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ABSTRACT. Does volatility reflect a continuous reaction to past shocks or changbde imarkets induce
shifts in the volatility dynamics? In this paper, we provide empirical evidéimaecumulated price variations
convey meaningful information about multiple regimes in the realized volatfitstocks, where large falls
(rises) in prices are linked to persistent regimes of high (low) varians®uk returns. Incorporating past cu-
mulated daily returns as a explanatory variable in a flexible and systematinesr framework, we estimate
that falls of different magnitudes over less than two months are asabeiétevolatility levels 20% and 60%
higher than the average of periods with stable or rising prices. We shavwhteaffect accounts for large
empirical values of long memory parameter estimates. Finally, we antdigz¢he proposed model signifi-
cantly improves out of sample performance in relation to standard metfidds result is more pronounced
in periods of high volatility.
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1. INTRODUCTION

Does stock return volatility reflect a long-lived reaction to past shocksroctural breaks induce shifts
in the volatility dynamics? Long range dependence (highly persistent auttattons) is a well docu-
mented stylized fact of the volatility of financial time series. This effect watdimalyzed by Taylor (1986)
for absolute values of stock returns. Ding, Granger, and Engle jE88de Lima and Crato (1993) con-
sidered powers of returns. More recently, Andersen, Bollerslewpdlie and Ebens (2001) studied the
case of realized volatility Even though the traditional GARCH (Generalized Autoregressive i@ondl

!Realized variance is defined as the sum of squared intraday returpkedeaana sufficiently high frequency, consistently approx-
imating the integrated variance over the fixed interval where the obsersatie summed. Realized volatility is the squared-root
of the realized variance. In practice, high frequency measureataminated by microstructure noise such as bid-ask bounce,
asynchronous trading, infrequent trading, price discretenessyguotbers; see Biais, Glosten, and Spatt (2005). Ignoring the
remaining measurement error, tleis postvolatility measure can modeled as an “observable” variable, in contralsettatent
variable models. See Andersen, Bollerslev, Diebold, and Labys j20@BBarndorff-Nielsen and Shephard (2002) for the theo-
retical foundations of realized volatility. Several recent papers heygoged corrections to estimation of RV in order to take the
microstructure noise into account; see McAleer and Medeiros (in pi@sa)review. In this paper we refer to realized volatility
as a consistent estimator of the squared root of the integrated variance.
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Heteroscedasticity) models of Engle (1982) and Bollerslev (1986) &a¢@bescribe the recurrent clusters
in volatility, the short run dynamics of those models were shown to be an inctengdscription of the
data. Volatility breeds volatility; but then could volatility today reflect a partidulaolatile week a year
ago? How do markets keep the memory of past movements?

Modeling the long range dependence in the volatility of stocks and foreighagge rates is among
one the greatest empirical successes of fractionally integrated modeRatie (1996) for an exposition.
Fractionally integrated processegd), where0 < d < 1) can be seen as a halfway paradigm between
the short memory ((0)) process and the infinite memory(()) alternative. Long memory processes
are able to engender hyperbolic patterns in autocorrelations, as vamifiredny empirical applications.
Although no theoretical foundation has been developed to substantiatenthenkmory specification or
elucidate the high persistence from past sho€kg) processes emerged as a consonant description of the
data generating process of volatility series, becoming the standard epgovanodeling and forecasting
realized volatility (Andersen, Bollerslev, Diebold, and Labys 2003). lyEarodels that account for the
long memory in volatility are the Fractionally Integrated GARCH (FIGARCH) mguteposed by Baillie,
Bollerslev, and Mikkelsen (1996) and the long memory stochastic volatility (YM8odel discussed in
Comte and Renault (1996) and Breidt, Crato, and de Lima (1998).

More recently, new theoretical results clarified how long memory propeategot distinctive of frac-
tionally integrated models. Diebold and Inoue (2001) showed analyticallgtbehastic regime switching
is easily confused with long memory, even in large samples, as long as onlyllaasmeant of regime
switches occurs in a observed sample path. Granger and Hyung @@®4&d that occasional structural
breaks generate slowly decaying autocorrelations and other propeftiéd) processes. Simulation re-
sults in both papers underline the relevance of those results in empiridizicdioms; see also Mikosch and
Starica (2004) and Hillebrand (2005).

However, the empirical question revealed itself elusive. While the new literkindled a debate around
the possibility that the long memory observed in the volatility of stocks and egehartes is spurious, em-
pirical studies evaluated that structural breaks cannot fully accouttié¢ degree of persistence in the data.
This suggests that both long memory and structural changes can deberibelatility of asset returns
(Lobato and Savin 1998, Martens, van Dijk, and de Pooter 2004, BelirattMorana 2006, Morana and
Beltratti 2004, Hyung and Franses 2002). Nevertheless, the estimat&truofural breaks mirrors the
original difficulty: Fractional integration also biases common structuradks@&etection methodologies,
such as the one derived by Bai (1997), towards the detection of sigusi@aks. Moreover, no satisfac-
tory answers emerged from statistical hypothesis tests, which requireslistically large samples; see
Ohanissian, Russell, and Tsay (2004).

In this paper, we propose a new empirical approach related to the hgpothfestructural changes
and regime switches. We inquire hastianges in the marketsffect volatility. We provide empirical
evidence that long-term price variations convey meaningful informati@utaimultiple regimes in the
realized volatility of stocks, where large falls (rises) in prices are linkeetsigtent regimes of high (low)
variance in stock returns. What happens for instance if returns Wghtl\ positive in previous months
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and then prices plummet in the next? From the asymmetric effects literature, itsvis khat negative
returns are related to subsequent increases in volatility. Econometric mmadisas Nelson (1991)’s
Exponential GARCH (EGARCH) and the GJR-GARCH of Glosten, Jagdanaand Runkle (1993) have
been proposed to capture this effect. Nevertheless, the literature feetfiaed almost exclusively on the
relation observed over one or few days. For example, Andersenr8lelleDiebold, and Ebens (2001) ran
a regression with a lagged negative return dummy and conclude that thengicdampact of the leverage
effect on the realized variance of stocks belonging to the Dow Jonesthl Average Index (DJIA)
is marginal. An exception is Bollerslev, Litvinova, and Tauchen (2005) examined evidence on the
negative correlation between stock market movements and stock markdttyaaer intraday sampling
frequencies. The authors show that a sharp decline in the market fiverrainute interval is typically
associated with a rise in market volatility that persists for up to several digyglze initial shock.

Focusing on realized volatility (RV) series of sixteen Dow Jones Indugtviatage (DJIA) stocks over
the period from 1994 to 2003, we consider the following questions: Atatility levels the same in
periods of significant losses for investors like the end of 2002 (the Ddakhed a 4 year bottom) and
periods like the year 2003 (the DJIA went up 25%)? Can negative setwmear some horizon be associated
with regimes of higher volatility? We pursue the argument by incorporatingcpasulated daily returns in
the modeling framework of volatility series. If price variations matter, whatte@enagnitudes that can be
associated to regime switching behavior? What are the relevant horiZortsekle these considerations,
our econometric strategy is developed around a flexible and systematic ngodigdle based on the tree-
structured smooth transition regression model (STR-Tree) of da Reéga,\and Medeiros (2003) and
Medeiros, da Rosa, and Veiga (2005).

Our main result shows that the effect of falls and rises in prices on volatilityfect highly significant
and accounts for the high fractional differencing parameter estimates,ie\samples spanning several
years. For example, we show that the daily volatility series of the IBM statkealescribed by a nonlinear
model where falls of different magnitudes over less than two months aveiated with volatility levels
20% and 60% higher than the average of periods with stable or rising pig&sed on those findings,
we propose a hew model to describe and forecast realized volatility. \&thvpared with alternative
specifications with short and long memory, the model proposed in this pagea Buperior forecasting
performance, which is even more pronounced in periods of high volatilitgodel that allow for smoothly
changing parameters across time (in order to capture possible strucaatespis also estimated. However,
the regime switching mechanism controlled by past cumulated returns turttslmustatistically superior.
The results are uniform across 15 of the 16 series considered in thas pap

Other economic connections to long memory and regime switching in volatility hase f®posed
before. Beltratti and Morana (2006) found a close association betstegrtural breaks in stock market
volatility and structural breaks in the volatility of macroeconomic variables sischil growth and the
Federal Funds rate, relating the observed evidence to monetary palitjoreto the state of the business
cycle. Previously, Hamilton and Susmel (1994) analyzed that the conditiariance process of the US
stock market can be described by a switching regime model with three petsitites, where the high



4 M. SCHARTH AND M. C. MEDEIROS

volatility state is prompted by general business downturn. Kim and Kim (1886 suggested that the
switch to the more turbulent state may be caused by higher variance in anfgabicent of the returns, in-
stead of fundamentals. In the context of fractional integration, Andexsd Bollerslev (1997) demonstrate
that by interpreting the volatility as a mixture of numerous heterogeneousrsimoinformation arrivals,
the observed volatility process may exhibit long-run dependence.

Our objective is therefore to bring the stylized fact in volatility into a more medunimgnpirical frame-
work. If we can relate structural changes to our candidate variablesdbeometric issue of spurious
structural change detection looses importance. We highlight the importétigs aspect by reporting evi-
dence that long memory processes are at least an incomplete descrifttiervolatility process of stocks,
where weak in-sample performance seems to be closely related to the enigitieadf the excessive vari-
ation in estimates of the fractional differencing parameter through time, &icstrdented by Granger and
Ding (1996).

On the pragmatical side, the advantage of our approach is that an eodsginancial variable is
potentially a much more useful bridge to risk management and option pricingonimast to ARFIMA
(Autoregressive Fractionally Integrated Moving Average) or strattareaks models, our modeling makes
it possible to use estimated relations to project future volatility scenarios. i€3lem Russell, and Tsay
(2004) showed the relevance of this aspect by simulating different mattelong memory properties as
“true” data generating processes and breaking down the consegfenoption pricing. They documented
significant pricing errors from missteps in the long memory specification.

The rest of the paper is structured as follows. Section two briefly dissubg tree-structured smooth
transition regression model describing the inference procedures) moldiéng strategy and estimation. In
Section three, we describe the data, the specification of our model asghpthe estimations for models
with structural breaks and asymmetric effects. The relation between asyimaficts and long memory
is investigated in Section four. Section five contain an analysis of point ahab\at risk forecasting
performances. Section six concludes.

2. MODELING FRAMEWORK

In this section, we present the non-linear econometric model used in tiee pee discussion of the
tree-structured smooth transition regression (STR-Tree) model is bas#a Rosa, Veiga, and Medeiros
(2003) and Medeiros, da Rosa, and Veiga (2005), where detailsraatsgan be found.

2.1. A Brief Introduction to Regression Trees. Letx; = (z1¢,...,24) € X C R? be a vector which
containsg explanatory variables (covariates or predictor variables) for a canimunivariate response
ye € R, t =1,...,T. Suppose that the relationship betwegmndx; follows a regression model of the
form

(1) yr = f(xt) + &,

where the functiory(-) is unknown and, in principle, there are no assumptions about the distrilmftion
the random ternz;. A regression tree is a nonparametric model based on the recurstit@peng of
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the covariate spack, which approximates the functiofy(-) as a sum of local models, each of which is
determined inK € N different regions (partitions) aX. The model is usually displayed in a graph which
has the format of a binary decision tree with € N parent (or split) nodes anil € N terminal nodes
(also called leaves), and which grows from the root node to the termimksnoUsually, the partitions
are defined by a set of hyperplanes, each of which is orthogonal axthef a given predictor variable,
called thesplit variable The most important reference in regression tree models is the Classifiaation
Regression Trees (CART) approach put forward by Breiman, Friad@kshen, and Stone (1984). In this
context, the local models are just constants.

To mathematically represent a regression-tree model, we introduce theifglowtation. The root
node is at positiord and a parent node at positighgenerates left- and right-child nodes at positions
2j + 1 and2j + 2, respectively. Every parent node has an associated split variahles x;, where
sj € S={1,2,...,q}. Furthermore, lef andT be the sets of indexes of the parent and terminal nodes,
respectively. Then, a tree architecture can be fully determin€ddmdT.

ExamMpPLE 1. Consider a regime switching volatility model that allows for multiple regimes Gatau
with asymmetric effects, where the influence of a negative return on volatilitiyfaext day depends on
the behavior of returns on the past week. Defipgas the cumulated return over a horizon of five days
and r; as the daily return. Suppose the daily volatility, follows a piecewise constant process where
the conditional mean depends on the sign of the return in the previousTtiés/effect itself is weaker on
“good weeks” (or a positive return over the last five days) than on “baabks” (or a negative return over
the last five days), such that = wy +¢e;if ri—y > 0, 04y = wo + &4 if r,—y < 0Oandrs;—; > 0 and

o =wy + e ifry_y <0andrs 1 < 0. & is a white noise, andis > ws > w; are constants. This model
can be described in the regression tree with two parent nodes at positiand 2 (V = 2, J = {0, 2}) and
three leaves or terminal nodes at positions 1,5 ard6= 3, T = {1,5,6}). See Figure 1.

C,=0,+¢, C,=m; +¢,

FIGURE 1. Graphical representation of the volatility model described in Example 1.
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2.2. Tree-Structured Smooth Transition Regression.The STR-Tree model is an extension of the regres-
sion tree model, where the sharp splits are replaced by smooth splits gielogigtic function defined
as
@ Glaiy.0) = —— .

1+ev@=0)

The parametey, called theslope parametercontrols the smoothness of the logistic function. The regres-
sion tree model is nested in the smooth transition specification as a speciabtaised when the slope
parameter approaches infinity. The parameisrcalled thdocation parameter

Definelog(RV;) as the logarithm of the daily realized volatility. In this papleg(RV;) follows an
augmented specification of the STR-Tree model defined as:

DEFINITION 1. Letz; C x4, such thatx; is defined as in (1) and; € R?, p < ¢. The sequence of of
real-valued vectors{zt}tT:1 is stationary and ergodic. S&t = (1,z;)" andw; € R¢ is a vector of linear
regressors, such that; ¢ x;. The time serieglog(RV;) thl follows a a Smooth Transition Regression
Tree model, STR-Tree, if

3 log(RV;) = Hyr(x¢, Wi; ) + &1 = &'wy + ZB;EtBJi (xt;0;) + &
i€T
where
nij(14n 5) g ) (b
(4) By; (x4;0;) = HG(l‘sj,t; Ve E o [1— G(Svsj,t;%'»cj)](l SHnas)
j€l
and

—1 if the path to leafi does not include the parent noge
(5) n;; =40 if the path to leafi includes the right-child node of the parent node
1 if the path to leafi includes the left-child node of the parent ngde

where Hyr (x¢, wi; 1) : RIT! x R? — R is a nonlinear function indexed by the vector of parameters
¥ € ¥ and{e;} is a martingale difference sequence. lgbe the subset qf containing the indexes of
the parent nodes that form the path to léafThen,; is the vector containing all the parameterg., i)
such thatt € J;,7 € T.

The functionsBy; (x¢;0;), 0 < By; (x4;0;) < 1, are know asnembership functionand it is easy to
show that)~, . By; (x¢;0;) = 1, Vx; € RTHL

The parameters of (3) are estimated by nonlinear least-squares (NL&) ishequivalent to quasi-
maximum likelihood estimation. LeY; be the quasi-maximum likelihood estimator (QMLE)wfgiven
by

T T
(6) Tp = argminQr(y) = argminl th(d)) = argmin {1{ Z [log(RV;) — Hyr(x¢, Wy; ¢)}2} .

pew pew T = PYeW p
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Under mild regularity conditions, Medeiros, da Rosa, and Veiga (20@%yesth thatzAp is consistent and
asymptotically normal.

2.3. Growing the Tree. In this section we briefly present the modeling cycle adopted in this paper. Th
choice of relevant variables, the selection of the node to be split (if this satb&), and the selection of the
splitting (or transition) variable are carried out by sequence of Lagrdhgtiplier (LM) tests following the
ideas originally presented in Luukkonen, Saikkonen, and TerasvB&8jlnd vastly used in the literature.

Consider thatog(RV;) follows a STR-Tree model witli leaves and we want to test if the terminal
node:* € T should be split or not. Write the model as

log(RV;) = o'wy + Z Bi7:Byi (x1; 0;)
(7 i€T—{i*}
+ B 112 Byoic 11 (X¢; 0230 1) + By 92t Byai 12 (X¢; 024+ 12) + £,
where
Brais 1 (Xt5 024+ 41) = Byix (%45 05 ) G (24045 i, Cix)
Broi 42 (%43 024+ 42) = Brix (%43 0i+) [1 — G243 7, ¢ )] -
In a more compact form, Equation (7) maybe written as
log(RV;) = o'wy + Z B.z:By; (x¢; 0;)
(8) i€T—{i*}
+ @12 By (X¢; 0+ ) + 9524 Byie (%45 0+) G(@i=t; i, Civ ) + €4,

whereg, = By o ande, = Bo;- 11 — Bojx 4o

In order to test the statistical significance of the split, a convenient nubthggis isHy : v+ = 0
against the alternativ&, : v;+ > 0. An alternative null hypothesis &}, : ¢o = 0. However, it is clear
in (8) that undefH,, the nuisance parametess andc;- can assume different values without changing the
likelihood function, posing an identification problem; see Davies (19777)198

A solution to this problem, proposed in Luukkonen, Saikkonen, and Vieta$1988), is to approximate
the logistic function by a third-order Taylor expansion arogpd= 0. After some algebra we get

log(RV;) = o'wy+ Y BiZByi (x4305) + % Bri- (x4 0;)
i€T—{i*}

9 - -
©) + OéllztBJi* (xt;0ix) Tixt + alzztBJi* (xt;0;+) x?*t
+ agEtBJi* (Xt; 91*) Jj?*t + e,
wheree; = € + paBrix (X430 ) R(2i+45 v, ¢i+) and R(x¢; v+, ¢4+ ) IS the remainder. The parameters
ai, k=0,...,3 are functions of the original parameters of the model.

Thus the null hypothesis becomes

(10) Ho:alzagzagzo.
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UnderHy, R(x;+; vi+, ci+) = 0 ande; = 4, such that the properties of the error process remain unchanged
under the null and thus asymptotic inference can be used. The test statiiEridy:

—1
L I T T T -1 T

~ ~/ ~ ~/ —~ T o~ o o~ ~ o~

(ll) LM = ? E UtlVy E ViV — E Vth; E hthg E htVt E Viug
t=1 t=1 t=1 t=1 t=1 t=1

aHJIT(Xt,Wt;’lP) !

~ ~ T -~ T
Whereut =Yt — HJT(Xta W3 Ilp)! 0-2 = % Zt:l ut21 ht = ) ) and

Ho

o~ —~ —~ /
vy = [EtBJi* (Xt; Oi*) Tixt, Zp B <Xt; 9i*> 7oy, T By (Xt§0i*> xf’*t} .
UnderH,, LM has an asymptotig? distribution withm = 3(p + 1) degrees of freedom.
As the assumption of normal and homoskedastic errors is usually violatedinti@h data, we carry out
a robust version of the LM test, following the results in Wooldridge (1990 test is implemented as as
follows:

(1) Estimate the model witlk regimes. If the sample size is small and the model is thus difficult to
estimate, numerical problems in applying the maximum likelihood algorithm may leadtotena
such that the residual vector is not precisely orthogonal to the gradi@inix of Hyr(x;, wy; 1,7;).

This has an adverse effect on the empirical size of the test. To circuniigproblem, we regress
the residualgi; on ﬁt and compute the sum of squared residusatsR, = Zthl @?. The new
residualsi; are orthogonal tcﬁt.

(2) Regres®; on ﬁt and compute the residuals

(3) Regress a vector of ones &r; and calculate the sum of squared residB&R; .

(4) The value of the test statistic is given by
(12) LM;(’2 =T — SSR;.

Under Hy, LM)’(LQ has an asymptotig? distribution withm degrees of freedom.

3. EMPIRICAL RESULTS

In this section we discuss how different specifications of the STR-Tredehaxrtually describe the
realized volatility series of DJIA stocks. Are there statistically significanicttinal breaks and/or regime
shifts? What are the magnitudes and durations of those regimes? Are theHauges economically
relevant? What do the estimation of structural breaks say about the stokktnmathe period? What
are the in-sample fitting and out-of-sample forecasting properties of thedelsro relation to alternative
models, such as the ARFIMA model?

The empirical analysis focuses on the realized volatility of sixteen Dow Jadestrial Average index
stocks: Alcoa (AA), American International Group (AlG), Boeing (B&aterpillar (CAT), General Elec-
tric (GE), General Motors (GM), Hewlett Packard (HP), IBM, IntaMITIC), Johnson and Johnson (IJNJ),

2See Tedsvirta (1994) and Medeiros, da Rosa, and Veiga (2005) on the tatboinditions for the validity of the test statistic.
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Coca-Cola (KO), Merk (MRK), Microsoft (MSFT), Pfizer (PFE), Wdart (WMT), and Exxon (XON).
The raw intraday data are constituted of tick-by-tick quotes extracted finenNYSE Trade and Quote
(TAQ) database. The period of analysis starts in January 3, 1994 ratsdn December 31, 2003. Trading
days with abnormally small trading volume and volatility caused by the proximitylafdngs (for example,
Good Friday) are excluded, leaving a total of 2541 daily observations.

We start by removing non-standard quotes, computing mid-quote pricegnglygossible errors, and
obtaining one second returns for the 9:30 am to 16:05 p.m. period. Followengesults of Hansen and
Lunde (2006), we adopt tharevious tickmethod for determining prices at precise time marks. Based on
the results of Hasbrouck (1995), who reports a median 92.7% informédiime st the NYSE for Dow
Jones stocks, and Blume and Goldstein (1997), who conclude that NY&Esgmatch or determine the
best displayed quote most of the time, we use NYSE quotes (or NASDA@Qlitwosoft and Intel) if they
are close enough to the time marks in relation to other updates.

In order to estimate our measure of the daily realized volatility, we use the two tiatessestimator
of Zhang, Mykland, and A-Sahalia (2005) with five-minute grids, which is a consistent estimator of the
daily realized volatility. The final dependent variable is the daily logarithm efréalized volatility. We
also consider dummies for the days of the week as in Martens, van Dijk egRdater (2004) and dummies
for the following macroeconomic announcements: Federal Open Madtr(ttee meetings (FOM), The
Employment Situation Report from the Bureau of Labor Statistics (ESR)aG&#PPI.

In Section 3.1 we present the modeling cycle adopted in the empirical experividercarefully discuss
variable selection and model specification. In order to evaluate the beufetits STR-Tree model over
standard models, we conduct an full sample study in Section 3.2, usingoiatd $94 to 2003. The goal
of this analysis is to point out how the STR-Tree models may be useful taildesnteresting stylized
facts of financial time series, such as, long range dependence anchasiyes. We highlight our results
to the particular case of the IBM stock. For all the others 15 stocks thétgeme rather similar and
will be omitted for conciseness. Four versions of the STR-Tree modedsaimated: A pure structural
break model (STR-Tree/SB), where time is the single transition variablesynraetric effects model
(STR-Tree/AE), where past cumulated returns of the stock over eliftérorizons (reflecting “long-run”
dynamics of the market) are the candidates for controlling the regime switaheasymmetric effects
model (STR-Tree/DJIA) where past cumulated returns of the DJIA irdexused as transition variable;
and finally, a combination of structural breaks and asymmetric effects Ni®@&-Tree/AE+SB), where
both time and past cumulated returns are considered as split variableshowetsat the asymmetric
effects model successfully describe the long range dependence inldiiéty of the stocks. Furthermore,
using market returns (DJIA) or firm-specific returns causes no impaodtiiarence in terms of in-sample
performance. In-sample results are compared with the Heterogenousedussive (HAR) model put
forward by Corsi (2004) and the linear ARFIMA model.

In Section 3.3 we conduct an out-of-sample forecasting experimentideoing the last four years of
the sample: From January 3, 2000 to December 31, 2003, coveringg®83 Hach model is re-estimated
daily using the full sample until that date and then used for point and valtskatorecasting for the
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horizons of one, five, ten and 20 days ahead. The specification oTReT8e models is revised monthly.
Point forecasts for the nonlinear models are calculated through condisiomalation, as well as interval
forecasts for all models. For reference, we also include predictiams finear Autoregressive (AR),
GARCH(1,1), and exponentially weighted moving average (EWMA) modelgh Yéspect to the latter,
we take a different approach from the literature and compute an EWMAeofghlized volatility itself.
The STR-Tree/DJIA is not used to compute forecasts over one day alueathe non-availability of the
realized variance series for the index, which is essential in the condigonalation.

3.1. Specification. Following the specific-to-general principle, we start the cycle from tre rode
(depth0). Our general basic linear equation is given by:

log(RV}) =ailog(RVi—1) + - - + ag log(RVi—i) + 01 I[Mon],
(13) + SoI[Tuel; + 83I[Wed)y + 841[Thuly + d5I[Fril; + 86 I[FOMC), + 6;I[EM P),
+ (58[[CPI]t + 59[[PPI],5 + &¢,

whereI[Monl:, I[Tuels, I[Wed):, I[Thul;, andI[F'ri]; are days-of-the-week dummies[FOMC];,
I[EMP);, I|CPI];, andI[PPI]; are dummies indicating dates for the following macroeconomic an-
nouncements: Federal Open Market Committee meetings, the Employment Siteatioth CPI and PPI.
Some authors discuss the relation between macroeconomic announcendgnis@s see, for example,
Barndorff-Nielsen and Shephard (2006) and Huang (2006).

The first step in the modeling cycle is to use equation (13) to select the nufrdagpoegressive lags and
relevant days-of-the-week and announcement effects (varialaiewihbe in w;), rendering the primary
specification that will be contrasted against non-linearity. Autoregre$AiR) coefficients are tested up to
the 15th order. Seeking a parsimonious specification, we base this selattiba Schwarz Information
Criterion (SBIC), which initially selects autoregressive lags 1-3, 5, lalf stocks, keeps the Monday
dummy for some stocks and both the Monday and Friday dummies for othezsSBIITC also selects the
FOMC and EMP announcements. We verified that the inclusion of a movinggeéMA) term could
importantly cut down the number of AR terms, but we choose the less parsinsofi® specification since
the computational burden for estimating an MA coefficient in a nonlinear frameis high and there are
sufficient degrees of freedom. The presence of an MA coefficmrtde justified by the existence of both
persistent and non-persistent components in volatility, such as meastiroissnor jump componerits
We consider the importance of jump components in Section 3.3.3.

The next step is to select the set of variables in vectpiandz;. Over the next sections, the candidate
split variablesz; falls in three cases: Structural breaks (time is the unigue transition variablghmetric
effects (lagged returns and lagged cumulated returns over past tw0 @a¥8), and finally, the combina-
tion of structural breaks and asymmetric effects. A fourth possibility, erdlby Martens, van Dijk, and
de Pooter (2004), is the inclusion of lags of the realized volatility itself as spliables. However, this
particular choice of asymmetry revealed not significant in all cases athlyd each node, the transition
variable is selected as the one that minimizegstivalue of the robust version of the LM test.

3see Andersen, Bollerslev, and Diebold (2005) and Tauchen and(2806).
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The elements of the vectay are selected as a trade-off between parsimony/interpretability and fitting
properties. In the structural break case we include the first two lage ddglarithm of the realized volatil-
ity, such thatz; = (log(RV;_1),log(RV;_2))". In the asymmetric effects model we sgt= (), such that
Z: in Equation 3 is just a constdht

3.2. Structural Breaks, Regime Switches and Long Memory: A Full Samfe Evaluation. We start by
following the recent literature and examining the effects of possible staldiueaks on volatility levels
(see, for example, Granger and Hyung (2004), Martens, van Digl,denPooter (2004), Morana and
Beltratti (2004)). The final estimated model for the case of IBM is given by

log(RV;:) =0.261 log(RV,_ 0.224 log(RV;_ 0.084 log(RV;_
og(RVi) (0.164) og(RVi-1) + (0.078) og(RVi2) + (0.021) og(RVis)
0.074 log( RV, 0.044 log(RV; 0.047 log( RV,
+(0020) og(RV;—5) +( i og(RV;—7) +( i og(RVi—10)
= 0,061 Mon], — 0.0631[Fril, + 0067 [[FOMC], + 0.0941[EM P,

0.005 + 0.261 log(RV;_1) + 0.224 log(RV,
+{(0-048)+(0 164) oB(RVi- 1)+( )Og( t— 2)}

x G| t;13.359, 1.7 4>G<t 7.003 , 3273>
(6.154)  (0.136) (12.716) (0.101)

0 1 RV, 0.156 log( RV,

—l—{(o £ +0 9log(RV;— 1)+( )og( t— 2)}

% G (1:13.359,1.74 4> [ e (t; 7.003,3.273)]
(6.154) " (0.136) (12.716) (0.101)

+ { ).1 4 9log(RVt 1) + ? 03?3 log(RV;— 2)}

X [ <t 13.359, 1. 744)] [ -G <t; 7.003,3.273)] + &
(6.154)  (0.136) (12.716) (0.101)

The final model has 23 estimated parameters. Although it may seem ovegtarad, we stress the
fact that we have a large number of observations. Two breaks are tstin@ne in August 1998 (volatility
and persistence go up; unconditional mean of the daily realized volatility fpo@s1.50% to 2.10%, a
40% increase) and another one in April 2003 (volatility markedly falls; ndit@nal mean goes down
from 2.10% to 1.15%, a 45% decrease). Note that the standard errdrefslope parameter estimates
are quite high. Nevertheless, this is not an indication that the nonlineats#isz not significant. Due to
the identification problem previously discussed in Section 2.3, the distributiothé usual t-statistic is
not standard undékiy : v+ = 0. The LM test is the adequate way to assess the statistical relevance of the
structural changes; see Eitrheim and Terasvirta (1996) for a dieauss

“More general specifications af while statistically significant, brought no important out-of-sample gainsides excessively
increasing the number of estimated parameters and occasionally causiegical problems in the estimation algorithm.
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FIGURE 2. IBM daily log realized volatility (1995-2003) and the transition functions.

Figure 2 contextualize the timing of the breaks, depicting the two estimated trarfgitictions, the log
realized volatility for the period and the evolution of the stock price adjustedifidends for the 1995—
2003 period. The first break coincides exactly with the Russian Crisisd,1#hilst the second one limits
two distinct dynamics for the DJIA: While the index would reach a four yedidm by October 2002, the
following year is a highly positive one for the index, which climbed 25% thiotige period. Figure 2 is
suggestive of other similar relations: There are several clusters of/blgtility associated with periods of
large falls in the stock price, followed by sharp declines in volatility after tligegumps up again. Some
examples are the periods of the October 1997 mini-crash, the RussiantbesiASDAQ bubble burst,
the two clusters the end of 2000/beginning of 2001, the 9/11 period, arnuk#remarket of 2002. The
subsample between the first break and the second one (or the high volatilitd)is marked by greater
incidence of these price decreases. In the next section, we turn attentios specific aspect.

3.2.1. Asymmetric EffectsThe motivation for the estimation of lagged cumulated returns as a source of
multiple regimes in volatility in the STR-Tree model is illustrated in Figure 3, which shibw realized
volatility and monthly returns of IBM and the DJIA index for from 2000 to 2003here seems to be a
recurring pattern of shifts to higher volatility levels related to interludes oatieg returns and reversals

to low volatility levels in positive months. The single exception is the period jusirbehe Nasdaq bubble
burst.

As mentioned before, we estimate two asymmetric effects models: In the firspasecumulated
returns of the stock over different horizons are the candidates faraidting the regime switches (STR-
Tree/AE) and the second one has past cumulated returns of the DJbAdsdeansition variables (STR-
Tree/DJIA).



ASYMMETRIC EFFECTS AND LONG MEMORY IN THE VOLATILITY OF DOW DNES STOCKS 13

60
29 . . . .
Positive returns bring declines in the
ops. T 50
volatility
2.4 —+ 40
NASDAQ —+ 30
1.9 Bubble Burst
= 20
%
° 10
214 2
B o S
N 2
§ oc
o 0.9 10
i=2
S + -20
0.4 T
+ -30
I T -40
High volatility regimes appear Log Realized Volatili 50
. . 1Z {11 T
in more negative months g Realized Volatility
0.6 60
o o w» = P o 17} = o [ %) = I~ = w =
§ § § £ § ¢85 § § &£ g 8 58 5§ § &£ ¢ 58 58§ 5§ £ ¢ ¢
s $ § § § 3§ 5 $ & & g 3 5 $ g g & § 5 S g g g 3
2 & s © 2 3 2 & = = 32 32 2 g & 5 3 2 2 & & © 3 3
s S g & & = g @ § © g8 & g & g g
< s D = = D L8] I D @ I
s 8 2 = S R s
@
30
2.9
2.4 -+ 20
NASDAQ
Bubble Burst

Log Realized Volatility
3 o
=
=
—
=
0
2
=3
=
b
®
- g
= i
o
5

o
IS

—
—
{
=
=
—_—
—|

° Rel:rns

4 20
-0.1

Log Realized Volatility

0.6 -30
o < o < < < o <
§ § 5§ £ § 8 § § 5 £E § 8 § § 5 £E ¢ &8 5§ 5§ 5 £ ¢ 8
2 5§ 2 £ €8 3 2 § 2 £ ¢ 8 2 §8 &8 s 88 § 2 38 & 5 g2 %
cl Z 8 8 g 3 g I 2 2 g 3 S 2 8 8 S 3 cl T 8 8 5 3
< s ° 2 & =< s = 2 g 2= g © 32 & 2 g ° 2 &
s - g & =2 = g £ g8 ° g § g g 2
S 8 S 2 S 8 S 8
S 2 S 3

(b)

FIGURE 3. Panel (a): Realized volatility and monthly IBM returns. Panel (b): Redliz
volatility and monthly DJIA returns.

The estimated tree structure for the first model is shown in Figure 4 and ismile¢el by the sets
T = {1,6,11,23,24} andJ = {0, 2, 5,12}.
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FIGURE 4. Estimated tree for IBM daily log realized volatility.

The final estimated STR-Tree/AE model is given by
log(RV;) =0.386 log(RV;— 0.118 log(RV;— 0.107 log(RV;—
og(FV2) (0.022) og(RV: 1)+(0.023) og(RV: 2)+(0.021) og(RVi-3)

0.091 log( RV, 0.065 log(RV; 0.078 log( RV,
+(0020) og(RV;— 5)+( )Og( i 7)+( )Og( t—10)

— 0.068 I[Monl; — 0.0641[Fril; + 0.068 [[FOMCY; + 0.0921[EM P},
(0.012) (0.014) (0.032) (0.023)

+0.081 x G <r90t 1; 2.000, 0. 541)
(0.013) (1.082)” (0.344)

+ 0.184 x [1 -G <r90t 1; 2.000, 0. 541)] X [1 -G <r39t 1; 2.000, —0. 955)]
(0.030) (1.082) (0.344) (1.018)"  (0.319)

— 0.004 x [1 -G <r90t 1; 2.000, 0. 541)] x G <7“39t 15 2.000, —0. 955)
(0.046) (1.082) (0.344) (1.018)"  (0.319)

x G <r5t 1; 2.000, 0. 479>
(1.794) (0.469)

+0.069 x |1 -G <T9()t 1; 2.000, 0. 541)] x G (ngt 1; 2.000, —0. 955>
(0.044) (1.082)" (0.344) (1.018)  (0.319)

X |1 =G| r5:-1;2.000, 0479)} G(rgt 1;2.423, —1. 091)

(1.794) (0.469) (1.211)  (0.284)

(0.127) (1.082)" (0.344) (1.018)"  (0.319)

X -G

+ 0.447 x G<r90t 15 2.000, 0541>] x G <7“39t 15 2.000, —0. 955)

r5.0-1; 2.000, 0479)} x [1—G(r2t 152.423, —1. 091)] +&

(1.794) (0.469) (1.211)  (0.284)
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Note that the transition variables are divided by their respective stadéaration.

The model is described by five highly statistically significant regimes deterniiynéalir levels of asym-
metric effects. The first node indicates a low volatility regime linked to a rising etankthe horizon of
four months. On the other extreme, a decline of 12% or more over nearly twithsimtroduce a regime
of high variance, while superior returns over this same period bring inthateevolatility levels and short
run leverage effects. Negative returns over two days also induggrag®f high variance. The estimated
transition functions are illustrated in Figure 5.

splitll
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% P 20 o »
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FIGURE 5. Estimated Transition Functions.

Based on the estimated regimes and the transition graphs displayed in Figiereligjde the observa-
tions in five different regimes. We split the observations according to the v the transition functions
(bellow or above 0.5). Table 1 reports the number of observations dngeaap and the respective mean
and standard deviation of the realized volatility. Group one refers to thenadifons associated to the
terminal node number one in Figure 4. Groups two and three include altisgivassociated to the termi-
nal node 11 and 23 (high returns, low volatility), respectively. Grogps &nd five relate to observations
associated to nodes six and 24 (low returns, high volatility).

Concerning the STR-Tree/DJIA and the STR-Tree/SB+AE, the final estnace architectures are

described in Figures 6 and 7.
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TABLE 1. VOLATILITY REGIMES FOR IBM.

Mean and standard deviation of realized volatility for observations divided
by a classification based on the STR-Tree/AE model with lagged cumu-
lated returns as split variables.

Group Mean Standard Deviation Number of Observations

1 1.57 0.54 1264
2 1.71 0.69 494
3 1.76 0.72 368
4 2.39 0.88 96
5 2.46 0.82 254
All 1.75 0.71 2476

99,1 <-6.21

Fagp 2621

FIGURE 6. Estimated tree for IBM log realized volatility with cumulated returns of the
DJIA index as transition variables.

Fope1 2206 5K 10,1 <-2.06

t 2 Nov/96 T390 <-13.04

t 2 Apr/03 7512 -4.59 r5e1 <459

FIGURE 7. Estimated tree for IBM log realized volatility with cumulated returns of and
time as transition variables.

3.2.2. Autoregressive Fractionally Integrated Moving Averadde now turn to the comparison of volatil-
ity models. We start with the standard ARFIMA(, ¢) defined as

(14) dp(L)(1 — L)*(log(RV;) — ) = 04(L)ey,
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whered denotes the fractional differencing parametethe lag operator; is a white noiseg, (L) and
g,(L) are polynomials of ordep andg, having all roots lying outside the unit circle. For each series,
we estimate several ARFIMA(d,q) specifications by maximum likelihood; see Baillie (1996). The best
combination ofp andq is selected by SBIC. The method leads to a choice of an ARFIMIAFD for

all series. Predictions for the ARFIMA@0) model are computed through a truncation of the infinite
autoregressive representation after1h@*" lag. The final estimated model is given by:

0.516
(1— L)<0-057>{ log(RV;) — 0.502 + 0.0591[Mon], + 0.0321[Fri],
(0.009)  (0.019) (0.020)

(15)

— 0.100I[FOMC); — 0.081][EMP]t} =5
(0.045) (0.038)

ARFIMA models have been estimated for realized volatility in Andersen, Béderiebold, and Labys
(2003), Areal and Taylor (2002), Beltratti and Morana (2005), Déarvich, and Lu (2006), Martens, van
Dijk, and de Pooter (2004), Thomakos and Wang (2003), among others.

3.2.3. Heterogenous Autoregressivéhe HAR (Heterogeneous Autoregressive) model proposed by Cors
(2004) is grounded on the Heterogeneous ARCH (HARCH) model deedlby Miller, Dacorogna, Dav,
Olsen, Pictet, and von Weizsacker (1997). It is specified as a multi-cagnpeolatility model with an
additive hierarchical structure, leading to an additive time series modelkeaofetilized volatility which
specifies the volatility as a sum of volatility components over different hosizorhe model has been
used for instance in Andersen, Bollerslev, and Diebold (2005) for iisiason simplicity and capacity to
reproduce the autocorrelation patterns of long memory models over shorizons. Define thé-horizon
normalized realized volatility by

log(RViy1) +log(RViy2) + -+ + log(RV; )

(16) log(RV:)o-n = :

The estimated HAR model is given by:

log(RV;) = — 1.046 + 0.374 log RV;_1 + 0.068 log RV;_9 + 0.247 log(RV});—5
(0.091)  (0.023) (0.026) (0.046)

0.225 log(RVi)s_22 — 0.066I[Mon]; — 0.053I[Fri
(17) +(0.032) og(RV})i—22 0,066 [Mon], 0.053 [Fri],

+ 0.072I[FOMC]; + 0.093I[EM P); + &
(0.029) (0.025)

We add a second order autoregressive term to the typical formulatioa ofddel to account for remaining
autocorrelation in small lags.

3.2.4. Summary and Comparison of Resulf@ble 2 shows summary statistics for the residuals of the four
models, where JB is thevalue of the Jarque-Bera normality te§k(k) indicates thep-value of suitable
tests of serial correlation up to thé" lag (Ljung-Box portmanteau test for the ARFIMA and HAR models
and a LM-type test for the nonlinear models; see a description of the lattegdeikbs and Veiga (2003)),
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andQ(k)? gives thep-value of the same test for the squared residuals. Fhetatistics are corrected
according to Andersen, Bollerslev, and Meddahi (2005).

The table shows that the STR-Tree/AE model has superior in-sample fittimgasured by??2, while
the STR-Tree/DJIA model is the best by the SBIC. The ARFIMA model hasraarkably inferior fitting
performance than the others. All models generate highly skewed and Uetalesiduals, which can be
explained by forty outliers to the right of the distribution.

TheQ(k) statistics by their turn indicate all models with the exception of the ARFIMA modetlea
significant remaining autocorrelation structure in the residuals up t0ffidag at 5%. This could be due
to ignored AR or MA terms in the ARFIMA, but less parsimonious models haea lestimated and none
of them was capable of reverting this result. Finally, there is strong ewidehdependence on squared
residuals, but unlike the results of Beltratti and Morana (2005) for @&xgh rates, there is no indication
whatsoever of long memory on the conditional variance of volatility.



TABLE 2. ESTIMATION DIAGNOSTICS.

The table shows summary statistics for the residuals of six differentisedémated for the log realized volatility of IBM: The STR-
Tree model with lagged cumulated returns as split variables (STR-TEQgeithe STR-Tree model with time as the split variable (STR-
Tree/SB), the STR-Tree model with time and cumulated returns as trangti@bles (STR-Tree/SB+AE), a STR-Tree model with
cumulated returns of the DJIA index as transition variables (STR-Tré&)Dah ARFIMA(0,d,0) model with exogenous variables and
the HAR model. JB is thg-value of the Jarque-Bera normality te§k(k) indicates they-value of adequate tests for serial correlation
up to thek?” lag. Q*(k) gives thep-value of the same tests for the squared residuals. SBIC is the Schv@uméation Criterion. The
R?is corrected as in Andersen, Bollerslev, and Meddahi (2005).

STR-Tree/AE STR-Tree/SB STR-Tree/SB+AE STR-Tree/DJIA  FARA HAR

R? 0.631 0.619 0.624 0.621 0.505 0.610
SD 0.223 0.226 0.225 0.225 0.255 0.229
Skewness 0.697 0.725 0.707 0.736 0.336 0.707
Kurtosis 4.703 4.535 4.780 4.815 4.166 4.503
JB 0.000 0.000 0.000 0.000 0.000 0.000
Q(5) 0.367 0.432 0.382 0.189 0.000 0.637
Q(10) 0.115 0.308 0.157 0.079 0.000 0.275
Q(20) 0.399 0.422 0.432 0.101 0.000 0.530
Q?(10) 0.012 0.001 0.006 0.032 0.000 0.001
Q?(20) 0.032 0.008 0.041 0.086 0.000 0.008
SBIC -2.905 -2.889 -2.918 -2.919 -2.699 -2.918

SHD0LS SANT MOA 40 ALITILVYIOA FHL NI AHOWIN ONOT ANV S103443 DIH1ININASY
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3.2.5. Long Memory AnalysisTo assess the long memory characteristics of the estimated STR-Tree mod-
els for IBM, we run 1000 simulations of alternative models (with the same lergytheasample) and
evaluate estimates of the fractional differencing parameter {Ve also include AR simulations using

the linear parameters of the STR-Tree/AE estimation to emphasize how the aandifects do generate
hyperbolic patterns in autocorrelations beyond the possibly misleading effpersistent autoregressive
structures.

We apply two methods for the estimation of the long memory parameter: The widedylog peri-
odogram estimator (GPH) of Geweke and Porter-Hudak (1983) andabeduiuced estimator of Andrews
and Guggenberger (2003). We employ two values for the number ofatedifiused in each regression:
T'/2, the usual rule of thumb value suggested by Geweke and Porter-HL88R)((simulation-based),
and the value selected by the plug-in method of Hurvich and Deo (199%hwaoints to7%-% for all
series.T is the sample size.

For each set of simulations, we also evaluate the power of the OhanissgselRand Tsay (2004) test
of true long memory process, which is based on the invariance propetitye ddbng memory parameter
over temporal aggregation under the null. Andersen, Bollerslev, Diebaltl Ebens (2001), for example,
examine this property for DJIA stocks as evidence of long memory.

Table 3 reports the mean and standard deviation (in parenthesis) ofd¢tierfe differencing parameter
(d) estimates for the log realized volatility of IBM (entire sample) and over the simaokatidhe first line
of the table reveals that the model with regime switching accounts for a laggeedef long memory, even
in large samples. In line with the literature, the same is also true for the model witttsal breaks.
The table also shows that the Ohanissian, Russell, and Tsay (2004 pebttle power against these
alternatives. For the log realized volatility series the test does not rejecuthigypothesis, albeit sensibly
to the specificationf(and the number of aggregations) and the sample itself. For instance, ifsthedizk
is removed from the sample, the test rejects the null of long memory at the 5% léviortunately, the
test can almost always be tailored to favor one of the alternatives.

Initially documented by Granger and Ding (1996), an important issue with REIMA approach is
the excessive variance of the fractional differencing parameter essiroaé time, possibly involving
extensive periods in non-stationary regions. This problem is illustratedgurd-8, which shows the
evolution of GPH estimateg & 7°:5°) in a rolling window of three years over our sample. The estimates
range from around 0.3 to 0.8.

An interesting feature of the STR-Tree/AE model is that it can possiblywstdor this fact. We il-
lustrate this through a partial simulation of the model using the actual retues sertransition variables,
dividing the sample by the first estimated break in model STR-Tree/SB. Ewaighhthis simulation is
ad hocand tends to underestimate the capacity of the model of generate persisteatgelations, it can
provide an useful indication of this ability. Table 4 shows the results, inauthie estimate for the log
realized volatility series. As suggested by Figure 8, all estimates for the &tigeé volatility point to a
significantly lower estimative for the first part of sample. In fact, this is the@®of the weak in-sample
performance of the ARFIMA model analyzed in section 3.2.4 — the Hightimate for the overall series
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TABLE 3. LOG-PERIODOGRAM ESTIMATES - SIMULATIONS AND LOG REALIZED VOLATILITY .

The table reports the mean and standard deviation (in parenthesis) @fdtierfal differencing
parameterd) estimates for IBM daily log realized volatility and over 1000 simulations ofghre
models: The STR-Tree model with lagged cumulated returns as spliblesi¢STR-Tree/AE),
the STR-Tree model with time as the split variable (STR-Tree/SB), and Bhenédel. GPH
and AG stand for the Geweke and Porter-Hudak (1983) and AndmevSaggenberger (2003)
estimators, respectively. The number of ordinates used in eactssagres indicated in the
first row. Two values for this parameter are employed: 0.5, the usimlof thumb for the
GPH, and 0.65, selected by the plug-in method of Hurvich and Deo J19% last column
gives the results for the Ohanissian, Russell, and Tsay (2004) test ofuthof a true long
memory process: The first three numbers indicate the percentagewdfsons where the
null is rejected at the 5% level, while the last line indicatespthalue of the test for the Log
Realized Volatility of IBM.

Model (=T095 L =T096 =197

GPH AG GPH AG LMT

STR-Tree/AE 0.48 0.30 0.60 0.44 33.8%
(0.15) (0.25) (0.08) (0.17)

STR-Tree/SB 0.42 0.51 0.50 0.42 25.5%
(0.08) (0.12) (0.04) (0.09)

AR 0.14 0.02 0.38 0.11 94.5%
(0.11) (0.16) (0.05) (0.11)

Log Realized Vol  0.60 0.35 0.46 0.59 0.556
(0.10) (0.17) (0.05) (0.10)

2.5 0.9

GPH estimate

a=0.65, SD = 0.082 | |t 08

o

T+ 0.7

+ 0.6

o
2]

+ 0.5

Log Realized Volatility
GPH Estimate (3 years rolling window)

1+ 0.4

+ 0.3

FIGURE 8. GPH Estimates in a Rolling Window.

produce large errors in the first subsample as well as dependencerasitheals (which are also induced
by the period of the second break). Back to the table, although avestiggges for the partial simulations
are lower than the ones in the nonstationary region for the realized volatilitg isebond subsample, the
model in fact seems to be able to reproduce this behavior.

3.3. Forecasting Analysis. We base the out-of-sample analysis on the four last years of the sanmgle, ra
ing from January 3, 2000 to December 31, 2003, covering 983 dagsh Eodel is re-estimated daily



22 M. SCHARTH AND M. C. MEDEIROS

TABLE 4. LOG-PERIODOGRAM ESTIMATES - PARTIAL SIMULATIONS AND LOG RE-
ALIZED VOLATILITY .

The table reports the mean and standard deviation (in parenthesis) ahttierfal differencing
parameterd) estimates of two subsamples of the daily log realized volatility of IBM and &0
(partial) simulations of two models: the STR-Tree model with lagged cuntiiaiirns as split
variables (STR-Tree/AE) and the STR-Tree model with time as the spidblar(STR-Tree/SB).
GPH and AG stand for the Geweke and Porter-Hudak (1983) and Asdned Guggenberger (2003)
estimators, respectively.

Jan/1994 to Aug/1998  GPH =17"7) GPH({=T"%) AG ({=T"%)

STR-Tree Partial Simulation 0.33 0.52 0.29
(0.13) (0.07) (0.14)

Log Realized Vol 0.34 0.29 0.36
(0.13) (0.07) (0.14)

Sep/1998 to Dec/2003 GPH =T%5) GPH({=T°%) AG (¢ =T°%)

STR-Tree Partial Simulation 0.46 0.60 0.43
(0.11) (0.06) (0.12)

Log Realized Vol 0.65 0.66 0.74

(0.12) (0.07) (0.14)

using the full sample until that date and then used for point and value dbriskasting for the horizons
of one, five, ten and 20 days ahead. The specification of the STRaTodels is revised monthly. Point
forecasts for the nonlinear models are calculated through conditional siomilas well as interval fore-
casts for all models. For reference, we also include predictions geddrga GARCH(1,1) model and an
exponentially weighted moving average (EWMA). With respect to the lattetakesa different approach
from the literature and compute an EWMA of the realized volatility with decaymater set to 0.8.

3.3.1. Point Forecasts.The point forecasts results are reported in Tables 5. The evaluationeaiits is
based on the mean absolute error (MAE) criterion and the estimation of theMdagcnowitz regression

RV =a+ ﬁﬁ‘\/ﬂt—l,i + et

whereRYV; is the observed realized volatility on daandl/%?/t‘t_l,i is the one-step-ahead forecast of model
1 for the volatility on dayt. If the modeli is correctly specified thea = 0 and = 1. We compute the
(robust)p-value of the F test for this joint hypothesis and report the (corred@d)f the regression as a
measure of the ability of the model to track variance over time. However, dsepce of heteroskedasticity
hinders the computation of appropriate statistics for five, ten, and 20 days.

We also report two tests for superior predictive ability. The first one isHaevey, Leybourne, and
Newbold (1997) modification of the Diebold and Mariano (1995) test ofkptedictive accuracy. Each
concurrent model is compared against the ARFIMA model.d(et;) andg(es;) denote the loss function
for the prediction errors;; andey; of models 1 and 2 on day For the MAE,g(e;t) =‘RV2 — f/ﬂ\/t\t_j,i

— 2
and for theR?, g(e;) =[RVt - RVt‘t_jjz} . The null hypothesis i&[g(e1;) — g(ea:)] = 0.
The second test is the Superior Predictive Ability (SPA) test developdddmgen (2005). The null
hypothesis is that a given model is not inferior to any other competing modésrivs of a given loss
function.
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For one day-ahead forecasts, the STR-Tree/AE models are sugelativin terms of MAE andz?,
significantly outperforming the ARFIMA model (with errors 5% smaller on age)) and being the only
ones not rejected by the SPA tests. In the sequence, there is little distinctioeebethe ARFIMA, AR
and HAR models in terms ak?, while the last two are slightly better in terms of MAE (the differences
are significant at 10% and 5% respectively). The model with structuealds is markedly inferior to those
alternatives. The superiority of the model with asymmetric effects in terms dA&teis reproduced in all
stocks. When thé? is considered the STR-Tree/AE model is superior in 12 series (80%)ARREMA,
HAR and EWMA models alternate as the second best in ternf& pivhile the HAR specification has an
edge in terms of the MAE; see also Table 8.

The advantage of the STR-Tree/AE model in in terms of the MAE is presemexh the five days
horizon is considered. The EWMA model significantly outperforms the ARkiodel. The performance
of the ARFIMA, HAR and AR models are relatively similar with respect to the MMh an advantage
for fractional integration ink2. The results for ten and 20 days are similar: The STR-Tree/AE model is
still the best in terms of the MAE, significantly exceeding the ARFIMA model, lagidg almost identical
to the EWMA whenR? is considered. However, the model with asymmetric effects and structaaiks
become greatly superior iR? for 20 days forecasts. The null hypothesis of the SPA test is no longer
rejected at 5% for ARFIMA, AR and EWMA specifications; HAR predictimmsne moderately behind.

Back to the other stocks, for ten days forecasts the STR-Tree/AE matthel iest in MAE for twelve
stocks, the EWMA model for two and the HAR for only one. As in one dagdast, neither ARFIMA,
HAR or EWMA forecasts consistently appear as the second best, eveghtlibe latter achieves some
advantage. On the other hand, a different pattern emerge f@*h&he EWMA model is the best in ten
stocks, the STR-Tree/AE model in three, the HAR model in one and the 38&SB+AE model also in
one.



TABLE 5. FORECASTINGRESULTS.

The table reports the out-of-sample forecasting results of for the IBM dalized volatility for the period between 2000 and 2003 (983 trading
days, excluding days affected by holidays), where each modelastieated daily and used for predictions one, five, ten and 20 days.aWid&d

is the mean absolute erraR? is the (corrected) R-squared B, = a + ﬁl/ﬂ\/m_j’i + Etis where]/%\\/m_j,i is the prediction of model for the
realized volatility on day and RV is the observed realized volatility on that day. F isthealue of the (heteroskedasticity robust) F test of the joint
hypothesis thatx = 0 and = 1. HLN is thep-value of the Harvey, Leybourne, and Newbold (1997) test of equadlitie mean of loss functions,
where the models are compared with the ARFIMA. SPA isptivalue of the Superior Predictive Ability test developed by Hansen (R00% null
hypothesis is that a given model is not inferior to any other competingtadalterms of a given loss function. EWMA is the exponential weighted
moving average of realized volatility itself.

1 day 5 days
MAE HLN SPA R? HLN SPA F MAE HLN SPA R? HLN SPA F
STR-Tree/AE 0.322 0.000 0.960 0.641 0.004 0.275 0.009 0.39@00 0.975 0.499 0.012 0.947 -
STR-Tree/SB 0.365 0.000 0.000 0.592 0.018 0.000 0.000 0.47@00 0.000 0.424 0.000 0.002 -
STR-Tree/DJIA  0.324 0.000 0.456 0.644 0.002 0.921 0.049 - - - - - - -
STR-Tree/SB+AE 0.340 0.485 0.004 0.610 0.304 0.011 0.938 4090.0.185 0.285 0.495 0.071 0.841 -

HAR 0.332 0.027 0.026 0.618 0.418 0.003 0.000 0.412 0.338380.M.468 0.068 0.026 -
ARFIMA 0339 - 0.001 0617 - 0.009 0.169 0414 - 0.032 0478 -.228 -
AR 0.334 0.092 0.001 0.616 0.497 0.004 0.000 0.410 0.215 00.@467 0.066 0.021 -
EWMA 0.348 0.031 0.001 0.598 0.015 0.006 0.412 0.407 0.098170.%.492 0.032 0.733 -
GARCH 0.490 0.000 0.000 0.368 0.000 0.000 0.002 0.527 0.000000 0.289 0.000 0.000 -
10 days 20 days
MAE HLN SPA R? HLN SPA F MAE HLN SPA R? HLN SPA F
STR-Tree/AE 0.447 0.003 0.969 0.388 0.048 0.878 — 0.507 20.@982 0.251 0.150 0.399 -
STR-Tree/SB 0.532 0.000 0.000 0.314 0.000 0.002 - 0.604 00.00000 0.172 0.000 0.002 -
STR-Tree/DJIA - - - - - - - - - - - - - -
STR-Tree/SB+AE 0.460 0.321 0.446 0.392 0.072 0.826 - 0.510250 0.890 0.288 0.004 0.777 -
HAR 0.466 0.311 0.039 0.353 0.025 0.058 - 0.535 0.160 0.002270.0.149 0.122 -
ARFIMA 0463 - 0287 0370 - 0565 - 0524 - 0489 0237 - 0.269
AR 0.458 0.249 0.131 0.359 0.092 0.067 - 0.518 0.253 0.269300.».230 0.122 -
EWMA 0.463 0.473 0.390 0.390 0.028 0.907 - 0.536 0.090 0.232520.0.107 0.370 -

GARCH 0.555 0.000 0.000 0.230 0.000 0.000 - 0.591 0.000 0.@049 0.000 0.008 -

e
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We also examine the forecasting performance of the different modelsany Ater 2003 the volatility
consistently and sharply declined through that period, inducing autdatians in the residuals of all
models. The results for 2000-2002 are presented in Table 6, wherengertrate on the ARFIMA and
STR-Tree/AE models only. In the table, one, two or three asterisks next\® &hd/or R? indicate that
the model has statistically significantly lower MAE/sum of squared residuatedyarvey, Leybourne,
and Newbold (1997) test at the 10%, 5% and 1% levels, respectively.

In 2000, the STR-Tree/AE is superior for one and five days aheaddsts (significant at 5%), while the
criteria diverge for ten and 20 days: The ARFIMA outperforms the ST&/AE in in terms of the MAE
and the reverse happens with tRé. The contradiction suggests a volatility level unaccounted for by the
STR-Tree/AE estimations, which otherwise demonstrated superior capatrigho/ariations in volatility.

In 2001 and 2002, however, the STR-Tree/AE consistently and strandgberforms the ARFIMA model
in all horizons and criteria.

The statistics for 2003 are given in Table 7. For one day forecastsetfmrmances of the AR, EWMA,
STR-Tree/AE and HAR models are very similar and superior to ARFIMA, wihieeEWMA and HAR
models have better MAE and the ARFIMA model highi# for 20 days. MAEs are considerably smaller
than in previous years, suggesting a lower variance of the log realizatlitypin the period. In fact, 20
days forecasts for the ARFIMA model have lower MAE than one daycfasts in all the previous years.
The table also shows that the STR-Tree/SB model is strongly outperforyna®BIMA and EWMA in
the period. The apparent contradiction posed by the weak perfornuditbe break model can be seen
in light of the analysis of Granger and Hyung (2004), who show that tedigtion with structural breaks
models tend to be weaker even if the true process is a break process:ti@ne is a lag in the detection
of the break, moving average models perform better, a quality that is adsedshy spurious ARFIMA
estimations.
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TABLE 6. FORECASTINGRESULTS BY YEAR: 2000-2002.

The table reports the out-of-sample forecasting results of the STRAEeSTR-Tree/DJIA, and
ARFIMA models for each year between 2000 and 2002, where eadeln®re-estimated daily and
used for predictions one, five, ten and 20 days ahead. MAE is the nisatute error.R? is the cor-
rected R-squared of the following regressidt¥; = « + ﬁﬁ‘\/t,i + €t Whereﬁ/t,i is the prediction
of model for the realized volatility on day and RV; is the “observed” realized volatility on that day.
One, two or three asterisks next to the MAE and/or Bfeindicate that the model has statistically sig-
nificantly lower MAE/sum of squared residuals by the Harvey, Leybeuamd Newbold (1997) test at

the 10%, 5% and 1% levels respectively.

1 day
2000 2001 2002
MAE R? MAE R? MAE R?
ARFIMA 0.459 0.309 0.373 0.504 0.352 0.618
STR-Tree/AE 0.451 0.336** 0.350***  0.550%*** 0.328*** (.64***
STR-Tree/DJIA 0.451 0.335** 0.353*** (0.556*** 0.326*** (B52**+*
5 days
2000 2001 2002
MAE R? MAE R? MAE R?
ARFIMA 0.536 0.129 0.465 0.390 0.454 0.357
STR-Tree/AE  0.547 0.153* 0.420*** 0.405 0.428*** (0.432***
STR-Tree/DJIA — - - - - -
10 days
2000 2001 2002
MAE R? MAE R? MAE R?
ARFIMA 0.567*** 0.082 0.537 0.233 0.525 0.190
STR-Tree/AE  0.608 0.095 0.485*** 0.250 0.479** (0.288***
STR-Tree/DJIA — - - - - -
20 days
2000 2001 2002
MAE R? MAE R? MAE R?
ARFIMA 0.605*** 0.016 0.634 0.097 0.583 0.062
STR-Tree/AE 0.633 0.024 0.567** 0.114 0.529***  (0.148***

STR-Tree/DJIA - -




TABLE 7. FORECASTINGRESULTS BY YEAR: 2003.

The table reports the out-of-sample forecasting results for the IBM dedlized volatility for the year 2003, where each model is re-estimated
daily and used for predlctlons one, five, ten and 20 days ahead. MAE im#an absolute errorR? is the (corrected) R-squared &V, =

a+ ﬁRvm i €t WhereRVW j,i 1S the prediction of model for the realized volatility on day and RV; is the observed realized volatility
on that day. F is thg-value of the (heteroskedasticity robust) F test of the joint hypothesisitka® andg = 1. HLN is thep-value of the Harvey,
Leybourne, and Newbold (1997) test of equality of the mean of losgtifums, where the models are compared with the ARFIMA. SPA ipthalue

of the Superior Predictive Ability test developed by Hansen (2005).rlitiehypothesis is that a given model is not inferior to any other competing
models in terms of a given loss function. EWMA is the exponential weightedmg average of realized volatility itself.

1 day 20 days
MAE HLN SPA R? HLN SPA F MAE HLN SPA R? HLN SPA F
STR-Tree/AE  0.157 0.002 0.907 0.598 0.067 0.923 0.000 0.Z8600 0.000 0.482 0.008 0.055 -
STR-Tree/SB 0.201 0.000 0.000 0.573 0.418 0.339 0.000 0.52800 0.000 0.456 0.002 0.004 -
STR-Tree/DJIA  0.161 0.028 0.001 0.599 0.066 0.949 0.000
STR-Tree/SB+AE 0.165 0.169 0.010 0.573 0.441 0.069 0.000 2970.0.005 0.000 0.457 0.000 0.020 -

HAR 0.156 0.000 0.951 0.593 0.032 0.900 0.010 0.191 0.000480.8.478 0.000 0.027 -
ARFIMA 0.170 — 0.000 0.569 — 0.166 0.000 0.274 - 0.000 0.546 —.880 -

AR 0.159 0.000 0.011 0.589 0.076 0.450 0.003 0.207 0.000 00.@0478 0.000 0.021 -
EWMA 0.158 0.005 0.695 0.586 0.158 0.606 0.010 0.200 0.000390..479 0.000 0.001 -
GARCH 0.322 0.000 0.000 0.413 0.001 0.000 0.000 0.527 0.000000 0.276 0.000 0.004 -
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TABLE 8. ONE-DAY-AHEAD FORECASTINGRESULTS FORALL SERIES

The table reports the out-of-sample forecasting results for the daily edali@atility of 15 Dow Jones
stocks, where each model is re-estimated daily and used for prediotienfive, ten and 20 days ahead.
MAE is the mean absolute erroR? is the (corrected) R-squared &V; = o + [BEX\/W,J'J + €41,
Whereﬁ/ﬂt,j,i is the prediction of model for the realized volatility on day and RV; is the observed
realized volatility on that day. The figures between parenthesis agevhkie of the Superior Predictive
Ability test developed by Hansen (2005). The null hypothesis is thatengivodel is not inferior to any
other competing models in terms of a given loss function. EWMA is the expiied weighted moving
average of realized volatility itself.

Series STR-Tree/AE STR-Tree/SB STR-Tree/AE+SB ARFIMA HAERWMA

AA 0.450 0.476 0.560 0.456 0.474  0.465
(0.933) (0.001) (0.067) (0.301) (0.000)  (0.034)

AlG 0.359 0.371 0.372 0.364 0.369  0.371
(0.913) (0.003) (0.005) (0.260) (0.041)  (0.039)

BA 0.393 0.414 0.404 0.397 0.405  0.409
(0.837) (0.002) (0.057) (0.469) (0.099)  (0.063)

CAT 0.398 0.423 0.423 0.404 0.412 0.411
(0.904) (0.000) (0.000) (0.152) (0.044)  (0.063)

GE 0.340 0.369 0.363 0.349 0.355 0.361
(0.873) (0.000) (0.000) (0.118) (0.008)  (0.004)

GM 0.374 0.409 0.388 0.380 0.388  0.389
(0.920) (0.000) (0.003) (0.181) (0.003)  (0.007)

HP 0.574 0.604 0.585 0.579 0.599  0.583
(0.903) (0.000) (0.084) (0.372) (0.002)  (0.314)

INTC 0.436 0.490 0.443 0.448 0.459  0.466
(0.821) (0.000) (0.331) (0.055) (0.004)  (0.001)

JNJ 0.368 0.380 0.385 0.372 0.379  0.380
(0.806) (0.015) (0.008) (0.579) (0.139)  (0.113)

KO 0.335 0.360 0.346 0.341 0.348  0.339
(0.904) (0.000) (0.014) (0.164) (0.006)  (0.473)

MRK 0.367 0.389 0.377 0.370 0.381  0.378
(0.886) (0.001) (0.034) (0.634) (0.010)  (0.064)

MSFT 0.347 0.380 0.364 0.357 0.363  0.369
(0.827) (0.000) (0.000) (0.133) (0.013)  (0.013)

PFE 0.426 0.433 0.433 0.419 0.423 0.421
(0.036) (0.001) (0.002) (0.893) (0.531)  (0.669)

WMT 0.397 0.408 0.413 0.400 0.409  0.408
(0.882) (0.026) (0.008) (0.690) (0.036)  (0.125)

XON 0.306 0.322 0.323 0.312 0.323 0.321

(0.882) (0.001) (0.065) (0.110) (0.000)  (0.005)

3.3.2. Value at Risk.The evaluation of value-at-risk forecasts is based on the likelihood rat® fias
unconditional coverage and independence of Christoffersen Y1988 analysis is similar to Beltratti and
Morana (2005), who study the benefits of value-at-risk with long memory.

Initially, consider only one day forecasts. L@’h_l(a) be the(1 — «) interval forecast of model for
dayt conditional on information on dayy— 1. In our application, we consider 95% and 99% value-at-risk
measures, i.eq = 0.05 anda = 0.01, respectively. We construct the sequence of coverage failures for
the lowera tail as:
Fpi=4" o < T (2)
0 ifrgg > &:+1‘t(a)
wherer, is the return observed on dayThe unconditional coverage (UC) is a test of the f{lF, , ;) =
« againsti(F, ;) # «. The test of independence is constructed against a first-order Malteonative.
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TABLE 9. TEN-DAYS-AHEAD FORECASTINGRESULTS FORALL SERIES

The table reports the out-of-sample forecasting results for the daily edali@atility of 15 Dow Jones
stocks, where each model is re-estimated daily and used for prediotienfive, ten and 20 days ahead.
MAE is the mean absolute erroR? is the (corrected) R-squared &V; = o + [BEX\/W,J'J + €41,
Whereﬁ/ﬂt,j,i is the prediction of model for the realized volatility on day and RV; is the observed
realized volatility on that day. The figures between parenthesis agevhkie of the Superior Predictive
Ability test developed by Hansen (2005). The null hypothesis is thatengivodel is not inferior to any
other competing models in terms of a given loss function. EWMA is the expiied weighted moving
average of realized volatility itself.

Series STR-Tree/AE STR-Tree/SB STR-Tree/AE+SB ARFIMA HAERWMA

AA 0.583 0.644 0.585 0.603 0.605  0.597
(0.927) (0.003) (0.865) (0.064) (0.175)  (0.368)

AlG 0.460 0.472 0.472 0.460 0.470  0.481
(0.856) (0.249) (0.238) (0.874) (0.469)  (0.122)

BA 0.512 0.551 0.530 0.523 0.515  0.533
(0.902) (0.000) (0.188) (0.203) (0.845)  (0.225)

CAT 0.499 0.541 0.520 0.507 0.517  0.513
(0.855) (0.011) (0.135) (0.368) (0.321)  (0.366)

GE 0.452 0.489 0.459 0.467 0.457  0.464
(0.884) (0.000) (0.616) (0.015) (0.776)  (0.415)

GM 0.455 0.526 0.469 0.481 0.486  0.483
(0.921) (0.000) (0.088) (0.000) (0.008)  (0.054)

HP 0.744 0.759 0.756 0.746 0.745 0.731
(0.659) (0.327) (0.347) (0.560) (0.486)  (0.727)

INTC 0.607 0.754 0.640 0.629 0.640  0.625
(0.903) (0.000) (0.030) (0.014) (0.127)  (0.408)

JNJ 0.456 0.477 0.485 0.460 0.468  0.487
(0.899) (0.020) (0.003) (0.592) (0.345)  (0.048)

KO 0.411 0.448 0.433 0.414 0.429  0.430
(0.892) (0.001) (0.006) (0.574) (0.134)  (0.121)

MRK 0.436 0.466 0.446 0.437 0.441  0.440
(0.891) (0.000) (0.189) (0.753) (0.625)  (0.541)

MSFT 0.505 0.551 0.525 0.510 0.512  0.520
(0.862) (0.000) (0.081) (0.250) (0.727)  (0.354)

PFE 0.500 0.536 0.495 0.508 0.506  0.510
(0.540) (0.000) (0.938) (0.180) (0.243)  (0.172)

WMT 0.524 0.536 0.527 0.518 0.519  0.511
(0.478) (0.001) (0.296) (0.734) (0.535)  (0.689)

XON 0.395 0.410 0.400 0.396 0.427  0.432

(0.899) (0.099) (0.516) (0.797) (0.001)  (0.000)

For five, ten, and 20 days value-at-risk forecasts, we still compute the-a#risk on a daily basis.
Since the overlapping returns cause the events to be correlated, we Baltratti and Morana (2005) and
implement a test based on Bonferroni bounds suggested by Diebolthésuand Tay (1998). Fdr-step
forecasts, a test of size boundedtbyan be implemented by performing individual tests of sﬁzm each
of k subseries

TP ks Figorivk Fioskicoks - - -1 {Fori2, Fogorjorh Fogsrjaaks - fr- -
{Fh—1ko—15 P12k k—1-0k> Fhe 143k k—142k> - - -}

and rejecting the null if there is a rejection on any of the subseries. Weegsot the number of subseries
that are rejected.

The value-at-risk comparison of the ARFIMA, structural breaks agthasetric effects models is orga-
nized in Table 10, showing that all models adequately forecast the gevenervals at all horizons.
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TABLE 10. VALUE AT RISK ANALYSIS.

The table reports the out-of-sample value-at-risk results of the ARFBIR-Tree/SB and STR-
Tree/AE models for the IBM volatility in the 2000-2003 period (983 tradingsdaxcluding days

affected by holidays), where each model is re-estimated daily andfosediculating 1% and

5% value-at-risk thresholds by conditional simulation. Failures is the ptrge of days when
returns over the next 1, 5, 10 and 20 fell in iadower tail of the predicted distribution. Note
that 5, 10 and 20 days % failures are affected by overlapping retgresees. UC and IND are
thep-values of the likelihood ratio tests for unconditional coverage and intkpee (against a
first order Markov alternative) developed by Christoffersen (19%®r 5, 10 and 20 days, we
use a test based on Bonferroni Bounds as suggested by DieboltheBuand Tay (1998). R is
the number of subseries (out of 1, 5, 10 or 20 accordingly) wherésWéjected at the 5% level.

1 day
1% 5%
% Failures UC R [IND % Failures UC R IND
ARFIMA 0.006 0.186 0 0.786 0.043 0.284 0 0.134
STR-Tree/AE 0.010 0.957 0 0.650 0.054 0.578 0 0.931
STR-Tree/SB 0.009 0.787 0 0.683 0.043 0.284 0 0.388
5 days
1% 5%
% Failures UC R IND % Failures UC R IND
ARFIMA 0.011 1.000 0 1.000 0.058 1.000 0 1.000
STR-Tree/AE 0.010 1.000 0 1.000 0.059 1.000 0 1.000
STR-Tree/SB 0.010 1.000 0 1.000 0.048 1.000 0 0.423
10 days
1% 5%
% Failures UC R IND % Failures UC R IND
ARFIMA 0.021 0.994 0 0.576 0.082 0.154 2 0.630
STR-Tree/AE 0.015 0.994 0 1.000 0.079 0.395 1 0.697
STR-Tree/SB 0.017 1.000 0 0.576 0.070 0.370 1 0.327
20 days
1% 5%
% Failures UC R IND % Failures UC R IND
ARFIMA 0.032 0.289 1 1.000 0.102 0.277 8 1.000
STR-Tree/AE 0.027 1.000 0 1.000 0.111 0.134 8 1.000
STR-Tree/SB 0.028 0.289 2 1.000 0.082 0.311 2 1.000

3.3.3. The Effect of JumpsOur analysis so far has not explicitly considered the presence of lesstpat
elements in the volatility of stocks, in contrast with the smooth and very slowly meamting part associ-
ated with long memory properties. Jump components have been receivimgguattention in the realized
volatility literature. Building on theoretical results for bi-power variation measuarticles such as An-
dersen, Bollerslev, and Diebold (2005), Tauchen and Zhou (2@0%) Barndorff-Nielsen and Shephard
(2006) established related frameworks for non-parametric estimation jointipecomponent in asset return
volatility. Empirically, Andersen, Bollerslev, and Diebold (2005) incorpesahe distinction between jump
and non-jump components into a forecasting model for the DM/USD exchratgiethe S&P500 market
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index, and the 30-year U.S. Treasury bond yield realized volatility seniédiad substantial performance
improvements in daily weekly, and monthly predictions.

To verify the direct impact of the jump component for our conclusions, Msety follow Andersen,
Bollerslev, and Diebold (2005) and recalculate the previous forecastg the lagged jump series as an
explanatory variable for the STR-Tree/AE and HAR models. The newtsese displayed in Table 11. In
sharp contrast with the results of in Andersen, Bollerslev, and DiebORK)? the outcome of additionally
considering jumps in the realized volatility of IBM is marginal; for instance , Rief daily forecasts raise
from 0.641 to 0.644 and from 0.618 to 0.621 for the STR-Tree/AE and HABetsaespectively.

TABLE 11. FORECASTINGRESULTS: JUMPS.

The table reports the out-of-sample forecasting results of for the I1Blstilco

ity in the 2000—-2003 (983 trading days, excluding days affected by haljda
where each model explicitly incorporate jump components, is re-estimated
daily and used for predictions 1, 5, 10 and 20 days ahead. MAE is the
mean absolute error. is the corrected r-squared of the following g&igre

RV, = a+ Bﬁ/t,i + €14, whereﬁ/t,i is the prediction of model for the
realized volatility on day and RV is the “observed” realized volatility on that
day. HLN is thep-value of the Harvey, Leybourne and Newbold (1997) test of
equality of the mean of loss functions (in the table, the absolute deviation and
the residuals of the regression above), where the models are canytréhe
ARFIMA model.

1 day
MAE HLN SPA  R? HLN SPA
STR-Tree/AE ~ 0.324 0.000 0.340 0.644 0.001 0.785
HAR 0.334 0.079 0.001 0.621 0.259 0.004

5 days
MAE HLN SPA R? HLN SPA
STR-Tree/AE 0.398 0.000 0.793 0.500 0.005 0.968
HAR 0.410 0.198 0.004 0.472 0.194 0.007

10 days
MAE HLN SPA R?> HLN SPA
STR-Tree/AE 0.450 0.008 0.504 0.386 0.068 0.742
HAR 0.463 0.480 0.014 0.355 0.033 0.041

20 days
MAE HLN SPA R?> HLN SPA
STR-Tree/AE 0.450 0.008 0.504 0.386 0.068 0.742
HAR 0.463 0.480 0.014 0.355 0.033 0.041

4. CONCLUSION

In this paper, we considered the hypothesis that cumulated price variationsy essential information
concerning shifts in the level of stock volatility series and can be related to teulégimes that induce
highly persistent autocorrelations that are hard to distinguish from thematjenerated by fractionally
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integrated processes — even in sample sizes spanning several yeaisowéd, using realized volatilities
computed from intraday returns, that volatility levels in periods of lossemvesstors like the end of 2002
(when the DJIA index reached a 4 year bottom) are significantly higherpbaads like 2003, when the
index went up 25%; there is strong evidence of multiple regimes linked to reattarns in all series
considered. For the particular case of IBM, we show that falls of diffemagnitudes over less than two
months are associated with volatility levels approximately 20% and 60% higher eadmepared to periods
of stable or rising prices. Cumulated past returns over different hwipoovide relevant information
concerning regime switches in volatility dynamics. The result was robust tochibiee of firm-specific or
market returns as transition variables.

We underline the importance of this analysis by presenting further evidbat&actionally integrated
processes are an incomplete description of the volatility process of starckgng that weak in-sample
performances are closely related to the empirical issue of excessiaéomin estimates of the fractional
differencing parameter over time.

Empirical results, by their turn, indicate that the multiple regime model propogdbe aper is superior
in terms of forecasting performance, specially in periods of high volatilityl3rof the 16 series consid-
ered in the paper, the STR-Tree model with past cumulated returns asidranariables significantly
outperforms several concurrent models, such as the AR, ARFIMARHBARCH and EWMA models.
Surprisingly, the EWMA model seems to be very competitive, specially in wiéatility is low, such as
in 2003.
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