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Abstract 

 
 
This paper reviews the exciting and rapidly expanding literature on realized volatility.  

After presenting a general univariate framework for estimating realized volatilities, a 

simple discrete time model is presented in order to motivate the main results. A 

continuous time specification provides the theoretical foundation for the main results in 

this literature. Cases with and without microstructure noise are considered, and it is 

shown how microstructure noise can cause severe problems in terms of consistent 

estimation of the daily realized volatility. Independent and dependent noise processes are 

examined. The most important methods for providing consistent estimators are presented, 

and a critical exposition of different techniques is given. The finite sample properties are 

discussed in comparison with their asymptotic properties. A multivariate model is 

presented to discuss estimation of the realized covariances. Various issues relating to 

modelling and forecasting realized volatilities are considered. The main empirical 

findings using univariate and multivariate methods are summarized.   

 
Keywords and phrases: Financial econometrics, Realized volatility, Finance, Risk, 

Continuous time processes, Quadratic variation, Forecasting, High frequency data, 

Trading rules. 
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1. INTRODUCTION 
 

Given the rapid growth in financial markets and the continual development of new and 

more complex financial instruments, there is an ever-growing need for theoretical and 

empirical knowledge of the volatility in financial time series. It is widely known that the 

daily returns of financial assets, especially of stocks, are difficult, if not impossible, to 

predict, although the volatility of the returns seems to be relatively easier to forecast. 

Therefore, it is hardly surprising that financial econometrics, in particular the modeling of 

financial volatility, has played such a central role in modern pricing and risk management 

theories.  

 

There is, however, an inherent problem in using models where the volatility measure 

plays a central role. The conditional variance is latent, and hence is not directly 

observable. It can be estimated, among other approaches, by the (Generalized) 

Autoregressive Conditional Heteroskedasticity, or (G)ARCH, family of models proposed 

by Engle (1982) and Bollerslev (1986), stochastic volatility (SV) models (see, for 

example, Taylor (1986)), or exponentially weighted moving averages (EWMA), as 

advocated by the Riskmetrics methodology (Morgan, 1996) (see McAleer (2005) for a 

recent exposition of a wide range of univariate and multivariate, conditional and 

stochastic, models of volatility, and Asai, McAleer and Yu (2006) for a review of the 

growing literature on multivariate stochastic volatility models). However, as observed by 

Bollerslev (1987), Malmsten and Teräsvirta (2004), and Carnero, Peña, and Ruiz (2004), 

among others, most of the latent volatility models fail to describe satisfactorily several 

stylized facts that are observed in financial time series.  

 

An empirical fact that standard latent volatility models fail to describe in an adequate 

manner is the low, but slowly decreasing, autocorrelations in the squared returns that are 

associated with high excess kurtosis of returns. Correctly describing the dynamics of the 

returns is important in order to obtain accurate forecasts of the future volatility which, in 

turn, is important in risk analysis and management. In this sense, the assumption of 
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Gaussian standardized returns has been refuted in many studies, and heavy-tailed 

distributions have instead been used. 

 

The search for an adequate framework for the estimation and prediction of the 

conditional variance of financial assets returns has led to the analysis of high frequency 

intraday data. Merton (1980) noted that the variance over a fixed interval can be 

estimated arbitrarily, although accurately, as the sum of squared realizations, provided the 

data are available at a sufficiently high sampling frequency. More recently, Andersen and 

Bollerslev (1998) showed that ex post daily foreign exchange volatility is best measured 

by aggregating 288 squared five-minute returns. The five-minute frequency is a trade-off 

between accuracy, which is theoretically optimized using the highest possible frequency, 

and microstructure noise that can arise through the bid-ask bounce, asynchronous trading, 

infrequent trading, and price discreteness, among other factors (see Madhavan (2000) and 

Biais, Glosten and Spatt (2005) for very useful surveys on this issue).  

 

Ignoring the remaining measurement error, which can be problematic, the ex post 

volatility essentially becomes “observable”. Andersen and Bollerslev (1998), Hansen and 

Lunde (2005a), and Patton (2005) used this new volatility measure to evaluate the out-of-

sample forecasting performance of GARCH models1.  As volatility becomes 

“observable”, it can be modelled directly, rather than being treated as a latent variable. 

Based on the theoretical results of Barndorff-Nielsen and Shephard (2002), Andersen, 

Bollerslev, Diebold and Labys (2003) and Meddahi (2002), several recent studies have 

documented the properties of realized volatilities constructed from high frequency data. 

However, as will be discussed later, microstructure effects introduce a severe bias on the 

daily volatility estimation.  Aït-Sahalia, Mykland and Zhang (2005), Bandi and Russell 

(2005a, 2006b), Zhang, Mykland and Aït-Sahalia (2005) and Hansen and Lunde (2006b), 

among others, have discussed various solutions to the inconsistency problem. 

 

                                                 
1 Hansen and Lunde (2006a) showed that substituting an imperfect measure of volatility can distort (or 
even reverse) the empirical ranking of volatility models. 
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The purpose of this paper is to provide a critical review of the major theoretical and 

empirical developments in the exciting and rapidly expanding literature on realized 

volatility (RV)2. Although several excellent review papers have been written recently, the 

review given in this paper differs from the others in a number of respects. Some of the 

surveys are rather broad, and review volatility in general, such as Poon and Granger 

(2001), Andersen, Bollerslev, Christoffersen and Diebold (2006a, 2006b) and Andersen, 

Bollerslev and Diebold (2006b). Furthermore, most of these papers have not taken 

account of the microstructure noise. This review paper focuses only on the RV literature 

and carefully addresses the crucial problem of measurement error. Bandi and Russell 

(2006a) have also reviewed the RV literature, with an emphasis on microstructure noise. 

However, Bandi and Russell (2006a) placed more emphasis on the noise component and 

its economic determinants.  Barndorff-Nielsen and Shephard (2007) extensively reviewed 

the literature on nonparametric estimation of volatility. In their excellent review, the 

authors have focused on the theoretical foundations of the estimators that have been 

proposed recently. They largely (but not exclusively) focused on the frictionless case 

with and without the effects of jumps.   

 

The purpose of this review paper is to fill the gap in the literature for the practitioner, to 

discuss the issues of modelling and forecasting daily realized volatilities, and to present 

the strengths and limitations of the various approaches that are available in the literature. 

The main findings in the literature are reviewed, different modelling strategies are 

suggested, and model evaluation is also considered. Finally, the most important practical 

applications are presented. As the literature is extensive, we have decided not to include 

jumps in the review for purposes of being concise. We recommend Barndorff-Nielsen 

and Shephard (2004a, 2007) for the case of various models of jump processes. 

 

The paper is organized as follows. In Section 2 we present the general univariate 

framework for estimating realized volatilities. A simple discrete time model is presented 
                                                 
2 Other empirical quantities include the bi-power variation and multi-power variation that are particularly 
useful for detecting jumps (see Barndorff-Nielsen and Shephard (2004a, 2005a, 2005b), Barndorff-Nielsen, 
Graversen, Jacod, and Shephard (2006), Andersen,  Bollerslev and Diebold (2003), Bollerslev, Kretschmer, 
Pigorsch and Tauchen (2005), Huang and Tauchen (2005), and Tauchen and Zhou (2004)), and the intraday 
range-based estimators (see Christensen and Podolskij (2006a, 2006b) and van Dijk and Martens (2006)). 
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in Section 2.1 to motivate and define the basic notation, a continuous time model which 

gives the theoretical foundations for the main results in this literature are presented in 

Section 2.2, and the effects of microstructure noise and realized volatility estimation are 

discussed in detail in Section 2.3, where both independent and dependent noise processes 

are considered. In Section 3 the main solutions for tackling the problem of microstructure 

noise are presented. Section 4 presents a multivariate model, and briefly discusses the 

estimation of the realized covariances. The issues of modelling and forecasting realized 

volatilities are considered in Section 5. Finally, some concluding remarks are given in 

Section 6. 

 

2. THE GENERAL UNIVARIATE FRAMEWORK 
 

This section presents a simple discrete time model to motivate the RV estimator.  Section 

2.1 follows the structure of Oomen (2002) closely. A continuous time model, which 

forms the basis of much of the theoretical results, is presented in Section 2.2. The 

discussion starts with the case without noise (that is, with no measurement errors), then 

proceeds to incorporate microstructure noise. 

 

2.1. The Early Days – A Simple Discrete Time Model 

 

Consider a simple discrete time model in which the daily returns of a given asset are 

typically characterized as  

 

ttt hr η= 2/1 , 

 

where { }T
tt 1=η  is a sequence of independently and normally  distributed random variables 

with zero mean and unit variance, )1,0(NID~tη .  

 

Suppose that, in a given trading day t, the logarithmic prices are observed tick-by-tick. 

Consider a grid { }
tnt ττ ,,0 K=Λ  containing all observation points, and set tit nip ,,1,, K= , 
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to be the ith price observation during day t, where tn  is the total number of observations 

at day t. Furthermore, suppose that  

 

ititit hr ,
2/1

,, η= , 

 

where ( )1
, ,0NID~ −

tit nη , 1,,, −−= ititit ppr  is  the ith intra-period return of day t such that 
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Define the information set { } ibta
babait p ==
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0,,,  as the σ-algebra generated by all the 

information to the ith tick in day t. Therefore, 0,tℑ  is the information set available prior 

to the start of day t. It follows that ( ) ttt hr =ℑ 0,
2 |E  and ( ) 2

0,
2 2|V ttt hr =ℑ .  

 

The realized variance is defined as the sum of all available intraday high frequency 

squared returns given by  
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such that 
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If the intraday returns are uncorrelated, then 

 

( ) ( ) ttttt hRVr =ℑ=ℑ 0,
)all(

0,
2 |E|E . 

 

As a result, two unbiased estimators for the average day-t return variance exist, namely 

the squared day-t return and the realized variance as in (1). However, it can be shown that  
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In short, the average daily returns variance can be estimated more accurately by summing 

the squared intraday returns rather than calculating the squared daily return. Moreover, 

when returns are observed at any arbitrary frequency, it is possible to estimate the 

average daily variance free of measurement error as  

 

( ) 0|Vlim 0,
)( =ℑ

∞→ t
all

tn
RV

t

. 
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The only requirement on the dynamics of the intraday return variance for the above to 

hold is that  

 

∑
=

+∝
tn

i

c
tit nh

1

12
, , 

 

where 10 <≤ c . This result motivates a number of empirical papers, such as Andersen 

and Bollerslev (1997, 1998), Andersen, Bollerslev and Lange (1999), and Martens (2001, 

2002), among others. 

 

The theoretical foundations of the results described in this section are derived from a 

continuous time framework that is based on the theory of quadratic variations. Section 

2.2 describes the continuous time approach without microstructure noise, whereas the 

effects of noise are considered in Section 2.3. 

 

2.2. A Continuous Time Model with No Microstructure Noise 

 

2.2.1 Basic Setup 

 

Suppose that, along day t, the logarithmic prices of a given asset follow a continuous time 

diffusion process, as follows: 

 

K,2,1,10),()()()( =≤≤++++=+ ttdWtdttdp τττσττμτ , (2)

 

where )( τ+tp  is the logarithmic  price at time τ+t , )( τ+μ t  is the drift component, 

)( τ+σ t  is the instantaneous volatility (or standard deviation), and )( τ+tW  is a standard 

Brownian motion. In addition, suppose also that )( τ+σ t  is orthogonal to )( τ+tW , such 

that there is no leverage effect.  
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Andersen, Bollerslev, Diebold and Labys (2003), hereafter ABDL (2003), and Barndorff-

Nielsen and Shephard (2002) showed that daily returns, defined as )1()( −−= tptprt , are 

Gaussian conditionally on { } 1
0)1(),1( =τ

=τ−τ+σ−τ+μℑ≡ℑ ttt , the σ-algebra (information 

set) generated by the sample paths of  )1( −τ+μ t  and  )1( −τ+σ t , 10 ≤τ≤ , such that  

 

⎟
⎠
⎞

⎜
⎝
⎛ −+−+ℑ ∫∫

1

0

21

0
,)1(,)1(N~ ττσττμ dtdtr tt . 

 

The term ∫ −+=
1

0

2 )1( ττσ dtIVt  is known as the integrated variance, which is a measure 

of the day-t ex post volatility. The integrated variance is typically the object of interest as 

a measure of the true daily volatility. 

 

2.2.2 Different Sampling Schemes 

 

In practice, prices are observed at discrete and irregularly spaced intervals. In this sense, 

there are many ways in which one can sample the data. As in previous sections, suppose 

that in a given day t, we partition the interval [0,1] in tn  subintervals and define the grid 

of observation times as { }
tnt ττ ,,0 K=Λ , where 10 20 =<<<=

tnτττ L . The length of the  

ith subinterval is given by 1, −−= iini t
ττδ . It is assumed that the length of each subinterval 

shrinks to zero as the number of intraday observations increases. The integrated variance 

over each of the subintervals is defined as  

 

∫ −+=
i

1-i

)1(2
,

τ

τ
ττσ dtIV ti . 

 

There are several sampling schemes that can be used, as follows:  

 

(i) The most widely used sampling scheme is calendar time sampling (CTS), where 

the intervals are equidistant in calendar time, that is, 
t

ni nt

1
, =δ  for all i. For 
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example, the prices may be sampled every 5 or 15 minutes. As the intraday data 

are irregularly spaced, in most cases calendar time sampled data must be 

constructed artificially (see Wasserfallen and Zimmermann (1985), Andersen and 

Bollerslev (1997), and Dacorogna, Gencay, Müller, Olsen and Pictet (2001)). 

Hansen and Lunde (2006b) showed that the previous tick method is a sensible 

way to sample prices in calendar time. For example, during a five-minute interval, 

we may observe several prices, in which case the previous tick method takes the 

first observation as the sampled price.  

(ii) Another sampling alternative is transaction time sampling (TrTS), where prices 

are recorded every mth transaction.  

(iii)The third sampling scheme is known as business time sampling (BTS), where the 

sampling times are chosen such that 
t

t
ti n

IVIV =, .  

(iv) The last sampling alternative is called tick time sampling (TkTS), where prices are 

recorded at every price change.  

 

An important difference among these distinct sampling schemes is that the observation 

times in BTS are latent, whereas in CTS, TrTS, and TkTs they are observed. The effects 

of different sampling schemes on the estimation of the integrated variance will be 

discussed in Section 3.3. 

 

2.2.3 The Distribution of Realized Volatility 

 

ABDL (2003) showed, using a seminal result in semimartingale process theory,  that the 

realized variance using all data available, as defined in equation (1), is a consistent 

estimator of the integrated variance when there is no microstructure noise, such that  

 

t
p

t IVRV ⎯→⎯)all( . 

 

From the results in Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002) 

derived the asymptotic distribution of the realized variance as  
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 ( ) )1,0(N
2
1 )all(2/1 ⎯→⎯− d

tt
t

t IVRV
IQ

n , (3)

 

where the integrated quarticity, tIQ , is defined as  

 

∫ −+=
1

0

4 )1( ττσ dtIQt . (4)

 

Bandi and Russell (2005a) gave an alternative simple proof of the above result.  

 

Furthermore, under the assumption of no microstructure noise, Barndorff-Nielsen and 

Shephard (2002) showed that the integrated quarticity is consistently estimated by the 

realized quarticity, which is defined as  
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and 

 

( ) )1,0(N

3
2

1 )all(

)all(

2/1 ⎯→⎯− d
tt

t

t IVRV
RQ

n , 

 

Barndorff-Nielsen and Shephard (2005b), Meddahi (2002), Gonçalves and Meddahi 

(2005) and Nielsen and Frederiksen (2005) studied the finite sample behavior of the limit 

theory given in (3). The main conclusion is that (3) is poorly sized, but  
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performs quite well.  

 

Gonçalves and Meddahi (2005) analyzed how the bootstrap may improve the limiting 

theory discussed above. The authors concluded that it is possible to design bootstraps 

which provide significant improvements over the limiting theory in (3). They also 

showed that the usual Edgeworth expansions, which justify the order improvement 

associated with the bootstrap, are not reliable guides to the finite sample behavior of the 

statistics.  However, in cases where the computational burden imposed by the bootstrap is 

high, Gonçalves and Meddahi (2006) showed that using Edgeworth expansions is 

superior to using the limiting theory in (3). 

 

2.3. The Effects of Microstructure Noise 

 

In this section we discuss the effects of the presence of microstructure noise in the 

estimation of the integrated variance. Market microstructure noise has many sources, 

including the discreteness of the price (see Harris (1990, 1991)), and properties of the 

trading mechanism, as in Black (1976) and Amihud and Mendelson (1987). For 

additional references to this literature, see O’Hara (1995), Madhavan (2000), Hasbrouck 

(2004), and Biais, Glosten and Spatt (2005). 

 

As in Section 2.1, consider the grid of observation times, { }
tnt ττ ,,0 K=Λ . Using similar 

notation as in Zhang, Mykland and Aït-Sahalia (2005), hereafter ZMA (2005), set 

)(, iit tpp τ+≡ . Suppose also that the logarithmic prices are observed with noise, that is:  

 

ititit pp ,
*
,, ε+= , (6)

 

where  *
,itp  is the latent efficient (or true) price process and it ,ε  is the microstructure 

noise.  

 

It follows that 
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itititititit rrr ,
*
,1,,

*
,, ν+=ε−ε+= − , (7)

 

where *
1,

*
,

*
, −−= ititit ppr  is the efficient return. It is clear that itr ,  is an autocorrelated 

process, so that (all)
tRV  will be a biased estimator of the latent true daily volatility, as 

discussed in Section 2.1. Furthermore, as  
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== =

ν+ν+=
tt t n

i
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n

i
itititt rrRV
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2
,

1 1
,

*
,

2*
,

(all) 2 , 

 

it is straightforward to show that, conditionally on the efficient returns:    

 

( ) ( )2
,

(all)**(all) E2E itttt nRVrRV ε+= , 

 

such that (all)
tRV  is also a biased estimator of the integrated variance.  

 

As in Bandi and Russell (2005a), consider the following assumption regarding the noise 

structure: 

 

Assumption 1 (noise structure):  

 

(a) The microstructure noise, it ,ε , has zero mean and is a covariance stationary 

stochastic process. 

(b) The variance of 1,,, −−= ititit εεν  is O(1). 

 

Under Assumption 1, Bandi and Russell (2005a) showed that  

 

∞⎯⎯→⎯ ..(all) sa
tRV  as ∞→tn . 
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Furthermore, consider the following assumption:  

 

Assumption 2 (IID noise structure):  

 

(a) The microstructure noise, it ,ε , has zero mean and is an independent and 

identically distributed random variable. 

(b) The noise is independent of the price process. 

(c) The variance of 1,,, −−= ititit εεν  is O(1). 

 

Under Assumption 2, it was shown in ZMA (2005) that 

 

( )[ ] ( )[ ] )1,0(NE2E2
2/14
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2
,

(all)2/1
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d
ittttt nIVRVn εε ⎯→⎯−−− . 

 

In practical applications, even sampling at the highest available frequency, the number of 

intraday observations is finite and the price records are discrete. This introduces a bias 

due to discretization, such that  
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where “
d
≈ ” means that, when multiplied by a suitable factor, the convergence is in 

distribution. 

 

Recently, Zhang (2006a) and Aït-Sahalia, Mykland and Zhang (2006), hereafter AMZ 

(2006), considered the case where the noise is not IID, such that Assumption 2 is 

modified as follows: 

 

Assumption 3 (dependent noise structure):  
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(a) The microstructure noise, it ,ε , has a zero mean, stationary and strong mixing 

stochastic process, with the mixing coefficients decaying exponentially. In 

addition, ( )[ ] ∞<+κε 4
,E it , for some 0>κ . 

(b) The noise is independent of the price process.  

(c) The variance of 1,,, −−= ititit εεν  is O(1). 

 

Under Assumption 3, Zhang (2006a) and AMZ (2006) showed that  
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where  
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=
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2
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2
0,1,

2
0,1, ,Cov2V

i
itittttt εεεεεε . 

 

The most important fact about the last result is that, for large tn , the realized variance (1) 

may have no connection to the true returns. On the contrary, (all)
tRV  diverges to infinity 

linearly in nt. In addition, Bandi and Russell (2005a) and ZMA (2005) showed that, 

scaled by ( ) 12 −
tn , the realized variance estimates the variance of the microstructure noise 

consistently, such that: 

 

( )2
,

(all) E
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1

it
p

t
t

RV
n

ε⎯→⎯ . (8)

 

As advocated in Andersen, Bollerslev, Diebold and Ebens (2001), hereafter ABDE 

(2001), and ABDL (2000a, 2001, 2003), one possible solution to the microstructure bias 



 17

is to sample the returns at arbitrarily selected lower frequencies, such as every 5 or 15 

minutes, instead of at every tick. This procedure is called sparse sampling. However, 

ZMA (2005) showed that this is not an adequate solution to the problem. First, define a 

new grid (sparse)
tΛ , with )sparse(

tn  sparsely equidistant sampled observation times. Clearly, 

(sparse)
tΛ  is a subgrid of tΛ . Set  

 

∑
=

=
)parse(

1

2
,

(sparse)
s

tn

i
itt rRV . (9)

 

Based on the results of Rootzen (1980), Jacob and Protter (1998), Barndorff-Nielsen and 

Shephard (2002), and Mykland and Zhang (2006), ZMA (2005), Zhang (2006a) and 

AMZ (2006) showed that the bias due to noise is given by ( )2
,

)parse( E2 it
s

tn ε  and that, under 

Assumptions 2 or 3: 
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Although the bias is reduced when t
s

t nn <)parse( , the variance is increased due to 

discretization, leading to the well known bias-variance trade-off.  Even though choosing 

the sampling frequency on the basis of the finite sample mean-squared-error is optimal in 

the case of realized variance, alternative estimators (discussed below) have been 

proposed that have the potential, when appropriately implemented, to outperform the 

classical realized variance estimator. 
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3. MICROSTRUCTURE NOISE AND REALIZED VOLATILITY ESTIMATION  
 

3.1. Selection of Frequency and Sparse Sampling 

 

Under Assumption 2, Bandi and Russell (2005a, 2006b) and ZMA (2005) proposed a 

method of selecting the optimal sampling frequency based on the minimization of the 

mean squared error (MSE), as follows: 
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Thus, the optimal sampling frequency may be approximated by  
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Bandi and Russell (2005a, 2006b) considered equidistant sampling intervals, whereas 

ZMA (2005) provided a more general formula for irregularly spaced data. However, 

Bandi and Russell (2005a) also considered optimal sampling with dependent noise, 

optimal sampling with bias-corrected realized variance estimates, and optimal sampling 

with pre-filtered data.  

 

As discussed previously, ( )2
,E itε  may be consistently estimated by (all)

2
1

t
t

RV
n

 (see 

equation (8)). Consistent estimation notwithstanding, an important point that must be 

emphasized is that the integrated quarticity is not known, and hence must be estimated. 

However, the realized quarticity, as given in equation (5), is not consistent in the 

presence of microstructure noise. Bandi and Russell (2005a, 2006b) adopted the solution 

of computing (14) using a sparse set of observations, namely one that is sampled every 15 

minutes. The authors showed through simulation that such sparse sampling did not seem 
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to have a harmful effect on the selection of the optimal frequency. ZMA (2005) 

developed an alternative solution for estimating the integrated quarticity. Nevertheless, 

the development of a robust integrated quarticity estimator appears to be an important 

topic for future research. 

 

3.2. Bias Correction and Consistent Estimation 

 

3.2.1. Subsampling 

 

ZMA (2005) proposed a subsampling method in order to estimate the integrated variance 

consistently in the presence of microstructure noise3. The main idea is to explore the fact 

that, for example, ten-minute returns starting at 9:30 could be measured using the 

intervals 9:30-9:40, 9:40-9:50, …, 9:31-9:41,9:41-9:51, and so on. Formally, suppose that 

the full grid, { }
tnt ττ ,,0 K=Λ , is partitioned into K non-overlapping subgrids, 

Kkk
t ,,1,)( K=Λ , such that 

 

U
K

k
k
tt 1
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=

Λ=Λ , where φ=Λ∩Λ )()( j
t

k
t  when jk ≠ . 

 

Set )(k
tn  as the number of observations in each subgrid, and define the RV for grid k as  
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The proposal of ZMA (2005) is to use the following estimator for the daily RV: 
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K
RV −= ∑
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(12)

 

                                                 
3 See also Aït-Sahalia, Mykland and Zhang (2005) for a consistent maximum likelihood estimation of the 
constant variance of a diffusion process with microstructure noise. 
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where tn  is the number of observations in the full grid, and  
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The estimator in (12) is called the Two Time Scales Estimator (TTSE) of the integrated 

variance. ZMA (2005) showed that, under Assumption 2,  
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where, in the case of equidistant observations,  
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In AMZ (2006), a small sample refinement to the estimator in (12) is proposed. The final 

estimator becomes 

 

(ZMA)
t

t

tadj) (ZMA,
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Both of the estimators in (12) and (13) are derived under Assumption 2 (IID noise). In 

order to take into account possibly dependent noise, Zhang (2006a) and AMZ (2006) 

proposed an alternative estimator that is also based on the two time scales idea. All the 

results are derived under Assumption 3 (non-IID noise).  

 

First, the authors defined the average lag J realized volatility, (AL)
,JtRV , which is given by 
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Then the authors proposed a generalization of the TSSE derived in ZMA (2005), which 

has the form 
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becomes the TTSE in ZMA (2005) when 1=J  and ∞→K  as ∞→tn . A small sample 

correction is given by 
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Zhang (2006a) and AMZ (2006) showed that  
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where c is a constant and 
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3.2.2 Kernel-Based Estimators 
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Consistently estimating the quadratic variation under the presence of microstructure noise 

is, in a sense, similar to the well known autocorrelation corrections that are frequently 

used in the time series literature to estimate the long run variances and covariances of 

stationary stochastic processes (see, for example, Newey and West (1987) and Andrews 

(1991)). Consequently, it is natural to adapt similar techniques for the present case. For 

example, Hansen and Lunde (2004, 2006) considered the following simple kernel-based 

estimator: 
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where  
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Zhou (1996) was the first to consider the use of kernel methods to deal with the problem 

of microstructure noise in high frequency data. For the case of independent noise, Zhou 

proposed (17) with H = 1. Hansen and Lunde (2006b) examined the properties of Zhou’s 

estimator and showed that, although unbiased under Assumption 2, the estimator is not 

consistent. However, Hansen and Lunde (2006b) advocated that, while inconsistent, 

Zhou’s kernel method is able to uncover several properties of the microstructure noise, 

and concluded that the noise:  

 

(i) is correlated with the efficient price;  

(ii) is time dependent;  

(iii) is quite small in the DJIA stocks; and  

(iv)  has properties that have changed substantially over time.  

 



 23

Their results are robust to both CTS and TrTS. Moreover, selecting higher values for H 

does not solve the consistency problem. However, the estimator in (17) is unbiased by an 

upwards scaling of the empirical autocovariances. The hth autocovariance is scaled by 

hn
n

t

t

−
  to compensate for the “missing” autocovariance terms.  

 

The upward scaling has the drawback that it increases the variance of the estimator. For 

this reason, Hansen and Lunde (2005b) consider the Bartlett kernel and define the 

estimator: 
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where H is determined as 
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100
4 tnH , and hγ̂  is defined as in (18). However, the 

estimator (19) is also inconsistent.  

 

Recently, Barndorff-Nielsen, Hansen, Lunde and Shephard (2006a), hereafter BHLS 

(2006a), proposed the flat-top kernel-based estimator4: 
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where k(x) for x ∈ [0,1] is a non-stochastic weight function such that k(0) = 1 and k(1) = 

0. The authors made several contributions to the literature by:  

 

(i) proving that the statement that all kernel based RV estimators were inconsistent is 

wrong and proposed several consistent kernel-based estimators;  

(ii) designing a kernel that has a smaller variance than the multiscale estimator; 

                                                 
4 See also Sun (2006) for a similar class of unbiased and consistent estimators. 
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(iii) proposing an estimator for data with endogenously spaced observations, such as 

that in databases on transactions; and  

(iv)  considering the case where the microstructure noise is endogenous.  

 

BHLS (2006a) showed that, if 3/2
tcnH = , then the resulting estimator is asymptotically 

mixed Gaussian, converging at rate 6/1
tn . The constant, c, can be optimally chosen as a 

function of the kernel k(x). For example, the value of c that minimizes the variance of the 

estimator is given by  
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BHLS (2006a) also compared three different kernels:  

 

(i) Bartlett where k(x) = 1 - x;  

(ii) 2nd order where k(x) = 1 - 2x - x2; and  

(iii)Epanechnikov where k(x) = 1 – x2.  

 

Their findings are summarized as follows: the Bartlett kernel has the same asymptotic 

distribution as the TTSE of ZMA (2005) and is more efficient than the Epanechnikov 

alternative, but is less efficient than the 2nd order kernel.  

  

Moreover, if k’(0) = 0 and k’(1) = 0, then setting 2/1
tcnH = , the asymptotic distribution of 

the estimator is mixed normal with convergence rate equal to 4/1
tn .  BHLS (2006a) 

discussed the choice of the constant c in a simplified framework where the variance of 

the efficient price is held constant. In their paper, the authors compared eight different 

kernels satisfying k’(0) = 0 and k’(1) = 0. The cubic kernel, where k(x) = 1 – 3x2 + 2x3, 

has the same asymptotic distribution as the multiscale estimator of AMZ (2006) and 



 25

Zhang (2006a). The Tukey-Hanning kernel, where [ ]
2

)1(cos1)(
2xxk −−

=
π , seems to be 

the best option in terms of efficiency.  

 

BHLS (2006a) also showed that the findings above are robust to endogenous5 and/or 

dependent noise, and endogenously spaced observations, as in tick data databases. They 

also provided Monte Carlo evidence in favour of their estimators in finite samples.  

 

3.2.3 Filters 

 

In the early days of modelling RV, another common alternative to attenuate the effects of 

the microstructure noise was to pre-filter the intraday returns. For example, in Bollen and 

Inder (2002), an autoregressive (AR) filter was used, while a moving average (MA) filter 

was considered in Ebens (1999), Maheu and McCurdy (2002), and ABDE (2001). More 

recently, Hansen, Large and Lunde (2006), hereafter HLL (2006), showed that the MA(1) 

structure considered in Ebens (1999) and ABDE (2001) is well specified when the market 

microstructure noise is IID. Moreover, when correcting the estimator by a scaling factor, 

it becomes a consistent estimator of the integrated variance (see HLL (2006) for further 

details). 

 

3.2.4 Alternative Estimator 

 

Recently, Large (2006) proposed an interesting estimator of quadratic variation which 

controls for microstructure effects when the best quotes change by jumping the minimum 

price tick. The estimator compares the number of alternations, where quotes jump back to 

their previous price, with the number of other jumps. If the alternations are uncorrelated, 

the estimator is consistent in a limit theory where jumps are very frequent and small. 

 

                                                 
5 The authors considered a simple form of dependence between the noise and the efficient price process.  
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3.3. The Effects of the Sampling Scheme  
 

As discussed in Section 2.2, there are several ways of sampling intraday returns, and the 

choice of sampling scheme can have a strong influence on the statistical properties of the 

realized variance. Most of the work discussed previously did not directly address the 

issue of choosing the sampling scheme. The first to contribute in that direction was 

Oomen (2005), who examined the following sampling alternatives: (i) calendar time 

sampling, (ii) transaction time sampling, (iii) tick time sampling, and (iv) business time 

sampling.  

  

Compared with the standard literature, Oomen (2006) proposed a pure jump process for 

the high frequency prices, which allows for the analysis of the following sampling 

schemes: calendar time, business time, and transaction time sampling. The price process 

is formed by an efficient martingale component, which is described as a compound 

Poisson process plus the market microstructure noise that is allowed to have an MA(q) 

structure. Thus, the asset price is modelled as the accumulation of a finite number of 

jumps, each of which represents a transaction return, with the Poisson process counting 

the number of transactions. The optimal sampling frequency is derived to minimize the 

mean squared error, which is influenced by the number of trades and the noise level. It 

was shown that, as in the case of the diffusion-based models, the realized variance is a 

biased estimator of the jump analogue of the integrated variance when microstructure 

noise is present. However, as distinct from previous results, the bias does not diverge to 

infinity as the sample frequency increases. Concerning the sampling schemes, the main 

conclusion is that transaction time sampling is generally superior to the common practice 

of calendar time sampling, as the former leads to a lower mean squared error of the 

realized variance. This effect is pronounced, especially when the trading intensity pattern 

is volatile. 

 

Oomen (2005) extended the model in Oomen (2006) in order to study the effects of the 

first-order bias correction on different sampling schemes. His correction is in line with 

those proposed by Zhou (1996) and Hansen and Lunde (2006b). However, the present 
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results were derived under a pure jump process with IID noise instead of a diffusion-

based model. Oomen (2005) showed that the bias correction significantly reduces the bias 

caused by microstructure effects, and is more effective in transaction time than in 

calendar time. Moreover, for an equal number of sampled returns, bias-corrected 

estimators attains a lower mean squared error when the returns are sampled regularly 

spaced on a transaction time scale rather than on a calendar time scale.  

  

Griffin and Oomen (2006a) introduced a new model for transaction patterns in order to 

distinguish the effects of tick time and transaction time sampling. The main findings of 

the paper are:  

 

(i) tick time sampling is equivalent to transaction time sampling for high levels of 

microstructure noise, and is superior for low levels of microstructure noise; and  

(ii) when the first-order bias corrected estimator of Zhou (1996) and Hansen and 

Lunde (2006b) is considered, transaction time sampling is always preferred. 

 
3.4. Comparison of Techniques  
 
As shown in the previous section, there are many different possibilities for dealing with 

the problem of microstructure noise in the estimation of the integrated variance. Table 1 

compares the different methods to estimate the integrated variance according to their 

asymptotic properties. The aim of the table is not to rank different methods but to 

summarize the main large-sample properties of each of them.  
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Table 1: Asymptotic Properties of Methods for Estimating the Daily Integrated Variance 

 

Method Unbiased 6 Consistent Price Model 
Noise (Time 

Dependence) 

Noise and 

Efficient Prices 

Realized Variance  

(all available data) 
No No Diffusion Dependent/ 

IID 

Dependent/ 

Independent 

Realized Variance7 

(sparse sampling) 
No No Diffusion - - 

Realized Variance 

(optimal frequency selection) 

Bandi and Russell (2005a, 2006b, 

2006d) 

No No Diffusion Dependent/ 

IID 

Dependent/ 

Independent 

Realized Variance 

(optimal frequency selection) 

Oomen (2006) 

No No Pure Jump Dependent Independent 

Kernels 

Hansen and Lunde (2006b) 
Yes No Diffusion Dependent/ 

IID 

Dependent/ 

Independent 

Kernels  

Oomen (2005) 
Yes No Pure Jump IID Independent 

TTSE  

ZMA (2005) 
Yes Yes Diffusion IID Independent 

TTSE  

AMZ (2006) 
Yes Yes Diffusion Dependent Independent 

Kernels 

BHLS (2006a, 2006b) 
Yes Yes Diffusion Dependent/ 

IID 

Dependent/ 

Independent 

Kernels: optimal bandwidth 

selection 

Bandi and Russell (2006d) 

Yes Yes Diffusion Dependent/ 

IID 

Dependent/ 

Independent 

MA filter  

HLL (2006) 
Yes Yes Diffusion IID Independent 

Alternation estimator 

Large (2006) 
Yes Yes Pure Jump Dependent - 

 

                                                 
6 In Table 1 we consider large sample bias. Some of the estimators, such as TTSE, are biased in small 
samples but not asymptotically. 
7 Sparse sampling in the case of realized variance does not necessarily require assumptions on the 
microstructure noise. 
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It is important to mention that, although there are many unbiased estimators, only four are 

consistent. The first consistent estimator is the TTSE of ZMA (2005) and AMZ (2005). 

The order of convergence of the TTSE in ZMA (2005) is 6/1
tn , while that in AMZ (2005) 

is 4/1
tn . Hansen and Lunde (2006b) noted that a subsampling version of the kernel 

estimator of Zhou (1996) is also a consistent estimator and a formal proof was given in 

BHLS (2006b).  BHLS (2006a) derived the realized kernel consistent estimator that 

generalizes the previous results in Hansen and Lunde (2006b), and which is also of order 
4/1

tn .  In a companion paper, BHLS (2006b)  showed the equivalence between their 

estimators and those in ZMA (2005) and AMZ (2005). The third consistent estimator is 

the modified MA filter of HLL (2006), which is also of order 4/1
tn . However, these 

estimators differ regarding the hypothesis about the microstructure noise and sampling 

schemes. The fourth one is the alternation estimator of Large (2006). 

  

The preceding discussion notwithstanding, it is important to note that, while not being 

consistent, the kernel estimators discussed in Hansen and Lunde (2006b) are important 

tools for uncovering, if only partially, several properties of the microstructure noise. 

 

From the practical perspective, an important issue regarding the properties of an 

estimator relate to finite sample or asymptotic properties. Although this is not 

straightforward to determine, we wish to provide the practitioner with some guidelines 

for choosing the most convenient estimator, which may be an estimator that is listed in 

Table 1 or may be a combination of alternatives.   

 

In order to obtain consistent estimators, BHLS (2006), ZMA (2005) and AMZ (2005) 

required that the number of autocovariances (or subsamples) H and the number of 

observations, nt , to diverge to infinity as the ratio 0→=
tn

Hφ .  However, for a given φ , 

the magnitude of the finite sample MSE of the estimators can be substantially different 

from the asymptotic approximations. Moreover, in practice, researchers are always forced 

to select a value for φ  (see Remark 3 in Bandi and Russel (2006c) for a discussion on the 
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importance of finite sample properties of integrated variance estimators). Bandi and 

Russell (2006d) undertook a detailed study of the finite sample performance of several 

kernel-based and sub-sampling estimators under Assumption 2, and showed how to select 

optimally the value of φ  based on a finite sample MSE criterion.  The authors found that 

for the realistic sample sizes encountered in practical applications, the asymptotic results 

for some of the estimators discussed above, in general, do not provide sufficient guidance 

for practical implementation, as they provide unsatisfactory representations of the finite 

sample properties of the estimators. In addition, the authors showed how to optimize the 

finite sample properties of these estimators, providing significant statistical and economic 

gains when compared with the “suboptimal” estimators. Concerning ZMA’s (2005) 

estimator and the biased kernel estimators of Hansen and Lunde (2005b), their main 

conclusions are as follows: 

 

(i) The finite sample MSE properties of the consistent estimator ( )(ZMA
tRV ) of ZMA 

(2005), and of the inconsistent Bartlett kernel estimator ( ),( BartlettHL
tRV ) discussed 

in Hansen and Lunde (2005b), are similar, and a significant component of their 

mean-squared error is induced by the finite sample bias. 

(ii) Asymptotic methods to select the bandwidth can be suboptimal in their case, 

especially for biased kernel estimators. As their finite sample bias vanishes 

asymptotically, asymptotic methods do not take the finite sample bias into 

account and have a tendency to select an excessively small number of 

bandwidths. A small H can lead to a large bias component in a finite sample. 

(iii) This bias component can be reduced by choosing H in order to minimize the 

estimator’s finite sample MSE. In the case of ZMA’s (2005) estimator and the  

Bartlett kernel estimator of Hansen and Lunde (2005b), the authors proposed a 

simple (MSE-based) rule-of-thumb to select the ratio, φ , which is given by: 
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(iv)  While the optimal finite sample MSE values of ZMA’s (2005) estimator and 

Hansen and Lunde’s (2005b) Bartlett kernel estimator are generally smaller than 

the optimal finite sample MSE value of the classical realized variance estimator, 

the gains that these useful estimators can provide over the classical realized 

variance estimator might be lost or dramatically reduced by suboptimally 

choosing the value of φ.   

 

Bandi and Russell (2006d) also evaluate the finite sample behaviour of the consistent 

flat-top kernel based estimators proposed by BHLS (2006). Although Bandi and Russell 

(2006d) do not provide an expression for the optimal ratio, φ , in this case, they conduct a 

detailed simulation exercise to examine the finite sample properties of  three flat-top 

kernels, namely the Bartlett, cubic, and modified Tukey-Hanning kernels. The optimal 

bandwidth is chosen by minimizing the finite sample variance of the unbiased flat-top 

symmetric kernels, thereby leading to finite sample MSE optimization. Their main 

findings are as follows: 

 

(i) Despite having the same distribution as the subsampling estimator of ZMA 

(2005), the flat-top Bartlett kernel estimator appears to be preferable to the former 

in finite samples. Furthermore, the cubic flat-top kernel, which is equivalent to the 

multi-scale estimator, does not seem to improve on the finite sample performance 

of the flat-top Bartlett kernel. The flat-top Tukey-Hanning kernel performs 

marginally better than do the other two kernels.  

(ii) The use of asymptotic criteria to select the optimal value of H (namely, the 

number of autocovariance terms) can be more or less satisfactory depending on 

the choice of kernel. It was found that the asymptotic criteria are accurate when 

the cubic kernel is chosen. 
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(iii) Due to the lack of a substantial bias term and the flatness of the variance term as 

a function of φ , the suboptimal bandwidth choices do not lead to extremely large 

losses. 

(iv)  Although the cubic flat-top kernel implies a faster rate of convergence than does 

the Bartlett flat-top kernel, the finite sample performance of the two estimators is 

almost identical.  

(v) The asymptotic approximations to the finite sample dispersion of the symmetric 

estimators can be imprecise. A careful assessment of the accuracy of these 

estimators requires a closer examination of their finite sample properties.  

 

Nielsen and Frederiksen (2006) also evaluated the finite sample accuracy of different 

estimators of the integrated variance under the presence of microstructure noise and 

possible jumps. The authors considered three estimators: the realized variance, the 

estimator based on Fourier series (Malliavin and Macino (2002) and Barucci and Reno 

(2002a, 2002b)), and finally, the wavelet estimator of Høg and Lunde (2003). The main 

conclusion of the paper is that the Fourier estimator is preferable when compared to the 

other two and, most surprisingly, it has a slightly better finite sample performance (in 

terms of MSE) than the bias-corrected kernel-based estimators as in Hansen and Lunde 

(2006b).  

 

However, it is still an open question what are the finite sample properties of the 

estimators discussed above under more general assumptions about the microstructure 

noise. 

 

Another important way of selecting an estimator for the integrated variance is to use 

economic or financial measures. For example, one might decide to choose an estimator 

that achieves greater accuracy in forecasting Value-at-Risk thresholds in determining 

optimal Basel Accord capital charges. On the other hand, one might proceed, as in 

Fleming, Kirby and Ostdiek (2001, 2003), by examining the economic benefits of 

different volatility measures in a dynamic portfolio allocation experiment (see also 

Section 5.2 for further discussion). In summary, the predictive ability of different 
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estimators might be used as criterion to decide among different alternatives (see Remark 

5 in Bandi and Russell (2006c) for a useful discussion). 

 
4. THE GENERAL MULTIVARIATE FRAMEWORK 
 
There has been growing theoretical and empirical interest in extending the results for the 

univariate processes discussed previously to a multivariate framework. In this context, 

two pioneering contributions have been made by Barndorff-Nielsen and Shephard 

(2004b) and Bandi and Russell (2005b). Barndorff-Nielsen and Shephard (2004b) did not 

consider the presence of microstructure noise, whereas the case of noise has been 

considered in Bandi and Russell (2005b). Section 4.1 briefly reviews the results in 

Barndorff-Nielsen and Shephard (2004b) and Bandi and Russell (2005b). Section 4.2 

gives some references of promising recent developments in the multivariate context. 

 
4.1. Realized Covariance 
 
As in (2), suppose that, along day t, the logarithmic prices of a given set assets follow a 

continuous time diffusion process, as follows: 

 

K,2,1,10),()()()( =≤≤++++=+ ttdtttd τττττ WΘμp , (22)

 

where )( τ+tp  is a vector of logarithmic  prices at time τ+t , )( τ+tμ  is the multivariate 

drift component, )( τ+tΘ  is the instantaneous co-volatility matrix, and )( τ+tW  is the 

standard multivariate Brownian motion. As before, suppose also that )( τ+tΘ   is 

orthogonal to )( τ+tW .  The instantaneous covariance matrix is )'()()( τττ ++=+ ttt ΘΘΣ , 

with generic element given by )())(( τ+tΣ su . 

 

Define the realized covariance as  
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Barndorff-Nielsen and Shephard (2004b) showed that 
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where tΠ  is a positive definite matrix (see Barndorff-Nielsen and Shephard (2004b) for 

further details). 

 

Under the presence of microstructure noise, Bandi and Russell (2005b) showed that the 

realized covariation estimator given in (23) is not consistent. Bandi and Russell (2005b) 

proposed a method for selecting the optimal sampling frequency as a trade-off between 

bias and efficiency. The optimal sampling frequency is given by 

 

( )[ ]
3

1

2
,)(,)(

))((*

E2 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≈
itsitu

tsu
t

Q
n

εε
, 

(25)

 
where  
 

[ ]∫ +Σ++Σ+Σ=
1

0

2
))(()()())(( )()()( ττττ dtttQ susutsu , (26)

 

Bandi and Russell (2005b) suggest estimating (26) with a sparse sampling frequency of 

15 or 20 minutes as 
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Bandi and Russell’s (2005c) results have been derived under the assumption that the 

microstructure noise is a covariance-stationary zero mean vector stochastic process that is 

independent of the vector of efficient (and unobservable) prices.  
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However, the estimation of integrated covariances using high-frequency data brings new 

important issues. As pointed out by Epps (1979), information arrives at different 

frequencies for different assets, therefore introducing additional microstructure effects 

that are related to the nonsynchronicity in the process of price formation. Even when 

there is no microstructure frictions as previously discussed, nonsynchronous trading 

introduces a downward bias in the realized covariance estimates when sampling returns 

in calendar time at high frequencies. This is the so-called Epps effect. To accommodate 

this effect, Bandi and Russell (2005b) incorporated leads and lags in their estimator. This 

is an old solution in the literature to overcome the nonsynchronicity of observations (see 

Scholes and Williams (1977), Dimson (1979), and Cohen, Hawanini, Maier, Schwartz, 

and Whitcomb (1983)). For two given assets, Bandi and Russell’s (2005c) lead-lag 

estimator with U lags and L leads is given by 
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where tir ,)1(  and tir ,)2(  are the ith intraday returns for asset (1) and (2) at day t. The optimal 

sampling frequency is given by (25). 

 

As observed by Bandi and Russell (2006a), an interesting topic for future research is the 

use of direct MSE-based optimization of the lead-lag estimator to determine the optimal 

sampling frequency as well as the choice of the number of leads and lags under the 

presence of microstructure noise. In a related work, Martens (2005) evaluated the MSE 

properties of a number of covariance estimators through simulations based on Lo and 

MacKinlay´s (1990) nonsynchronous trade model.  

 

4.2. Recent Extensions 

 

Recently, Hayashi and Yoshida (2005, 2006), Sheppard (2006), and Zhang (2006b), 

among others, introduced alternative approaches to the high frequency covariance 

estimator. For example, instead of using calendar time returns, the Hayashi and Yoshida 
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(HY) estimator is based on overlapping tick-by-tick returns. In the absence of classical 

microstructure frictions, but in the presence of nonsynchronous trading, the HY estimator 

is consistent and asymptotically normally distributed. Sheppard (2006) analyzed the 

conditions under which the realized covariance is an unbiased and consistent estimator of 

the integrated variance. The concept of ‘scrambling’ was defined by Sheppard (2006) to 

motivate a general family of alternative specifications based on random censoring of 

returns, which nests the previously suggested corrections for multivariate estimators. 

Zhang (2006b) also studied the effects of microstructure noise and nonsynchronous 

trading in the estimation of the integrated covariance between two assets. Zhang (2006b) 

showed that the bias is more pronounced in less liquid assets and provided a way, as in 

Bandi and Russell (2005b), to compute the optimal sampling frequency in order to reduce 

the bias.  

 

Voev and Lunde (2006) and Griffin and Oomen (2006b) provide detailed finite sample 

studies of the MSE properties of several covariance estimators, including the realized 

covariance, optimally-sampled realized covariance, the HY estimator, and the lead-lag 

estimator (in equation (26)). The authors also provided recommendations for practical 

implementations of such estimators. Hoshikawa, Kanatani, Nagai and Nishiyama (2006) 

compared the multivariate version of the Fourier estimator of Malliavin and Mancino 

(2002a), the HY estimator, and the classical realized covariance estimator. The authors 

found that the HY estimator performs the best among the alternatives in view of the bias 

and the MSE, while the other estimators were shown to have possibly heavy bias, mostly 

toward the origin.  

 

5. MODELLING AND FORECASTING REALIZED VOLATILITY 
 
5.1. Some Stylized Facts in Financial Time Series and Univariate Applications 
 
A well established result in the financial econometrics time series literature is that, when 

GARCH and SV latent volatility models are used, the standardized returns do not have a 

Gaussian distribution. In practice, there is still excess kurtosis, a fact that motivates the 

use of heavy-tailed distributions. However, ABDL (2000a, 2000b, 2001, 2003) showed 
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that, when the realized variance was used, the distribution of the standardized exchange 

rate series was almost Gaussian. This was also corroborated for stock returns in ABDE 

(2001). Furthermore, the logarithm of the realized volatilities was also nearly Gaussian. 

 

Concerning the dynamics of the log-realized variance, it is well established that this is a 

highly persistent, but stationary, time series process. In addition, there is significant 

evidence of long memory in the time series, which has been conventionally modelled as 

an ARFIMA(p,d,q) process (see ABDL (2000a, 2000b, 2001, 2003) for some examples)8.   

Recently, Corsi, Zumbach, Müller and Dacorogna (2001) and Corsi (2003) proposed the 

Heterogeneous AutoRegressive Realized Volatility (HAR-RV) model, based on the 

Heterogeneous ARCH (HARCH) model of Müller, Dacorogna, Davé, Olsen, Puctet, and 

von Weizäcker (1997). The HAR-RV model is specified as a multi-component volatility 

model with an additive hierarchical structure such that the volatility is specified as a sum 

of components over different horizons (see also Andersen, Bollerslev and Diebold 

(2006a)). McAleer and Medeiros (2006) extended the HAR-RV model by proposing a 

flexible multiple regime smooth transition model to capture nonlinearities and long-range 

dependence in the time series dynamics.  

 

These results notwithstanding, identifying the possible sources of long memory is also of 

particular interest, such as in case of spurious long memory, where a short memory model 

may produce better and more precise forecasts. Recently, Hyung, Poon and Granger 

(2005), hereafter HPG (2005), discussed the possible sources of long memory in financial 

volatility. As outlined in HPG (2005), a myriad of nonlinear short memory models, 

especially models with infrequent breaks, can generate data with long memory behaviour. 

Examples of such nonlinear models include the break model of Granger and Hyung 

(2004), the volatility component model of Engle and Lee (1999), the regime switching 

model proposed by Hamilton and Susmel (1994), and further discussed in Diebold and 

Inoue (2001), and the multiple-regime model of Medeiros and Veiga (2004). Hillebrand 

(2005) also discussed the effects of breaks on the estimation of volatility models (see also 

                                                 
8 As one of the few exceptions, Carvalho, Freire, Medeiros and Souza (2006) did not found evidence of 
long memory in the dynamics of realized volatilities for several assets traded in the Brazilian stock 
exchange. 
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Hillebrand and Medeiros (2006a)). Scharth and Medeiros (2006) proposed a multiple-

regime model based on regression trees to describe the dynamics of realized volatilities 

of several DJIA stocks. The authors incorporated past cumulated daily returns as a source 

of regime switches. Their main finding is that this effect is highly significant and 

accounts for high empirical values of long memory parameter estimates. They also 

showed that the nonlinear model significantly outperformed the concurrent long memory 

models (ARFIMA and HAR-RV) in an out-of-sample experiment for all 16 stocks 

analyzed, especially in periods of high volatility. 

  

In each of the specifications discussed above, volatility refers to short memory between 

breaks, for each volatility component, and within each regime. More recently, Martens, 

van Dijk and de Pooter (2004) proposed a model that combines the long memory 

property with nonlinearity, which is especially important in modelling asymmetries and 

the leverage effect. They showed strong empirical evidence in favor of their proposal. 

Deo, Hurvich and Lu (2006) considered a long-memory stochastic volatility model and 

Koopman, Jungbacker and Hol (2005) proposed a model combining unobserved 

components and long-memory. In a recent work, Hillebrand and Medeiros (2006b) 

suggested a model that combines long memory with different types of nonlinearity. Their 

approach is based on a simultaneous equation framework, where volatility also direct 

affects the returns (as in the GARCH-in-Mean model). However, it is still an open 

question as to the source of the apparent long memory in the realized volatility, and 

whether the benefits of combining long memory and nonlinear models will dramatically 

improve the accuracy in forecasting volatility (Ohanissian, Russell and Tsay (2004a, 

2004b)). 

 

More recently, Lieberman and Phillips (2006) provide some analytical explanations to 

explain the long range dependence behaviour that has been observed in realized 

volatilities. The authors show that long memory may arise from the accumulation of 

realized volatility, and discussed how to refine the statistical inference regarding the 

parameter d in ARFIMA(p,d,q) models.  
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Aït-Sahalia and Mancini (2006) compare the out-of-sample relative forecasting ability of 

realized volatility in a variety of contexts. Ghysels and Sinko (2006) analyze the relative 

predictive ability of realized volatility within the mixed data sampling (MIDAS) 

framework of Ghysels, Santa-Clara and Valkanov (2006). Corradi, Distaso and Swanson 

(2006) focused on estimating and forecasting the conditional density of integrated 

volatility and Corsi, Mittnik, Pigorsch and Pigorsch (2006) focused on the volatility of 

the realized volatility.  

 

Another issue that should be mentioned is the fact that, even without the presence of 

microstructure noise, realized volatility is an estimated quantity rather than the true daily 

volatility (or integrated variance), and integrated quarticity is replaced by realized 

quarticity. This leads to the use of generated regressors and generated variables for 

purposes of forecasting, with the associated critical issues of efficient estimation and 

invalid inferences that arise through the use of biased (asymptotic) standard errors (see 

Pagan (1984, 1986) and McKenzie and McAleer (1997) for comprehensive discussions).  

 

Recently, Andersen, Bollerslev and Meddahi (2004, 2005) have developed a general 

model-free adjustment procedure for the calculation of unbiased volatility loss functions 

based on realized volatility benchmarks. The authors have also shown that properly 

accounting for the measurement errors in the volatility forecast evaluations reported in 

the existing literature can lead to markedly higher estimates for the true degree of returns 

volatility predictability. In a recent paper, Corradi and Distaso (2006) proposed a 

procedure to test for the correct specification of the functional form of the volatility 

process based on the class of eigenfunction stochastic volatility models of Meddahi 

(2001). Their idea is to compare the moments of the realized volatility measures with the 

corresponding ones of the integrated volatility implied by the theoretical model under the 

null hypothesis. The authors carefully took account of the fact that realized volatility is an 

estimated measure, and is thereby contaminated with measurement errors.  

 
5.2. Multivariate Applications 
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In an interesting paper, de Pooter, Martens and van Dijk (2006) investigate the benefits of 

high frequency intraday data when constructing mean-variance efficient stock portfolios 

with daily rebalancing from the individual constituents of the S&P 100 index. The 

authors analyzed the issue of determining the optimal sampling frequency, as judged by 

the performance of the estimated portfolios. The optimal sampling frequency ranges 

between 30 and 65 minutes, that is, much lower than the five-minute frequency, which is 

commonly used in the literature. The authors also showed that several bias-correction 

procedures, based on combining low and high frequency covariance matrix estimates, 

and with the addition of leads and lags, do not substantially affect the optimal sampling 

frequency or the portfolio performance. The findings are also robust to the presence of 

transaction costs and to the portfolio rebalancing frequency. 

 

In a related paper, Bandi, Russell and Zhou (2006) evaluate the economic benefits of 

methods that have been suggested to optimally-sample (in an MSE sense) high frequency 

return data for the purpose of realized variance and covariance estimation in the presence 

of market microstructure noise. The authors compared certainty equivalents derived from 

volatility-timing trading strategies, relying on optimally-sampled realized variances and 

covariances, on realized variances and covariances obtained by sampling every 5 

minutes, and on realized variances and covariances obtained by sampling every 15 

minutes. They showed that a risk-averse investor, who is given the option of choosing 

variance and covariance forecasts derived from MSE-based optimal sampling methods 

versus forecasts obtained from 5- and 15-minute intervals (as is generally proposed in the 

literature), would be willing to pay up to about 80 basis points per year to achieve the 

level of utility that is guaranteed by optimal sampling. They also found that the gains 

yielded by optimal sampling are economically large and statistically significant. 

 

Bauer and Vorkink (2006) present a new matrix logarithm model of the realized 

covariance of stock returns, which uses latent factors as functions of both lagged 

volatility and returns. The model has several advantages in that it is parsimonious, does 

not require imposing parametric restrictions, and yields a positive definite covariance 
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matrix. The model is applied to the covariance matrix of size sorted stock returns, and 

two factors are found to be sufficient to capture most of the dynamics.  

 

6. CONCLUDING REMARKS 

 

This paper provided a critical view of the main developments in the exciting and rapidly 

expanding literature on realized volatility (RV). A simple discrete time model was 

presented in order to motivate the main results, with a continuous time specification 

providing the theoretical foundation for the main results in this literature. Cases with and 

without microstructure noise were considered, and it was shown how microstructure 

noise could cause severe problems in terms of consistent estimation of the daily realized 

volatility estimator. Independent and dependent noise processes were carefully examined. 

For purposes of informing the practitioner, the review paper sought to fill the gaps in the 

literature, especially regarding the issues of modelling and forecasting daily realized 

volatilities. The most important solutions currently available for the consistency problem 

were presented, a critical exposition of different techniques was given, the finite sample 

properties were discussed in comparison with their asymptotic properties, a multivariate 

model was presented to discuss estimation of the realized covariances, various issues 

relating to modelling and forecasting realized volatilities were considered, different 

modelling strategies were suggested, model evaluation was discussed, and the most 

important empirical findings and practical applications for univariate and multivariate 

models were summarized. 

 

There are many problems that remain unresolved and unsolved in the RV literature, 

especially for multivariate processes with a very large number of assets. In the near 

future, multivariate RV processes alone will require an extensive review as the challenge 

for new models and estimators is met and solutions are realized. 
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