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ASYMMETRIC EFFECTS AND LONG MEMORY IN THE VOLATILITY OF DOW JONES
STOCKS

MARCEL SCHARTH AND MARCELO C. MEDEIROS

ABSTRACT. Does volatility reflect a continuous reaction to past shocks or changes inthe markets induce

shifts in the volatility dynamics? In this paper, we provide empirical evidencethat cumulated price variations

convey meaningful information about multiple regimes in the realized volatilityof stocks, where large falls

(rises) in prices are linked to persistent regimes of high (low) variance instock returns. Incorporating past cu-

mulated daily returns as a explanatory variable in a flexible and systematic nonlinear framework, we estimate

that falls of different magnitudes over less than two months are associated with volatility levels 20% and 60%

higher than the average of periods with stable or rising prices. We show that this effect accounts for large

empirical values of long memory parameter estimates. Finally, we analyzethat the proposed model signifi-

cantly improves out of sample performance in relation to standard methods. This result is more pronounced

in periods of high volatility.

KEYWORDS: Realized volatility, long memory, nonlinear models, asymmetric effects, regime switching,

regression trees, smooth transition, value-at-risk, forecasting, empirical finance.
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1. INTRODUCTION

Does stock return volatility reflect a long-lived reaction to past shocks orstructural breaks induce shifts

in the volatility dynamics? Long range dependence (highly persistent autocorrelations) is a well docu-

mented stylized fact of the volatility of financial time series. This effect was first analyzed by Taylor (1986)

for absolute values of stock returns. Ding, Granger, and Engle (1993) and de Lima and Crato (1993) con-

sidered powers of returns. More recently, Andersen, Bollerslev, Diebold, and Ebens (2001) studied the

case of realized volatility1. Even though the traditional GARCH (Generalized Autoregressive Conditional

1Realized variance is defined as the sum of squared intraday returns sampled at a sufficiently high frequency, consistently approx-
imating the integrated variance over the fixed interval where the observations are summed. Realized volatility is the squared-root
of the realized variance. In practice, high frequency measures are contaminated by microstructure noise such as bid-ask bounce,
asynchronous trading, infrequent trading, price discreteness, among others; see Biais, Glosten, and Spatt (2005). Ignoring the
remaining measurement error, thisex postvolatility measure can modeled as an “observable” variable, in contrast tothe latent
variable models. See Andersen, Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielsen and Shephard (2002) for the theo-
retical foundations of realized volatility. Several recent papers have proposed corrections to estimation of RV in order to take the
microstructure noise into account; see McAleer and Medeiros (in press)for a review. In this paper we refer to realized volatility
as a consistent estimator of the squared root of the integrated variance.
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Heteroscedasticity) models of Engle (1982) and Bollerslev (1986) are able to describe the recurrent clusters

in volatility, the short run dynamics of those models were shown to be an incomplete description of the

data. Volatility breeds volatility; but then could volatility today reflect a particularly volatile week a year

ago? How do markets keep the memory of past movements?

Modeling the long range dependence in the volatility of stocks and foreign exchange rates is among

one the greatest empirical successes of fractionally integrated models; see Baillie (1996) for an exposition.

Fractionally integrated processes (I(d), where0 < d < 1) can be seen as a halfway paradigm between

the short memory (I(0)) process and the infinite memory (I(1)) alternative. Long memory processes

are able to engender hyperbolic patterns in autocorrelations, as verifiedin many empirical applications.

Although no theoretical foundation has been developed to substantiate the long memory specification or

elucidate the high persistence from past shocks,I(d) processes emerged as a consonant description of the

data generating process of volatility series, becoming the standard approach for modeling and forecasting

realized volatility (Andersen, Bollerslev, Diebold, and Labys 2003). Early models that account for the

long memory in volatility are the Fractionally Integrated GARCH (FIGARCH) modelproposed by Baillie,

Bollerslev, and Mikkelsen (1996) and the long memory stochastic volatility (LMSV) model discussed in

Comte and Renault (1996) and Breidt, Crato, and de Lima (1998).

More recently, new theoretical results clarified how long memory propertiesare not distinctive of frac-

tionally integrated models. Diebold and Inoue (2001) showed analytically thatstochastic regime switching

is easily confused with long memory, even in large samples, as long as only a small amount of regime

switches occurs in a observed sample path. Granger and Hyung (2004)showed that occasional structural

breaks generate slowly decaying autocorrelations and other propertiesof I(d) processes. Simulation re-

sults in both papers underline the relevance of those results in empirical applications; see also Mikosch and

Starica (2004) and Hillebrand (2005).

However, the empirical question revealed itself elusive. While the new literature kindled a debate around

the possibility that the long memory observed in the volatility of stocks and exchange rates is spurious, em-

pirical studies evaluated that structural breaks cannot fully account for the degree of persistence in the data.

This suggests that both long memory and structural changes can describethe volatility of asset returns

(Lobato and Savin 1998, Martens, van Dijk, and de Pooter 2004, Beltrattiand Morana 2006, Morana and

Beltratti 2004, Hyung and Franses 2002). Nevertheless, the estimation ofstructural breaks mirrors the

original difficulty: Fractional integration also biases common structural breaks detection methodologies,

such as the one derived by Bai (1997), towards the detection of spurious breaks. Moreover, no satisfac-

tory answers emerged from statistical hypothesis tests, which requires unrealistically large samples; see

Ohanissian, Russell, and Tsay (2004).

In this paper, we propose a new empirical approach related to the hypothesis of structural changes

and regime switches. We inquire howchanges in the marketsaffect volatility. We provide empirical

evidence that long-term price variations convey meaningful information about multiple regimes in the

realized volatility of stocks, where large falls (rises) in prices are linked to persistent regimes of high (low)

variance in stock returns. What happens for instance if returns were slightly positive in previous months
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and then prices plummet in the next? From the asymmetric effects literature, its is known that negative

returns are related to subsequent increases in volatility. Econometric modelssuch as Nelson (1991)’s

Exponential GARCH (EGARCH) and the GJR-GARCH of Glosten, Jagannathan, and Runkle (1993) have

been proposed to capture this effect. Nevertheless, the literature so farfocused almost exclusively on the

relation observed over one or few days. For example, Andersen, Bollerslev, Diebold, and Ebens (2001) ran

a regression with a lagged negative return dummy and conclude that the economic impact of the leverage

effect on the realized variance of stocks belonging to the Dow Jones Industrial Average Index (DJIA)

is marginal. An exception is Bollerslev, Litvinova, and Tauchen (2005), who examined evidence on the

negative correlation between stock market movements and stock market volatility over intraday sampling

frequencies. The authors show that a sharp decline in the market over afive-minute interval is typically

associated with a rise in market volatility that persists for up to several days after the initial shock.

Focusing on realized volatility (RV) series of sixteen Dow Jones IndustrialAverage (DJIA) stocks over

the period from 1994 to 2003, we consider the following questions: Are volatility levels the same in

periods of significant losses for investors like the end of 2002 (the DJIAreached a 4 year bottom) and

periods like the year 2003 (the DJIA went up 25%)? Can negative returns over some horizon be associated

with regimes of higher volatility? We pursue the argument by incorporating past cumulated daily returns in

the modeling framework of volatility series. If price variations matter, what arethe magnitudes that can be

associated to regime switching behavior? What are the relevant horizons?To tackle these considerations,

our econometric strategy is developed around a flexible and systematic modeling cycle based on the tree-

structured smooth transition regression model (STR-Tree) of da Rosa, Veiga, and Medeiros (2003) and

Medeiros, da Rosa, and Veiga (2005).

Our main result shows that the effect of falls and rises in prices on volatility isin fact highly significant

and accounts for the high fractional differencing parameter estimates, even in samples spanning several

years. For example, we show that the daily volatility series of the IBM stock can be described by a nonlinear

model where falls of different magnitudes over less than two months are associated with volatility levels

20% and 60% higher than the average of periods with stable or rising prices. Based on those findings,

we propose a new model to describe and forecast realized volatility. Whencompared with alternative

specifications with short and long memory, the model proposed in this paper has a superior forecasting

performance, which is even more pronounced in periods of high volatility. Amodel that allow for smoothly

changing parameters across time (in order to capture possible structural breaks) is also estimated. However,

the regime switching mechanism controlled by past cumulated returns turns outto be statistically superior.

The results are uniform across 15 of the 16 series considered in this paper.

Other economic connections to long memory and regime switching in volatility have been proposed

before. Beltratti and Morana (2006) found a close association betweenstructural breaks in stock market

volatility and structural breaks in the volatility of macroeconomic variables suchas M1 growth and the

Federal Funds rate, relating the observed evidence to monetary policy reaction to the state of the business

cycle. Previously, Hamilton and Susmel (1994) analyzed that the conditional variance process of the US

stock market can be described by a switching regime model with three persistent states, where the high
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volatility state is prompted by general business downturn. Kim and Kim (1996)have suggested that the

switch to the more turbulent state may be caused by higher variance in a fad component of the returns, in-

stead of fundamentals. In the context of fractional integration, Andersen and Bollerslev (1997) demonstrate

that by interpreting the volatility as a mixture of numerous heterogeneous short-run information arrivals,

the observed volatility process may exhibit long-run dependence.

Our objective is therefore to bring the stylized fact in volatility into a more meaningful empirical frame-

work. If we can relate structural changes to our candidate variable, theeconometric issue of spurious

structural change detection looses importance. We highlight the importance of this aspect by reporting evi-

dence that long memory processes are at least an incomplete description ofthe volatility process of stocks,

where weak in-sample performance seems to be closely related to the empiricalissue of the excessive vari-

ation in estimates of the fractional differencing parameter through time, first documented by Granger and

Ding (1996).

On the pragmatical side, the advantage of our approach is that an endogenous financial variable is

potentially a much more useful bridge to risk management and option pricing. Incontrast to ARFIMA

(Autoregressive Fractionally Integrated Moving Average) or structural breaks models, our modeling makes

it possible to use estimated relations to project future volatility scenarios. Ohanissian, Russell, and Tsay

(2004) showed the relevance of this aspect by simulating different modelswith long memory properties as

“true” data generating processes and breaking down the consequences for option pricing. They documented

significant pricing errors from missteps in the long memory specification.

The rest of the paper is structured as follows. Section two briefly discusses the tree-structured smooth

transition regression model describing the inference procedures, model building strategy and estimation. In

Section three, we describe the data, the specification of our model and present the estimations for models

with structural breaks and asymmetric effects. The relation between asymmetric effects and long memory

is investigated in Section four. Section five contain an analysis of point and value at risk forecasting

performances. Section six concludes.

2. MODELING FRAMEWORK

In this section, we present the non-linear econometric model used in the paper. The discussion of the

tree-structured smooth transition regression (STR-Tree) model is basedon da Rosa, Veiga, and Medeiros

(2003) and Medeiros, da Rosa, and Veiga (2005), where details and proofs can be found.

2.1. A Brief Introduction to Regression Trees. Let xt = (x1t, . . . , xqt)
′ ∈ X ⊆ Rq be a vector which

containsq explanatory variables (covariates or predictor variables) for a continuous univariate response

yt ∈ R, t = 1, . . . , T . Suppose that the relationship betweenyt andxt follows a regression model of the

form

(1) yt = f(xt) + εt,

where the functionf(·) is unknown and, in principle, there are no assumptions about the distributionof

the random termεt. A regression tree is a nonparametric model based on the recursive partitioning of
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the covariate spaceX, which approximates the functionf(·) as a sum of local models, each of which is

determined inK ∈ N different regions (partitions) ofX. The model is usually displayed in a graph which

has the format of a binary decision tree withN ∈ N parent (or split) nodes andK ∈ N terminal nodes

(also called leaves), and which grows from the root node to the terminal nodes. Usually, the partitions

are defined by a set of hyperplanes, each of which is orthogonal to theaxis of a given predictor variable,

called thesplit variable. The most important reference in regression tree models is the Classificationand

Regression Trees (CART) approach put forward by Breiman, Friedman, Olshen, and Stone (1984). In this

context, the local models are just constants.

To mathematically represent a regression-tree model, we introduce the following notation. The root

node is at position0 and a parent node at positionj generates left- and right-child nodes at positions

2j + 1 and2j + 2, respectively. Every parent node has an associated split variablexsjt ∈ xt, where

sj ∈ S = {1, 2, . . . , q}. Furthermore, letJ andT be the sets of indexes of the parent and terminal nodes,

respectively. Then, a tree architecture can be fully determined byJ andT.

EXAMPLE 1. Consider a regime switching volatility model that allows for multiple regimes associated

with asymmetric effects, where the influence of a negative return on volatility for the next day depends on

the behavior of returns on the past week. Definer5,t as the cumulated return over a horizon of five days

and rt as the daily return. Suppose the daily volatility (σt) follows a piecewise constant process where

the conditional mean depends on the sign of the return in the previous day.This effect itself is weaker on

“good weeks” (or a positive return over the last five days) than on “badweeks” (or a negative return over

the last five days), such thatσt = ω1 + εt if rt−1 ≥ 0, σt = ω2 + εt if rt−1 < 0 and r5,t−1 ≥ 0 and

σt = ω2 + εt if rt−1 < 0 andr5,t−1 < 0. εt is a white noise, andω3 > ω2 > ω1 are constants. This model

can be described in the regression tree with two parent nodes at positions0 and 2 (N = 2, J = {0, 2}) and

three leaves or terminal nodes at positions 1,5 and 6(K = 3,T = {1, 5, 6}). See Figure 1.

0

1 2

5 6

rt-1 0 rt-1 < 0

r5,t-1 0 r5,t-1 < 0

t
= 1 +

t

t
= 2 +

t t
= 3 +

t

FIGURE 1. Graphical representation of the volatility model described in Example 1.
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2.2. Tree-Structured Smooth Transition Regression.The STR-Tree model is an extension of the regres-

sion tree model, where the sharp splits are replaced by smooth splits given bya logistic function defined

as

(2) G(x; γ, c) =
1

1 + e−γ(x−c)
.

The parameterγ, called theslope parameter, controls the smoothness of the logistic function. The regres-

sion tree model is nested in the smooth transition specification as a special caseobtained when the slope

parameter approaches infinity. The parameterc is called thelocation parameter.

Define log(RVt) as the logarithm of the daily realized volatility. In this paper,log(RVt) follows an

augmented specification of the STR-Tree model defined as:

DEFINITION 1. Let zt ⊆ xt, such thatxt is defined as in (1) andzt ∈ Rp, p ≤ q. The sequence of of

real-valued vectors{zt}
T
t=1 is stationary and ergodic. Set̃zt = (1, zt)

′ andwt ∈ Rd is a vector of linear

regressors, such thatwt * xt. The time series{log(RVt)}
T
t=1 follows a a Smooth Transition Regression

Tree model, STR-Tree, if

(3) log(RVt) = HJT(xt,wt;ψ) + εt = α′
wt +

∑

i∈T

β′
iz̃tBJi (xt;θi) + εt

where

(4) BJi (xt;θi) =
∏

j∈J

G(xsj ,t; γj , cj)
ni,j(1+ni,j)

2
[
1 − G(xsj ,t; γj , cj)

](1−ni,j)(1+ni,j)

and

(5) ni,j =





−1 if the path to leafi does not include the parent nodej;

0 if the path to leafi includes the right-child node of the parent nodej;

1 if the path to leafi includes the left-child node of the parent nodej,

whereHJT (xt,wt;ψ) : Rq+1 × Rd → R is a nonlinear function indexed by the vector of parameters

ψ ∈ Ψ and{εt} is a martingale difference sequence. LetJi be the subset ofJ containing the indexes of

the parent nodes that form the path to leafi. Then,θi is the vector containing all the parameters(γk, ck)

such thatk ∈ Ji, i ∈ T.

The functionsBJi (xt;θi), 0 < BJi (xt;θi) < 1, are know asmembership functionsand it is easy to

show that
∑

i∈T
BJi (xt;θj) = 1, ∀xt ∈ Rq+1.

The parameters of (3) are estimated by nonlinear least-squares (NLS) which is equivalent to quasi-

maximum likelihood estimation. Let̂ψ be the quasi-maximum likelihood estimator (QMLE) ofψ given

by

(6) ψ̂ = argmin
ψ∈Ψ

QT (ψ) = argmin
ψ∈Ψ

1

T

T∑

t=1

qt(ψ) = argmin
ψ∈Ψ

{
1

T

T∑

t=1

[log(RVt) − HJT(xt,wt;ψ)]2
}

.



ASYMMETRIC EFFECTS AND LONG MEMORY IN THE VOLATILITY OF DOW JONES STOCKS 7

Under mild regularity conditions, Medeiros, da Rosa, and Veiga (2005) showed thatψ̂ is consistent and

asymptotically normal.

2.3. Growing the Tree. In this section we briefly present the modeling cycle adopted in this paper. The

choice of relevant variables, the selection of the node to be split (if this is thecase), and the selection of the

splitting (or transition) variable are carried out by sequence of Lagrange Multiplier (LM) tests following the

ideas originally presented in Luukkonen, Saikkonen, and Terasvirta (1988) and vastly used in the literature.

Consider thatlog(RVt) follows a STR-Tree model withK leaves and we want to test if the terminal

nodei∗ ∈ T should be split or not. Write the model as

log(RVt) = α′
wt +

∑

i∈T−{i∗}

β′
iz̃tBJi (xt;θi)

+ β′
2i∗+1z̃tBJ2i∗+1 (xt;θ2i∗+1) + β′

2i∗+2z̃tBJ2i∗+2 (xt;θ2i∗+2) + εt,

(7)

where

BJ2i∗+1 (xt;θ2i∗+1) = BJi∗ (xt;θi∗)G(xi∗t; γi∗ , ci∗)

BJ2i∗+2 (xt;θ2i∗+2) = BJi∗ (xt;θi∗) [1 − G(xi∗t; γi∗ , ci∗)] .

In a more compact form, Equation (7) maybe written as

log(RVt) = α′
wt +

∑

i∈T−{i∗}

β′
iz̃tBJi (xt;θi)

+ φ′
1z̃tBJi∗ (xt;θi∗) + φ′

2z̃tBJi∗ (xt;θi∗) G(xi∗t; γi∗ , ci∗) + εt,

(8)

whereφ1 = β2i∗+2 andφ2 = β2i∗+1 − β2i∗+2.

In order to test the statistical significance of the split, a convenient null hypothesis isH0 : γi∗ = 0

against the alternativeHa : γi∗ > 0. An alternative null hypothesis isH′
0 : φ2 = 0. However, it is clear

in (8) that underH0, the nuisance parametersφ2 andci∗ can assume different values without changing the

likelihood function, posing an identification problem; see Davies (1977, 1987).

A solution to this problem, proposed in Luukkonen, Saikkonen, and Terasvirta (1988), is to approximate

the logistic function by a third-order Taylor expansion aroundγi∗ = 0. After some algebra we get

log(RVt) = α′
wt +

∑

i∈T−{i∗}

β′
iz̃tBJi (xt;θi) +α′

0z̃tBJi∗ (xt;θi∗)

+α′
1z̃tBJi∗ (xt;θi∗)xi∗t +α′

2z̃tBJi∗ (xt;θi∗)x2
i∗t

+α′
3z̃tBJi∗ (xt;θi∗)x3

i∗t + et,

(9)

whereet = εt + φ2BJi∗ (xt;θi∗)R(xi∗t; γi∗ , ci∗) andR(xi∗t; γi∗ , ci∗) is the remainder. The parameters

αk, k = 0, . . . , 3 are functions of the original parameters of the model.

Thus the null hypothesis becomes

(10) H0 : α1 = α2 = α3 = 0.
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UnderH0, R(xi∗t; γi∗ , ci∗) = 0 andet = εt, such that the properties of the error process remain unchanged

under the null and thus asymptotic inference can be used. The test statistic isgiven by2:

(11) LM =
1

σ̂2

T∑

t=1

ûtν̂
′
t





T∑

t=1

ν̂tν̂
′
t −

T∑

t=1

ν̂tĥ
′
t

(
T∑

t=1

ĥtĥ
′
t

)−1 T∑

t=1

ĥtν̂
′
t





−1
T∑

t=1

ν̂tût

whereût = yt − HJT(xt,wt; ψ̂), σ̂2 = 1
T

∑T
t=1 û2

t , ĥt =
∂HJT(xt,wt;ψ)

∂ψ

′

∣∣∣∣∣
H0

, and

ν̂t =
[
z̃tBJi∗

(
xt; θ̂i∗

)
xi∗t, z̃tBJi∗

(
xt; θ̂i∗

)
x2

i∗t, z̃tBJi∗

(
xt; θ̂i∗

)
x3

i∗t

]′
.

UnderH0, LM has an asymptoticχ2 distribution withm = 3(p + 1) degrees of freedom.

As the assumption of normal and homoskedastic errors is usually violated in financial data, we carry out

a robust version of the LM test, following the results in Wooldridge (1990).The test is implemented as as

follows:

(1) Estimate the model withK regimes. If the sample size is small and the model is thus difficult to

estimate, numerical problems in applying the maximum likelihood algorithm may lead to a solution

such that the residual vector is not precisely orthogonal to the gradientmatrix of HJT(xt,wt; ψ̂).

This has an adverse effect on the empirical size of the test. To circumventthis problem, we regress

the residualŝut on ĥt and compute the sum of squared residualsSSR0 =
∑T

t=1 ũ2
t . The new

residuals̃ut are orthogonal tôht.

(2) Regresŝνt on ĥt and compute the residualsrt.

(3) Regress a vector of ones onε̃trt and calculate the sum of squared residualsSSR1.

(4) The value of the test statistic is given by

(12) LM r
χ2 = T − SSR1.

Under H0, LMhn
χ2 has an asymptoticχ2 distribution withm degrees of freedom.

3. EMPIRICAL RESULTS

In this section we discuss how different specifications of the STR-Tree model actually describe the

realized volatility series of DJIA stocks. Are there statistically significant structural breaks and/or regime

shifts? What are the magnitudes and durations of those regimes? Are the level changes economically

relevant? What do the estimation of structural breaks say about the stock market in the period? What

are the in-sample fitting and out-of-sample forecasting properties of these models in relation to alternative

models, such as the ARFIMA model?

The empirical analysis focuses on the realized volatility of sixteen Dow JonesIndustrial Average index

stocks: Alcoa (AA), American International Group (AIG), Boeing (BA), Caterpillar (CAT), General Elec-

tric (GE), General Motors (GM), Hewlett Packard (HP), IBM, Intel (INTC), Johnson and Johnson (JNJ),

2See Ter̈asvirta (1994) and Medeiros, da Rosa, and Veiga (2005) on the technical conditions for the validity of the test statistic.
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Coca-Cola (KO), Merk (MRK), Microsoft (MSFT), Pfizer (PFE), Wal-Mart (WMT), and Exxon (XON).

The raw intraday data are constituted of tick-by-tick quotes extracted fromthe NYSE Trade and Quote

(TAQ) database. The period of analysis starts in January 3, 1994, andends in December 31, 2003. Trading

days with abnormally small trading volume and volatility caused by the proximity of holidays (for example,

Good Friday) are excluded, leaving a total of 2541 daily observations.

We start by removing non-standard quotes, computing mid-quote prices, filtering possible errors, and

obtaining one second returns for the 9:30 am to 16:05 p.m. period. Following the results of Hansen and

Lunde (2006), we adopt theprevious tickmethod for determining prices at precise time marks. Based on

the results of Hasbrouck (1995), who reports a median 92.7% information share at the NYSE for Dow

Jones stocks, and Blume and Goldstein (1997), who conclude that NYSE quotes match or determine the

best displayed quote most of the time, we use NYSE quotes (or NASDAQ, forMicrosoft and Intel) if they

are close enough to the time marks in relation to other updates.

In order to estimate our measure of the daily realized volatility, we use the two time scales estimator

of Zhang, Mykland, and Äıt-Sahalia (2005) with five-minute grids, which is a consistent estimator of the

daily realized volatility. The final dependent variable is the daily logarithm of the realized volatility. We

also consider dummies for the days of the week as in Martens, van Dijk, and de Pooter (2004) and dummies

for the following macroeconomic announcements: Federal Open Market Committee meetings (FOM), The

Employment Situation Report from the Bureau of Labor Statistics (ESR), CPIand PPI.

In Section 3.1 we present the modeling cycle adopted in the empirical experiment. We carefully discuss

variable selection and model specification. In order to evaluate the benefitsof the STR-Tree model over

standard models, we conduct an full sample study in Section 3.2, using data from 1994 to 2003. The goal

of this analysis is to point out how the STR-Tree models may be useful to describe interesting stylized

facts of financial time series, such as, long range dependence and asymmetries. We highlight our results

to the particular case of the IBM stock. For all the others 15 stocks the results are rather similar and

will be omitted for conciseness. Four versions of the STR-Tree model areestimated: A pure structural

break model (STR-Tree/SB), where time is the single transition variable; an asymmetric effects model

(STR-Tree/AE), where past cumulated returns of the stock over different horizons (reflecting “long-run”

dynamics of the market) are the candidates for controlling the regime switches;an asymmetric effects

model (STR-Tree/DJIA) where past cumulated returns of the DJIA indexare used as transition variable;

and finally, a combination of structural breaks and asymmetric effects model(STR-Tree/AE+SB), where

both time and past cumulated returns are considered as split variables. We show that the asymmetric

effects model successfully describe the long range dependence in the volatility of the stocks. Furthermore,

using market returns (DJIA) or firm-specific returns causes no important difference in terms of in-sample

performance. In-sample results are compared with the Heterogenous Autoregressive (HAR) model put

forward by Corsi (2004) and the linear ARFIMA model.

In Section 3.3 we conduct an out-of-sample forecasting experiment, considering the last four years of

the sample: From January 3, 2000 to December 31, 2003, covering 983 days. Each model is re-estimated

daily using the full sample until that date and then used for point and value atrisk forecasting for the
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horizons of one, five, ten and 20 days ahead. The specification of the STR-Tree models is revised monthly.

Point forecasts for the nonlinear models are calculated through conditional simulation, as well as interval

forecasts for all models. For reference, we also include predictions from linear Autoregressive (AR),

GARCH(1,1), and exponentially weighted moving average (EWMA) models. With respect to the latter,

we take a different approach from the literature and compute an EWMA of the realized volatility itself.

The STR-Tree/DJIA is not used to compute forecasts over one day ahead due the non-availability of the

realized variance series for the index, which is essential in the conditionalsimulation.

3.1. Specification. Following the specific-to-general principle, we start the cycle from the root node

(depth0). Our general basic linear equation is given by:

log(RVt) =α1 log(RVt−1) + · · · + αk log(RVt−k) + δ1I[Mon]t

+ δ2I[Tue]t + δ3I[Wed]t + δ4I[Thu]t + δ5I[Fri]t + δ6I[FOMC]t + δ7I[EMP ]t

+ δ8I[CPI]t + δ9I[PPI]t + εt,

(13)

whereI[Mon]t, I[Tue]t, I[Wed]t, I[Thu]t, andI[Fri]t are days-of-the-week dummies;I[FOMC]t,

I[EMP ]t, I[CPI]t, andI[PPI]t are dummies indicating dates for the following macroeconomic an-

nouncements: Federal Open Market Committee meetings, the Employment Situationreport, CPI and PPI.

Some authors discuss the relation between macroeconomic announcements and jumps; see, for example,

Barndorff-Nielsen and Shephard (2006) and Huang (2006).

The first step in the modeling cycle is to use equation (13) to select the number of autoregressive lags and

relevant days-of-the-week and announcement effects (variables that will be in wt), rendering the primary

specification that will be contrasted against non-linearity. Autoregressive (AR) coefficients are tested up to

the 15th order. Seeking a parsimonious specification, we base this selectionon the Schwarz Information

Criterion (SBIC), which initially selects autoregressive lags 1–3, 5, 7,10 for all stocks, keeps the Monday

dummy for some stocks and both the Monday and Friday dummies for others. The SBIC also selects the

FOMC and EMP announcements. We verified that the inclusion of a moving average (MA) term could

importantly cut down the number of AR terms, but we choose the less parsimonious AR specification since

the computational burden for estimating an MA coefficient in a nonlinear framework is high and there are

sufficient degrees of freedom. The presence of an MA coefficient could be justified by the existence of both

persistent and non-persistent components in volatility, such as measurement noise or jump components3.

We consider the importance of jump components in Section 3.3.3.

The next step is to select the set of variables in vectorsxt andzt. Over the next sections, the candidate

split variableszt falls in three cases: Structural breaks (time is the unique transition variable), asymmetric

effects (lagged returns and lagged cumulated returns over past two to 120 days), and finally, the combina-

tion of structural breaks and asymmetric effects. A fourth possibility, explored by Martens, van Dijk, and

de Pooter (2004), is the inclusion of lags of the realized volatility itself as split variables. However, this

particular choice of asymmetry revealed not significant in all cases analyzed. At each node, the transition

variable is selected as the one that minimizes thep-value of the robust version of the LM test.

3See Andersen, Bollerslev, and Diebold (2005) and Tauchen and Zhou(2005).
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The elements of the vectorzt are selected as a trade-off between parsimony/interpretability and fitting

properties. In the structural break case we include the first two lags of the logarithm of the realized volatil-

ity, such thatzt = (log(RVt−1), log(RVt−2))
′. In the asymmetric effects model we setzt = ∅, such that

z̃t in Equation 3 is just a constant4.

3.2. Structural Breaks, Regime Switches and Long Memory: A Full Sample Evaluation. We start by

following the recent literature and examining the effects of possible structural breaks on volatility levels

(see, for example, Granger and Hyung (2004), Martens, van Dijk, and de Pooter (2004), Morana and

Beltratti (2004)). The final estimated model for the case of IBM is given by

log(RVt) =0.261
(0.164)

log(RVt−1) + 0.224
(0.078)

log(RVt−2) + 0.084
(0.021)

log(RVt−3)

+ 0.074
(0.020)

log(RVt−5) + 0.044
(0.019)

log(RVt−7) + 0.047
(0.018)

log(RVt−10)

− 0.064
(0.013)

I[Mon]t − 0.063
(0.014)

I[Fri]t + 0.067
(0.032)

I[FOMC]t + 0.094
(0.023)

I[EMP ]t

+

{
0.005
(0.048)

+ 0.261
(0.164)

log(RVt−1) + 0.224
(0.078)

log(RVt−2)

}

× G

(
t; 13.359

(6.154)
, 1.744
(0.136)

)
G

(
t; 7.003

(12.716)
, 3.273
(0.101)

)

+

{
0.140
(0.021)

+ 0.449
(0.036)

log(RVt−1) + 0.156
(0.037)

log(RVt−2)

}

× G

(
t; 13.359

(6.154)
, 1.744
(0.136)

)[
1 − G

(
t; 7.003

(12.716)
, 3.273
(0.101)

)]

+

{
0.118
(0.014)

+ 0.409
(0.033)

log(RVt−1) + 0.033
(0.080)

log(RVt−2)

}

×

[
1 − G

(
t; 13.359

(6.154)
, 1.744
(0.136)

)][
1 − G

(
t; 7.003

(12.716)
, 3.273
(0.101)

)]
+ ε̂t

The final model has 23 estimated parameters. Although it may seem overparametrized, we stress the

fact that we have a large number of observations. Two breaks are estimated: One in August 1998 (volatility

and persistence go up; unconditional mean of the daily realized volatility goesfrom 1.50% to 2.10%, a

40% increase) and another one in April 2003 (volatility markedly falls; unconditional mean goes down

from 2.10% to 1.15%, a 45% decrease). Note that the standard errors for the slope parameter estimates

are quite high. Nevertheless, this is not an indication that the nonlinear effects are not significant. Due to

the identification problem previously discussed in Section 2.3, the distribution for the usual t-statistic is

not standard underH0 : γ = 0. The LM test is the adequate way to assess the statistical relevance of the

structural changes; see Eitrheim and Terasvirta (1996) for a discussion.

4More general specifications ofzt while statistically significant, brought no important out-of-sample gains, besides excessively
increasing the number of estimated parameters and occasionally causingnumerical problems in the estimation algorithm.
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FIGURE 2. IBM daily log realized volatility (1995–2003) and the transition functions.

Figure 2 contextualize the timing of the breaks, depicting the two estimated transitionfunctions, the log

realized volatility for the period and the evolution of the stock price adjusted for dividends for the 1995–

2003 period. The first break coincides exactly with the Russian Crisis in 1998, whilst the second one limits

two distinct dynamics for the DJIA: While the index would reach a four year bottom by October 2002, the

following year is a highly positive one for the index, which climbed 25% through the period. Figure 2 is

suggestive of other similar relations: There are several clusters of highvolatility associated with periods of

large falls in the stock price, followed by sharp declines in volatility after the price jumps up again. Some

examples are the periods of the October 1997 mini-crash, the Russian crisis, the NASDAQ bubble burst,

the two clusters the end of 2000/beginning of 2001, the 9/11 period, and thebear market of 2002. The

subsample between the first break and the second one (or the high volatility period) is marked by greater

incidence of these price decreases. In the next section, we turn attentionto this specific aspect.

3.2.1. Asymmetric Effects.The motivation for the estimation of lagged cumulated returns as a source of

multiple regimes in volatility in the STR-Tree model is illustrated in Figure 3, which shows the realized

volatility and monthly returns of IBM and the DJIA index for from 2000 to 2003. There seems to be a

recurring pattern of shifts to higher volatility levels related to interludes of negative returns and reversals

to low volatility levels in positive months. The single exception is the period just before the Nasdaq bubble

burst.

As mentioned before, we estimate two asymmetric effects models: In the first one, past cumulated

returns of the stock over different horizons are the candidates for controlling the regime switches (STR-

Tree/AE) and the second one has past cumulated returns of the DJIA index as transition variables (STR-

Tree/DJIA).
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FIGURE 3. Panel (a): Realized volatility and monthly IBM returns. Panel (b): Realized
volatility and monthly DJIA returns.

The estimated tree structure for the first model is shown in Figure 4 and is determined by the sets

T = {1, 6, 11, 23, 24} andJ = {0, 2, 5, 12}.
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23 24
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FIGURE 4. Estimated tree for IBM daily log realized volatility.

The final estimated STR-Tree/AE model is given by

log(RVt) =0.386
(0.022)

log(RVt−1) + 0.118
(0.023)

log(RVt−2) + 0.107
(0.021)

log(RVt−3)

+ 0.091
(0.020)

log(RVt−5) + 0.065
(0.019)

log(RVt−7) + 0.078
(0.018)

log(RVt−10)

− 0.068
(0.012)

I[Mon]t − 0.064
(0.014)

I[Fri]t + 0.068
(0.032)

I[FOMC]t + 0.092
(0.023)

I[EMP ]t

+ 0.081
(0.013)

× G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)

+ 0.184
(0.030)

×

[
1 − G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)]
×

[
1 − G

(
r39,t−1; 2.000

(1.018)
,−0.955

(0.319)

)]

− 0.004
(0.046)

×

[
1 − G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)]
× G

(
r39,t−1; 2.000

(1.018)
,−0.955

(0.319)

)

× G

(
r5,t−1; 2.000

(1.794)
, 0.479
(0.469)

)

+ 0.069
(0.044)

×

[
1 − G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)]
× G

(
r39,t−1; 2.000

(1.018)
,−0.955

(0.319)

)

×

[
1 − G

(
r5,t−1; 2.000

(1.794)
, 0.479
(0.469)

)]
× G

(
r2,t−1; 2.423

(1.211)
,−1.091

(0.284)

)

+ 0.447
(0.127)

×

[
1 − G

(
r90,t−1; 2.000

(1.082)
, 0.541
(0.344)

)]
× G

(
r39,t−1; 2.000

(1.018)
,−0.955

(0.319)

)

×

[
1 − G

(
r5,t−1; 2.000

(1.794)
, 0.479
(0.469)

)]
×

[
1 − G

(
r2,t−1; 2.423

(1.211)
,−1.091

(0.284)

)]
+ ε̂t
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Note that the transition variables are divided by their respective standarddeviation.

The model is described by five highly statistically significant regimes determinedby four levels of asym-

metric effects. The first node indicates a low volatility regime linked to a rising market in the horizon of

four months. On the other extreme, a decline of 12% or more over nearly two months introduce a regime

of high variance, while superior returns over this same period bring intermediate volatility levels and short

run leverage effects. Negative returns over two days also induce a regime of high variance. The estimated

transition functions are illustrated in Figure 5.
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FIGURE 5. Estimated Transition Functions.

Based on the estimated regimes and the transition graphs displayed in Figure 5,we divide the observa-

tions in five different regimes. We split the observations according to the value of the transition functions

(bellow or above 0.5). Table 1 reports the number of observations on each group and the respective mean

and standard deviation of the realized volatility. Group one refers to the observations associated to the

terminal node number one in Figure 4. Groups two and three include observations associated to the termi-

nal node 11 and 23 (high returns, low volatility), respectively. Groups four and five relate to observations

associated to nodes six and 24 (low returns, high volatility).

Concerning the STR-Tree/DJIA and the STR-Tree/SB+AE, the final estimated tree architectures are

described in Figures 6 and 7.
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TABLE 1. VOLATILITY REGIMES FOR IBM.

Mean and standard deviation of realized volatility for observations divided
by a classification based on the STR-Tree/AE model with lagged cumu-
lated returns as split variables.

Group Mean Standard Deviation Number of Observations
1 1.57 0.54 1264
2 1.71 0.69 494
3 1.76 0.72 368
4 2.39 0.88 96
5 2.46 0.82 254

All 1.75 0.71 2476

0

1 2

5 6

r29,t-1 -6.21 r29,t-1 < -6.21

r4,t-1 -2.28 r4,t-1 < -2.28

3 4

r3,t-1 1.91 r3,t-1 < 1.91

9 10

rt-1 -1.03 rt-1 < -1.03

FIGURE 6. Estimated tree for IBM log realized volatility with cumulated returns of the
DJIA index as transition variables.
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r39,t-1 -13.04 r39,t-1 < -13.04

3 4

t Nov/96 t < Nov/96

7 8

t Apr/03 t < Apr/03

11 12

r5,t-1 -4.59 r5,t-1 < -4.59

FIGURE 7. Estimated tree for IBM log realized volatility with cumulated returns of and
time as transition variables.

3.2.2. Autoregressive Fractionally Integrated Moving Average.We now turn to the comparison of volatil-

ity models. We start with the standard ARFIMA(p, d, q) defined as

φp(L)(1 − L)d(log(RVt) − µ) = θq(L)εt,(14)
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whered denotes the fractional differencing parameter,L the lag operator,εt is a white noise,φp(L) and

θq(L) are polynomials of orderp andq, having all roots lying outside the unit circle. For each series,

we estimate several ARFIMA(p,d,q) specifications by maximum likelihood; see Baillie (1996). The best

combination ofp and q is selected by SBIC. The method leads to a choice of an ARFIMA(0,d,0) for

all series. Predictions for the ARFIMA(0,d,0) model are computed through a truncation of the infinite

autoregressive representation after the150th lag. The final estimated model is given by:

(1 − L)
0.516
(0.057)

{
log(RVt) − 0.502

(0.009)
+ 0.059

(0.019)
I[Mon]t + 0.032

(0.020)
I[Fri]t

− 0.100
(0.045)

I[FOMC]t − 0.081
(0.038)

I[EMP ]t

}
= ε̂t

(15)

ARFIMA models have been estimated for realized volatility in Andersen, Bollerslev, Diebold, and Labys

(2003), Areal and Taylor (2002), Beltratti and Morana (2005), Deo, Hurvich, and Lu (2006), Martens, van

Dijk, and de Pooter (2004), Thomakos and Wang (2003), among others.

3.2.3. Heterogenous Autoregressive.The HAR (Heterogeneous Autoregressive) model proposed by Corsi

(2004) is grounded on the Heterogeneous ARCH (HARCH) model developed by M̈uller, Dacorogna, Dav,

Olsen, Pictet, and von Weizsacker (1997). It is specified as a multi-component volatility model with an

additive hierarchical structure, leading to an additive time series model of the realized volatility which

specifies the volatility as a sum of volatility components over different horizons. The model has been

used for instance in Andersen, Bollerslev, and Diebold (2005) for its estimation simplicity and capacity to

reproduce the autocorrelation patterns of long memory models over shorterhorizons. Define theh-horizon

normalized realized volatility by

(16) log(RVt)t+h =
log(RVt+1) + log(RVt+2) + · · · + log(RVt+h)

h

The estimated HAR model is given by:

log(RVt) = − 1.046
(0.091)

+ 0.374
(0.023)

log RVt−1 + 0.068
(0.026)

log RVt−2 + 0.247
(0.046)

log(RVt)t−5

+ 0.225
(0.032)

log(RVt)t−22 − 0.066
(0.012)

I[Mon]t − 0.053
(0.013)

I[Fri]t

+ 0.072
(0.029)

I[FOMC]t + 0.093
(0.025)

I[EMP ]t + ε̂t

(17)

We add a second order autoregressive term to the typical formulation of the model to account for remaining

autocorrelation in small lags.

3.2.4. Summary and Comparison of Results.Table 2 shows summary statistics for the residuals of the four

models, where JB is thep-value of the Jarque-Bera normality test,Q(k) indicates thep-value of suitable

tests of serial correlation up to thekth lag (Ljung-Box portmanteau test for the ARFIMA and HAR models

and a LM-type test for the nonlinear models; see a description of the latter in Medeiros and Veiga (2003)),
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andQ(k)2 gives thep-value of the same test for the squared residuals. TheR2 statistics are corrected

according to Andersen, Bollerslev, and Meddahi (2005).

The table shows that the STR-Tree/AE model has superior in-sample fitting asmeasured byR2, while

the STR-Tree/DJIA model is the best by the SBIC. The ARFIMA model has aremarkably inferior fitting

performance than the others. All models generate highly skewed and leptokurtic residuals, which can be

explained by forty outliers to the right of the distribution.

TheQ(k) statistics by their turn indicate all models with the exception of the ARFIMA model leave no

significant remaining autocorrelation structure in the residuals up to the20th lag at 5%. This could be due

to ignored AR or MA terms in the ARFIMA, but less parsimonious models have been estimated and none

of them was capable of reverting this result. Finally, there is strong evidence of dependence on squared

residuals, but unlike the results of Beltratti and Morana (2005) for exchange rates, there is no indication

whatsoever of long memory on the conditional variance of volatility.
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TABLE 2. ESTIMATION DIAGNOSTICS.

The table shows summary statistics for the residuals of six different models estimated for the log realized volatility of IBM: The STR-
Tree model with lagged cumulated returns as split variables (STR-Tree/AE), the STR-Tree model with time as the split variable (STR-
Tree/SB), the STR-Tree model with time and cumulated returns as transitionvariables (STR-Tree/SB+AE), a STR-Tree model with
cumulated returns of the DJIA index as transition variables (STR-Tree/DJIA), an ARFIMA(0,d,0) model with exogenous variables and
the HAR model. JB is thep-value of the Jarque-Bera normality test.Q(k) indicates thep-value of adequate tests for serial correlation
up to thekth lag. Q2(k) gives thep-value of the same tests for the squared residuals. SBIC is the Schwarz Information Criterion. The
R2 is corrected as in Andersen, Bollerslev, and Meddahi (2005).

STR-Tree/AE STR-Tree/SB STR-Tree/SB+AE STR-Tree/DJIA ARFIMA HAR
R2 0.631 0.619 0.624 0.621 0.505 0.610
SD 0.223 0.226 0.225 0.225 0.255 0.229

Skewness 0.697 0.725 0.707 0.736 0.336 0.707
Kurtosis 4.703 4.535 4.780 4.815 4.166 4.503

JB 0.000 0.000 0.000 0.000 0.000 0.000
Q(5) 0.367 0.432 0.382 0.189 0.000 0.637
Q(10) 0.115 0.308 0.157 0.079 0.000 0.275
Q(20) 0.399 0.422 0.432 0.101 0.000 0.530
Q2(10) 0.012 0.001 0.006 0.032 0.000 0.001
Q2(20) 0.032 0.008 0.041 0.086 0.000 0.008
SBIC -2.905 -2.889 -2.918 -2.919 -2.699 -2.918
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3.2.5. Long Memory Analysis.To assess the long memory characteristics of the estimated STR-Tree mod-

els for IBM, we run 1000 simulations of alternative models (with the same length as the sample) and

evaluate estimates of the fractional differencing parameter (d). We also include AR simulations using

the linear parameters of the STR-Tree/AE estimation to emphasize how the non-linear effects do generate

hyperbolic patterns in autocorrelations beyond the possibly misleading effect of persistent autoregressive

structures.

We apply two methods for the estimation of the long memory parameter: The widely used log peri-

odogram estimator (GPH) of Geweke and Porter-Hudak (1983) and the bias reduced estimator of Andrews

and Guggenberger (2003). We employ two values for the number of ordinatesℓ used in each regression:

T 1/2, the usual rule of thumb value suggested by Geweke and Porter-Hudak (1983) (simulation-based),

and the value selected by the plug-in method of Hurvich and Deo (1999), which points toT 0.65 for all

series.T is the sample size.

For each set of simulations, we also evaluate the power of the Ohanissian, Russell, and Tsay (2004) test

of true long memory process, which is based on the invariance property ofthe long memory parameter

over temporal aggregation under the null. Andersen, Bollerslev, Diebold, and Ebens (2001), for example,

examine this property for DJIA stocks as evidence of long memory.

Table 3 reports the mean and standard deviation (in parenthesis) of the fractional differencing parameter

(d) estimates for the log realized volatility of IBM (entire sample) and over the simulations. The first line

of the table reveals that the model with regime switching accounts for a large degree of long memory, even

in large samples. In line with the literature, the same is also true for the model with structural breaks.

The table also shows that the Ohanissian, Russell, and Tsay (2004) test has little power against these

alternatives. For the log realized volatility series the test does not reject thenull hypothesis, albeit sensibly

to the specification (ℓ and the number of aggregations) and the sample itself. For instance, if the first week

is removed from the sample, the test rejects the null of long memory at the 5% level. Unfortunately, the

test can almost always be tailored to favor one of the alternatives.

Initially documented by Granger and Ding (1996), an important issue with the ARFIMA approach is

the excessive variance of the fractional differencing parameter estimates over time, possibly involving

extensive periods in non-stationary regions. This problem is illustrated in Figure 8, which shows the

evolution of GPH estimates (ℓ = T 0.65) in a rolling window of three years over our sample. The estimates

range from around 0.3 to 0.8.

An interesting feature of the STR-Tree/AE model is that it can possibly account for this fact. We il-

lustrate this through a partial simulation of the model using the actual return series as transition variables,

dividing the sample by the first estimated break in model STR-Tree/SB. Even though this simulation is

ad hocand tends to underestimate the capacity of the model of generate persistent autocorrelations, it can

provide an useful indication of this ability. Table 4 shows the results, including the estimate for the log

realized volatility series. As suggested by Figure 8, all estimates for the log realized volatility point to a

significantly lower estimative for the first part of sample. In fact, this is the source of the weak in-sample

performance of the ARFIMA model analyzed in section 3.2.4 – the highd estimate for the overall series
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TABLE 3. LOG-PERIODOGRAM ESTIMATES - SIMULATIONS AND LOG REALIZED VOLATILITY .

The table reports the mean and standard deviation (in parenthesis) of the fractional differencing
parameter (d) estimates for IBM daily log realized volatility and over 1000 simulations of three
models: The STR-Tree model with lagged cumulated returns as split variables (STR-Tree/AE),
the STR-Tree model with time as the split variable (STR-Tree/SB), and the AR model. GPH
and AG stand for the Geweke and Porter-Hudak (1983) and Andrews and Guggenberger (2003)
estimators, respectively. The number of ordinates used in each regression is indicated in the
first row. Two values for this parameter are employed: 0.5, the usualrule of thumb for the
GPH, and 0.65, selected by the plug-in method of Hurvich and Deo (1999). The last column
gives the results for the Ohanissian, Russell, and Tsay (2004) test of the null of a true long
memory process: The first three numbers indicate the percentage of simulations where the
null is rejected at the 5% level, while the last line indicates thep-value of the test for the Log
Realized Volatility of IBM.

Model ℓ = T 0.5 ℓ = T 0.65 ℓ = T 0.7

GPH AG GPH AG LMT
STR-Tree/AE 0.48

(0.15)
0.30
(0.25)

0.60
(0.08)

0.44
(0.17)

33.8%

STR-Tree/SB 0.42
(0.08)

0.51
(0.12)

0.50
(0.04)

0.42
(0.09)

25.5%

AR 0.14
(0.11)

0.02
(0.16)

0.38
(0.05)

0.11
(0.11)

94.5%

Log Realized Vol 0.60
(0.10)

0.35
(0.17)

0.46
(0.05)

0.59
(0.10)

0.556

-1

-0.5

0

0.5

1

1.5

2

2.5

January-97

A
pril-97

July-97

O
ctober-97

January-98

A
pril-98

July-98

O
ctober-98

January-99

A
pril-99

July-99

O
ctober-99

January-00

A
pril-00

July-00

O
ctober-00

January-01

A
pril-01

July-01

O
ctober-01

January-02

A
pril-02

July-02

O
ctober-02

January-03

A
pril-03

July-03

O
ctober-03

L
o

g
 R

ea
liz

ed
 V

o
la

ti
lit

y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

G
P

H
 E

st
im

at
e 

(3
 y

ea
rs

 r
o

lli
n

g
 w

in
d

o
w

)

GPH estimate

=0.65, SD = 0.082

FIGURE 8. GPH Estimates in a Rolling Window.

produce large errors in the first subsample as well as dependence in theresiduals (which are also induced

by the period of the second break). Back to the table, although average estimates for the partial simulations

are lower than the ones in the nonstationary region for the realized volatility in the second subsample, the

model in fact seems to be able to reproduce this behavior.

3.3. Forecasting Analysis.We base the out-of-sample analysis on the four last years of the sample, rang-

ing from January 3, 2000 to December 31, 2003, covering 983 days. Each model is re-estimated daily
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TABLE 4. LOG-PERIODOGRAM ESTIMATES - PARTIAL SIMULATIONS AND LOG RE-
ALIZED VOLATILITY .

The table reports the mean and standard deviation (in parenthesis) of the fractional differencing
parameter (d) estimates of two subsamples of the daily log realized volatility of IBM and over1000
(partial) simulations of two models: the STR-Tree model with lagged cumulated returns as split
variables (STR-Tree/AE) and the STR-Tree model with time as the split variable (STR-Tree/SB).
GPH and AG stand for the Geweke and Porter-Hudak (1983) and Andrews and Guggenberger (2003)
estimators, respectively.

Jan/1994 to Aug/1998 GPH
(
ℓ = T 0.5

)
GPH

(
ℓ = T 0.65

)
AG

(
ℓ = T 0.65

)

STR-Tree Partial Simulation 0.33
(0.13)

0.52
(0.07)

0.29
(0.14)

Log Realized Vol 0.34
(0.13)

0.29
(0.07)

0.36
(0.14)

Sep/1998 to Dec/2003 GPH
(
ℓ = T 0.5

)
GPH

(
ℓ = T 0.65

)
AG

(
ℓ = T 0.65

)

STR-Tree Partial Simulation 0.46
(0.11)

0.60
(0.06)

0.43
(0.12)

Log Realized Vol 0.65
(0.12)

0.66
(0.07)

0.74
(0.14)

using the full sample until that date and then used for point and value at riskforecasting for the horizons

of one, five, ten and 20 days ahead. The specification of the STR-Treemodels is revised monthly. Point

forecasts for the nonlinear models are calculated through conditional simulation, as well as interval fore-

casts for all models. For reference, we also include predictions generated by a GARCH(1,1) model and an

exponentially weighted moving average (EWMA). With respect to the latter, wetake a different approach

from the literature and compute an EWMA of the realized volatility with decay parameter set to 0.8.

3.3.1. Point Forecasts.The point forecasts results are reported in Tables 5. The evaluation of forecasts is

based on the mean absolute error (MAE) criterion and the estimation of the Mincer-Zarnowitz regression

RVt = α + βR̂V t|t−1,i + εt,i

whereRVt is the observed realized volatility on dayt andR̂V t|t−1,i is the one-step-ahead forecast of model

i for the volatility on dayt. If the modeli is correctly specified thenα = 0 andβ = 1. We compute the

(robust)p-value of the F test for this joint hypothesis and report the (corrected)R2 of the regression as a

measure of the ability of the model to track variance over time. However, the presence of heteroskedasticity

hinders the computation of appropriate statistics for five, ten, and 20 days.

We also report two tests for superior predictive ability. The first one is theHarvey, Leybourne, and

Newbold (1997) modification of the Diebold and Mariano (1995) test of equal predictive accuracy. Each

concurrent model is compared against the ARFIMA model. Letg(e1t) andg(e2t) denote the loss function

for the prediction errorse1t ande2t of models 1 and 2 on dayt. For the MAE,g(eit) =
∣∣∣RVt − R̂V t|t−j,i

∣∣∣

and for theR2, g(eit) =
[
RVt − R̂V t|t−j,i

]2
. The null hypothesis isE[g(e1t) − g(e2t)] = 0.

The second test is the Superior Predictive Ability (SPA) test developed byHansen (2005). The null

hypothesis is that a given model is not inferior to any other competing models interms of a given loss

function.
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For one day-ahead forecasts, the STR-Tree/AE models are superlative both in terms of MAE andR2,

significantly outperforming the ARFIMA model (with errors 5% smaller on average) and being the only

ones not rejected by the SPA tests. In the sequence, there is little distinction between the ARFIMA, AR

and HAR models in terms ofR2, while the last two are slightly better in terms of MAE (the differences

are significant at 10% and 5% respectively). The model with structural breaks is markedly inferior to those

alternatives. The superiority of the model with asymmetric effects in terms of theMAE is reproduced in all

stocks. When theR2 is considered the STR-Tree/AE model is superior in 12 series (80%). TheARFIMA,

HAR and EWMA models alternate as the second best in terms ofR2, while the HAR specification has an

edge in terms of the MAE; see also Table 8.

The advantage of the STR-Tree/AE model in in terms of the MAE is preservedwhen the five days

horizon is considered. The EWMA model significantly outperforms the ARFIMA model. The performance

of the ARFIMA, HAR and AR models are relatively similar with respect to the MAE, with an advantage

for fractional integration inR2. The results for ten and 20 days are similar: The STR-Tree/AE model is

still the best in terms of the MAE, significantly exceeding the ARFIMA model, andbeing almost identical

to the EWMA whenR2 is considered. However, the model with asymmetric effects and structural breaks

become greatly superior inR2 for 20 days forecasts. The null hypothesis of the SPA test is no longer

rejected at 5% for ARFIMA, AR and EWMA specifications; HAR predictionscome moderately behind.

Back to the other stocks, for ten days forecasts the STR-Tree/AE model isthe best in MAE for twelve

stocks, the EWMA model for two and the HAR for only one. As in one day forecast, neither ARFIMA,

HAR or EWMA forecasts consistently appear as the second best, even though the latter achieves some

advantage. On the other hand, a different pattern emerge for theR2: The EWMA model is the best in ten

stocks, the STR-Tree/AE model in three, the HAR model in one and the STR-Tree/SB+AE model also in

one.
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TABLE 5. FORECASTINGRESULTS.

The table reports the out-of-sample forecasting results of for the IBM daily realized volatility for the period between 2000 and 2003 (983 trading
days, excluding days affected by holidays), where each model is re-estimated daily and used for predictions one, five, ten and 20 days ahead. MAE
is the mean absolute error.R2 is the (corrected) R-squared ofRVt = α + βdRV t|t−j,i + εt,i, wheredRV t|t−j,i is the prediction of modeli for the
realized volatility on dayt andRVt is the observed realized volatility on that day. F is thep-value of the (heteroskedasticity robust) F test of the joint
hypothesis thatα = 0 andβ = 1. HLN is thep-value of the Harvey, Leybourne, and Newbold (1997) test of equalityof the mean of loss functions,
where the models are compared with the ARFIMA. SPA is thep-value of the Superior Predictive Ability test developed by Hansen (2005). The null
hypothesis is that a given model is not inferior to any other competing models in terms of a given loss function. EWMA is the exponential weighted
moving average of realized volatility itself.

1 day 5 days
MAE HLN SPA R2 HLN SPA F MAE HLN SPA R2 HLN SPA F

STR-Tree/AE 0.322 0.000 0.960 0.641 0.004 0.275 0.009 0.3970.000 0.975 0.499 0.012 0.947 –
STR-Tree/SB 0.365 0.000 0.000 0.592 0.018 0.000 0.000 0.4740.000 0.000 0.424 0.000 0.002 –

STR-Tree/DJIA 0.324 0.000 0.456 0.644 0.002 0.921 0.049 – – – – – – –
STR-Tree/SB+AE 0.340 0.485 0.004 0.610 0.304 0.011 0.938 0.409 0.185 0.285 0.495 0.071 0.841 –

HAR 0.332 0.027 0.026 0.618 0.418 0.003 0.000 0.412 0.338 0.038 0.468 0.068 0.026 –
ARFIMA 0.339 – 0.001 0.617 – 0.009 0.169 0.414 – 0.032 0.478 – 0.228 –

AR 0.334 0.092 0.001 0.616 0.497 0.004 0.000 0.410 0.215 0.020 0.467 0.066 0.021 –
EWMA 0.348 0.031 0.001 0.598 0.015 0.006 0.412 0.407 0.098 0.517 0.492 0.032 0.733 –
GARCH 0.490 0.000 0.000 0.368 0.000 0.000 0.002 0.527 0.000 0.000 0.289 0.000 0.000 –

10 days 20 days
MAE HLN SPA R2 HLN SPA F MAE HLN SPA R2 HLN SPA F

STR-Tree/AE 0.447 0.003 0.969 0.388 0.048 0.878 – 0.507 0.012 0.982 0.251 0.150 0.399 –
STR-Tree/SB 0.532 0.000 0.000 0.314 0.000 0.002 – 0.604 0.000 0.000 0.172 0.000 0.002 –

STR-Tree/DJIA – – – – – – – – – – – – – –
STR-Tree/SB+AE 0.460 0.321 0.446 0.392 0.072 0.826 – 0.510 0.025 0.890 0.288 0.004 0.777 –

HAR 0.466 0.311 0.039 0.353 0.025 0.058 – 0.535 0.160 0.001 0.227 0.149 0.122 –
ARFIMA 0.463 – 0.287 0.370 – 0.565 – 0.524 – 0.489 0.237 – 0.269–

AR 0.458 0.249 0.131 0.359 0.092 0.067 – 0.518 0.253 0.269 0.230 0.230 0.122 –
EWMA 0.463 0.473 0.390 0.390 0.028 0.907 – 0.536 0.090 0.233 0.252 0.107 0.370 –
GARCH 0.555 0.000 0.000 0.230 0.000 0.000 – 0.591 0.000 0.0000.149 0.000 0.008 –
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We also examine the forecasting performance of the different models by year. After 2003 the volatility

consistently and sharply declined through that period, inducing autocorrelations in the residuals of all

models. The results for 2000–2002 are presented in Table 6, where we concentrate on the ARFIMA and

STR-Tree/AE models only. In the table, one, two or three asterisks next to MAE and/orR2 indicate that

the model has statistically significantly lower MAE/sum of squared residuals bythe Harvey, Leybourne,

and Newbold (1997) test at the 10%, 5% and 1% levels, respectively.

In 2000, the STR-Tree/AE is superior for one and five days ahead forecasts (significant at 5%), while the

criteria diverge for ten and 20 days: The ARFIMA outperforms the STR-Tree/AE in in terms of the MAE

and the reverse happens with theR2. The contradiction suggests a volatility level unaccounted for by the

STR-Tree/AE estimations, which otherwise demonstrated superior capacity totrack variations in volatility.

In 2001 and 2002, however, the STR-Tree/AE consistently and stronglyoutperforms the ARFIMA model

in all horizons and criteria.

The statistics for 2003 are given in Table 7. For one day forecasts, the performances of the AR, EWMA,

STR-Tree/AE and HAR models are very similar and superior to ARFIMA, whilethe EWMA and HAR

models have better MAE and the ARFIMA model higherR2 for 20 days. MAEs are considerably smaller

than in previous years, suggesting a lower variance of the log realized volatility in the period. In fact, 20

days forecasts for the ARFIMA model have lower MAE than one day forecasts in all the previous years.

The table also shows that the STR-Tree/SB model is strongly outperformed by ARFIMA and EWMA in

the period. The apparent contradiction posed by the weak performanceof the break model can be seen

in light of the analysis of Granger and Hyung (2004), who show that the prediction with structural breaks

models tend to be weaker even if the true process is a break process: Since there is a lag in the detection

of the break, moving average models perform better, a quality that is also shared by spurious ARFIMA

estimations.
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TABLE 6. FORECASTINGRESULTS BY YEAR: 2000–2002.

The table reports the out-of-sample forecasting results of the STR-Tree/AE, STR-Tree/DJIA, and
ARFIMA models for each year between 2000 and 2002, where each model is re-estimated daily and
used for predictions one, five, ten and 20 days ahead. MAE is the mean absolute error.R2 is the cor-
rected R-squared of the following regression:RVt = α + βdRV t,i + εt,i, wheredRV t,i is the prediction
of modeli for the realized volatility on dayt andRVt is the “observed” realized volatility on that day.
One, two or three asterisks next to the MAE and/or theR2 indicate that the model has statistically sig-
nificantly lower MAE/sum of squared residuals by the Harvey, Leybourne, and Newbold (1997) test at
the 10%, 5% and 1% levels respectively.

1 day
2000 2001 2002

MAE R2 MAE R2 MAE R2

ARFIMA 0.459 0.309 0.373 0.504 0.352 0.618
STR-Tree/AE 0.451 0.336** 0.350*** 0.550*** 0.328*** 0.644***
STR-Tree/DJIA 0.451 0.335** 0.353*** 0.556*** 0.326*** 0.652***

5 days
2000 2001 2002

MAE R2 MAE R2 MAE R2

ARFIMA 0.536 0.129 0.465 0.390 0.454 0.357
STR-Tree/AE 0.547 0.153* 0.420*** 0.405 0.428*** 0.432***
STR-Tree/DJIA – – – – – –

10 days
2000 2001 2002

MAE R2 MAE R2 MAE R2

ARFIMA 0.567*** 0.082 0.537 0.233 0.525 0.190
STR-Tree/AE 0.608 0.095 0.485*** 0.250 0.479*** 0.288***
STR-Tree/DJIA – – – – – –

20 days
2000 2001 2002

MAE R2 MAE R2 MAE R2

ARFIMA 0.605*** 0.016 0.634 0.097 0.583 0.062
STR-Tree/AE 0.633 0.024 0.567*** 0.114 0.529*** 0.148***
STR-Tree/DJIA – – – – – –
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TABLE 7. FORECASTINGRESULTS BY YEAR: 2003.

The table reports the out-of-sample forecasting results for the IBM daily realized volatility for the year 2003, where each model is re-estimated
daily and used for predictions one, five, ten and 20 days ahead. MAE is the mean absolute error.R2 is the (corrected) R-squared ofRVt =

α + βdRV t|t−j,i + εt,i, wheredRV t|t−j,i is the prediction of modeli for the realized volatility on dayt andRVt is the observed realized volatility
on that day. F is thep-value of the (heteroskedasticity robust) F test of the joint hypothesis thatα = 0 andβ = 1. HLN is thep-value of the Harvey,
Leybourne, and Newbold (1997) test of equality of the mean of loss functions, where the models are compared with the ARFIMA. SPA is thep-value
of the Superior Predictive Ability test developed by Hansen (2005). Thenull hypothesis is that a given model is not inferior to any other competing
models in terms of a given loss function. EWMA is the exponential weighted moving average of realized volatility itself.

1 day 20 days
MAE HLN SPA R2 HLN SPA F MAE HLN SPA R2 HLN SPA F

STR-Tree/AE 0.157 0.002 0.907 0.598 0.067 0.923 0.000 0.2360.000 0.000 0.482 0.008 0.055 –
STR-Tree/SB 0.201 0.000 0.000 0.573 0.418 0.339 0.000 0.5240.000 0.000 0.456 0.002 0.004 –

STR-Tree/DJIA 0.161 0.028 0.001 0.599 0.066 0.949 0.000
STR-Tree/SB+AE 0.165 0.169 0.010 0.573 0.441 0.069 0.000 0.297 0.005 0.000 0.457 0.000 0.020 –

HAR 0.156 0.000 0.951 0.593 0.032 0.900 0.010 0.191 0.000 0.848 0.478 0.000 0.027 –
ARFIMA 0.170 – 0.000 0.569 – 0.166 0.000 0.274 – 0.000 0.546 – 0.880 –

AR 0.159 0.000 0.011 0.589 0.076 0.450 0.003 0.207 0.000 0.000 0.478 0.000 0.021 –
EWMA 0.158 0.005 0.695 0.586 0.158 0.606 0.010 0.200 0.000 0.539 0.479 0.000 0.001 –
GARCH 0.322 0.000 0.000 0.413 0.001 0.000 0.000 0.527 0.000 0.000 0.276 0.000 0.004 –
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TABLE 8. ONE-DAY-AHEAD FORECASTINGRESULTS FORALL SERIES.

The table reports the out-of-sample forecasting results for the daily realized volatility of 15 Dow Jones
stocks, where each model is re-estimated daily and used for predictionsone, five, ten and 20 days ahead.
MAE is the mean absolute error.R2 is the (corrected) R-squared ofRVt = α + βdRV t|t−j,i + εt,i,

wheredRV t|t−j,i is the prediction of modeli for the realized volatility on dayt andRVt is the observed
realized volatility on that day. The figures between parenthesis are thep-value of the Superior Predictive
Ability test developed by Hansen (2005). The null hypothesis is that a given model is not inferior to any
other competing models in terms of a given loss function. EWMA is the exponential weighted moving
average of realized volatility itself.

Series STR-Tree/AE STR-Tree/SB STR-Tree/AE+SB ARFIMA HAREWMA
AA 0.450

(0.933)
0.476
(0.001)

0.560
(0.067)

0.456
(0.301)

0.474
(0.000)

0.465
(0.034)

AIG 0.359
(0.913)

0.371
(0.003)

0.372
(0.005)

0.364
(0.260)

0.369
(0.041)

0.371
(0.039)

BA 0.393
(0.837)

0.414
(0.002)

0.404
(0.057)

0.397
(0.469)

0.405
(0.099)

0.409
(0.063)

CAT 0.398
(0.904)

0.423
(0.000)

0.423
(0.000)

0.404
(0.152)

0.412
(0.044)

0.411
(0.063)

GE 0.340
(0.873)

0.369
(0.000)

0.363
(0.000)

0.349
(0.118)

0.355
(0.008)

0.361
(0.004)

GM 0.374
(0.920)

0.409
(0.000)

0.388
(0.003)

0.380
(0.181)

0.388
(0.003)

0.389
(0.007)

HP 0.574
(0.903)

0.604
(0.000)

0.585
(0.084)

0.579
(0.372)

0.599
(0.002)

0.583
(0.314)

INTC 0.436
(0.821)

0.490
(0.000)

0.443
(0.331)

0.448
(0.055)

0.459
(0.004)

0.466
(0.001)

JNJ 0.368
(0.806)

0.380
(0.015)

0.385
(0.008)

0.372
(0.579)

0.379
(0.139)

0.380
(0.113)

KO 0.335
(0.904)

0.360
(0.000)

0.346
(0.014)

0.341
(0.164)

0.348
(0.006)

0.339
(0.473)

MRK 0.367
(0.886)

0.389
(0.001)

0.377
(0.034)

0.370
(0.634)

0.381
(0.010)

0.378
(0.064)

MSFT 0.347
(0.827)

0.380
(0.000)

0.364
(0.000)

0.357
(0.133)

0.363
(0.013)

0.369
(0.013)

PFE 0.426
(0.036)

0.433
(0.001)

0.433
(0.002)

0.419
(0.893)

0.423
(0.531)

0.421
(0.669)

WMT 0.397
(0.882)

0.408
(0.026)

0.413
(0.008)

0.400
(0.690)

0.409
(0.036)

0.408
(0.125)

XON 0.306
(0.882)

0.322
(0.001)

0.323
(0.065)

0.312
(0.110)

0.323
(0.000)

0.321
(0.005)

3.3.2. Value at Risk.The evaluation of value-at-risk forecasts is based on the likelihood ratio tests for

unconditional coverage and independence of Christoffersen (1998). Our analysis is similar to Beltratti and

Morana (2005), who study the benefits of value-at-risk with long memory.

Initially, consider only one day forecasts. Letq̂i
t|t−1(α) be the(1 − α) interval forecast of modeli for

dayt conditional on information on dayt − 1. In our application, we consider 95% and 99% value-at-risk

measures, i.e.,α = 0.05 andα = 0.01, respectively. We construct the sequence of coverage failures for

the lowerα tail as:

Ft|t−1 =





1 if rt+1 < q̂i
t+1|t(α)

0 if rt+1 > q̂i
t+1|t(α)

wherert is the return observed on dayt. The unconditional coverage (UC) is a test of the nullE(Ft+1|t) =

α againstE(Ft+1|t) 6= α. The test of independence is constructed against a first-order Markov alternative.
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TABLE 9. TEN-DAYS-AHEAD FORECASTINGRESULTS FORALL SERIES.

The table reports the out-of-sample forecasting results for the daily realized volatility of 15 Dow Jones
stocks, where each model is re-estimated daily and used for predictionsone, five, ten and 20 days ahead.
MAE is the mean absolute error.R2 is the (corrected) R-squared ofRVt = α + βdRV t|t−j,i + εt,i,

wheredRV t|t−j,i is the prediction of modeli for the realized volatility on dayt andRVt is the observed
realized volatility on that day. The figures between parenthesis are thep-value of the Superior Predictive
Ability test developed by Hansen (2005). The null hypothesis is that a given model is not inferior to any
other competing models in terms of a given loss function. EWMA is the exponential weighted moving
average of realized volatility itself.

Series STR-Tree/AE STR-Tree/SB STR-Tree/AE+SB ARFIMA HAREWMA
AA 0.583

(0.927)
0.644
(0.003)

0.585
(0.865)

0.603
(0.064)

0.605
(0.175)

0.597
(0.368)

AIG 0.460
(0.856)

0.472
(0.249)

0.472
(0.238)

0.460
(0.874)

0.470
(0.469)

0.481
(0.122)

BA 0.512
(0.902)

0.551
(0.000)

0.530
(0.188)

0.523
(0.203)

0.515
(0.845)

0.533
(0.225)

CAT 0.499
(0.855)

0.541
(0.011)

0.520
(0.135)

0.507
(0.368)

0.517
(0.321)

0.513
(0.366)

GE 0.452
(0.884)

0.489
(0.000)

0.459
(0.616)

0.467
(0.015)

0.457
(0.776)

0.464
(0.415)

GM 0.455
(0.921)

0.526
(0.000)

0.469
(0.088)

0.481
(0.000)

0.486
(0.008)

0.483
(0.054)

HP 0.744
(0.659)

0.759
(0.327)

0.756
(0.347)

0.746
(0.560)

0.745
(0.486)

0.731
(0.727)

INTC 0.607
(0.903)

0.754
(0.000)

0.640
(0.030)

0.629
(0.014)

0.640
(0.127)

0.625
(0.408)

JNJ 0.456
(0.899)

0.477
(0.020)

0.485
(0.003)

0.460
(0.592)

0.468
(0.345)

0.487
(0.048)

KO 0.411
(0.892)

0.448
(0.001)

0.433
(0.006)

0.414
(0.574)

0.429
(0.134)

0.430
(0.121)

MRK 0.436
(0.891)

0.466
(0.000)

0.446
(0.189)

0.437
(0.753)

0.441
(0.625)

0.440
(0.541)

MSFT 0.505
(0.862)

0.551
(0.000)

0.525
(0.081)

0.510
(0.250)

0.512
(0.727)

0.520
(0.354)

PFE 0.500
(0.540)

0.536
(0.000)

0.495
(0.938)

0.508
(0.180)

0.506
(0.243)

0.510
(0.172)

WMT 0.524
(0.478)

0.536
(0.001)

0.527
(0.296)

0.518
(0.734)

0.519
(0.535)

0.511
(0.689)

XON 0.395
(0.899)

0.410
(0.099)

0.400
(0.516)

0.396
(0.797)

0.427
(0.001)

0.432
(0.000)

For five, ten, and 20 days value-at-risk forecasts, we still compute the value-at-risk on a daily basis.

Since the overlapping returns cause the events to be correlated, we followBeltratti and Morana (2005) and

implement a test based on Bonferroni bounds suggested by Diebold, Gunther, and Tay (1998). Fork-step

forecasts, a test of size bounded byθ can be implemented by performing individual tests of sizeθ
k on each

of k subseries

{F1+k|1, F1+2k|1+k, F1+3k|1+2k, . . .}, {F2+k|2, F2+2k|2+k, F2+3k|2+2k, . . .}, . . . ,

{Fk−1+k|k−1, Fk−1+2k|k−1+k, Fk−1+3k|k−1+2k, . . .}

and rejecting the null if there is a rejection on any of the subseries. We also report the number of subseries

that are rejected.

The value-at-risk comparison of the ARFIMA, structural breaks and asymmetric effects models is orga-

nized in Table 10, showing that all models adequately forecast the coverage intervals at all horizons.
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TABLE 10. VALUE AT RISK ANALYSIS.

The table reports the out-of-sample value-at-risk results of the ARFIMA,STR-Tree/SB and STR-
Tree/AE models for the IBM volatility in the 2000-2003 period (983 trading days, excluding days
affected by holidays), where each model is re-estimated daily and usedfor calculating 1% and
5% value-at-risk thresholds by conditional simulation. Failures is the percentage of days when
returns over the next 1, 5, 10 and 20 fell in theα lower tail of the predicted distribution. Note
that 5, 10 and 20 days % failures are affected by overlapping return sequences. UC and IND are
thep-values of the likelihood ratio tests for unconditional coverage and independence (against a
first order Markov alternative) developed by Christoffersen (1998). For 5, 10 and 20 days, we
use a test based on Bonferroni Bounds as suggested by Diebold, Gunther, and Tay (1998). R is
the number of subseries (out of 1, 5, 10 or 20 accordingly) where UCis rejected at the 5% level.

1 day
1% 5%

% Failures UC R IND % Failures UC R IND
ARFIMA 0.006 0.186 0 0.786 0.043 0.284 0 0.134

STR-Tree/AE 0.010 0.957 0 0.650 0.054 0.578 0 0.931
STR-Tree/SB 0.009 0.787 0 0.683 0.043 0.284 0 0.388

5 days
1% 5%

% Failures UC R IND % Failures UC R IND
ARFIMA 0.011 1.000 0 1.000 0.058 1.000 0 1.000

STR-Tree/AE 0.010 1.000 0 1.000 0.059 1.000 0 1.000
STR-Tree/SB 0.010 1.000 0 1.000 0.048 1.000 0 0.423

10 days
1% 5%

% Failures UC R IND % Failures UC R IND
ARFIMA 0.021 0.994 0 0.576 0.082 0.154 2 0.630

STR-Tree/AE 0.015 0.994 0 1.000 0.079 0.395 1 0.697
STR-Tree/SB 0.017 1.000 0 0.576 0.070 0.370 1 0.327

20 days
1% 5%

% Failures UC R IND % Failures UC R IND
ARFIMA 0.032 0.289 1 1.000 0.102 0.277 8 1.000

STR-Tree/AE 0.027 1.000 0 1.000 0.111 0.134 8 1.000
STR-Tree/SB 0.028 0.289 2 1.000 0.082 0.311 2 1.000

3.3.3. The Effect of Jumps.Our analysis so far has not explicitly considered the presence of less persistent

elements in the volatility of stocks, in contrast with the smooth and very slowly mean-reverting part associ-

ated with long memory properties. Jump components have been receiving growing attention in the realized

volatility literature. Building on theoretical results for bi-power variation measures, articles such as An-

dersen, Bollerslev, and Diebold (2005), Tauchen and Zhou (2005),and Barndorff-Nielsen and Shephard

(2006) established related frameworks for non-parametric estimation of thejump component in asset return

volatility. Empirically, Andersen, Bollerslev, and Diebold (2005) incorporates the distinction between jump

and non-jump components into a forecasting model for the DM/USD exchangerate, the S&P500 market
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index, and the 30-year U.S. Treasury bond yield realized volatility series and find substantial performance

improvements in daily weekly, and monthly predictions.

To verify the direct impact of the jump component for our conclusions, we closely follow Andersen,

Bollerslev, and Diebold (2005) and recalculate the previous forecasts using the lagged jump series as an

explanatory variable for the STR-Tree/AE and HAR models. The new results are displayed in Table 11. In

sharp contrast with the results of in Andersen, Bollerslev, and Diebold (2005), the outcome of additionally

considering jumps in the realized volatility of IBM is marginal; for instance, theR2 of daily forecasts raise

from 0.641 to 0.644 and from 0.618 to 0.621 for the STR-Tree/AE and HAR models respectively.

TABLE 11. FORECASTINGRESULTS: JUMPS.

The table reports the out-of-sample forecasting results of for the IBM volatil-
ity in the 2000–2003 (983 trading days, excluding days affected by holidays),
where each model explicitly incorporate jump components, is re-estimated
daily and used for predictions 1, 5, 10 and 20 days ahead. MAE is the
mean absolute error. is the corrected r-squared of the following regression:
RVt = α + βdRV t,i + εt,i, wheredRV t,i is the prediction of modeli for the
realized volatility on dayt andRVt is the “observed” realized volatility on that
day. HLN is thep-value of the Harvey, Leybourne and Newbold (1997) test of
equality of the mean of loss functions (in the table, the absolute deviation and
the residuals of the regression above), where the models are compared with the
ARFIMA model.

1 day
MAE HLN SPA R2 HLN SPA

STR-Tree/AE 0.324 0.000 0.340 0.644 0.001 0.785
HAR 0.334 0.079 0.001 0.621 0.259 0.004

5 days
MAE HLN SPA R2 HLN SPA

STR-Tree/AE 0.398 0.000 0.793 0.500 0.005 0.968
HAR 0.410 0.198 0.004 0.472 0.194 0.007

10 days
MAE HLN SPA R2 HLN SPA

STR-Tree/AE 0.450 0.008 0.504 0.386 0.068 0.742
HAR 0.463 0.480 0.014 0.355 0.033 0.041

20 days
MAE HLN SPA R2 HLN SPA

STR-Tree/AE 0.450 0.008 0.504 0.386 0.068 0.742
HAR 0.463 0.480 0.014 0.355 0.033 0.041

4. CONCLUSION

In this paper, we considered the hypothesis that cumulated price variationsconvey essential information

concerning shifts in the level of stock volatility series and can be related to multiple regimes that induce

highly persistent autocorrelations that are hard to distinguish from the patterns generated by fractionally
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integrated processes – even in sample sizes spanning several years. We showed, using realized volatilities

computed from intraday returns, that volatility levels in periods of losses forinvestors like the end of 2002

(when the DJIA index reached a 4 year bottom) are significantly higher thanperiods like 2003, when the

index went up 25%; there is strong evidence of multiple regimes linked to returnpatterns in all series

considered. For the particular case of IBM, we show that falls of different magnitudes over less than two

months are associated with volatility levels approximately 20% and 60% higher when compared to periods

of stable or rising prices. Cumulated past returns over different horizons provide relevant information

concerning regime switches in volatility dynamics. The result was robust to thechoice of firm-specific or

market returns as transition variables.

We underline the importance of this analysis by presenting further evidencethat fractionally integrated

processes are an incomplete description of the volatility process of stocks,arguing that weak in-sample

performances are closely related to the empirical issue of excessive variation in estimates of the fractional

differencing parameter over time.

Empirical results, by their turn, indicate that the multiple regime model proposed inthe paper is superior

in terms of forecasting performance, specially in periods of high volatility. In15 of the 16 series consid-

ered in the paper, the STR-Tree model with past cumulated returns as transition variables significantly

outperforms several concurrent models, such as the AR, ARFIMA, HAR, GARCH and EWMA models.

Surprisingly, the EWMA model seems to be very competitive, specially in when volatility is low, such as

in 2003.
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