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Nicole M. Fortin, and Thomas Lemieux

University of British Columbia

November 2006

Abstract

We propose a new regression method to estimate the impact of explanatory

variables on quantiles of the unconditional distribution of an outcome variable.

The proposed method consists of running a regression of the (recentered) influence

function (RIF) of the unconditional quantile on the explanatory variables. The

influence function is a widely used tool in robust estimation that can easily be

computed for each quantile of interest. We show how standard partial effects, as

well as policy effects, can be estimated using our regression approach. We propose

three different regression estimators based on a standard OLS regression (RIF-

OLS), a Logit regression (RIF-Logit), and a nonparametric Logit regression (RIF-

NP). We also discuss how our approach can be generalized to other distributional

statistics besides quantiles.
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1 Introduction

One important reason for the popularity of OLS regressions in economics is that they pro-

vide consistent estimates of the impact of an explanatory variable, X, on the population

unconditional mean of an outcome variable, Y . This important property stems from the

fact that the conditional mean, E [Y |X], averages up to the unconditional mean, E [Y ],

due to the law of iterated expectations. As a result, a linear model for conditional means,

E [Y |X] = Xβ, implies that E [Y ] = E [X]β, and OLS estimates of β also indicate what

is the impact of X on the population average of Y . Many important applications of re-

gression analysis crucially rely on this important property. For example, Oaxaca-Blinder

decompositions of the earnings gap between blacks and whites or men and women, and

policy intervention analyses (average treatment effect of education on earnings) all cru-

cially depend on the fact that OLS estimates of β also provide an estimate of the effect

of increasing education on the average earnings in a given population.

When the underlying question of economic and policy interest concerns other aspects

of the distribution of Y , however, estimation methods that “go beyond the mean” have to

be used. A convenient way of characterizing the distribution of Y is to compute its quan-

tiles.1 This explains why conditional quantile regressions (Koenker and Bassett, 1978;

Koenker, 2005) have become increasingly popular. Unlike conditional means, however,

conditional quantiles do not average up to their unconditional population counterparts.

As a result, the estimates obtained by running a quantile regression cannot be used to

estimate the impact of X on the corresponding unconditional quantile. This implies that

existing methods cannot be used to answer a question as simple as “what is the impact

on median earnings of increasing everybody’s education by one year, holding everything

else constant?”.

In this paper, we propose a new computationally simple regression method to estimate

the impact of changes in the explanatory variables on the unconditional quantiles of the

outcome variable. The method consists of running a regression of a transformation—the

recentered influence function defined below—of the outcome variable on the explanatory

variables. To distinguish our approach from commonly used conditional quantile regres-

sions, we call our regression method an unconditional quantile regression.2 Our approach

1Discretized versions of the distribution functions can be calculated using quantiles, as well many
inequality measurements such as, for instance, quantile ratios, inter-quantile ranges, concentration func-
tions, and the Gini coefficient. This suggests modelling quantiles as a function of the covariates to see
how the whole distribution of Y responds to changes in the covariates.

2We obviously do not use the term “unconditional” to imply that we are not interested in the role
of covariates, X. The “unconditional quantiles” are the quantiles of the marginal distribution of the
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builds upon the concept of influence function (IF), a widely used tool in the robust esti-

mation of statistical or econometric models. The IF represents, as its name suggests, the

influence of an individual observation on a distributional statistic of interest. Influence

functions of commonly used statistics are either well known or easy to derive. For exam-

ple, the influence function of the mean µ = E [Y ] is the demeaned value of the outcome

variable, Y − µ.

Adding back the statistic to the influence function yields what we call the Recentered

Influence Function (RIF). More generally, the RIF can be viewed as the contribution

of an individual observation to a given distributional statistic. It is easy to compute the

RIF for quantiles or most distributional statistics. For a quantile, the influence function

IF (Y, qτ) is known to be equal to (τ − 1I {Y ≤ qτ}) /fY (qτ ), where 1I {·} is an indicator

function, fY (·) is the density of the marginal distribution of Y , and qτ = Qτ [Y ] is the

population τ -quantile of the unconditional distribution of Y .3 As a result, RIF (Y ; qτ) is

simply equal to qτ + IF (Y, qτ).

We call the conditional expectation of the RIF (Y ; ν) modelled as a function of the

explanatory variables, E [RIF (Y ; ν) |X] = mν(X), the RIF-regression model. In the case

of the mean, since the RIF is simply the value of the outcome variable, Y , a regression

of RIF (Y ;µ) on X is the same as the standard regression of Y on X. This explains

why, in our framework, OLS estimates are valid estimates of the effect of X on the

unconditional mean of Y . More importantly, we show that this property extends to any

other distributional statistic. For the τ -quantile, we show the conditions under which a

regression of RIF (Y ; qτ) on X can be used to consistently estimate the effect of X on the

unconditional τ -quantile of Y . In the case of quantiles, we call the RIF-regression model,

E [RIF (Y ; qτ) |X] = mτ(X), an unconditional quantile regression. We define, in Section

4, the exact population parameters that we estimate using this regression. The first

parameter is the partial (or marginal) effect of shifting the distribution of a covariate on

the unconditional quantile. The second parameter is the effect of a more general change

in the distribution of covariates that corresponds to Stock’s (1989) “policy effect”.

Importantly, we show that these two parameters are nonparametrically identified

under sufficient assumptions that guarantee that the conditional distribution of the out-

outcome variable Y , i.e. the distribution obtained by integrating the conditional distribution of Y given
X over the distribution ofX. Using “marginal” instead of “unconditional” would be confusing, however,
since we also use the word “marginal” to refer to the impact of small changes in covariates (marginal
effects).

3We define the unconditional quantile operator as Qτ [·] ≡ infq Pr [· ≤ q] ≥ τ . Similarly, the condi-
tional (on X = x) quantile operator is defined as Qτ [·|X = x] ≡ infq Pr [· ≤ q|X = x] ≥ τ .
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come variable Y does not change in response to a change in the distribution of covari-

ates. We view our approach as an important contribution to the literature concerned

with the identification of quantile functions. However, unlike contributions to that area

such as Chesher (2003), Florens, Heckman, Meghir, and Vytlacil (2003), and Imbens

and Newey (2005), which consider the identification of structural functions defined from

conditional quantile restrictions, our approach is concerned solely with parameters that

capture changes in the unconditional quantiles.

We also view our method as a very important complement to conditional quantile

regressions. Of course, in some settings quantile regressions are the appropriate method

to use.4 For instance, quantile regressions are a useful descriptive tool that provide a

parsimonious representation of the conditional quantiles. Unlike standard OLS regression

estimates, however, quantile regression estimates cannot be used to assess the more

general economic or policy impact of a change of X on the corresponding quantile of the

unconditional distribution of Y . While OLS estimates can be used as estimates of the

effect of X on either the conditional or the unconditional mean, one has to be much more

careful in deciding what is the ultimate object of interest in the case of quantiles.

For instance, consider one example of quantile regressions studied by Chamberlain

(1994): the effect of union status on log wages. An OLS estimate of the effect of union on

log wages of 0.2, for example, means that a decline of 1 percent in the rate of unionization

would lower average wages by 0.2 percent. But if the estimated effect of unions (using

quantile regressions) on the conditional 90th quantile is 0.1, this does not mean that

a decline of 1 percent in the rate of unionization would lower the unconditional 90th

quantile by 0.1 percent. In fact, we show in an empirical application in Section 6 that

unions have a positive effect on the conditional 90th quantile, but a negative effect on

the unconditional 90th quantile. If we are interested in the overall effect of unions

on wage inequality, our unconditional quantile regressions should be used to obtain the

effect of unions at different quantiles of the unconditional distribution. Using conditional

quantile regressions to estimate the overall effect of unions on wage inequality would yield

a misleading answer in this particular case.

The structure of the paper is as follows. In the next section, we present the basic

model and define two key objects of interest in the estimation: the “unconditional quan-

tile partial effect” (UQPE) and the “policy effect”. In Section 3, we present the general

properties of recentered influence functions. We formally show how the recentered in-

4See, for example, Buchinsky (1994) and Chamberlain (1994) for applications of conditional quantile
regressions to various issues related to the wage structure.
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fluence function can be used to compute what happens to a distributional statistic ν

when the distribution of the outcome variable Y changes in response to a change in the

distribution of the covariates X. In Section 4, we focus on quantiles and show how un-

conditional quantile regressions can be used to estimate either the policy effect or the

UQPE. Considering an explicit structural model between Y and X, we discuss the links

between the structural parameters and the UQPE for some specific examples and for

the general case. Estimation issues are addressed in Section 5. Section 6 presents two

applications of our method: the determinants of the distribution of infants’ birthweight

(as in Koenker and Hallock, 2001) and the impact of unions on the distribution of log

wages. We conclude in Section 7.

2 Model Setup and Parameters of Interest

Before presenting the estimation method, it is important to clarify exactly what the

unconditional quantile regressions seek to estimate. Assume that we observe Y in the

presence of covariates X, so that Y and X have a joint distribution, FY,X (·, ·) : R×X →
[0, 1], and X ⊂ Rk is the support of X. Assume that the dependent variable Y is a

function of observables X and unobservables ε, according to the following model:

Y = h(X, ε),

where h(·, ·) is an unknown mapping. Note that using a flexible function h(·, ·) is impor-

tant for allowing for rich distributional effect of X on Y .5

We are primarily interested in estimating two population parameters, the uncondi-

tional quantile partial effect and the policy effect, using unconditional quantile regres-

sions. We now formally define these two parameters.

Unconditional Quantile Partial Effect (UQPE)

By analogy with a standard regression coefficient, our first object of interest is the

effect on an unconditional quantile of a small increase t in the explanatory variable

5A number of recent studies also use general nonseparable models to investigate a number of related
issues. See, for example, Chesher (2003), Florens, Heckman, Meghir, and Vytlacil (2003), and Imbens
and Newey (2005).
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X. This effect of a small change in a continuous variable X on the τ th quantile of the

unconditional distribution of Y , is defined as:

α(τ ) = lim
t↓0

Qτ [h (X + t, ε)]−Qτ [Y ]

t

where Qτ [Y ] is the τ th quantile of the unconditional distribution of the random variable

Y .6

We call this parameter, α(τ ), the unconditional quantile partial effect (UQPE), by

analogy with Wooldridge (2004) unconditional average partial effect (UAPE), which

is defined as E [∂E [Y |X] /∂x]. The link between α(τ) and Wooldridge’s UAPE can

be established using a result of Section 3 where we show that for any statistic ν de-

fined as a functional of the unconditional distribution of Y , α (ν) is exactly equal to

E [∂E [RIF(Y, ν)|X] /∂x]. In the case of the mean, since RIF(Y, µ) = Y , α (µ) is indeed

equal to Wooldridge’s UAPE = limt↓0
(
E [h (X + t, ε)]−E [Y ]

)
/t. In the case of quantiles,

derived in Section 4, our parameter of interest α(τ ) corresponds to E
[
∂E
[
RIF(Y, qτ)|X

]

/∂x
]

and is named UQPE.

Similarly, by analogy with Wooldridge’s (2004) conditional average partial effect

(CAPE) defined as ∂E [Y |X] /∂x, we can think of conditional quantile regressions as

a method for estimating the partial effects of the conditional quantiles of Y given a par-

ticular value X. We refer to this type of quantile partial effects as “conditional quantile

partial effects” (CQPE) and define them as ∂Qτ [Y |X] /∂x = limt↓0
(
Qτ [h (X + t, ε) |X]

−Qτ [Y |X]
)
/t in Section 4.

Note that while the UAPE equals the average CAPE, the same relationship does

not hold between the UQPE and the CQPE. We will indeed show in Section 4 that the

UQPE is equal to a complicated weighted average of the CQPE over the whole range of

conditional quantiles (i.e. for τ going from 0 to 1).

Policy Effect

We are also interested in estimating the impact of a more general change in X on

the τ th quantile of Y . Consider the “intervention” or “policy change” proposed by Stock

6To simplify the exposition we are treating X as univariate. However, this is easily generalized to
the multivariate case by defining for each j = 1, ..., k,

αj(τ ) = lim
tj↓0

Qτ [h ([Xj + tj ;X−j] , ε)] −Qτ [Y ]
tj

where X = [Xj + tj;X−j]. We also discuss the case where X is a discrete variable in section 3.2.
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(1989) and Imbens and Newey (2005), where X is replaced by the function ` (X), ` :

X → X .7 For example, if X represents years of schooling, a compulsory high school

completion program aimed at making sure everyone completes grade twelve would be

captured by the policy function `(·), where `(X) = 12 if x ≤ 12, and `(X) = x otherwise.

We define δ` (τ) as the effect of the policy on the τ th quantile of Y , where

δ` (τ ) = Qτ [h (` (X) , ε)] −Qτ [Y ] .

In the case of the mean we have

δ` (µ) = E [h (` (X) , ε)]− E [Y ] = E [E [h (` (X) , ε) − h (X, ε) |X]]

which corresponds to the mean of the policy effect proposed by Stock (1989).

The main contribution of the paper is to show that a regression framework where the

outcome variable Y is replaced by RIF(Y, qτ) can be used to estimate the unconditional

partial effect α(τ) and the policy effect δ` (τ ) for quantiles. We show this formally in

Section 3, after having introduced some general concepts. Since these general concepts

hold for any functional of the distribution of interest, the proposed regression framework

extends to other distributional statistics such as the variance or the Gini coefficient.

Before introducing these general concepts, however, a few remarks are in order.

First, both the UQPE and the policy effect involve manipulations of the explanatory

variables that can be modelled as changes in the distribution of X, FX (x). Un-

der the “policy change”, `(X), the resulting counterfactual distribution is given by

GX (x) = FX (`−1(x)).8 Representing manipulations of X in terms of the counterfac-

tual distribution, GX (x), makes it easier to derive the impact of the manipulation on

FY (y), the unconditional distribution of the outcome variable Y . By definition, the

unconditional (marginal) distribution function of Y can be written as

FY (y) =

∫
FY |X (y|X = x) · dFX (x) . (1)

Under the assumption that the conditional distribution FY |X (·) is unaffected by ma-

nipulations of the distribution of X, a counterfactual distribution of Y , GY , can be

7Here, we focus first on a policy function that is independent of the error term ε. That is, where
non-compliance, for example, would be random.

8If ` (·) is not globally invertible, we may actually break down the support of X in regions where the
function is invertible. This allows GX (x) = FX

(
`−1(x)

)
to be very general.
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obtained by replacing FX (x) with GX (x):

GY (y) ≡
∫
FY |X (y|X = x) · dGX (x) . (2)

Although the construction of this counterfactual distribution looks purely mechanical,

important economic conditions are imbedded in the assumption that FY |X (·) is unaffected

by manipulations of X. Because Y = h(X, ε), a sufficient condition for FY |X (·) to be

unaffected by manipulations of X is that ε is independent ofX. For the sake of simplicity,

we implicitly maintain this assumption throughout the paper, although it may be too

strong in specific cases.9 Since h(X, ε) can be very flexible, independence of ε and X still

allows for unobservables to have rich distributional impacts.

A second remark is that, as in the case of a standard regression model for conditional

means, there is no particular reasons to expect RIF regression models to be linear in X.

In fact, in the case of quantiles we show in Section 4 that even for the most basic linear

model, h(X, ε) = Xβ + ε, the RIF regression is not linear. Fortunately, the non-linear

nature of the RIF regression is closely related to the problem of estimating a regression

model for a dichotomous dependent variable. Widely available estimation procedures

(Probit or logit) can thus used to deal the special nature of the RIF for quantiles. In

the empirical Section 6 we show that, in practice, different regression methods yield very

similar estimates of the UQPE. This finding is not surprising in light of the “common

empirical wisdom” that Probits, logits, and linear probability models all yield very similar

estimates of average marginal effects in a wide variety of cases.

A final remark is that while our regression method yields exact estimates of the UQPE,

it only yields a first order approximation of the policy effect δ` (τ ). In other words, how

accurate our estimates of δ` (τ) are in the case of larger changes in the distribution of X

turns out to be an empirical question. We show in Section 6 that, in the case of unions

and wage inequality, our method yields very accurate results even in case of economically

large changes in the rate of unionization.

9The independence assumption can easily be relaxed. For instance, if X = (X1, X2) and only X1

is being manipulated, it is sufficient to assume that ε is independent of X1 conditional on X2. This
conditional independence assumption is similar to the “ignorability” or “unconfoundedness” assumption
commonly used in the program evaluation literature. Independence between ε and of X could also be
obtained by conditioning on a control function constructed using instrumental variables, as in Chesher
(2003), Florens et al., (2003), and Imbens and Newey (2005).
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3 General Concepts

In this section we first review the concept of the influence function, which arises in the

von Mises (1947) approximation and is largely used in the robust statistics literature.

We then introduce the recentered influence function, which is central to the derivation

of unconditional quantile regressions. Finally, we apply the von Mises approximation,

defined for a general alternative or counterfactual distribution, to the case of where this

counterfactual distribution arises from changes in the covariates. The derivations are

developed for general functionals of the distribution; they will be applied to quantiles

(and the mean) in the next section.

3.1 Definition and Properties of Recentered Influence Func-

tions

We begin by recalling the theoretical foundation of the definition of the influence function,

following Hampel et al. (1986). For notational simplicity, in this subsection we drop the

subscript Y on FY and GY . Hampel (1968, 1974) introduced the influence function as

a measure to study the infinitesimal behavior of real-valued functionals ν (F ), where

ν : Fν → R, and where Fν is a class of distribution functions such that F ∈ Fν if

|ν (F )| < +∞. In our setting, F is the CDF of the outcome variable Y , while ν (F ) is

a distributional statistic such as a quantile. Following Huber (1977), we say that ν (·) is

Gâteaux differentiable at F if there exists a real kernel function a (·) such that for all G

in Fν :

lim
t↓0

ν (Ft,G) − ν(F )

t
=
∂ν (Ft,G)

∂t
|t=0 =

∫
a (y) · dG (y) , (3)

where 0 ≤ t ≤ 1, and where the mixing distribution Ft,G

Ft,G ≡ (1 − t) · F + t ·G = t · (G − F ) + F (4)

is the probability distribution that is t away from F in the direction of the probability

distribution G.

The expression on the left hand side of equation (3) is the directional derivative of ν

at F in the direction of G. When we replace dG (y) on the right hand side of equation

8



(3) by d (G − F ) (y), we get:

lim
t↓0

ν ((1 − t) · F + t ·G) − ν(F )

t
=
∂ν (Ft,G)

∂t
|t=0 =

∫
a (y) · d (G− F ) (y) (5)

since
∫
a (y) · dF (y) = 0, which follows by considering the case where G = F .

The concept of influence function arises from the special case where G is replaced by

∆y , the probability measure that put mass 1 at the value y in the mixture Ft,G. This

yields Ft,∆y, the distribution that contains a blip or a contaminant at the point y,

Ft,∆y ≡ (1 − t) · F + t · ∆y.

The influence function of the functional ν at F for a given point y is defined as

IF(y; ν, F ) ≡ lim
t↓0

ν(Ft,∆y) − ν(F )

t
=
∂ν
(
Ft,∆y

)

∂t
|t=0

=

∫
a (y) · d∆y (y) = a (y) . (6)

By a normalization argument, IF(y; ν, F ), the influence function of ν evaluated at y

and at the starting distribution F will be written as IF(y; ν). Using the definition of the

influence function, the functional ν (Ft,G) itself can be represented as a von Mises linear

approximation (VOM):10

ν (Ft,G) = ν(F ) + t ·
∫

IF(y; ν) · d (G− F ) (y) + r (t; ν;G,F ) (7)

where r (t; ν;G,F ) is a remainder term that converges to zero as t goes to zero at the

general rate o (t). Depending on the functional ν considered, the remainder may converge

faster or even be identical to zero. For example, for the mean µ, r (t;µ;G,F ) = 0, while

for the quantile qτ , r (t; qτ ;G,F ) = o (t). Also, if F = G, then r (t; ν;F,F ) = 0 for any

t or ν. More generally, the further apart the distributions F and G are, the larger the

remainder term should be.11

Now consider the leading term of equation (7) as an approximation for ν (G), that is,

10This expansion can be seen as a Taylor series approximation of the real function A(t) = ν (Ft,G)
around t = 0 : A(t) = A(0)+A′(0) ·t+Rem1. But since A(0) = ν(G), and A′(0) =

∫
a1(y) d (G− F ) (y),

where a1(y) is the influence function, we get the VOM approximation.
11If we fix ν and t (for example, by making it equal to 1) and allowF andG to be empirical distributions

F̂ and Ĝ, we should expect the magnitude of the remainder term to be an empirical question.
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for t = 1:

ν (G) ≈ ν(F ) +

∫
IF(y; ν) · dG (y) . (8)

By analogy with the influence function, for the particular case G = ∆y, we call this first

order approximation term the Recentered Influence Function (RIF)

RIF(y; ν, F ) = ν(F ) +

∫
IF(y; ν) · d∆y (y) = ν(F ) + IF(y; ν). (9)

Again, by a normalization argument, we write RIF(y; ν, F ) as RIF(y; ν). The recentered

influence function RIF(y; ν) has several interesting properties:

Property 1 [Mean and Variance of the Recentered Influence Function]:

i) the RIF(y; ν) integrates up to the functional of interest ν(F )

∫
RIF(y; ν) · dF (y) =

∫
(ν(F ) + IF(y; ν)) · dF (y) = ν(F ). (10)

ii) the variance of RIF(y; ν) under F equals the asymptotic variance of the functional

ν(F ) ∫
(RIF(y; ν) − ν(F ))2 · dF (y) =

∫
(IF(y; ν))2 · dF (y) = AV (ν, F ) (11)

where AV (ν, F ) is the asymptotic variance of functional ν under the probability distri-

bution F .

Property 2 [Recentered Influence Function and the Directional Derivative]:

i) the derivative of the functional ν (Ft,G) in the direction of the distribution G is obtained

by integrating up the recentered influence function at F over the distributional differences

between G and F
∂ν (Ft,G)

∂t
|t=0 =

∫
RIF(y; ν) · d (G− F ) (y) . (12)

ii) the Von Mises approximation (7) can be written in terms of the RIF(y; ν) as

ν (Ft,G) = ν(F ) + t ·
∫

RIF(y; ν) · d (G− F ) (y) + r (t; ν;G,F ) (13)

where the remainder term is

r (t; ν;G,F ) =

∫
(RIF(y; ν, Ft,G) − RIF(y; ν)) · dFt,G (y) .

These properties follow straightforwardly from previous definitions and therefore no

10



proof is provided here. In fact, Property 1 follows from the usual definition of the influence

function, while Property 2 combines equations (5), (6) and (9), and follows from the fact

that densities integrate to one. Finally, note that properties 1 ii) and 2 i) and ii) are

also shared by the influence function.

3.2 Impact of General Changes in the Distribution of X

We now show that the recentered influence function provides a convenient way of assessing

the impact of changes in the covariates on the distributional statistic ν without having

to compute the corresponding counterfactual distribution of Y which is, in general, a

difficult estimation problem. We first consider general changes in the distribution of

covariates, from FX (x) to the counterfactual distribution GX (x). We then consider

the special case of a marginal change from X to X + t, and of the policy change `(X)

introduced in Section 2.

In the presence of covariates X, we can use the law of iterated expectations to express

ν in terms of the conditional expectation of RIF(y; ν) given X,

Property 3 [The functional ν(FY ) and the RIF-regression]:

The conditional expectation of RIF(y; ν) given X integrates up to the functional of interest

ν(FY )

ν(FY ) =

∫
RIF(y; ν) · dFY (y) =

∫
E [RIF(Y ; ν)|X = x] · dFX(x) (14)

where we have substituted equation (1) into equation (10), and used the fact that

E[RIF(Y ; ν)|X = x] =
∫

y
RIF(y; ν) · dFY |X (y|X = x). Property 3 is central to our ap-

proach. It provides a simple way of writing any functional ν of the distribution as an ex-

pectation and, furthermore, to write ν as the mean of the RIF-regression E [RIF(Y ; ν)|X].

Comparing equation (1) and property 3 illustrates how our approach greatly simplifies the

modelling of the effect of covariates on distribution statistics. In equation (1), the whole

conditional distribution, FY |X (y|X = x), has to be integrated over the distribution of X

to get the unconditional distribution of Y , FY .12 When we are only interested in a specific

distribution statistic ν(FY ), however, we simply need to integrate over E [RIF(Y ; ν)|X],

which is easily estimated using regression methods.

12This is essentially what Machado and Mata (2005) suggest to do, since they propose estimating the
whole conditional distribution by running (conditional) quantile regressions for each and every possible
quantile. See also Albrecht, Björklund and Vroman (2003), Gardeazabal and Ugidos (2005), and Melly
(2005) for related attempts at performing Oaxaca-Blinder type decompositions of unconditional quantiles
using conditional quantile regressions.

11



Property 3 also suggests that the counterfactual values of ν can be obtained by inte-

grating over a counterfactual distribution of X instead of FX (x). The following theorem

indeed states that the effect (on the functional ν) of a small change in the distribution of

covariates from FX in the direction of GX is given by integrating up the RIF-regression

function with respect to the change in distribution of the covariates, d (GX − FX).

Theorem 1 [Marginal Effect of a Change in the Distribution of X]:

πG(ν) ≡ ∂ν (FY,t,G)

∂t
|t=0 = lim

t↓0

ν (FY,t,GY
) − ν(FY )

t

=

∫
RIF(y; ν) · d (GY − FY ) (y)

=

∫
E [RIF(Y ; ν)|X = x] · d (GX − FX) (x)

The proof, provided in the appendix, is based on applying the law of iterated expectations

to equation (12).

Consider the implications of Theorem 1 for the policy effect and the unconditional

partial effect introduced in Section 2. Given that πG(ν) captures the marginal effect of

moving the distribution of X from FX to GX , it can be used as the leading term of an

approximation, just like equation (12) is the leading term of the von Mises approximation

(equation (13)). Our first corollary shows how this fact can be used to approximate the

policy effect δ` (ν).

Corollary 1 [Policy Effect]: If a policy change from X to `(X) can be described

as a change in the distribution of covariates, that is, ` (X) ∼ GX , where GX (x) =

FX (`−1(x)), then δ` (ν), the policy effect on the functional ν, consists of the marginal

effect of the policy, π`(ν), and a remainder term r(ν,GY , FY ):

δ` (ν) = ν(GY ) − ν(FY ) = π`(ν) + r(ν;GY , FY )

where

π`(ν) =

∫
E [RIF(Y ; ν)|X = x] ·

(
dFX(`−1(x)) − dFX (x)

)
, and

r(ν;GY , FY ) =

∫
(E [RIF(Y ; ν,GY )|X = x] −E [RIF(Y ; ν)|X = x]) · dFX(`−1(x)))

No proof for Corollary 1 is provided since, given Theorem 1, it is a immediate consequence

of Property 2 ii) making t = 1. Note that the approximation error r(ν;GY , FY ) depends

12



on how different the means of RIF(Y ; ν) and RIF(Y ; ν,GY ) are under the new distribution

of covariates GX .13

The next case is the unconditional partial effect ofX on ν, defined as α(ν) in Section 2.

The implicit assumption here is that X is a continuous covariate that is being increased

from X to X + t. We consider the case where X is discrete in the third corollary below.

Corollary 2 [Unconditional Partial Effect: Continuous Covariate]: Consider

increasing a continuous covariate X by t, from X to X + t. This change results in the

counterfactual distribution F ∗
Y,t (y) =

∫
FY |X (y|x) · dFX (x− t). The effect of X on the

distributional statistic ν, α(ν), is

α(ν) ≡ lim
t↓0

ν
(
F ∗

Y,t

)
− ν(FY )

t

=

∫
dE [RIF(Y ; ν)|X = x]

dx
· dF (x) .

The proof is provided in the appendix. The corollary simply states that the effect (on

ν) of a small change in covariate X is equal to the average derivative of the recentered

influence function with respect to the covariate.14

Finally, we consider the case where X is a dummy variable. The manipulation we

have in mind here consists of increasing the probability that X is equal to one by a small

amount t

Corollary 3 [Unconditional Partial Effect: Dummy Covariate]: Consider the

case where X is a discrete (dummy) variable, X ∈ {0, 1}. Define PX ≡ Pr[X = 1].

Consider an increase from PX to PX + t. This results in the counterfactual distribution

F ∗
Y,t (y) = FY |X (y|1) · (PX + t) + FY |X (y|0) · (1 − PX − t). The effect of a small increase

in the probability that X = 1 is given by

αD(ν) ≡ lim
t↓0

ν
(
F ∗

Y,t

)
− ν(FY )

t

= E [RIF(Y ; ν, F )|X = 1] − E [RIF(Y ; ν, F )|X = 0]

The proof is, once again, provided in the appendix.

13We discuss this issue in more detail in Section 6.
14In the case of a multivariate X, the relevant concept is the average partial derivative.
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4 Application to Unconditional Quantiles

In this section, we apply the results of Section 3 to the case of quantiles. We first derive

the functional form of the RIF for quantiles and show that the UQPE can be obtained

using RIF-regressions without reference to a specific functional form for the structural

model Y = h(X, ε). We then look at a few specific structural models that help interpret

the RIF-regressions in terms the underlying structural model and provide some guidance

on the functional form of the RIF-regressions. We finally consider the case of a general

model Y = h(X, ε) and derive the link between the UQPE and the underlying structural

form. We also show the precise link between the UQPE and the CQPE, which is closely

connected to the structural form.

4.1 Recentered Influence Functions for Quantiles

As a benchmark, first consider the case of the mean, ν(F ) = µ. Applying the definition

of the influence function (equation (6)) to µ =
∫
y · dF (y), we get IF(y;µ) = y − µ,

and RIF(y;µ) = µ + IF(y;µ) = y. When the VOM linear approximation of equation

(13) is applied to the mean, the remainder r (t;µ;G,F ) equals zero since RIF(y;µ) =

RIF(y;µ,Ft,G) = y.

Turning to our application of interest, consider the τ th quantile, ν(F ) = qτ . Applying

the definition of the influence function to qτ , it follows that

IF(y; qτ) =
τ − 1I {y ≤ qτ}

fY (qτ)
.

The influence function is simply a dichotomous variable that takes on the value − (1 − τ )

/fY (qτ) when Y is below the quantile qτ , and τ/fY (qτ ) when Y is above the quantile qτ .

The recentered influence function can thus be written as

RIF(y; qτ) = qτ + IF(y; qτ) = qτ +
τ − 1I {y ≤ qτ}

fY (qτ)

=
1I {y > qτ}
fY (qτ)

+ qτ −
1 − τ

fY (qτ )

= c1,τ · 1I {y > qτ} + c2,τ .

where c1,τ = 1/fY (qτ ) and c2,τ = qτ − c1,τ · (1 − τ ). Note that equation (10) implies that

the mean of the recentered influence function is the quantile qτ itself, and equation (11)

implies that its variance is τ · (1 − τ ) /f2
Y (qτ).

14



The main results in Section 3 all involve the conditional expectation of the RIF. In

the case of quantiles, we have

E [RIF(Y ; qτ)|X = x] = c1,τ ·E [1I {Y > qτ} |X = x] + c2,τ

= c1,τ · Pr [Y > qτ |X = x] + c2,τ . (15)

Since the conditional expectation E [RIF(Y ; ν)|X = x] is a linear function of Pr[Y >

qτ |X = x], it can be estimated using Probit or Logit regressions, or a simple OLS

regression (linear probability model). The parameters c1,τ and c2,τ can be estimated

using the sample estimate of qτ and a kernel density estimate of fY (qτ).
15 Note that for

other functionals ν besides quantiles, the estimation of the model E [RIF(Y ; ν)|X = x] =

mν(X) may be more appropriately pursued by nonparametric methods. These estimation

issues are discussed in detail in the next section.

The estimated model can then be used to compute either the policy effect or the

UQPE defined in Corollaries 1 to 3. From Corollary 2, we have that the unconditional

partial effect with continuous regressors , α(τ), is

UQPE (τ) = α(τ) =

∫
dE [RIF(Y ; qτ)|X = x]

dx
· dFX (x) (16)

=
1

fY (qτ)
·
∫
dPr [Y > qτ |X = x]

dx
· dFX (x) (17)

= c1,τ ·
∫
dPr [Y > qτ |X = x]

dx
· dFX (x) (18)

The integral in the above equation is the average “marginal” effect of the covariates in a

probability response model (see, e.g., Wooldridge (2002)).16

Interestingly, the UQPE for a dummy regressor is also closely linked to a standard

marginal effect in a probability response model. In this case, it follows from Corollary 3

that

UQPE (τ ) = αD(τ )

=
1

fY (qτ)
· (Pr [Y > qτ |X = 1] − Pr [Y > qτ |X = 0])

= c1,τ · (Pr [Y > qτ |X = 1] − Pr [Y > qτ |X = 0]) .

15See Section 5 for more detail.
16Note that the marginal effect is often computed as the effect of X on the probability for the “average

observation”, dPr [Y ≥ qτ |X = x]/dx. This is how STATA, for example, computes marginal effects. The
more appropriate marginal effect here is, however, the average of the marginal effect for each observation.
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At first glance, the fact that the UQPE is closely linked to standard marginal effects

in a probability response model is a bit surprising. Consider a particular value y0 of Y

that corresponds to the τ th quantile of the distribution of Y , qτ . Except for the scaling

factor 1/fY (qτ), our results mean that a small increase in X has the same impact on the

probability that Y is above y0, than on the τ th unconditional quantile of Y . In other

words, we can transform a probability impact into an unconditional quantile impact by

simply multiplying the probability impact by 1/fY (qτ). Roughly speaking, the reason

why the scaling factor 1/fY (qτ) provides the right transformation is that the function

that transforms probabilities into unconditional quantiles is the inverse of the cumulative

distribution function, F−1
Y (y), and the slope of F−1

Y (y) is the inverse of the density,

1/fY (qτ). In essence, the proposed approach enables us to turn a difficult estimation

problem (the effect of X on unconditional quantiles of Y ) into an easy estimation problem

(the effect of X on the probability of being above a certain value of Y ).

4.2 The UQPE and the structural form

In Section 2, we first defined the UQPE and the policy effect in terms of the structural

form Y = h(X, ε), where h(·) is now assumed to be strictly monotonic in ε. We now

re-introduce the structural form to show how it is linked to the RIF-regression model,

E [RIF(Y ; qτ)|X = x] = mτ(X). This is useful for interpreting the parameters of the

RIF-regression model, and for suggesting possible functional forms for the regression.

We explore these issues using three specific examples of the structural form, and then

discuss the link between the UQPE and the structural form in the most general case

where h(·) is completely unrestricted (aside from the monotonicity in ε). Even in this

general case, we show that the UQPE can be written as a weighted average of the CQPE,

which is closely connected to the structural form, for different quantiles and values of X.

4.2.1 Case 1: Linear, additively separable model

We start with the simplest linear model Y = h(X, ε) = Xᵀβ+ ε. As discussed in Section

2, we limit ourselves to the case where X and ε are independent. The linear form of the

model implies that a small change t in a covariate Xj simply shifts the location of the

distribution of Y by βj · t, but leaves all other features of the distribution unchanged.

As a result, the UQPE for any quantile is equal to βj. While β could be estimated using

a standard OLS regression in this simple case, it is nonetheless useful to see how it could

also be estimated using our proposed approach.
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For the sake of simplicity, assume that ε follows a distribution Fε. The resulting

probability response model is17

Pr [Y > qτ |X = x] = Pr [ε > qτ − xᵀβ] = 1 − Fε (qτ − xᵀβ) .

Thus if ε was normally distributed, the probability response model would be a standard

Probit model. Taking derivatives with respect to Xj yields

dPr [Y > qτ |X = x]

dXj
= βj · fε (qτ − xᵀβ) ,

where fε is the density of ε, and the marginal effects are obtained by integrating over the

distribution of X

∫
dPr [Y > qτ |X = x]

dxj
· dFX (x) = βj · E [fε (qτ −Xᵀβ)] ,

where the expectation on the right hand side is taken over the distribution of X and

the expression inside the expectation operator is simply the conditional density of Y

evaluated at Y = qτ : fε (qτ − xᵀβ) = fY |X(qτ |X = x). It follows that

∫
dPr [Y > qτ |X = x]

dxj
· dFX (x) = βj · E[fY |X(qτ |X = x)] = βj · fY (qτ),

and by substituting back in equation (17), the UQPE is indeed found to equal βj

UQPEj (τ ) =
1

f (qτ )
· βj · fY (qτ ) = βj.

4.2.2 Case 2: Non-linear, additively separable model

A simple extension of the linear model is the index model h(X, ε) = h̃ (Xᵀβ + ε), where

h̃ is differentiable and strictly monotonic. When h̃ is non-linear, a small change t in a

covariate Xj does not correspond to a simple location shift of the distribution of Y , and

the UQPE is no longer equal to β. One nice feature of the model, however, is that it

yields the same probability response model as in Case 1. We have

Pr [Y > qτ |X = x] = Pr
[
ε > h̃−1 (qτ) − xᵀβ

]
= 1 − Fε

(
h̃−1 (qτ ) − xᵀβ

)
.

17Since qτ is just a constant, it can be absorbed in the usual constant term.
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The average marginal effects are now

∫
dPr [Y > qτ |X = x]

dxj
· dFX (x) = βj · E

[
fε

(
h̃−1 (qτ ) −Xᵀβ

)]
,

and the UQPE is

UQPEj (τ ) = βj ·
E
[
fε

(
h̃−1 (qτ) −Xᵀβ

)]

fY (qτ)
= βj · h̃′

(
h̃−1 (qτ)

)
,

where the last equality follows from the fact that

fY (qτ) =
dPr [Y ≤ qτ ]

dqτ

=
dE [Pr [Y ≤ qτ |X]]

dqτ

=
dE
[
Fε

(
h̃−1 (qτ) −Xᵀβ

)]

dqτ
= E



fε

(
h̃−1 (qτ) −Xᵀβ

)

h̃′
(
h̃−1 (qτ)

)

 .

Since h̃′
(
h̃−1 (qτ )

)
depends on qτ , it follows that the UQPE is proportional, but not

equal, to the underlying structural parameter β. Also, the UQPE does not depend on

the distribution of ε. The intuition for this result is simple. From Case 1, we know

that the effect of Xj on the τ th quantile of the index (Xᵀβ + ε) is βj. But since Y

and (Xᵀβ + ε) are linked by a rank preserving transformation h̃(·), the effect on the τ th

quantile of Y corresponds to the effect on the τ th quantile of the index (Xᵀβ + ε) times

the slope of the transformation function evaluated at this point, h̃′
(
h̃−1 (qτ)

)
.18

4.2.3 Case 3: Linear, separable, but heteroskedastic model

A more standard model used in economics is the linear, but heteroskedastic model

h(X, ε) = Xᵀβ+ σ (X) · ε, where X and ε are still independent, but where V ar(Y |X) =

σ2 (X).19 The special case where σ (X) = Xᵀψ has the interesting implication that the

conventional conditional quantile regression functions are also linear in X, an assumption

18Note that the UQPE could also be obtained by estimating the index model using a flexible form
for h̃(·) (see, for example, Fortin and Lemieux (1998)). Estimating a flexible form for h̃(·) and taking
derivatives is more difficult, however, than just computing average marginal effects and dividing them
by the density f(qτ ). More importantly, since the index model is somewhat restrictive, it is important
to use a more general approach that is robust to the specifics of the structural form h(X, ε).

19There is no loss in generality in assuming that V ar(ε) = 1.
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typically used in practice. To see this, consider the τ th conditional quantile of Y ,

Qτ [Y |X = x] = Qτ [Xᵀβ + (Xᵀψ) · ε|X = x] = xᵀ(β +Qτ [ε] · ψ),

where Qτ [ε] is the τ th quantile of ε.20 This particular specification of h(X, ε) can also

be related to the quantile structural function (QSF) of Imbens and Newey (2005). In

the case where ε is univariate, Imbens and Newey define the QSF as Qτ [Y |X = x] =

h(x,Qτ [ε]), which simply corresponds to xᵀ(β + Qτ [ε] · ψ), the special linear case con-

sidered here.

The implied probability response model is the heteroskedastic model

Pr [Y > qτ |X = x] = Pr

[
ε >

−(xᵀβ − qτ)

xᵀψ

]
= 1 − Fε

(
qτ − xᵀβ

xᵀψ

)
. (19)

As is well known (e.g. Wooldridge, 2002), introducing heteroskedasticity greatly com-

plicates the interpretation of the structural parameters (β and ψ here). The problem is

that even if βj and ψj are both positive, a change in X increases both the numerator and

the denominator in equation (19), which has an ambiguous effect on the probability. In

other words, it is no longer possible to express the marginal effects as simple functions

of the structural parameter, β, as we did in Cases 1 and 2.

Strictly speaking, after imposing a parametric assumption on the distribution of ε,

such as ε ∼ N (0, 1), one could take this particular model at face value and estimate the

implied non-linear Probit model using maximum likelihood, and then compute the Probit

marginal effects to get the UQPE. A more practical solution, however, is to estimate a

more standard flexible probability response model and compute the average marginal

effects. We propose such a nonparametric approach in Section 5.

4.2.4 General case

One potential drawback of estimating a flexible probability response model, however, is

that we then lose the tight connection between the UQPE and the underlying structural

parameters highlighted, for example, in Case 2 above. Fortunately, it is still possible to

20For example, if ε is normal, the median Q.5 [ε] is zero and the conditional median regression is
Q.5 [Y |X = x] = xᵀβ. Similarly, the 90th quantile Q.9 [ε] is 1.28 and the corresponding regression for
the 90th quantile is Q.9 [Y |X = x] = xᵀ(β + 1.28 · ψ). Note also that this specific model yields a highly
restricted set of quantile regressions in a multivariate setting, since the vector of parameters ψ is mutiplied
by a single factor Qτ [ε]. Allowing for a more general specification would only make the results even
more cumbersome.
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draw a useful connection between the UQPE and the underlying structural form, even

in the general case.

By analogy with the UQPE, consider the conditional quantile partial effect (CQPE),

which represents the effect of a small change of X on the conditional quantile of Y

CQPE (τ, x) ≡ lim
t↓0

Qτ [h(X + t, ε)|X = x] −Qτ [Y |X = x]

t

=
∂Qτ [h(X, ε)|X = x]

∂x
.

The CQPE is the derivative of the conditional quantile regression with respect to X. In

the standard case of a linear quantile regression, the CQPE (τ, x) simply corresponds to

the quantile regression coefficient for all X = x, which may be a source of misspecifica-

tion.21 Using the definition of the QSF, we can also express the CQPE as

CQPE (τ, x) =
∂Qτ [h(X, ε)|X = x]

∂x
=
∂h(x,Qτ [ε])

∂x
.

Before we establish the link between the UQPE and the CQPE, let us define the following

three auxiliary functions. The first one, ωτ : X → R+, will be used as a weighting

function and is basically the ratio between the conditional density given X = x, and the

unconditional density:

ωτ (x) ≡
fY |X (qτ |x)
fY (qτ)

.

The second function, ετ : X → R, is the inverse h function h−1 (·, qτ), which exists under

the assumption that h is strictly monotonic in ε:

ετ (x) ≡ h−1 (x, qτ) .

Finally, the third function, ζτ : X → (0, 1), can be thought as a “matching” function

that shows where the unconditional quantile qτ falls in the conditional distribution of Y :

ζτ (x) ≡ {s : Qs [Y |X = x] = qτ} = FY |X (qτ |X = x) .

We can now state our general result on the link between the UQPE and the CQPE

21Chamberlain (1994) shows that the union effects at different quantiles are also different by levels of
experiences and manufacturing vs. non-manufacturing industries.
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Proposition 1 [UQPE and its relation to the structural form]:

i) Assuming that the structural form Y = h(X, ε) is strictly monotonic in ε and that X

and ε are independent, the parameter UQPE (τ ) will be:

UQPE (τ ) = E

[
ωτ (X) · ∂h (X, ετ(X))

∂x

]

ii) We can also represent UQPE (τ) as a weighted average of CQPE (ζτ(x), x):

UQPE (τ ) = E [ωτ (X) · CQPE (ζτ (X),X)].

The proof is provided in the Appendix. Under the hypothesis that X and ε are

independent and h is strictly monotonic in ε, we may invoke the results of Matzkin

(2003) that guarantee that both the distribution of ε, Fε, and the link function h are

nonparametrically identified under an additional normalization assumption. It follows

that UQPE (τ ) is also identified since it is a function of the structural h function and

the distribution of unobservables Fε that are nonparametrically identified. The important

point to be made here is that although h and Fε may be identified, we do not need to

estimate them in order to estimate the UQPE. In fact, as we will see, all we need to do

is to estimate some average marginal effects. This is an important simplification when

considering the alternative of comparing the original quantiles to those constructed from

nonparametric estimates of h and Fε and a new counterfactual distribution of X.

The proposition also shows formally that the effect of X on conditional quantiles does

not average up to the effect on the corresponding unconditional quantile, i.e. UQPE (τ) 6=
E[CQPE(τ, X)]. Instead, the proposition shows that UQPE (τ) is equal to a weighted

average (over the distribution of X) of the CQPE (ζτ (X),X) at the ζτ (X) conditional

quantile corresponding to the τ th unconditional quantile of the distribution of Y , qτ .

This is better illustrated with a simple example. Suppose that we are looking at the

UQPE for the median, UQPE(.5). If X has a positive effect on Y , then the overall

median q.5 may correspond, for example, to the 30th quantile for observations with a

high value of X, but to the 70th quantile for observations with low values of X. In

terms of the ζτ (·) function, we have ζ .5(X = high) = .3 and ζ .5(X = low) = .7. Thus,

UQPE(.5) is an average of the CQPE at the 70th and 30th quantiles, respectively, which

may arbitrarily differ from the CQPE at the median. More generally, whether or not the

UQPE (τ ) is “close” to CQPE (τ ,X) depends on the functional form of h(X, ε) and on
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the distribution of X (and ωτ (X)).

In Case 1 above, the CQPE is the same for all quantiles (CQPE (τ,X) = β for all τ ).

Since UQPE is a weighted average of the CQPE’s, it trivially follows that UQPE (τ) =

CQPE (τ ,X) = β. Another special case is when the function ζτ(X) does not vary very

much and is more or less equal to τ for all values of X. This would tend to happen when

the model has little explanatory power, i.e. when most of the variation in Y is in the

“residuals”. In the simple example above, we may have for instance ζ .5(X = high) =

.49 and ζ .5(X = low) = .51. By a simple continuity argument, CQPE (.49,X) and

CQPE (.51,X) would be very close to each other (and to CQPE (.5,X)) and we would

have

UQPE (τ ) = E [ωτ (X) · CQPE (ζ τ(X),X)] ≈ E [ωτ (X) · CQPE (τ ,X)]. (20)

When quantile regressions are linear (Qτ [Y |X = x] = xᵀβτ ), we implicitly assume that

CQPE (τ ,X) = CQPE (τ ) = βτ , for all X. Then the right hand side of equation (20)

is equal to CQPE (τ) and it follows that UQPE (τ )≈CQPE (τ ). These issues will be

explored further in the context of the empirical examples in Section 6.

5 Estimation

In this section, we discuss the estimation of the UQPE (τ ) and of the policy effect δ` (τ ),

as approximated by the parameter π` (τ) in Corollary 1 using unconditional quantile

regressions. Before discussing the regression estimators, we first consider the estimation

of the recentered influence function, which depends on two unknown objects: the quantile

and the density of the unconditional distribution of Y . We thus start by presenting

formally the estimators for qτ , fY (·), and RIF(y; qτ).

As discussed in Section 4, estimating the RIF-regression for quantiles, is closely linked

to the estimation of a probability response model since

mτ (x) ≡ E [RIF(Y ; qτ)|X = x] = c1,τ · Pr [Y > qτ |X = x] + c2,τ .

It follows from equation (16) that:

UQPE (τ ) ≡
∫
dmτ (x)

dx
· dFX (x) = c1,τ ·

∫
dPr [Y > qτ |X = x]

dx
· dFX (x) .

For the sake of convenience, we also define the random variable Tτ = 1I {Y > qτ}.
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The remainder of the section present estimators of UQPE (τ) and π` (τ) based on

three specific regression methods: (i) RIF-OLS, (ii) RIF-Logit, and (iii) RIF-nonparame-

tric, where the latter estimation method is based on a nonparametric version of the Logit

model. Since, as show in Section 4, the UQPE (τ ) is a function of average marginal

effects, all three estimators may yield relative accurate estimates of UQPE (τ ) given

that marginal effects from a linear probability model (RIF-OLS) or a Logit (RIF-Logit

or RIF-nonparametric) are often very similar, in practice. This issue will be explored

in more detail in the empirical section (Section 6). The main asymptotic results for the

estimators of UQPE (τ ) for each one of these estimation methods can be found in the

supplemental material to the paper.22

Though we discuss the estimation of RIF-regressions for the case of quantiles, the

estimation approach can be easily extended to a general functional of the unconditional

distribution of Y , ν (FY ). In that general case, the parameters of interest α (ν) and δ` (ν)

would involve estimation of both E [RIF(Y ; ν)|X = x] and the expectation of its deriva-

tive, E [dE [RIF(Y ; ν)|X] /dX] (in the case of the unconditional partial effect, α (ν)). As

in the case of quantiles, one could, in principle, estimate those two objects using either

an OLS regression or nonparametric methods (e.g. a series estimator). Estimators sug-

gested in the literature on average derivative estimation (e.g., Härdle and Stoker, 1989)

could be used to estimate E [dE [RIF(Y ; ν)|X] /dX].

5.1 Recentered Influence Function and its Components

In order to estimate UQPE (τ ) and π` (τ ), we first have to obtain the estimated recen-

tered influence functions. Since Tτ is a non-observable random variable that depends on

the true unconditional quantile qτ , we use a feasible version of that variable

T̂τ = 1I {Y > q̂τ} .

The corresponding feasible version of the RIF is

R̂IF(Y ; q̂τ) = q̂τ +
τ − 1I {Y ≤ q̂τ}

f̂Y (q̂τ)

= ĉ1,τ · T̂τ + ĉ2,τ ,

22Estimators of the parameter π`(τ ) will depend on the particular choice of policy change and therefore
will not have their asymptotic properties analyzed here.
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which also involves two unknown quantities to be estimated, q̂τ and f̂Y (q̂τ). The estimator

of the τ th population quantile of the marginal distribution of Y is q̂τ , the usual τ th sample

quantile, which can be represented, as in Koenker and Bassett (1978), as

q̂τ = arg min
q

N∑

i=1

(τ − 1I {Yi − q ≤ 0}) · (Yi − q) .

The estimator of the density of Y is f̂Y (·), the kernel density estimator. In the em-

pirical section we propose using the Gaussian kernel with associated optimal bandwidth.

The actual requirements for the kernel and the bandwidth are described in the asymp-

totics section of the appendix. Let KY (z) be a kernel function and bY a positive scalar

bandwidth, such that

f̂Y (q̂τ) =
1

N · bY
·

N∑

i=1

KY

(
Yi − q̂τ

bY

)
. (21)

Finally, the parameters c1,τ and c2,τ are estimated as ĉ1,τ = 1/f̂Y (q̂τ) and ĉ2,τ =

q̂τ − ĉ1,τ · (1 − τ ), respectively.

5.2 Three estimation methods

5.2.1 RIF-OLS Regression

The first estimator for UQPE (τ ) and π` (τ) uses a simple linear regression. As in

the familiar OLS regression, we implicitly assume that the recentered influence function

is linear in the covariates, X, which may however include higher order or non-linear

transformations of the original covariates. If the linearity assumption seems inappropriate

in particular applications, one can always turn to a more flexible estimation method

proposed next. Moreover, OLS is known to produce the linear function of covariates that

minimizes the specification error.

The RIF-OLS estimator for mτ (x) is

m̂τ,RIF−OLS (x) = xᵀ · γ̂τ ,

where γ̂τ is also the estimator for the derivative dmτ (x) /dx. The estimated coefficient
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vector is simply a projection coefficient

γ̂τ =

(
N∑

i=1

Xi ·Xᵀ
i

)−1

·
N∑

i=1

Xi · R̂IF(Yi; q̂τ). (22)

As mentioned earlier, the RIF-OLS estimator is closely connected to a linear prob-

ability model for 1I{Y ≤ q̂τ}. The projection coefficients γ̂τ (except for the constant)

are equal to the coefficients in a linear probability model divided by the rescaling factor

f̂Y (q̂τ).

The estimators for UQPE (τ ) and π` (τ ) are

ÛQPERIF−OLS (τ) = γ̂τ ,

π̂`,RIF−OLS = γ̂ᵀ
τ ·

1

N
·

N∑

i=1

(` (Xi) −Xi) .

5.2.2 RIF-Logit Regression

The second estimator exploits the fact that the regression model is closely connected to

a probability response model since mτ (x) = c1,τ · Pr [Tτ = 1|X = x] + c2,τ . Assuming a

logistic model

Pr [Tτ = 1|X = x] = Λ (xᵀθτ) ,

where is Λ (·) is the logistic CDF, we can estimate θτ by maximum likelihood by replacing

Tτ by its feasible counterpart T̂τ :

θ̂τ = arg max
θτ

N∑

i

T̂τ,i ·Xᵀ
i θτ + log (1 − Λ (Xᵀ

i θτ ))

The main advantage of the Logit model over the linear specification for mτ (x) is that

it allows heterogenous marginal effects, that is, for dmτ (x) /dx to depend on x:

dmτ (x)

dx
= c1,τ ·

dPr [Tτ = 1|X = x]

dx
= c1,τ · θτ · Λ (xᵀθτ) · (1 − Λ (xᵀθτ)) .
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Thus, we propose estimating UQPE (τ ) and π` (τ ) as23

ÛQPERIF−Logit (τ) = ĉ1,τ · θ̂τ ·
1

N
·

N∑

i=1

Λ
(
Xᵀ

i θ̂τ

)
·
(
1 − Λ

(
Xᵀ

i θ̂τ

))
,

π̂`,RIF−Logit (τ) = ĉ1,τ ·
1

N
·

N∑

i=1

(
Λ
(
` (Xi)

ᵀ θ̂τ

)
− Λ

(
Xᵀ

i θ̂τ

))
.

5.2.3 Nonparametric-RIF Regression (RIF-NP)

The third estimator does not make any functional form assumption about Pr[Y > qτ |X =

x]. We use the method proposed by Hirano, Imbens and Ridder (2003) to estimate a

probability response model nonparametrically by means of a polynomial approximation of

the log-odds ratio of Pr [Y > qτ |X = x].24 The specifics of the problem are the following.

We estimate a vector ρK (τ ) of length K (τ ) by finding the solution to the problem

ρ̂K (τ ) = arg max
ρK(τ)

N∑

i

T̂τ,i ·HK(τ)(Xi)
ᵀρK (τ ) + log

(
1 − Λ

(
HK(τ)(Xi)

ᵀρK (τ)
))
,

where HK(τ)(x) = [HK(τ), j(x)] (j = 1, ...,K (τ )), a vector of length K (τ ) of polynomial

functions of x ∈ X satisfying the following properties: (i) HK(τ) : X → RK(τ); (ii)

HK(τ), 1(x) = 1, and (iii) if K (τ ) > (n+ 1)r. HK(τ)(x) includes, thus, all polynomials

up to order n.25 In what follows, we assume that K (τ ) is a function of the sample size

N such that K (τ ) → ∞ as N → ∞.26 Our estimate of Pr [Tτ = 1|X = x] is now

p̂K,τ (x) ≡ Λ
(
HK(τ)(x)

ᵀρ̂K (τ )
)
.

23We only show the estimate of the UQPE in the case of continuous regressors. It is easy to extend
this to the case of discrete regressors.

24The log odds ratio of Pr [Y > qτ |X = x] is equal to log (Pr [Y > qτ |X = x] / (1 − Pr [Y > qτ |X = x])).
25Further details regarding the choice of HK(τ)(x) and its asymptotic properties can be found in

Hirano, Imbens and Ridder (2003).
26Some criterion should be used in order to choose the length K (τ ) as function of the sample size.

For example, one could use a cross-validation method to choose the order of the polynomial.
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Thus, we propose estimating UQPE (τ ) and π` (τ ) as

ÛQPERIF−NP (τ ) = ĉ1,τ · ρ̂K (τ ) · 1

N
·

N∑

i=1

dHK(τ)(Xi)
ᵀ

dx
· p̂K,τ (Xi) · (1 − p̂K,τ (Xi))

π̂`,RIF−NP (τ ) = ĉ1,τ ·
1

N
·

N∑

i=1

(p̂K,τ (` (Xi)) − p̂K,τ (Xi))

It is interesting to see how this nonparametric approach relates to the previous method

based on a Logit specification. If HK(τ)(x) = x for all x, that is, if HK(τ)(·) is the identity

function, then the two methods coincide. Thus, our nonparametric approach generalizes

the RIF-Logit method. The nonparametric approach can also be interpreted as a flexible

Logit model that incorporates not only a linear function inside the logistic, but a richer

polynomial that includes interactions, squares and cubics.

6 Empirical Applications

In this section, we present two empirical applications to illustrate how the unconditional

quantile regressions work in practice, and how the results compare to standard (condi-

tional) quantile regressions. In the first application, we revisit the analysis of birthweight

of Koenker and Hallock (2001), where quantile regressions are used to show that there

are differential impacts of being a boy or having a black mother, for example, at different

quantiles of the conditional birthweight distribution. The second application looks at the

effect on unions on male wages, which is well known to be different at different points of

the wage distribution (see, for example, Chamberlain, 1994, and Card, 1996).

6.1 Determinants of Birthweight

In the case of infant birthweight, “just looking at conditional means” is too restrictive

from a public health perspective, since we may be particularly concerned with the lower

tail of the birthweight distribution, and in particular with cases that fall below the

“low birthweight” threshold of 2500 grams. In this setting, the limitation of quantile

regressions as a distributional tool is that the low birthweight threshold may well fall

at different quantiles depending on the characteristics of the mother. For example, the

10th quantile for infants of black high school dropout mothers who also smoke (2183

grams) is well below the low birthweight threshold of 2500 grams. By contrast, the 10th

quantile for infants of white college educated mothers who do not smoke (2880 grams) is
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well above the low birthweight threshold. The quantile regression estimate at the 10th

conditional quantile thus mixes the impact of prenatal care for some infants above and

below the low birthweight threshold.

Proposition 1 shows that the precise link between the effect of covariates on condi-

tional (CQPE) and unconditional (UQPE) quantiles depends on a complicated mix of

factors. In practice, the CQPE and the UQPE turn out to be fairly similar in the case

of birthweight. For instance, Table 1 compares standard OLS estimates to the RIF-OLS

regressions and the conventional (conditional) quantile regression estimates at the 10th,

50th, and 90th percentiles of the birthweight distribution. While estimates tend to vary

substantially across the different quantiles, the difference between RIF-OLS and quantile

regression coefficients tends to be small, relative to the standard errors.

Figure 1a also shows that the point estimates from conditional and unconditional

(both RIF-OLS and RIF-Logit) quantile regressions are generally very close and rarely

statistically different for the various covariates considered.27 This reflects the fact that,

despite a large sample of 198,377 observations, the standard errors are quite large, a

pattern that can also be found in Figure 4 of Koenker and Hallock (2001).28 In other

words, the covariates do not seem to be explaining much of the overall variation in

birthweight. This is confirmed in Figure A1, which shows that covariates (gender in

this example) explain little of the variation in birthweight since the conditional and

unconditional distributions are very similar (both look like Gaussian distributions slightly

shifted one from another). This corresponds to the case discussed after Proposition 1

where the function ζτ (X) does not vary very much, and is more or less equal to τ for all

values of X. As a result, it is not very surprising that the UQPE and CQPE are quite

close to each other.

6.2 Unions and Wage Inequality

6.2.1 Estimates of the Partial Effect of Unions

There are several reasons why the impact of unions on log wages may be different at

different quantiles of the wage distribution. First, unions both increase the conditional

27Confidence intervals are not reported in figure 1, but they almost always overlap for conditional
and unconditional quantile regression estimates. The differences between the RIF-OLS and RIF-Logit
for cigarettes come from the difficulty of defining marginal effects for a variable whose distribution is
actually a mixture of a categorical and a continuous variable. For comparability, we used the same
specification as Koenker and Hallock (2001).

28We use the same June 1997 Detailed Natality Data (published by the National Center for Health
Statistics) as Koenker and Hallock (2001).
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mean of wages (the “between” effect) and decrease the conditional distribution of wages

(the “within” effect).29 This means that unions tend to increase wages in low wage

quantiles where both the between and within group effects go in the same direction, but

can decrease wages in high wage quantiles where the between and within group effects

go in opposite directions. These ambiguous effects are compounded by the fact that the

union wage gap generally declines as a function of the (observed) skill level.30

Table 2 reports the RIF-OLS estimates of the log wages model for the 10th, 50th and

90th quantiles using a large sample of U.S. males from the 1983-85 Outgoing Rotation

group (ORG) supplement of the Current Population Survey.31 The results (labelled as

UQR for unconditional quantile regressions) are also compared with the OLS benchmark,

and with standard quantile regressions (QR) at the corresponding quantiles. Interest-

ingly, the UQPE of unions first increases from 0.198 at the 10th quantile to 0.349 at the

median, before turning negative (-0.137) at the 90th quantile. These findings strongly

confirm the well known result that unions have different effects at different points of

the wage distribution.32 The quantile regression estimates reported in the correspond-

ing columns show, as in Chamberlain (1994), that unions increase the location of the

conditional wage distribution (i.e. positive effect on the median) but also reduce con-

ditional wage dispersion. This explains why the effect of unions monotonically declines

from 0.288, to 0.195 and 0.088 as quantiles increase, which is very different from the

unconditional quantile regressions estimates.

The difference between conditional and unconditional quantile regression estimates is

illustrated in detail in Figure 2, which plots both conditional and unconditional quantile

regression estimates for each covariate at 19 different quantiles (from the 5th to the 95th).

Both the RIF-OLS and RIF-Logit estimates are reported. While the estimated union

effect is very different for conditional and unconditional quantiles, results obtained using

RIF-OLS or RIF-Logit regressions are very similar. This confirms the “common wis-

dom” in empirical work that marginal effects from a linear probability model (RIF-OLS)

or a Logit (RIF-OLS) are very similar. The unconditional effect is highly non-monotonic,

29The “between” and the “within” effect refer to the analysis of variance described below.
30See Card, Lemieux, and Riddell (2004) for a detailed discussion and survey of the literature on the

distributional effects of unions.
31We start with 1983 because it is the first year in which the ORG supplement asked about union

status. The dependent variable is the real log hourly wage for all wage and salary workers, and the
explanatory variables including human capital variables and demographic characteristics. Other data
processing details can be found in Lemieux (2006). We have run the models for different time periods,
but only present the 1983-85 results here.

32Note that the effects are very precisely estimated for all specifications, given the large available
sample sizes (266,956 observations) and the sizeable R-squared (close to 0.40) for cross-sectional data.
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while the conditional effect declines monotonically. In particular, the unconditional effect

first increases from about 0.1 at the 5th quantile to about 0.4 at the 35th quantile, before

declining and eventually reaching a large negative effect of over -0.2 at the 95th quantile.

The large effect at the top end reflects the fact that compression effects dominate ev-

erything else there. By contrast, traditional (conditional) quantile regression estimates

decline almost linearly from about 0.3 at the 5th quantile, to barely more than 0 at the

95th quantile.

So unlike the birthweight example, the union effect on log wages represent a case

where there are large and important differences between the UQPE and the CQPE. This

is consistent with the fact that the conditional and unconditional distribution of log

wages are more dissimilar than in the case of birthweight. Figure A2 shows that the

distribution of log wages, conditional on being covered by a union, is not only shifted to

the right of the unconditional distribution, but it is also a more compressed and skewed

distribution. By contrast, the distribution of wages for nonunion workers is closer to a

normal distribution, though it also has a mass point in the lower tail at the minimum

wage.

Figure 3 illustrates some sensitivity analyses showing the robustness of the RIF-OLS

regression estimates of the underlying parameter of interest, the UQPE. The first two pan-

els of Figure 3 compares the confidence intervals of RIF-OLS estimates to those obtained

by estimating conditional quantile regressions (Panel A) or by computing the marginal

effects from RIF-Logit (Panel B).33 These two figures show that unconditional regression

estimates are robust to the estimation method used in the sense that confidence intervals

are hardly distinguishable from each other. This conclusion is reinforced by Panel C

of Figure 3, which shows that using the fully nonparametric estimator (RIF-NP) yields

estimates that are virtually identical to those obtained with the RIF-Logit or RIF-OLS

estimator.34 This is in sharp contrast with the very big difference in confidence intervals

comparing the RIF-OLS estimates with the conditional quantile regression estimates.

The last panel of Figure 3 shows, however, that even if the density is precisely esti-

mated, the choice of the bandwidth does matter for some of the estimates (at the 15th,

20th, and 25th quantiles). The problem is that there is a lot of heaping at $5 and $10

33We use bootstrap standard errors for the Logit marginal effects to also take account of the fact
that the density (denominator in the RIF) is estimated. Accounting for this source of variability has
very little impact on the confidence intervals because densities are very precisely estimated in our large
sample.

34We fully interact union status with all the other variables shown in Table 1 to get a “nonparametric”
effect for unions.
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in this part of the wage distribution, which makes the kernel density estimates erratic

when small bandwidths (0.02 or even 0.04) are used. The figure suggests it is better to

oversmooth a bit the data with a larger bandwidth (0.06) even when the sample size is

very large.35 The larger bandwidth makes the estimates better behaved between the 15th

and the 25th quantile, but has very little impact at other quantiles.

6.2.2 Estimates of the Policy Effect

Having established that the RIF-OLS method works very well in practice, we return to

the important question of how well it can approximate the effect of “larger changes”

in covariates such as those contemplated for the policy effect of Corollary 1. To assess

the importance of the approximation error, r(ν;G,F ), we conduct a small experiment

looking at the effect of unions but ignoring all other covariates. To predict the effect

of changes in unionization using our approach, we run RIF-OLS regressions using only

the union status as explanatory variable. We then predict the value of the quantile at

different levels of unionization by computing the predicted value of the RIF for different

values of the unionization rate. The straight lines in Figures 4a to 4g show the result

of this exercise for changes ranging from -10 percent to 10 percent, as shown on the

horizontal axis, in the unionization rate relative to the baseline rate of 26.2 percent in

1983-85.

Since we only have a dummy covariate, it is also straightforward to compute an

“exact” effect of unionization by simply changing the proportion of union workers, and

recomputing the various quantiles in this “reweighted” sample.36 The resulting esti-

mates are the diamonds reported in Figures 4a to 4g. Generally speaking, the RIF-OLS

estimates are remarkably close to the “exact” estimates, even for large changes in union-

ization (plus or minus 10 percentage points). So while this is only a special case, the

results suggest that our approach can yield a very good approximation that works both

for small and larger changes in the distribution of covariates.

The very last panel of Figure 4 (Figure 4h) repeats the same exercise for the variance.

Unlike quantiles, an exact closed form expression for the effect of unions on the variance

can be computed using the classic analysis of variance formula. It is easy to show that

35The “oversmoothing” is only by reference to Silverman’s rule of thumb for the normal distribution,
this “larger” bandwidth for a log wages distribution is actually in the range suggested by cross-validation
exercises.

36This can be viewed as a special case of DiNardo and Lemieux (1997)’s reweighting estimator of the
effect of unions, where they perform a conditional reweighting where other covariates are also controlled
for.
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running a RIF-OLS regression for the variance and using it to predict the effect of changes

in unionization on the variance yields the approximation given in the appendix by equa-

tion (A-2), while the exact effect is given by equation (A-1). The approximation error

is, thus, a second order term O (P 2
X) where PX is the proportion of unionized workers.

Such approximation error corresponds to the difference between the straight line and the

diamonds in Figure 4g. The diamonds are on a parabolic curve because of the quadratic

nature of the second order term, but the linear curve approximates the quadratic very

well even for large changes in the unionization rate. In other words, the RIF-OLS ap-

proach yields results very similar to those from the analysis of variance formula, that has

been widely used in the literature. The fact that the approximation errors for both the

quantiles and the variance are very small gives us great confidence that our approach

can be used to generalize the distributional analysis of unions (or other factors) to any

quantile of the unconditional distribution.

7 Conclusion

In this paper, we propose a new regression method to estimate the effect of explanatory

variables on the unconditional quantiles of an outcome variable. The proposed uncon-

ditional quantile regression method consists of running a regression of the (recentered)

influence function of the unconditional quantile of the outcome variable on the explana-

tory variables. The influence function is a widely used tool in robust estimation that can

easily be computed for each quantile of interest. We show how standard partial effects,

that we call unconditional quantile partial effects (UQPE) for the problem studied here,

can be estimated using our regression approach. The regression estimates can also be

used to approximate the effect of a more general change in the distribution of covariates

(policy effect) on unconditional quantiles of the outcome variable. We propose three

different regression estimators based on a standard OLS regression (RIF-OLS, where the

recentered influence function is the dependent variable), a Logit regression (RIF-Logit),

and a nonparametric Logit regression (RIF-NP).

We show in the empirical section that our estimators are very easy to use in prac-

tice, and that RIF-OLS, RIF-Logit, and RIF-NP all yield very similar estimates of the

UQPE in the applications considered. We present two applications that illustrate well

the differences between conditional and unconditional quantile regressions. In the first

application, the analysis of infant birthweight of Koenker and Hallock (2001), condi-

tional and unconditional quantile regression estimates are very close to each other. In
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the second application, the effect of unions on the wage distribution, the results are more

strikingly different. While traditional quantile regressions indicate that unions have a

positive effect on wages even at the top quantiles of the wage distribution, we actually

find a strong negative effect of unions at the highest quantiles of the wage distribution.

We also show that our unconditional quantile regressions approximate very well the ef-

fect of larger changes in the rate of unionization on unconditional quantiles of the wage

distribution.

Another important advantage of the proposed method is that it can be easily gen-

eralized to other distributional statistics such as the Gini, the log variance or the Theil

coefficient. Once the recentered influence function for these statistics is computed, all

that is required is running regression of the resulting RIF on the covariates. We discuss

in a companion paper (Firpo, Fortin, and Lemieux, 2005) how our regression method can

be used to generalize traditional Oaxaca-Blinder decompositions, devised for means, to

any distributional statistic.

One limitation of the proposed regression method is the assumption that the covari-

ates, X, are independent of unobservables, ε, in the general model Y = h(X, ε) for the

outcome variable, Y . While the independence assumption combined with a flexible form

of h(X, ε) still allows for rich distributional effects of X on Y (such as heteroskedasticity

in a standard regression model), it is nonetheless highly restrictive in many problems

of economic interest, such as the effect of schooling on the distribution of wages. As

is well known, there are good economic reasons why schooling may be correlated with

unobservables such as ability (Card, 2001). We plan to show in future work how the

independence assumption can be relaxed when instrumental variables are available for

the endogenous covariates, and how consistent estimates of the UQPE can be obtained

by adding a control function in the unconditional quantile regressions.

8 Appendix

Proof of Theorem 1:

The effect on the functional ν of the distribution of Y of an infinitesimal change in the

distribution of X from FX towards GX is defined as ∂ν (FY,t,GY
) /∂t|t=0. Recall from

Property 2 i) that

∂ν (FY,t,GY
)

∂t
|t=0 =

∫
RIF(y; ν) · d (GY − FY ) (y) .
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Substituting in equations (1) and (2), and applying the fact from Property 3 that

E[RIF(Y ; ν)|X = x] =
∫

y
RIF(y; ν) · dFY |X (y|X = x) yields

∂ν (FY,t,GY
)

∂t
|t=0 =

∫ (∫
RIF(y; ν) · dFY |X (y|X = x)

)
· d (GX − FX) (x)

=

∫
E [RIF(Y ; ν)|X = x] · d (GX − FX) (x)

�
Proof of Corollary 2:

Consider an increase t in the variable X. This yields the variable Z = X + t, where the

density of Z is fX (z − t).37 Consider the resulting counterfactual distribution F ∗
Y,t of Y :

F ∗
Y,t (y) =

∫
FY |X (y|x) · fX (x− t) · dx

=

∫
FY |X (y|x) · fX (x) · dx− t ·

∫
FY |X (y|x) · f

′
X (x)

fX (x)
· fX (x) · dx + χt

= FY (y) + t ·
∫
FY |X (y|x) · lX (x) · fX (x) · dx + χt,

where

lX (x) = −d ln (fX (x))

dx
= −f

′
X (x)

fX (x)
.

and where the second line is obtained using a first order expansion. Therefore, χt =

O (t2). Now, define

gX (x) = fX (x) · (1 + lX (x)) ,

GX (x) =

∫ x

gX (ξ) · dξ.

Since

GY (y) =

∫
FY |X (y|x) · gX (x) · dx,

it follows that

GY (y) = FY (y) +

∫
FY |X (y|x) · lX (x) · fX (x) · dx.

37The density of X is fX (·), and by definition of densities,
∫ x

fX (ξ) · dξ = FX (x).
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We can write

F ∗
Y,t (y) = FY (y) + t · (GY (y) − FY (y)) + χt = FY,t·GY

(y) + χt.

Hence,

α(ν) ≡ lim
t↓0

ν
(
F ∗

Y,t

)
− ν(FY )

t

= lim
t↓0

(
ν (FY,t·GY

) − ν(FY )

t

)
+ lim

t↓0

(
ν
(
F ∗

Y,t

)
− ν(FY,t·GY

)

t

)

= πG(ν) + lim
t↓0

(
ν (FY,t·GY

+ χt) − ν(FY,t·GY
)

t

)

= πG(ν) + lim
t↓0

(
O (χt)

t

)
= πG(ν) + lim

t↓0
(O (|t|)) = πG(ν) +O (1) · lim

t↓0
t

= πG(ν).

Using Theorem 1, it follows that

α(ν) = πG(ν) =

∫
E [RIF(Y ; ν)|X = x] · d(GX − FX) (x)

=

∫
E [RIF(Y ; ν)|X = x] · lX (x) · fX (x) · dx,

and by partial integration

∫
E [RIF(Y ; ν)|X = x] · lX (x) · fX (x) · dx =

∫
dE [RIF(Y ; ν)|X = x]

dx
· fX (x) · dx.

Hence

α(ν) =

∫
dE [RIF(Y ; ν, F )|X = x]

dx
· fX (x) · dx.

�
Proof of Corollary 3:

Consider an increase t in the probability PX that X = 1. The original distribution of

X is FX (x) = (1 − PX) · 1I {0 ≤ x < 1} + 1I {1 ≤ x}, while the resulting distribution of

X after the increase t is F ∗
X,t(x) = (1 − PX − t) · 1I {0 ≤ x < 1} + 1I {1 ≤ x}. Since X is

a dummy variable, we have

FY (y) = FY |X (y|1) · PX + FY |X (y|0) · (1 − PX) ,
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while the counterfactual distribution F ∗
Y,t of Y is

F ∗
Y,t (y) = FY |X (y|1) · (PX + t) + FY |X (y|0) · (1 − PX − t)

= FY (y) + t ·
[
FY |X (y|1) − FY |X (y|0)

]
.

We define GY (y) as

GY (y) ≡ FY |X (y|1) − FY |X (y|0) + FY (y).

Therefore

F ∗
Y,t (y) = FY (y) + t · [GY (y)− FY (y)]

= FY,t·GY
(y).

Now, note that

GY (y) = FY |X (y|1) − FY |X (y|0) + FY |X (y|0) · (1 − PX) + FY |X (y|1) · PX

= FY |X (y|1) · P ∗
X + FY |X (y|0) · (1 − P ∗

X)

where

P ∗
X = 1 + PX

and we define

GX (x) ≡ (1 − P ∗
X) · 1I {0 ≤ x < 1} + 1I {1 ≤ x} .

By the definition, the marginal effect is

αD(ν) ≡ lim
t↓0

ν
(
F ∗

Y,t

)
− ν(FY )

t

= lim
t↓0

ν (FY,t·GY
) − ν(FY )

t
.

Using Theorem 1, and the fact that

d (GX − FX) (x) = (P ∗
X − PX) · 1I {0 ≤ x < 1} + (1 − P ∗

X − (1 − PX)) · 1I {1 ≤ x} ,
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it follows that

αD(ν) =

∫
E [RIF(Y ; ν)|X = x] · d (GX − FX) (x)

= E [RIF(Y ; ν)|X = 1] · (P ∗
X − PX)

+E [RIF(Y ; ν)|X = 0] · (1 − P ∗
X − (1 − PX))

= E [RIF(Y ; ν)|X = 1] − E [RIF(Y ; ν)|X = 0]

�
Proof of Proposition 1:

i) Starting from equation (17)

UQPE (τ ) = − 1

fY (qτ)
·
∫
dPr [Y ≤ qτ |X = x]

dx
· dFX (x) ,

and assuming that the structural form Y = h(X, ε) is monotonic in ε, so that ετ (x) =

h−1 (x, qτ), we can write

Pr [Y ≤ qτ |X = x] = Pr [ε ≤ ετ(X)|X = x]

= Fε|X (ετ (x) ;x) = Fε (ετ (x)) .

Taking the derivative with respect to x, we get

d
Pr [Y ≤ qτ |X = x]

dx
= fε (ετ (x)) · ∂h

−1 (x, qτ)

∂x
.

Define

H (x, ετ (x) , qτ) = h (x, ετ (x)) − qτ .

It follows that

∂h−1 (x, qτ)

∂x
=

∂ετ (x)

∂x
= − ∂H (x, ετ , qτ) /∂x

∂H (x, ετ , qτ) /∂ετ

= − ∂h (x, ετ) /∂x

∂h (x, ετ ) /∂ετ
= −∂h (x, ετ)

∂x
·
(
∂h (x, ε)

∂ε
|ε=ετ

)−1

.

Similarly
∂h−1 (x, qτ)

∂qτ
= −∂H (x, ετ , qτ) /∂qτ

∂H (x, ετ , qτ ) /∂ετ
=

(
∂h (x, ε)

∂ε
|ε=ετ

)−1

.
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Hence:

fY |X (qτ ;x) = d
Pr [Y ≤ qτ |X = x]

dqτ
= d

Fε (h−1 (x, qτ))

dqτ

= fε (ετ (x)) · ∂h
−1 (x, qτ)

∂qτ

=

(
∂h (x, ε)

∂ε
|ε=ετ

)−1

· fε (ετ (x)) .

Substituting in these expressions yields

UQPE (τ) = − (fY (qτ))
−1 ·

∫
d
Pr [Y ≤ qτ |X = x]

dx
· dFX (x)

= (fY (qτ))
−1 ·

∫ (
fε (ετ (x)) · ∂h (x, ετ )

∂x
·
(
∂h (x, ε)

∂ε
|ε=ετ

)−1
)

· dFX (x)

= (fY (qτ))
−1 · E

[
fY |X (qτ |X) · ∂h (X, ετ (X))

∂x

]

= E

[
fY |X (qτ |X)

fY (qτ )
· ∂h (X, ετ(X))

∂x

]

= E

[
ωτ (X) · ∂h (X, ετ (X))

∂x

]
.

�
ii) The CQPE can be defined as

CQPE (τ, x) = d
Qτ [Y |X = x]

dx

where τ denote the quantile of the conditional distribution: τ = Pr [Y ≤ Qτ [Y |X = x] |X = x] .

Since Y = h(X, ε) is monotonic in ε

τ = Pr [Y ≤ Qτ [Y |X = x] |X = x]

= Pr
[
ε ≤ h−1 (X,Qτ [Y |X = x]) |X = x

]

= Fε

(
h−1 (x,Qτ [Y |X = x])

)
.
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Thus, by the implicit function theorem

CQPE (τ , x) = d
Qτ [Y |X = x]

dx

= −fε (h−1 (x,Qτ [Y |X = x])) · ∂h−1 (x,Qτ [Y |X = x]) /∂x

fε (h−1 (x,Qτ [Y |X = x])) · ∂h−1 (x, q)/∂q|q=Qτ [Y |X=x]

= −
(
−∂h

(
x, h−1 (x,Qτ [Y |X = x])

)
/∂x

)

·
(
∂h (x, ε)

∂ε
|ε=h−1(x,Qτ [Y |X=x])

)−1

/

(
∂h (x, ε)

∂ε
|ε=h−1(x,Qτ [Y |X=x])

)−1

=
∂h (x, h−1 (x,Qτ [Y |X = x]))

∂x
,

and

CQPE (τ , x) = d
Qτ [Y |X = x]

dx
=
∂h (x, h−1 (x,Qτ [Y |X = x]))

∂x
.

Using the matching function ζτ (x) ≡ {s : Qs [Y |X = x] = qτ}, we can write CQPE (s, x)

for the s-th conditional quantile at a fixed x (Qs [Y |X = x]) that equals (matches) the

τ -th unconditional quantile (qτ) as:

CQPE (s, x) = CQPE (ζτ (x), x)

=
∂h (x, h−1 (x,Qs [Y |X = x]))

∂x

=
∂h (x, h−1 (x, qτ))

∂x

=
∂h (X, ετ (X))

∂x
.

Therefore

UQPE (τ ) = E

[
ωτ (X) · ∂h (X, ετ (X))

∂x

]

= E [ωτ (X) · CQPE (ζτ(X),X)].

�

Example: The variance. We now consider the expression for the variance of Y when

we allow for a small change in the probability PX . Using the well known analysis of

variance formula we can write
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V [Y ] = PX · V [Y |X = 1] + (1 − PX) · V [Y |X = 0]

+PX · (1 − PX) · (E [Y |X = 1] − E [Y |X = 0])2 ,

where V [·] is the variance operator. The total effect of a change ∆PX on the variance is

∆V [Y ] = ∆PX ·
[
(V [Y |X = 1] − V [Y |X = 0]) + (1 − 2PX ) · (E [Y |X = 1]

−E [Y |X = 0])2
]
− (∆PX)2 · (E [Y |X = 1] −E [Y |X = 0])2 . (A-1)

For an infinitesimal change in PX , the derivative of V [Y ] with respect to PX is

dV [Y ]

dPX

= V [Y |X = 1]−V [Y |X = 0]+(1−2PX ) · (E [Y |X = 1] − E [Y |X = 0])2 (A-2)

which corresponds to the term multiplying ∆PX in equation A-1. Thus, of course, when

∆PX = 1, equation A-2 will be exactly the first order approximation. We now check that

this result matches the one of Corollary 3. In order to do that, we use the definition of

RIF(Y ;σ2) = (Y − µ)
2
+ σ2, where σ2 = V [Y ] and µ = E [Y ]

E[RIF(Y ;σ2)|X = 1] − E
[
RIF(Y ;σ2)|X = 0

]

= E
[
(Y − µ)2 |X = 1

]
− E

[
(Y − µ)2 |X = 0

]

= E
[
(Y − E [Y |X = 1] + (E [Y |X = 1] − µ))2 |X = 1

]

−E
[
(Y − E [Y |X = 0] + (E [Y |X = 0] − µ))

2 |X = 0
]

= E
[
(Y − E [Y |X = 1])2 |X = 1

]
+ (E [Y |X = 1] − µ)2

−E
[
(Y − E [Y |X = 0])2 |X = 0

]
− (E [Y |X = 0] − µ)2

= V [Y |X = 1] + (1 − PX)2 · (E [Y |X = 1] − E [Y |X = 0])2

−V [Y |X = 0] − P 2
X · (E [Y |X = 1] −E [Y |X = 0])2

= V [Y |X = 1] − V [Y |X = 0] + (1 − 2PX) · (E [Y |X = 1] − E [Y |X = 0])2 .

�
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    Table 1: Comparing  OLS, Conditional Quantile Regressions (CQR) and Unconditional  
            Quantile Regressions (UQR), Birthweight Model (Koenker and Hallock, 2001)

OLS 10th centile 50th centile 90th centile
UQR CQR UQR CQR UQR CQR

Boy 108.867 64.126 67.749 120.147 118.872 143.710 134.691
(2.418) (4.827) (4.625) (2.688) (3.613) (3.932) (3.613)

Married 60.426 85.505 75.129 52.064 51.584 48.923 52.510
(3.250) (7.113) (6.345) (3.624) (3.461) (4.850) (4.841)

Black -198.931 -281.568 -238.387 -173.713 -174.072 -133.556 -164.536
(3.577) (8.623) (6.852) (3.922) (3.810) (4.828) (5.365)

Mother's Age 36.392 50.536 44.713 34.857 32.150 29.132 32.643
(1.996) (4.300) (3.848) (2.205) (2.125) (3.196) (3.002)

Mother's Age2 -0.547 -0.888 -0.762 -0.505 -0.461 -0.350 -0.416
(0.035) (0.074) (0.067) (0.038) (0.037) (0.057) (0.052)

Mother's Education
High school 15.140 24.038 13.805 15.767 13.293 5.226 15.855

(3.757) (8.374) (7.191) (4.135) (4.001) (5.454) (5.617)
Some college 31.210 50.088 33.061 33.268 30.690 15.396 24.522

(4.187) (8.918) (8.034) (4.645) (4.459) (6.426) (6.292)
College 36.648 61.596 53.715 42.736 35.970 17.153 14.290

(4.508) (9.216) (8.695) (5.015) (4.801) (7.284) (6.785)
No Prenatal -183.742 -386.957 -309.842 -111.221 -145.072 -10.767 -83.174

(13.585) (39.048) (25.887) (13.439) (14.464) (17.191) (20.274)
Prenatal Second 12.047 20.675 18.339 0.836 -0.062 12.847 7.202

(3.772) (8.109) (7.239) (4.167) (4.017) (5.778) (5.657)
Prenatal Third 30.605 60.692 68.382 -5.581 -0.659 -13.023 -9.816

(8.305) (18.131) (15.928) (9.119) (8.844) (11.433) (12.394)
Smoker -167.933 -205.904 -164.017 -166.276 -167.468 -136.094 -169.148

(6.288) (15.516) (11.819) (6.756) (6.696) (7.737) (9.687)
Cigarettes -3.695 -6.742 -4.796 -3.478 -3.581 -2.747 -3.169
 per day (0.447) (1.155) (0.829) (0.476) (0.476) (0.513) (0.701)
Mother's Weight 10.158 19.044 21.184 5.934 5.978 0.801 1.125
 Gain (0.303) (0.666) (0.568) (0.345) (0.323) (0.530) (0.447)
Mother's Weight -0.019 -0.123 -0.146 0.020 0.024 0.102 0.008
 Gain2 (0.000) (0.008) (0.008) (0.005) (0.005) (0.008) (0.006)
Constant 2447.741 1545.573 1583.787 2574.531 2600.281 3305.305 3216.766

(27.808) (60.725) (53.727) (30.620) (29.611) (43.567) (41.686)



      Table 2: Comparing OLS, Conditional Quantile Regressions (CQR) and Unconditional 
                        Quantile Regressions (UQR), 1983-85 CPS data men

OLS 10th centile 50th centile 90th centile
UQR CQR UQR CQR UQR CQR

Union coverage 0.179 0.198 0.288 0.349 0.195 -0.137 0.088
(0.002) (0.002) (0.003) (0.003) (0.002) (0.004) (0.004)

Non-white -0.134 -0.118 -0.139 -0.169 -0.134 -0.101 -0.120
(0.003) (0.005) (0.004) (0.004) (0.003) (0.005) (0.005)

Married 0.140 0.197 0.166 0.162 0.146 0.044 0.089
(0.002) (0.003) (0.003) (0.004) (0.002) (0.004) (0.004)

Education
Elementary -0.351 -0.311 -0.279 -0.469 -0.374 -0.244 -0.357

(0.004) (0.008) (0.006) (0.006) (0.004) (0.005) (0.007)
HS Dropout -0.19 -0.349 -0.127 -0.202 -0.205 -0.069 -0.227

(0.003) (0.006) (0.004) (0.004) (0.003) (0.004) (0.005)
Some college 0.133 0.059 0.058 0.185 0.133 0.156 0.172

(0.002) (0.004) (0.003) (0.004) (0.003) (0.005) (0.004)
College 0.406 0.199 0.252 0.481 0.414 0.592 0.548

(0.003) (0.004) (0.004) (0.005) (0.003) (0.008) (0.005)
Post-graduate 0.478 0.140 0.287 0.541 0.482 0.859 0.668

(0.004) (0.004) (0.004) (0.005) (0.003) (0.010) (0.005)
Experience
0-4 -0.545 -0.599 -0.333 -0.641 -0.596 -0.454 -0.650

(0.004) (0.007) (0.005) (0.006) (0.004) (0.008) (0.007)
5-9 -0.267 -0.082 -0.191 -0.36 -0.279 -0.377 -0.319

(0.004) (0.005) (0.005) (0.006) (0.004) (0.008) (0.006)
10-14 -0.149 -0.04 -0.098 -0.185 -0.152 -0.257 -0.188

(0.004) (0.004) (0.005) (0.006) (0.004) (0.009) (0.006)
15-19 -0.056 -0.024 -0.031 -0.069 -0.06 -0.094 -0.077

(0.004) (0.004) (0.005) (0.006) (0.004) (0.009) (0.007)
25-29 0.028 0.001 0.001 0.034 0.029 0.063 0.038

(0.004) (0.005) (0.006) (0.007) (0.005) (0.011) (0.007)
30-34 0.034 0.004 -0.007 0.038 0.033 0.063 0.064

(0.004) (0.005) (0.006) (0.007) (0.005) (0.011) (0.008)
35-39 0.042 0.021 -0.014 0.041 0.043 0.073 0.095

(0.005) (0.005) (0.006) (0.007) (0.005) (0.011) (0.008)
40+ 0.005 0.042 -0.066 0.002 0.017 -0.030 0.061

(0.005) (0.006) (0.007) (0.007) (0.005) (0.010) (0.008)
Constant 1.742 0.970 1.145 1.732 1.744 2.512 2.332

(0.004) (0.005) (0.005) (0.006) (0.004) (0.008) (0.006)



Figure 1. Unconditional and Conditional Quantile Regressions Estimates 
for the Birthweight Model 
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Figure 2. Unconditional and Conditional Quantile Estimates for the Log Wages Model, 
 Men 1983-1985 
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 Figure 3. Sensitivity of Unconditional Estimates for the Log Wages Model,  
Men 1983-1985 
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Figure 4: Approximation error (relative to reweighting) when predicting the effect of   
changes in the unionization rate using the unconditional quantile regression  
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Figure A1. Probability Density Functions of Birthweight 
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Figure A2. Probability Density Functions of Log Wages, 
Men 1983-85 
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