durations over thirty minutes intervals for each day of the week and then fitting a cubic spline with nodes
at each half hour. The in-sample period considers the first 4,484 observations of the data set, whereas the
remaining 2,244 observations compose the out-of-sample period.

adjusted durations plain durations

in-sample out-of-sample in-sample out-of-sample
sample size 4,484 2,244 4,484 2,244
mean 1.2387 0.5682 262.55 119.74
standard deviation 1.6470 0.7541 422.67 172.96
minimum 0.0039 0.0033 1 1
first quartile 0.2902 0.1540 51 30
median 0.7137 0.3236 128 60
third quartile 1.5399 0.6744 300 139
maximum 29.121 11.286 7,170 2,865
overdispersion 1.3296 1.3271 1.6098 1.4445
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Table 2
Estimation results for IBM price durations

Price durations refer to the time interval necessary to observe a cumulative change in the mid-price of at least
$0.125. The data are diurnally adjusted durations from September to November 1996, narael§); / o(t;),
whereD; is the plain duration in seconds ap¢) denotes the diurnal factor as measured by first averaging the
durations over thirty minutes intervals for each day of the week and then fitting a cubic spline with nodes at
each half hour. We then estimate by quasi-maximum likelihood the FC-ACD model with two regimes for the
first 4,484 observations of the sample. The lower panel reports the p-values of the LM test for an extra regime,
the in-sample and out-of-sample values of the logarithm of the quasi-likelihood function, and the maximum and
minimum values of the sample autocorrelation functions of the in-sample and out-of-sample residuals from order
1 to 200, respectively.

one regime two regimes
estimate standard error estimate standard error

wo 0.0501 0.0015 0.0201 0.0028
w1 0.0152 0.0362
g 0.0867 0.0040 0.0609 0.0132
a1 0.1118 0.0158
Bo 0.8929 0.0043 0.9301 0.0062
51 -0.2331 0.0290
c1 0.3210 0.0160
" 496.99 0.0004
LM test for extra regime (p-value) 0.0000 0.3765
log-likelihood  in-sample -1.1247 -1.1172

out-of-sample -0.3788 -0.3732
maximum ACF in-sample 0.0616 0.0352

out-of-sample 0.0918 0.0829
minimum ACF  in-sample -0.0326 -0.0386

out-of-sample -0.0608 -0.0634
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