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1. Introduction

From a general equilibrium point of view, the analysis of finite–horizon economies with het-

erogeneous agents has been extended to an infinite horizon introducing either households with an

infinite lifetime (see, for instance, Magill and Quinzii (1994) and Hernandez and Santos (1996)) or

overlapping generations of finitely–lived agents (as in Schmachtenberg (1988) and Geanakoplos and

Polemarchakis (1991)).

In these models, altruistic motives had appeared as polar cases of our real world behavior. While

finitely-lived agents are interpreted as totally selfish individuals, infinitely-lived households are con-

sidered as dynasties of finitely-lived generations, that care about their descendants as much as they

care about themselves.

Thus, we want to consider agents’ altruistic behavior in a more realistic manner, allowing for

wealth transfers, such as donations and bequests. Actually, although the importance of these types

of transfers was extensively highlighted by economic research on capital accumulation, social security

We are indebted to Juliano Assunção, Filipe Martins-da-Rocha and Mário Páscoa for helpful comments and
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systems or public deficits,1 the analysis of donations and bequests, in a general equilibrium context,

still remains incomplete.

In other side, all the models cited above assume that agents’ lifetimes are deterministic and assets

are free of default. In addition, when individuals are infinitely–lived, the successive postponements

of their commitments, through the appeal to new credits – Ponzi schemes – were ruled out using

exogenous debt constraints or transversality conditions. Models with finitely–lived agents assume

that individuals do not have access to credit markets at their terminal dates, as there are no

mechanisms to assure that debts, made at the end of life, will be repaid.

These assumptions, which are strong simplifications of the financial markets practices, restrict

agents’ behavior and do not follow from individual rationality. In fact, as pointed out in economic

research, decisions about allocation of consumption or determination of amounts for savings and

bequests are strongly affected by the expected life duration.2 Furthermore, in the real world, agents

can have access to credit markets along their entire life and, in some contingencies, borrowers do

not honor their promises.

Thus, we also want to address, in a general equilibrium framework, the actual market practices

that allow agents to get loans, even when lifetimes are uncertain and assets are subject to default.

In this direction, when agents are infinitely–lived, commodities are durable and assets are collat-

eralized, Araujo, Páscoa and Torres-Mart́ınez (2002) show equilibrium existence, without imposing

debt constraints or transversality conditions to avoid Ponzi schemes. Moreover, in a similar frame-

work, Kubler and Schmedders (2003) prove that collateral rationalizes tight borrowing limits in

computational stationary equilibria. In this paper, we show that collateral also plays a crucial role

when agents’ lifetimes are uncertain. Indeed, the existence of physical guarantees creates a natu-

ral form to allow agents to make promises at all nodes of their life span, without introducing any

exogenous credit constraint.

More precisely, we develop a model in which lifetimes are uncertain and physical bundles of

durable commodities can be used to collateralize assets. Moreover, since individuals may have

physical and financial wealths left over when they pass away, we introduce some mechanisms to

regulate wealth reallocations.

First, agents can write wills in order to determine their bequests. Second, each individual can

make nominal donations during his lifetime. In particular, an agent can make donations to disinherit

some agents who will have legal rights over his estate when he passes away.

An agent’s debt will be paid by his estate before beneficiaries of his testament receive their

bequests. Moreover, when an agent’s estate is not totally distributed after both the payments of his

1For instance, Kotlikoff and Summers (1981) observe that nearly four-fifths of U.S. wealth accumulation is due to

intergenerational transfers. Fuster (2000) proved, in a model where the lifetime durations are affected by uncertainty,

that aggregate savings and the enhancement of capital accumulation depend on the bequest motive. In addition,

Cardia and Michel (2004) show that capital is an increasing function of the intergenerational degree of altruism.
2See, for instance, Leung (1994), Fuster (1999), Dynan, Skinner and Zeldes (2002) and d’Albis (2006).
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debts and the delivery of his bequests, his intestate estate3 will be divided among his heirs according

to rules determined by exogenous inheritance laws.

In addition to utility benefits from consumption, agents may receive, according to their degree of

altruism, utility gains from both the amount of their donations and the structure of their testamen-

tary rights. Consequently, unlike the classical Overlapping Generations model in which individuals

are totally selfish, agents may be interested in purchasing financial assets even at their terminal

nodes, in order to increase the value of their estate and, therefore, assure higher transfers for those

agents who will hold testamentary rights. Note that, selfish agents may also leave accidental bequests

to their heirs as lifetimes are uncertain.

The paper is organized as follows. In the second section, we present the model. The assumptions

and our equilibrium existence results are presented in Section 3. Section 4 is devoted to some

examples of bequest functions illustrating how optimal testamentary transfers may vary as functions

of agents’ wealth. Finally, we make some comments on the optimal level of donations and we discuss

some possible extensions of our analysis. Proofs are given in the Appendices.

2. The model

Stochastic structure. The stochastic structure is described by an infinite event-tree with a unique

root. There is a countable set of time periods, {0, 1, . . .}, and there is no uncertainty at t = 0. Thus,

denoting by s0 the unique state of nature at the first period, we suppose that given a history of

realization of uncertainty st = (s0, . . . , st−1), there exists a finite set S(st) of states of nature at

period t. An information set ξ = (t, st, s), where t > 1 and s ∈ S(st), is called a node of the economy.

Let ξ0 be the initial node, at t = 0. The set of nodes in the economy is called the event-tree and is

denoted by D.

We refer to the nodes ξ = (t, st, s), with t > 1, as successors of ξ0. Moreover, given ξ = (t, st, s)

and µ = (t′, st′ , s
′), we say that µ is a successor of ξ, and we write µ > ξ, if both t′ > t > 1 and

(st′ , s
′) = (st, s, . . . ). Let t(ξ) = t be the period associated to ξ = (t, st, s) and let ξ− be its (unique)

predecessor, that is, ξ− 6 ξ and t(ξ−) = t(ξ) − 1. Now, we denote by ξ+ : {µ ∈ D : µ > ξ, t(µ) =

t(ξ) + 1} the set of immediate successors of ξ. Finally, let D(ξ) = {µ ∈ D : µ > ξ} be the set of

successors of ξ, and DT (ξ) := {µ ∈ D(ξ) : t(µ) 6 t(ξ) + T}.

Demographic structure and physical markets. Letting I be the set of agents in the economy,

the set of nodes at which an agent i ∈ I can trade is denoted by Di ⊂ D. Thus, we allow lifetime

durations to be affected by uncertainty. Note that, the traditional overlapping generations model

and the infinitely-lived households model can be obtained as particular cases of our demographic

structure.

Let I(ξ) := {i ∈ I : ξ ∈ Di} be the non-empty set of agents who are alive at node ξ ∈ D. We

suppose that the number, n(ξ) := #I(ξ), of agents who are alive at ξ is finite. When the set Di is

finite, agent i is said to be finitely–lived. Otherwise, agent i will have at least one infinite–life path

through the event-tree.

3When a valid will (or testament) has been made, but only applies to part of the estate, the remaining wealth

forms the intestate estate.
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Without loss of generality, we assume that agents do not exit the economy at a given node and

reappear afterward on the markets. That is, for each i ∈ I, D(µ) ∩Di = ∅, ∀µ ∈ D \Di.

At each node, there is a finite ordered set, G, of physical goods that are traded on spot markets

by the alive consumers. Let p = (p(ξ); ξ ∈ D) be the commodity price process, where p(ξ) =

(p(ξ, g); g ∈ G) ∈ RG
+ \ {0} denotes the spot price of commodities at ξ.

Each agent i has an endowment process ωi := (ωi(ξ, g), (g, ξ) ∈ G ×Di) ∈ RG×Di

+ and chooses

a consumption plan xi :=
(
xi(ξ); ξ ∈ Di

)
∈ RG×Di

+ , where xi(ξ) ∈ RG
+ denotes the consumption

bundle at node ξ.

A plan xi gives a utility level U i(xi), where the function U i : RG×Di

+ → R+ ∪ {+∞} represents

agent i’s preferences over physical consumptions.

Commodities may be durable and suffer depreciation. The depreciation structure is given by a

collection of non-zero G×G matrices, (Yξ; ξ ∈ D), with non-negative entries. So, when agent i uses

the services of a bundle x ∈ RG
+ at ξ ∈ Di, he receives, at each immediate successor µ ∈ ξ+ ∩Di,

a bundle Yµ x. To simplify notations, agent i’s accumulated endowment up to node ξ ∈ Di will be

denoted by W i(ξ) := wi(ξ) + YξW
i(ξ−), with W i(ξ−) = 0 for ξ− /∈ Di.

Financial markets. At each ξ ∈ D, there is a finite ordered set, J(ξ), of one–period real assets,

available for inter-temporal transaction and insurance. As in Araujo, Páscoa and Torres-Mart́ınez

(2002), assets are subject to default and backed by physical collateral requirements.

More precisely, an asset j ∈ J(ξ) is characterized by a vector of real promises A(µ, j) ∈ RG
+, at

each µ ∈ ξ+, and by a vector of unitary collateral requirements C(ξ, j) ∈ RG
+, which is held and

consumed by the borrowers for each unit of asset j that they sold at ξ.

Let q = (q(ξ); ξ ∈ D) ∈
∏

ξ∈D

RJ(ξ)
+ be the financial price process, where q(ξ) = (q(ξ, j); j ∈ J(ξ))

denotes the asset price vector at ξ. The set of state-contingent assets in the economy is denoted by

D(J) = {(ξ, j) : ξ ∈ D, j ∈ J(ξ)}.
As the unique enforcement in case of default is the seizure of collateral guarantees, a seller i

of one unit of j ∈ J(ξ) at ξ ∈ Di, pays at each immediate successor µ ∈ ξ+ ∩ Di, the min-

imum between the depreciated value of the collateral and the original promises; Rµ,j(p(µ)) :=

min {p(µ)A(µ, j), p(µ)Yµ C(ξ, j)} .

Moreover, since promises are backed by physical collateral, agent i is allowed to sell assets at any

node of his life span. More precisely, given ξ ∈ Di, we suppose, as explained hereafter, that, at each

node µ ∈ ξ+ \Di, the market seizes the collateral requirements and delivers the difference between

the collateral value and the original promise, made at ξ, to individuals who have testamentary or

inheritance rights over agent i’s estate.

On the other hand, although financial transactions are anonymous, each lender knows that the

unique enforcement in case of default is the seizure of the constituted collateral. In addition, we

assume that each lender believes that (i) borrowers are rational and are aware of the market rules

in case of default, and (ii) all agents in the economy have monotonic preferences. Thus, each buyer

i of one unit of asset j ∈ J(ξ), expects to receive, at each µ ∈ ξ+, the amount Rµ,j(p(µ)).

Let us denote by θi(ξ) = (θi(ξ, j); j ∈ J(ξ)) and by ϕi(ξ) = (ϕi(ξ, j); j ∈ J(ξ)), respectively, the

long and short positions of agent i at ξ ∈ Di. When agent i chooses a financial process (θi, ϕi) :=
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(θi(ξ), ϕi(ξ)); ξ ∈ Di

)
, he pays (or receives), at each ξ ∈ Di, an amount q(ξ)

(
θi(ξ)− ϕi(ξ)

)
; and

expects to receive (or delivers), at any µ ∈ ξ+ ∩Di, the effective payment Rµ(p(µ))
(
θi(ξ)− ϕi(ξ)

)
,

where Rµ(p(µ)) := (Rµ,j(p(µ)); j ∈ J(ξ)). Moreover, the consumption allocation chosen by agent i

satisfies the collateral constraint: xi(ξ) >
∑

j∈J(ξ)

C(ξ, j)ϕi(ξ, j).

Bequests. In our model, agents can prevent the disappearance of their terminal physical and

financial allocations from the economy through intergenerational transfers. Thus, individuals can

devolve their properties and assets upon other agents through a will . In such a testament, an agent

chooses bequests that other agents will receive when he passes away.

Formally, for each i ∈ I(ξ), let I−i(ξ) := I(ξ) \ {i}. Define by Di
−i = {ξ ∈ Di : I−i(ξ) 6= ∅} the

subset of Di in which there is at least one alive agent to be beneficiary of agent i’s bequests. Also,

let D
i
:= {ξ ∈ Di : ξ+ \Di 6= ∅} be the set of nodes in which agent i has a positive probability to

pass away in the next period.

We suppose that there is a set D
i

? ⊂ D
i ∩ Di

−i in which agent i has a bequest motive that

incites him to write a will in order to predetermine the distribution of his estate in case of death.

Furthermore, at any node in D
i \D

i

?, the inheritance laws, defined below, will be applied in order

to distribute agent i’s estate, in case of death in the next period. Thus, due to lifetime uncertainty,

an agent i can leave accidental bequests as he may accumulate savings up to a node ξ ∈ D
i \D

i

? in

order to improve his future consumption.

The amount and the distribution of bequests among the beneficiaries may positively affect agents’

preferences, as will be detailed at the end of this section. Thus, unlike classical overlapping genera-

tions models, agents may be interested in buying assets at their terminal nodes.

We suppose that each agent i chooses, at each ξ ∈ D
i

?, the rights over his future estate writing a

will bi
ξ := (bi(µ);µ ∈ ξ+\Di), where bi(µ) ∈ RI−i(ξ)

+ represents the nominal bequests that individuals

in I−i(ξ) will receive from agent i at µ ∈ ξ+ \Di.

Note that wills take into account future contingencies. Moreover, at each ξ ∈ D
i

?, agent i deter-

mines testamentary rights only among agents who are alive at this node, since he does not know

the demographic structure at the successors µ ∈ ξ+ \Di.

On the other hand, we assume that markets can enforce promises, even when borrowers are not

alive. More precisely, debts are paid by agents’ estate before the distribution of the testamentary

rights among the beneficiaries. In addition, lenders always receive their whole expected returns,

since the physical estate includes the depreciated value of collateral requirements.

Therefore, given a price process p and an allocation (xi, θi, ϕi), the value of agent i’s estate at

µ ∈ ξ+ \Di, after the payments of the debts induced by his sales at ξ ∈ D
i
, is given by:

eµ

(
p,
(
xi, θi, ϕi

))
:= p(µ)Yµxi(ξ) + Rµ(p(µ))

(
θi(ξ)− ϕi(ξ)

)
.

The first term of the right-hand side of the previous equality represents the depreciated value of

agent i’s consumption that served as collateral or not. The second term represents the net returns

of his portfolios.
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Now, to make wealth transfers consistent with the amount of estate, we suppose that when agent

i writes a will at node ξ ∈ D
i

?, the bequests bi(µ) = (bi
k(µ); k ∈ I−i(ξ)), with µ ∈ ξ+ \Di, satisfy

the following conditions: ∑
k∈I−i(ξ)

bi
k(µ) 6 eµ

(
p,
(
xi, θi, ϕi

))
,(1)

αi
k(ξ) eµ

(
p,
(
xi, θi, ϕi

))
6 bi

k(µ), ∀k ∈ I−i(ξ),(2)

where bi
k(µ) denotes the amount of wealth that agent k will receive, if he is alive, at node µ and

αi
k(ξ) ∈ [0, 1] represents the forced shares or legitime, that is, the portion of his estate from which

agent i cannot disinherit agent k.4 Inequality (1) states that the total bequest made by an agent

cannot exceed his estate. Inequality (2) conveys that the bequest that an agent k receives from

agent i is greater than or equal to the minimal amount guaranteed by the forced shares.

As mentioned above, agents’ preferences may be positively affected through their bequest motives,

which reflect their altruism toward their descendants. More precisely, the objective function of agent

i includes a function Gi :
∏

ξ∈D
i
?

R(ξ+\Di)×I−i(ξ)

+ → R+ ∪ {+∞}, such that, given a commodity price

process p, if he chooses a plan (xi, θi, ϕi) and writes wills bi := (bi
ξ; ξ ∈ D

i

?), he receives utility gains

given by:

Gi

(
bi(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di, ξ ∈ D

i

?

)
,

where v(µ) :=
(
v(µ, g), g ∈ G

)
∈ RG

++, which is exogenously given, allows us to transform nominal

bequests into real terms.

Inheritance laws. Given ξ ∈ D
i
, agent i’s intestate estate at a node µ ∈ ξ+ \Di is defined as the

amount of his estate that was not distributed after the payments of his debts and the delivery of

his testamentary rights. That is,

τ i
µ

(
p,
(
xi, θi, ϕi, bi

))
=

 eµ

(
p,
(
xi, θi, ϕi

))
, if ξ ∈ D

i \D
i

?;

eµ

(
p,
(
xi, θi, ϕi

))
−

∑
k∈I(µ)∩I(ξ)

bi
k(µ), if ξ ∈ D

i

?.

More precisely, if agent i does not make a will at the predecessor node ξ, his intestate estate at

µ ∈ ξ+ \Di is equal to the depreciated value of his wealth. Nevertheless, when agent i writes a will

at ξ, his intestate estate is equal to his depreciated wealth net of the bequests that alive beneficiaries

receive.

In order to avoid the disappearance of these resources from the economy and to protect agents

from their (selfish) parents, we introduce a structure of inheritance laws. Formally, for each i ∈ I,

the civil law jurisdictions on inheritance determine the rights that agents k ∈ I(µ) have over agent

i’s intestate estate at each µ ∈ ξ+ \Di, where ξ ∈ D
i
. These rights are given by a vector of shares

4In civil and Roman law, the legitime, or forced share, of a decedent’s estate is that portion of the estate from

which he cannot disinherit his children or his wife, for instance, without sufficient legal cause. The word comes from

French héritier légitime, meaning rightful heir. Some countries adopt this system to protect the inherence of the

legitime while.
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βi

k(µ) : k ∈ I(µ)
)
∈ ∆n(µ).5 Thus, at each µ ∈ ξ+ \Di, the set, {k ∈ I(µ) : βi

k(µ) > 0}, of agent

i’s heirs is nonempty.

Donations. We allow agents to make intra-generational transfers through donations. An individual

can make gifts either for altruistic motives or to disinherit agents who will have, by law, rights over

his estate when he dies.

Each agent i could be interested in make donations at nodes ξ ∈ Di
−i, and has utility gains only

when these transfers are received for agents in a set I?
−i(ξ) ⊂ I−i(ξ). In this way, we do not exclude

agents who are uninterested in making donations, as some of the sets (I?
−i(ξ); ξ ∈ Di

−i) may be

empty. In order to simplify notations we define I?
−i(ξ) as the empty set for nodes in Di \Di

−i.

In order to avoid that an individual receives back his donations through a chain of wealth transfers;

we assume that, at each ξ ∈ D and for each n ∈ N, given a chain (i1, . . . , in) ∈ I(ξ)n:

if ij ∈ I?
−ij+1

(ξ), ∀j ∈ {1, . . . , n− 1}, then i1 6= in.

Note that, without the condition above, an agent with monotonic preferences on donations can

always improve upon any budget feasible plan, by making a donation to another agent who will,

directly or indirectly, make the same amount of donation to him. Consequently, we rule out such

schemes in order to guarantee that agents’ maximization problems have a solution.

Now, when I?
−i(ξ) 6= ∅, agent i can transfer his wealth to other individuals choosing a vector of

nominal donations di(ξ) :=
(
di

k(ξ); k ∈ I?
−i(ξ)

)
∈ RI?

−i(ξ)

+ , where di
k(ξ) denotes the wealth that agent

k receives from agent i at ξ. Let di :=
(
di(ξ); ξ ∈ Di , I?

−i(ξ) 6= ∅
)

be the agent i’s donation plan.

Agent i’s gains from donations are measured by a function

F i :
∏

{ξ∈Di , I?
−i(ξ) 6=∅}

RI?
−i(ξ)

+ → R+ ∪ {+∞},

in such a form that, given a commodity price process p, his objective function, which depends on his

consumption plan and bequest motive, also includes a term F i
(

di(ξ)
p(ξ)v(ξ) ; ξ ∈ Di, I?

−i(ξ) 6= ∅
)
, that

depends on the real amount of transfers.

Although each alive agent may know the identity of the other agents in the markets, individual

allocations are anonymous. Therefore, agents are unaware of the donations they may receive, as well

as their rights over the estate of deceased agents and the value of the associated intestate estate.

For this reason, we need to introduce variables representing the expected monetary transfers that

agents anticipate to receive.

More precisely, we suppose that each i ∈ I takes as given, at each ξ ∈ Di, an anonymous mone-

tary transfer si(ξ) ∈ R+, representing the amount of wealth that he expects to receives as donations

or as inheritances through wills or via civil law jurisdictions. This variable will be determined en-

dogenously in equilibrium. Agent i’s vector of monetary transfers is denoted by si := (si(ξ); ξ ∈ Di).

5The simplex ∆n := {z = (z1, . . . , zn) ∈ Rn
+ :

nP
i=1

zi = 1}.
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Before defining the budget sets and the equilibrium of our model, let us denote agent i’s set of

admissible plans by Γi, and the space of prices by P.6

Definition 1. Given prices and anonymous monetary transfers
(
p, q, si

)
∈ P×RDi

+ , the budget set ,

Bi(p, q, si), of an agent i ∈ I, is the set of plans (xi, θi, ϕi, di, bi) ∈ Γi that satisfy conditions (1)-(2)

and the following constraints:

• At each initial node ξ ∈ Di := {η ∈ Di : ξ− /∈ Di},

p(ξ)xi(ξ) + q(ξ)
(
θi(ξ)− ϕi(ξ)

)
+

∑
k∈I?

−i(ξ)

di
k(ξ) 6 p(ξ)wi(ξ) + si(ξ) ;

• At each ξ ∈ Di \Di,

p(ξ)xi(ξ) + q(ξ)
(
θi(ξ)− ϕi(ξ)

)
+

∑
k∈I?

−i(ξ)

di
k(ξ)

6 p(ξ)
(
wi(ξ) + Yξx

i(ξ−)
)

+ si(ξ) + Rξ(p(ξ))
(
θi(ξ−)− ϕi(ξ−)

)
;

• At each ξ ∈ Di,

xi(ξ) >
∑

j∈J(ξ)

C(ξ, j)ϕi(ξ, j).

Definition 2. An equilibrium of our economy is given by a plan of prices and anonymous transfers[
(p, q); (si)i∈I

]
, jointly with allocations

(
xi, θ

i
, ϕi, d

i
, b

i
)

i∈I
in Γ :=

∏
i∈I

Γi such that:

(i) For each i ∈ I, the allocation (xi, θ
i
, ϕi, d

i
, b

i
) maximizes the objective function,

V i
(
p, (xi, di, bi)

)
:= U i(xi)+F i

(
di(ξ)

p(ξ)v(ξ)
; ξ ∈ Di, I?

−i(ξ) 6= ∅
)

+Gi

(
bi(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di, ξ ∈ D

i

?

)
,

over the plans (xi, θi, ϕi, di, bi) ∈ Bi(p, q, si).

(ii) In financial and physical markets, the aggregate demand must be equal to the aggregate supply,

node by node. That is, for each ξ ∈ D,∑
i∈I(ξ)

θ
i
(ξ) =

∑
i∈I(ξ)

ϕi(ξ) ,
∑

i∈I(ξ)

xi(ξ) =
∑

i∈I(ξ)

wi(ξ) +
∑

i∈I(ξ−)

Yξx
i(ξ−),

where I(ξ−0 ) = ∅.

6It follows from the previous definitions that,

Γi := RG×Di

+ ×
Y

ξ∈Di

RJ(ξ)
+ ×

Y

ξ∈Di

RJ(ξ)
+ ×

Y

{ξ∈Di: I?
−i(ξ) 6=∅}

R
I?
−i(ξ)

+ ×
Y

ξ∈D
i
?

R(ξ+\Di)×I−i(ξ)

+ .

In addition, P :=
Q

ξ∈D

�
RG

+ \ {0}
�
× RD(J)

+ .
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(iii) For each agent i ∈ I, and at each ξ ∈ Di, expected anonymous transfers must match the

effective transfers that he receives. That is,

si(ξ) =
∑

{k∈I(ξ): i∈ I?
−k(ξ)}

d
k

i (ξ)+
∑

{k∈I(ξ−)\I(ξ): ξ−∈D
k
?}

b
k

i (ξ)+
∑

k∈I(ξ−)\I(ξ)

βk
i (ξ) τk

ξ

(
p, (xk, θ

k
, ϕk, b

k
)
)

.

3. Equilibrium existence

Our first result assures the existence of an equilibrium when all agents are finitely–lived . It ex-

tends the classical Overlapping Generations model to allow for stochastic lifetimes, wealth transfers,

default and, fundamentally, the access to credit markets at all states of the life span.

Theorem 1. Suppose that all agents are finitely–lived and that:

[A1] For each agent i and for each ξ ∈ Di, the accumulated endowments W i(ξ) ∈ RG
++. The forced-

shares satisfy
∑

k∈I−i(µ)

αi
k(µ) < 1, ∀µ ∈ D

i

?.

[A2] For each ξ ∈ D, if (i1, . . . , in) ∈ I(ξ)n satisfies ij ∈ I?
−ij+1

(ξ), for each j ∈ {1, . . . , n− 1}, then

i1 6= in;

[A3] For each ξ ∈ D, unitary collateral requirements C(ξ, j) 6= 0, for all j ∈ J(ξ);

[A4] For each agent i ∈ I, the objective function V i has finite values, is quasi-concave with respect

to (xi, di, bi), continuous in all variables and strictly monotone in consumption.

Then, there is an equilibrium.

Proof. See Appendix A.

The first assumption guarantees that the budget-set correspondences are lower-hemicontinuous,

as their interiors will be non-empty. Indeed, as accumulated endowments are interior points of the

consumption sets, agents will have positive resources, provided that commodity prices are non-zero.

Moreover, as forced heirship shares do not exhaust the entire estate of the agents, interior bequest

will always be possible.

The Assumption [A2] rules out donation cycles. and hypothesis [A3] assures that short sales will

be bounded in equilibrium, as physical resources are scarce. Finally, Assumption [A4] is required to

assure that consumers’ maximization problems have a solution.

Our next result shows that, when agents have at least one infinite–life path through the event–

tree, Ponzi schemes can be ruled out in our economy , without need to impose any exogenous debt

constraint. In particular, we extend the equilibrium existence result of Araujo, Páscoa and Torres-

Mart́ınez (2002) to a model with incomplete participation and wealth transfers.
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Theorem 2. Suppose that Assumptions [A1]-[A3] hold and that,

[A5] The sequence

(
n(ξ),

∑
i∈I(ξ)

W i(ξ),
∑

j∈J(ξ)

C(ξ, j)

)
ξ∈D

, is uniformly bounded from above along

the event-tree and there is v > 0 such that, for each (ξ, g) ∈ D ×G, v(ξ, g) > v.

[A6] For each i ∈ I, the utility function U i : RG×Di

+ → R+ ∪ {+∞} is separable in time and states

of nature, in the sense that,

U i(xi) =
∑

ξ∈Di

ui(ξ, xi(ξ)),

where ui(ξ, ·) : RG
+ → R+ is continuous, strictly increasing and concave. Moreover, for each bounded

plan xi, the associated utility, U i(xi), is finite.

[A7] For each i ∈ I,

F i

(
di(ξ)

p(ξ)v(ξ)
; ξ ∈ Di, I?

−i(ξ) 6= ∅
)

=
∑

{ξ∈Di: I?
−i(ξ) 6=∅}

f i

(
ξ,

di(ξ)
p(ξ)v(ξ)

)
,

where f i(ξ, ·) : RI?
−i(ξ)

+ → R+ is continuous, non-decreasing and concave. Moreover, F i has a finite

value at any bounded plan.

[A8] For each agent i,

Gi

(
bi(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di, ξ ∈ D

i

?

)
=
∑

ξ∈D
i
?

gi

(
ξ,

(
bi(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di

))
,

where gi(ξ, ·) : R(ξ+\Di)×I−i(ξ)

+ → R+ is continuous, non-decreasing and concave. In addition, gains

from bequest are finite at any bounded plan.

Then, there is an equilibrium.

Proof. See Appendix B.

Remark 1. Non-arbitrage conditions and Ponzi schemes.

When promises are backed by physical collateral, short–sales are endogenously bounded, node

by node, and this is sufficient to assure equilibrium existence when agents are finitely–lived.

Nevertheless, when agents are infinitely-lived, they could enter into Ponzi schemes by increasing

sequentially their loans and postponing ad-eternum the payment of their debts. However, as in

Araujo, Páscoa and Torres-Mart́ınez (2002), the “haircut”, p(ξ)C(ξ, j) − q(ξ, j), will be strictly

positive for each (ξ, j).7 Thus, given prices (p, q) and monetary transfers (si)i∈I , each market

7In fact, the returns of the joint financial operation of short-selling an asset and constituting the required collateral

are non-negative, since borrowers will pay (or the market will seize) only the minimum between the value of the

depreciated collateral and the value of the debt. Therefore, as borrowers hold and consume the collateral bundles,

individual optimality assure that p(ξ)C(ξ, j)− q(ξ, j) > 0, for each (ξ, j) ∈ D(J) (see Lemma 2 in the Appendix).
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feasible allocation (xi, θi, ϕi, di, bi)i∈I satisfies:

q(ξ)ϕi(ξ) 6 p(ξ)
∑

j∈J(ξ)

C(ξ, j) ϕi(ξ, j) 6 p(ξ)
∑

i∈I(ξ)

xi(ξ).

Therefore, it follows from Assumption [A5] that there is W = (W (g); g ∈ G) ∈ RG
++ such that, any

market feasible allocation satisfies the following endogenous debt constraint:

q(ξ)ϕi(ξ)
||p(ξ)||Σ

6 ||W ||max := max
g∈G

W (g),

which rules out schemes consisting of a sequential increase, ad infinitum, of the debt without repay-

ment.

4. On bequest and wills

In this section, we give some simple examples of bequest functions that allow us to find optimal

testamentary transfers as a function of the amount of agents’ estate.

We will use the following property to find optimal bequests: Given equilibrium prices and mon-

etary transfers (p, q, si), an allocation
(
xi, θ

i
, ϕi, d

i
, b

i
)
∈ Γi is optimal for agent i only if:

Gi

(
b
i
(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di, ξ ∈ D

i

?

)
> Gi

(
bi(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di, ξ ∈ D

i

?

)
,

for all vectors bi ∈
∏

ξ∈D
i
?

R(ξ+\Di)×I−i(ξ)

+ such that, for each ξ ∈ D
i

? and µ ∈ ξ+ \Di:

∑
k∈I−i(ξ)

bi
k(µ) 6 eµ

(
p,
(
xi, θ

i
, ϕi
))

,

αi
k(ξ) eµ

(
p,
(
xi, θ

i
, ϕi
))

6 bi
k(µ), ∀k ∈ I−i(ξ).

In order to simplify the examples below, we suppose that agent i is not forced by law to deliver a

minimum percentage of his wealth to another agent (i.e.: αi
k(ξ) = 0 for all k ∈ I−i(ξ) and ξ ∈ D

i
).

Moreover, agent i’s objective function is given by:

(3) V i(p, (xi, di, bi)) =
∑

ξ∈Di

βt(ξ)ρi(ξ)ui(xi(ξ)) +
∑

{ξ∈Di: I?
−i(ξ) 6=∅}

βt(ξ)ρi(ξ)f i
ξ

(
di(ξ)

p(ξ)v(ξ)

)

+
∑

ξ∈D
i
?

βt(ξ)ηi(ξ)gi
ξ

(
bi(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di

)
,

where β ∈ (0, 1) is a discount factor, ρi(ξ) ∈ (0, 1) and ηi(ξ) = ρi(ξ)−
∑

µ∈ξ+∩Di

ρi(µ).

Note that agent i expects to be alive at ξ with probability ρi(ξ). In addition, the parameter

ηi(ξ) ∈ (0, 1) represents the probability of reaching node ξ ∈ D
i

and passing away in the next

period. We suppose that ρi(ξ) = 1, for each ξ ∈ Di,

ρi(ξ) =
∑

µ∈ξ+

ρi(µ), ∀ξ ∈ Di \D
i
, and ρi(ξ) >

∑
µ∈ξ+

ρi(µ), ∀ξ ∈ D
i
.
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Example 1. For each ξ ∈ D
i

?, fix an agent k(ξ) ∈ I−i(ξ) and a scalar A(ξ) > 0. If the bequest

functions are given by:

gi
ξ

(
bi(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di

)
:=

∑
µ∈ξ+\Di

[
2 min

{
A(ξ),

bi
k(ξ)(µ)

p(µ)v(µ)

}
+ min

{k∈I−i(ξ): k 6=k(ξ)}

bi
k(µ)

p(µ)v(µ)

]
,

then, equilibrium bequests depend on the value of the future estate.

In fact, given ξ ∈ D
i

?, at the nodes µ ∈ ξ+ \ Di in which the real value of his estate is less

than or equal to A(ξ), agent i bequeaths all of his estate to agent k(ξ). On the other hand, when

the real value of agent i’s estate is greater than A(ξ) at µ, agent k(ξ) receives, if alive, a real

bequest equal to A(ξ), while the other individuals are entitled to receive the same real transfer,
1

n(ξ)−1

(
eµ(p,(xi,θi,ϕi))

p(µ)v(µ) −A(ξ)
)
.

The following examples show that, when bequest functions take into account only the distribution

of wealth, optimal amounts of bequest can be found as fixed shares of agents’ estate.

Example 2. For each node ξ ∈ D
i

?, let us fix a vector π(ξ) = (π(ξ, k); k ∈ I−i(ξ)) > 0. Let us

define Λ(ξ) = {k ∈ I−i(ξ) : π(ξ, k) > 0} and consider the following bequest function:

gi
ξ

(
bi(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di

)
:=

∑
µ∈ξ+\Di

min
k∈Λ(ξ)

π(ξ, k)
bi
k(µ)

p(µ)v(µ)
.

Then, in equilibrium, agent i writes a will that gives to agent k ∈ Λ(ξ), at any node µ ∈ ξ+ \Di,

the following share of his estate:

ai
k(ξ) =

1
π(ξ, k)

∑
k′∈Λ(ξ)

π(ξ, k′)−1 .

In this case, the total intestate estate, at µ ∈ ξ+ \ Di, is equal to
∑

k∈Λ(ξ)\I(µ)

ai
k(ξ) percent of the

estate value, eµ(p, (xi, θi, ϕi)). In the particular case in which, for all pairs (k, k′) ∈ Λ(ξ) × Λ(ξ),

π(ξ, k) = π(ξ, k′), all agents in I(µ)∩Λ(ξ) receive, as testamentary rights at node µ, the same per-

centage, 1
#Λ(ξ) , of agent i’s estate. In this case, the intestate estate at µ is equal to

(
1− #(Λ(ξ)∩I(µ))

#Λ(ξ)

)
percent of agent i’s wealth at µ.

Example 3. With the notations of the previous example, let us denote by π(ξ) = max
k∈Λ(ξ)

π(ξ, k) and

consider the following bequest function:

gi
ξ

(
bi(µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di

)
:=

∑
µ∈ξ+\Di

∑
k∈Λ(ξ)

π(ξ, k)
bi
k(µ)

p(µ)v(µ)
.

Then, an agent k ∈ Λ(ξ) will receive a bequest from agent i, at µ ∈ ξ+ \Di, only if π(ξ, k) = π(ξ).

In addition, when agent i write a will, he is indifferent between all distributions of his estate among

the agents k ∈ Λ(ξ) for which π(ξ, k) = π(ξ). Thus, if there is a unique agent k ∈ Λ(ξ) such that

π(ξ, k) = π(ξ), then whole estate of i is received by k, at the nodes µ ∈ ξ+ \Di in which k is alive.
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5. About the equilibrium level of donations

In this section, we briefly comment on the optimality of the equilibrium level of donations. To

simplify our analysis, we assume that the objective functions have the functional form given by

equation (3) and that the functions f i
ξ are concave and continuous. In addition, as in Theorem

2, the functions (ui; i ∈ I) are supposed to be continuous, concave and strictly increasing in all

variables.

In equilibrium, the optimality of agent i’s allocation assures that, for each node ξ ∈ Di, with

I?
−i(ξ) 6= ∅, there is a strictly positive Kuhn-Tucker multiplier γi

ξ and super-gradients

(u′(i, ξ), f ′(i, ξ)) ∈ ∂ui(xi(ξ))× ∂f i
ξ

(
d

i
(ξ)

p(ξ)v(ξ)

)
,

such that:

γi
ξ p(ξ) > βt(ξ)ρ(ξ)u′(i, ξ) and γi

ξ d
i

k(ξ) =
βt(ξ)ρ(ξ)
p(ξ)v(ξ)

f ′k(i, ξ) d
i

k(ξ), ∀k ∈ I?
−i(ξ),

where f ′(i, ξ) = (f ′k(i, ξ); k ∈ I?
−i(ξ)).

Thus, when agent i makes donations to k (i.e. d
i

k(ξ) > 0), we have that f ′k(i, ξ) 6= 0, as the

functions ui are strictly monotonic. Furthermore, if we suppose that d
i
(ξ) � 0 and that f i

ξ is

differentiable on the interior of its domain, then there is always a vector d̃i(ξ) � 0 such that

f i
ξ

(
d

i
(ξ)

p(ξ)v(ξ)

)
< f i

ξ

(
d̃i(ξ)

p(ξ)v(ξ)

)
. In fact, differentiability assures that ∇f i

ξ

(
d

i
(ξ)

p(ξ)v(ξ)

)
= f ′(i, ξ) 6= 0.

Therefore, as a consequence of the tradeoff between consumption and altruism, although individ-

ual plans, (xi, θ
i
, ϕi, d

i
), are (globally) optimal, the equilibrium level of donations can be, in many

cases, sub-optimal.

6. A final remark on altruistic behavior

In our model, agents may care about their descendants and, therefore, they may be interested in

accumulating wealth in order to leave bequests to their offsprings. On the other hand, an individual

who cares about his parents may make donations to them during his lifetime. Of course, when

receiving bequests, descendants do not have any incentive to pay ancestors’ debts. In fact, it is not

realistic, from a pure economic point of view, to assume that descendants are urged to pay the debts

of their antecedents.

However, non-economic motives may lead to altruism toward ancestors. In this case, when

receiving bequests, agents may be interested in paying more than the minimum between the value

of the depreciated collateral and their antecedents’ debt.

If ancestors do not perfectly foresee the attitude of their descendants, the collateral cost will still

be greater than the asset price. Thus, short sales will be bounded and, even when agents have at

least one infinite–life path through the event–tree, Ponzi schemes are ruled out.

Nevertheless, if agents perfectly foresee that their descendants have incentives to pay more than

the minimum between the value of the debt and the value of the depreciated collateral, then, unlike

our model, loans may be greater than collateral costs (as the joint operation of selling an asset

and constituting the required collateral will no longer have nonnegative returns). In such a case,
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individuals’ degree of altruism toward their ancestors may act as utility penalties for default, and

infinitely–lived agents may end up doing Ponzi schemes.

In fact, in a recent work, Pascoa and Seghir (2006) show that Ponzi schemes become possible in

the presence of collateral and harsh utility penalties, as borrowers may pay more than the value of

the depreciated collateral and the value of their debt.

Thus, in a model with collateralized assets, in which each agent perfectly foresees the altruistic

behavior that his descendants have toward him when he passes away, equilibrium may still exist.

Indeed, by analogy with the results of Páscoa and Seghir (2006), we presume that, for an equilib-

rium to exist, it is sufficient that some (infinitely–lived) agents are not too altruistic toward their

antecedents, but the existence argument will have to be carefully redone.

Appendix A. Proof of Theorem 1.

Theorem 1 will be proved using a generalized game approach.

Without loss of generality, we assume that, at each ξ ∈ D and for each j ∈ J(ξ), there is at least one node

µ ∈ ξ+ such that min{‖A(µ, j)‖Σ ; ‖YµC(ξ, j)‖Σ} > 0.8 Moreover, given a vector z = (z1, . . . , zm) ∈ Rm,

with m > 1, we will denote by ‖z‖max := max
r∈{1,...,m}

|zr|, the max-norm of z. Analogously, the norm of the

sum will be denoted by ‖z‖Σ :=
mP

r=1

|zi|.

The following lemma provides a characterization of agents in terms of their donation motives and will be

used to prove that individual allocations and prices are bounded in equilibrium.

Lemma 1. Under Assumption [A2], for each node ξ ∈ D,

I(ξ) =

n(ξ)[
r=1

Ir(ξ),

where the collection of disjoint sets {Ir(ξ) : 1 6 r 6 n(ξ)} is defined, recursively, via,

I1(ξ) = {i ∈ I(ξ) : i /∈ I?
−k(ξ), ∀k ∈ I−i(ξ)};

Ir(ξ) =

(
i ∈ I(ξ) : i ∈ I?

−k(ξ) ⇒ k ∈
[

r′<r

Ir′(ξ)

)
\
[

r′<r

Ir′(ξ), ∀r > 1.

Moreover, the set, I1(ξ), of agents who do not receive donations at ξ is non-empty.

Proof. By definition
n(ξ)S
r=1

Ir(ξ) ⊂ I(ξ). Thus, let us suppose that there is i1 ∈ I(ξ) such that i1 /∈
n(ξ)S
r=1

Ir(ξ).

Since i1 /∈ I1(ξ), the set of agents i ∈ I−i1(ξ), with i1 ∈ I?
−i(ξ), is non-empty. Moreover, there is an

agent i2 ∈ I−i1(ξ) who satisfies both i1 ∈ I?
−i2(ξ) and i2 /∈ I1(ξ), since otherwise, i1 ∈ I2(ξ), which leads to

a contradiction.

It follows that the set of agents i ∈ I−i2(ξ) for which i2 ∈ I?
−i(ξ) is also non-empty. Therefore, by

analogous arguments, there is i3 ∈ I−i2(ξ) such that both i2 ∈ I?
−i3(ξ) and i3 /∈ I1(ξ). Moreover, by

Assumption [A2], i3 /∈ {i1, i2}.
With this process, we can construct a family {i1, . . . , in(ξ)+1} with n(ξ)+1 different agents that satisfies

ij ∈ I?
−ij+1(ξ), for each j, but this contradicts Assumption [A2], since #I(ξ) = n(ξ).

8In fact, otherwise, independently of the value of commodity prices, asset j delivers no payments at equilibrium,

and therefore, either q(ξ, j) = 0 or θ
i
(ξ, j) = 0, for each i ∈ I(ξ). Thus, such an asset can be eliminated from the

economy, without changing the space of financial transfers.
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Finally, by construction, if Ir(ξ) 6= ∅, then Ir′(ξ) 6= ∅, for each r′ < r. Therefore, as
n(ξ)S
r=1

Ir(ξ) = I(ξ) 6= ∅,

we conclude that I1(ξ) is a non-empty set. �

The following lemma assures that individual allocations and prices are bounded in equilibrium.

Lemma 2. Under assumptions [A3] and [A4], for each ξ ∈ D, there exists a vector (m(ξ),Ω(ξ),M(ξ)) � 0

such that given an equilibrium

�
(p, q); si

i∈I ;
�
xi, θ

i
, ϕi, d

i
, b

i
�

i∈I

�
in which prices ‖(p(ξ), q(ξ))‖Σ = 1, at each

ξ ∈ D, we have:

(a) ‖p(ξ)‖Σ > m(ξ).

(b) For each agent i ∈ I(ξ),



�xi(ξ), θ

i
(ξ), ϕi(ξ), d

i
(ξ), b

i
ξ

�



max

< Ω(ξ).

(c) For each i ∈ I(ξ), si(ξ) < M(ξ).

Proof. The arguments are similar to those made in Araujo, Páscoa and Torres-Mart́ınez (2002) (Lemma 1,

pp. 1621). Indeed, the joint operation of short selling an asset and purchasing the associated collateral yields

to nonnegative returns. So, it follows from Assumption [A4] that the financial haircut , p(ξ)C(ξ, j)− q(ξ, j),
is strictly positive, for each j ∈ J(ξ) (see Proposition 1, pp. 1624, in Araujo, Páscoa and Torres-Mart́ınez

(2002)).

On the other hand, as prices (p(ξ), q(ξ)) are in the simplex, we have that:X
j∈J(ξ)

p(ξ)C(ξ, j) >
X

j∈J(ξ)

q(ξ, j) = 1− ‖p(ξ)‖Σ.

For each node ξ ∈ D, let us define C(ξ) = max
g∈G

P
j∈J(ξ)

C(ξ, j, g) > 0. Then, it follows from the previous

arguments that ‖p(ξ)‖Σ > m(ξ) := 1

1+ C(ξ)
, ∀ξ ∈ D.

Moreover, as the feasibility conditions in item (ii) of Definition 2 hold, individual consumption bundles

are bounded, node by node, by the aggregate resources. Thus, Assumption [A3] and collateral constraints

guarantee that agents’ short-sales are bounded, node by node. Long positions are bounded too, due to finan-

cial market feasibility in equilibrium. So, budgetary constraints and physical-financial feasibility conditions

assure that bequests are bounded, node by node, as prices (p(ξ), q(ξ)) ∈ ∆#G+#J(ξ).

It follows that, at each ξ ∈ D, monetary transfers received by agents in I1(ξ) are bounded. In fact,

since these agents do not receive donations from other individuals, bequests are bounded and feasibility

condition (iii) of Definition 2 holds. Thus, nominal donations made by agents in I1(ξ) are also bounded, as

p(ξ)C(ξ, j)− q(ξ, j) > 0.

Using recursive arguments, one can easily show that: (i) the monetary transfers received by agents in

Ir(ξ), r > 1, are bounded, because donations made by the agents in
S

r′<r

Ir′(ξ) have an upper bound; (ii)

donations made by agents in Ir(ξ), r > 1 are bounded, as prices are in the simplex (their monetary transfers

were previously bounded and p(ξ)C(ξ, j)− q(ξ, j) > 0).

Therefore, for each ξ ∈ D, there exist (M(ξ),Ω(ξ)) � 0, such that, for any i ∈ I(ξ), si(ξ) < M(ξ) and


�xi(ξ), θ
i
(ξ), ϕi(ξ), d

i
(ξ), b

i
ξ

�



max

< Ω(ξ). �

The game G. In order to prove the equilibrium existence, we introduce a game and we show that (i) this

game always has a (pure strategy) Nash equilibrium and (ii) each Nash equilibrium is an equilibrium for

our economy.

The generalized game G that we consider is characterized by:
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• A set of players. There is a countable set of players constituted by:

(i) The set of agents, i ∈ I, of the original economy,

(ii) A player h(ξ) for each node ξ ∈ D,

(iii) A player h(i, ξ) for each pair (i, ξ) ∈ I(D) := {(k, η) ∈ I ×D : η ∈ Dk}.

To shorten notations below, we denote the set of players by H = I ∪ H(D) ∪ H(I(D)), where the set

H(D) := {h(ξ) : ξ ∈ D} and H(I(D)) := {h(i, ξ) : (i, ξ) ∈ I(D)}.

• Strategies.

(i) For each player h ∈ I, the set of strategies, Γ
h
, is given by the collection of plans

(xh(ξ), θh(ξ), ϕh(ξ), dh(ξ), bhξ )ξ∈Di ∈ Γh

such that ‖(xh(ξ), θh(ξ), ϕh(ξ), dh(ξ), bhξ )‖max 6 Ω(ξ), for each ξ ∈ Di.

(ii) For h = h(ξ), Γ
h

= {(p(ξ), q(ξ)) ∈ ∆#G+#J(ξ) : ‖p(ξ)‖Σ > m(ξ)}.

(iii) If h = h(i, ξ), then Γ
h

:= {si(ξ) ∈ R+ : si(ξ) 6 M(ξ)}.

For simplicity, let ηh = (xh, θh, ϕh, dh, bh) ∈ Γ
h

be a generic vector of strategies for a player h ∈ I and

η := (ηh;h ∈ I) a plan of strategies for the agents in I. Moreover, (p, q) := ((p(ξ), q(ξ)); ξ ∈ D) will denote

a generic plan of strategies for the players h ∈ H(D) and s := (si(ξ); (ξ, i) ∈ I(D)) a plan of strategies for

the players h ∈ H(I(D)).

Finally, let Γ =
Q

h∈H

Γ
h

be the space of strategies of the game G, in which a generic element is denoted

by (p, q, s, η).

• Admissible strategies. The strategies that can be effectively chosen for a player h ∈ H may depend on the

actions taken by the other agents, through a correspondence of admissible strategies Φh : Γ−h � Γ
h
, where

Γ−h =
Q

h′ 6=h

Γ
h′

. Thus, denoting by (p, q, s, η)−h a generic element of Γ−h, we suppose that:

(i) If h = i ∈ I, Φh[(p, q, s, η)−h] = Ch(p, q, sh), where Ch(p, q, sh) denotes the set of strategies ηh ∈ Γ
h

that satisfy the budget set restrictions at nodes ξ ∈ Dh, at prices (p, q), given the monetary transfers

si := (si(ξ); ξ ∈ Di) chosen by the players h(i, ξ), with ξ ∈ Di.

(ii) If h ∈ H(D) ∪H(I(D)), Φh[(p, q, s, η)−h] = Γ
h
.

• Objective functions. Each player h ∈ H is also characterized by his objective function, denoted by

Kh : Γ
h × Γ−h → R+. We assume that:



A. Seghir and J.P. Torres-Mart́ınez / wealth transfers and collateral 17

(i) If h = h(ξ) ∈ H(D) and (p̃(ξ), q̃(ξ)) ∈ Γ
h
, then

Kh((p̃(ξ), q̃(ξ)); (p, q, s, η)−h) := p̃(ξ)

0
@ X

i∈I(ξ)

(xi(ξ)− wi(ξ))− Yξ

X
i∈I(ξ−)

W i(ξ−)

1
A

+ q̃(ξ)
X

i∈I(ξ)

�
θi(ξ)− ϕi(ξ)

�
.

(ii) If h = h(k, ξ) ∈ H(I(D)) and s̃k(ξ) ∈ Γ
h
, then

Kh(s̃k(ξ); (p, q, s, η)−h) := −

2
64s̃k(ξ)−

0
B@ X
{i∈I(ξ): k∈I?

−i(ξ)}

di
k(ξ) +

X
{i∈I(ξ−)\I(ξ):ξ−∈D

i
?}

bik(ξ)

1
CA

−
X

i∈I(ξ−)\I(ξ)

βi
k(ξ)τ i

ξ(p, (x
i, θi, ϕi, bi))

3
5

2

.

(iii) If h = i ∈ I and η̃i = (x̃i, θ̃i, ϕ̃i, d̃i, b̃i) ∈ Γ
h
, then

Kh(η̃i; (p, q, s, η)−h) := V i(p, (x̃i, d̃i, b̃i)).

For each h ∈ H, we define the correspondence of optimal strategies as follows:

Ψh((p, q, s, η)−h) := Argmax
n
Kh(y; (p, q, s, η)−h) : y ∈ Φh((p, q, s, η)−h)

o
.

Let Ψ : Γ � Γ, be the correspondence defined by Ψ(p, q, s, η) =
Q

h∈H

Ψh((p, q, s, η)−h).

Definition 3. A Nash equilibrium for the game G is a plan of strategies (p, q, s, η) ∈ Γ such that (p, q, s, η) ∈
Ψ(p, q, s, η).

Lemma 3. Under assumptions [A1]-[A2] admissible correspondences, (Φh;h ∈ H), are continuous with

non-empty, convex and compact-values.

Proof. When h ∈ H(D) ∪H(I(D)), Φh((p, q, s, η)−h) = Γ
h
, for all (p, q, s, η)−h ∈ Γ−h. So, it follows that

the four properties stated in the lemma hold.

For each h ∈ I, Assumptions [A1] and the definition of the budget constraints assure that Φh has non-

empty, compact and convex values. In addition, the upper-hemicontinuity of Φh follows from the fact that

Φh has a closed graph and compact values.

Now, we define the interior correspondence int(Φh) : Γ−h � Γ
h

as follows:

int(Φh)((p, q, s, η)−h) = int(Ch(p, q, sh)),

where int(Ch(p, q, sh)) is the set of allocations ηh = (xh, θh, ϕh, dh, bh) ∈ Γ
h

that satisfy the budget restric-

tions of agent h with strict inequalities.

The definition of our price space and Assumption [A1] imply that int(Φh) has non-empty values. Since

int(Φh) has an open graph, one gets that Φh is lower hemicontinuous (see Aliprantis and Border (1999)). �

Lemma 4. Under assumptions [A1], [A2] and [A4], there is a Nash equilibrium for G.
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Proof. It follows from Assumptions [A4] that each objective function in the game is continuous in all variables

and quasi-concave with respect to its own strategy.

Furthermore, since the sets of strategies are compact and admissible correspondences, (Φh;h ∈ H),

are continuous with non-empty, convex and compact-values, it follows from Berge’s Maximum Theorem

(see Aliprantis and Border (1999)) that, for each h ∈ H, the correspondence of optimal strategies, Ψh, is

upper-hemicontinuous with non-empty, convex and compact values.

Thus, the correspondence Ψ has non-empty and convex values in the product topology of Γ. Since

∀h ∈ H, Ψh has a closed graph, then Ψ is also closed. Moreover, it follows from Tychonoff’s Theorem (see

Aliprantis and Border (1999)) that Ψ has compact values. Applying Kakutani’s Fixed Point Theorem to

Ψ, we conclude the proof. �

Finally, Theorem 1 is a direct consequence of the following result:

Lemma 5. Under assumptions [A1]-[A4], a Nash equilibrium for G is an equilibrium of our original econ-

omy.

Proof. Let us fix a Nash equilibrium (p, q, s, η). It follows from the definition of M(ξ) (see proof of Lemma

2) that, for each pair (ξ, k) ∈ I(D), one has:

(4) sk(ξ) =
X

{i∈I(ξ): k∈I?
−i(ξ)}

d
i
k(ξ) +

X
{i∈I(ξ−)\I(ξ):ξ−∈D

i
?}

b
i
k(ξ) +

X
i∈I(ξ−)\I(ξ)

βi
k(ξ)τ i

ξ(p, (x
i, θ

i
, ϕi, b

i
)).

Thus, since for each h = i ∈ I, the collection ηh = (xh, θ
h
, ϕh, d

h
, b

h
) satisfies the budget constraints, it

follows from the inequality above and the physical-financial budget constraints that:

p(ξ0)
X

i∈I(ξ0)

h
xi(ξ0)− wi(ξ0)

i
+ q(ξ0)

X
i∈I(ξ0)

(θ
i
(ξ0)− ϕi(ξ0)) 6 0;(5)

p(ξ)

2
4 X

i∈I(ξ)

(xi(ξ)− wi(ξ))− Yξ

X
i∈I(ξ−)

xi(ξ−)

3
5+ q(ξ)

X
i∈I(ξ)

(θ
i
(ξ)− ϕi(ξ))(6)

6
X

i∈I(ξ−)

Rξ(p(ξ))(θ(ξ
−)− ϕ(ξ−));

As the left-hand side of equation (5) represents the objective function of player h = h(ξ0), its optimal

value is less than or equal to zero. Thus,

(7)
X

i∈I(ξ0)

h
xi(ξ0)− wi(ξ0)

i
6 0.

Then, it follows from the proof of Lemma 2 that xi(ξ0, g) < Ω(ξ0), for each g ∈ G. Moreover, collateral

constraints assure that the short sales satisfy ϕi(ξ0, j) < Ω(ξ0), for all j ∈ J(ξ0). Therefore, strict mono-

tonicity of ui implies that, for each asset j ∈ J(ξ0), p(ξ0)C(ξ, j) − q(ξ0, j) > 0. So, we guarantee that

||p(ξ0)||Σ > m(ξ0).

Now, it follows from the monotonicity of agents’ objective functions that inequality (5) holds as an

equality and that, X
i∈I(ξ0)

�
θ

i
(ξ0)− ϕi(ξ0)

�
6 0,

which guarantees that θ
i
(ξ0, j) < Ω(ξ0), for each asset j ∈ J(ξ0).

Furthermore, Assumption [A4] assures that p(ξ0) � 0. Thus, physical market feasibility holds at ξ0. In

addition, the monotonicity of the preferences guarantees that financial markets clear, at the initial node.
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The same arguments can be applied to prove that financial markets clear at each ξ > ξ0 (using equation

(6) and the market feasibility at ξ−). Thus, a Nash equilibrium of the game G satisfies feasibility conditions

of items (ii) and (iii) of Definition 2.

On the other side, the definition of Nash equilibrium guarantees that, for each agent i ∈ I, the plan

ηi ∈ Bi(p, q, si) and

V i(p, (xi, d
i
, b

i
)) > V i(p, (xi, di, bi)), ∀ ηi = (xi, θi, ϕi, di, bi) ∈ Ci(p, q, si) ⊂ Bi(p, q, si).

Finally, as Di is a finite set and



�xi(ξ), θ

i
(ξ), ϕi(ξ), d

i
(ξ), b

i
ξ

�



max

< Ω(ξ), for each ξ ∈ Di, the quasi-

concavity of V i implies that V i(p, (xi, d
i
, b

i
)) > V i(p, (xi, di, bi)), for each (xi, θi, ϕi, di, bi) ∈ Bi(p, q, si),

which assures the optimality of individual allocations on the budget set. �

Appendix B. Proof of Theorem 2.

Let I := {i ∈ I : #Di = +∞} be the set of infinitely–lived agents in the economy.

For each T ∈ N, T > 3, let us consider an abstract economy, ET , populated by I finitely–lived agents,

where each i ∈ I is replaced by an agent who has a maximal lifetime of T . Thus, we suppose that, for each

i ∈ I, the associated agent, also denoted by i, is alive only at nodes in Di,T :=

 S
µ∈Di

DT (µ)

!
∩Di.

When we make this truncation, it is possible that, depending on the original demographic structure,

some nodes of D disappear from the abstract economy ET . In fact, the set of nodes in which agents trade

commodities and assets will be given by DT =
S
i∈I

Di,T ⊂ D.9

However, for our purposes, we only need the set DT to be, asymptotically, equal to the original event-tree

D. Note that, this condition is satisfied, as for each T > 3, DT (ξ0) ⊂ DT and Di,T ⊂ Di,T+1, which implies

that
S

T>3

DT = D.

In this context, the set of agents who are alive at node ξ ∈ DT is given by I(ξ, T ) := {i ∈ I(ξ) : ξ ∈ Di,T }.
Analogously, given i ∈ I, we define the following sets:

I−i(ξ, T ) = I−i(ξ) ∩ I(ξ, T ), ∀i ∈ I(ξ, T ),

I?
−i(ξ, T ) = I?

−i(ξ) ∩ I(ξ, T ), ∀i ∈ I(ξ, T ),

Di,T
−i = {ξ ∈ Di,T : I−i(ξ, T ) 6= ∅}

D
i,T

= {ξ ∈ Di,T−1 : (ξ+ \Di,T ) ∩DT 6= ∅}

D
i,T
? = D

i
? ∩D

i,T ∩Di,T
−i .

Thus, in ET , agent i ∈ I can make bequests only at the first T − 1 periods of his life span. Moreover,

given ξ ∈ D, if T > t(ξ) then I(ξ, T ) = I(ξ) and, therefore, I−i(ξ, T ) = I−i(ξ) and I?
−i(ξ, T ) = I?

−i(ξ).

In the truncated economy ET , agent i receives monetary transfers si,T := (si,T (ξ); ξ ∈ Di,T ) and, given

prices (p, q), he can choose any plan in the truncated budget set, Bi,T (pT , qT , si,T ), which is defined as the

collection of vectors (xi,T , θi,T , ϕi,T , di,T , bi,T ) in

Γi,T := RG×Di,T

+ ×
Y

ξ∈Di,T

RJ(ξ)
+ ×

Y
ξ∈Di,T

RJ(ξ)
+ ×

Y
{ξ∈Di,T : I?

−i(ξ,T ) 6=∅}

RI?
−i(ξ,T )

+ ×
Y

ξ∈D
i,T
?

R(ξ+\Di)×I−i(ξ,T )

+ ,

that satisfy the budgetary restrictions at nodes ξ ∈ Di,T .

9For instance, if the economy is populated only by infinite–lived households, who are born at ξ0, the set DT =

DT (ξ0).
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Furthermore, agent i’s objective function is given by,

V i,T (p, (xi,T , di,T , bi,T )) :=
X

ξ∈Di,T

ui(ξ, xi,T (ξ)) +
X

{ξ∈Di,T :I?
−i(ξ,T ) 6=∅}

f i,T

�
ξ,

di,T (ξ)

p(ξ)v(ξ)

�

+
X

ξ∈D
i,T
?

gi,T

�
ξ,

�
bi,T (µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di,T

��
,

where f i,T (ξ, ·) : RI?
−i(ξ,T )

+ → R+ is defined as,

f i,T

�
ξ,

di,T (ξ)

p(ξ)v(ξ)

�
= f i

 
ξ,

 
di,T

k (ξ)

p(ξ)v(ξ)
; k ∈ I?

−i(ξ, T )

!
, 0

!
,

and the bequest function gi,T (ξ, ·) : R(ξ+\Di,T )×I−i(ξ,T ) → R+ satisfies,

gi,T

�
ξ,

�
bi,T (µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di,T

��
= gi

 
ξ,

 
bi,Tk (µ)

p(µ)v(µ)
;µ ∈ ξ+ \Di,T , k ∈ I−i(ξ, T )

!
, 0

!
.

Under the assumptions of Theorem 2, we can construct, as in the proof of Theorem 1, a generalized game

in which the set of Nash equilibria coincides with the set of equilibria for ET (in the sense of Definition 2,

restricting feasibility conditions to nodes in DT ). To this end, it is sufficient to redefine the generalized game

G, of Appendix A, taking into account the new definition of event-tree DT , the new demographic structure

and agents’ characteristics defined above.

Therefore, our truncated economy ET will always have an equilibrium�
pT , qT , sT ; (xi,T , θ

i,T
, ϕi,T , d

i,T
, b

i,T
)i∈I

�
,

with ‖(pT (ξ), qT (ξ))‖Σ = 1, for each ξ ∈ Di,T .

Moreover, for each T ∈ N, the optimality of ηi,T := (xi,T , θ
i,T
, ϕi,T , d

i,T
, b

i,T
) assures that there exist

non-negative multipliers:

λ
i,T

=
�
λ

i,T
ξ ; ξ ∈ Di,T

�
∈ RDi,T

+

φ
i,T

=
�
φ

i,T

µ ;µ ∈ ξ+ \Di,T , ξ ∈ Di,T
?

�
∈

Y
ξ∈D

i,T
?

Rξ+\Di,T

+

ψ
i,T

=
�
ψ

i,T

µ,k;µ ∈ ξ+ \Di,T , ξ ∈ Di,T
? , k ∈ I−i(ξ, T )

�
∈

Y
ξ∈D

i,T
?

R(ξ+\Di,T )×I−i(ξ,T )
+

such that, for each plan ηi,T = (xi,T , θi,T , ϕi,T , di,T , bi,T ) ∈ Γi,T , we have,

Li,T
��
pT , qT , si,T , λ

i,T
, φ

i,T
, ψ

i,T
�

; ηi,T
�

6 V i,T (pT , (xi,T , d
i,T
, b

i,T
)) ;(8)

λ
i,T
ξ Li

ξ

��
pT , qT , si,T

�
; ηi,T

�
= 0, ∀ξ ∈ Di,T ;(9)

ψ
i,T

µ,kL1,k

�
µ,
�
pT , qT

�
; ηi,T

�
= 0, ∀µ ∈ ξ+ \Di,T , ∀ξ ∈ Di,T

? , ∀k ∈ I−i(ξ, T );(10)

φ
i,T

µ L2

�
µ,
�
pT , qT

�
; ηi,T

�
= 0, ∀µ ∈ ξ+ \Di,T , ∀ξ ∈ Di,T

? ;(11)

where the lagrangian function, Li,T , is given by:

Li,T
��
pT , qT , si,T , λ

i,T
, φ

i,T
, ψ

i,T
�

; ηi,T
�

:= V i,T (pT , (xi,T , di,T , bi,T ))

+
X

ξ∈Di,T

λ
i,T
ξ Li

ξ

��
pT , qT , si,T

�
; ηi,T

�



A. Seghir and J.P. Torres-Mart́ınez / wealth transfers and collateral 21

+
X

ξ∈D
i,T
?

X
µ∈ξ+\Di,T

X
k∈I−i(ξ,T )

ψ
i,T

µ,kL1,k

�
µ,
�
pT , qT

�
; ηi,T

�

+
X

ξ∈D
i,T
?

X
µ∈ξ+\Di,T

φ
i,T

µ L2

�
µ,
�
pT , qT

�
; ηi,T

�
;

and

Li
ξ

��
pT , qT , si,T

�
; ηi,T

�
> 0, is agent i’s physical-financial budget constraint at node ξ;

L1,k

�
µ,
�
pT , qT

�
; ηi,T

�
= bi,Tk (µ)− αi

k(ξ) eµ(pT , (xi,T , θi,T , ϕi,T )),

L2

�
µ,
�
pT , qT

�
; ηi,T

�
= eµ(pT , (xi,T , θi,T , ϕi,T ))−

X
k∈I−i(ξ,T )

bi,Tk (µ).

Lemma 6. Under the assumptions on Theorem 2, for each ξ ∈ D, the sequence��
pT (ξ), qT (ξ), si,T (ξ); ηi,T (ξ), λ

i,T
ξ

�
; i ∈ I(ξ)

�
T>t(ξ)

,

where ηi,T (ξ) := (xi,T (ξ), θ
i,T

(ξ), ϕi,T (ξ), d
i,T

(ξ), b
i,T
ξ ), is bounded.

Proof. Under Assumption [A5], and using the same arguments as in Lemma 2, market feasibility assures that

consumption allocations are uniformly bounded along the event-tree. Thus, Assumption [A3] guarantees

that short sales are bounded, node by node. Moreover, financial feasibility of equilibrium implies that

long positions are bounded from above, node by node. Note that, by construction, all of these bounds are

independent of the value of T .

In addition, Assumption [A5] implies that there exists W ∈ RG
++ such that

P
i∈I(ξ)

W i(ξ) 6 W , for

each ξ ∈ D. Thus, physical-financial feasibility conditions and the definition of assets effective payments

guarantee that:

X
k∈I−i(ξ,T )

b
i,T
k (µ) 6 eµ(pT , (xi,T , θ

i,T
, ϕi,T ))

6 2pT (µ)W 6 2||W ||Σ,

where the last inequality follows from the fact that (pT (ξ), qT (ξ)) ∈ ∆#G+#J(ξ). Thus, bequests are uni-

formly bounded, along the event-tree and independent of the value of T .

Using the same recursive argument of Lemma 2, it follows from the inequalities above and the feasibility

conditions that monetary transfers, (si,T )i∈I , and donations, (d
i,T

)i∈I , are uniformly bounded along the

event-tree, as (n(ξ); ξ ∈ D) is uniformly bounded and Assumption [A2] holds.

Therefore, the sequence
��
pT (ξ), qT (ξ), si,T (ξ); ηi,T (ξ)

�
; i ∈ I(ξ)

�
T>t(ξ)

is bounded.

On the other hand, by Assumption [A5], the sum of commodity prices is uniformly bounded away from

zero along the event-tree. In fact, with the notation of Lemma 2, m(ξ) > 1

1+C
, where the upper bound

C := sup
ξ∈D

max
g∈G

P
j∈J(ξ)

C(ξ, j, g) < +∞.

Thus, as v(ξ, g) > v > 0, for each g ∈ G, it follows that, pT (ξ)v(ξ) > v

1+C
. Now, as consumption

allocations, bequests and donations are uniformly bounded, it follows from Assumptions [A5]-[A8] that

there is V > 0 such that,

V i,T (pT , (xi,T , d
i,T
, b

i,T
)) 6 V , ∀T > t(ξ).
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Thus, applying equation (8) to the plan ηi,T = (xi,T , 0, 0, 0, bi,T ) where,

xi,T (µ) =

(
W i(µ), if µ < ξ

0, otherwise ;

bi,Tk (µ) = αi
k(%) eµ(pT , (xi,T , 0, 0)), ∀µ ∈ %+ \Di,T , ∀% ∈ Di,T

? , ∀k ∈ I−i(%, T );

one gets λ
i,T
ξ pT (ξ)W i(ξ) 6 V . Therefore, as ||pT (ξ)||Σ > m(ξ), we conclude, using Assumption [A1], that,

λ
i,T
ξ 6

V

m(ξ) min
g∈G

W i(ξ, g)
< +∞,

which implies that the sequence of multipliers
�
λ

i,T
ξ ; i ∈ I(ξ)

�
T>t(ξ)

is also bounded. �

Lemma 7. Under the assumptions on Theorem 2, given ξ ∈ Di
?, the sequences

(ζ
i,T

ξ )T>t(ξ) :=
�
ψ

i,T

µ,kp
T (µ)YµW

i(ξ) ; µ ∈ ξ+ \Di, k ∈ I−i(ξ)
�

T>t(ξ)
,

(ςi,T
ξ )T>t(ξ) :=

�
φ

i,T

µ pT (µ)YµW
i(ξ) ; µ ∈ ξ+ \Di

�
T>t(ξ)

,

are bounded.

Proof. Given T > t(ξ), consider the plan ηi,T = (xi,T , 0, 0, 0, bi,T ), where

xi,T (µ) = W i(µ), ∀µ ∈ Di,T ;

bi,Tk (µ) = α̃i
k(%) eµ(pT , (xi,T , θi,T , ϕi,T )), ∀µ ∈ %+ \Di,T , ∀% ∈ Di,T

? , ∀k ∈ I−i(%, T ),

and αi
k(%) < α̃i

k(%),
P

k∈I−i(%)

α̃i
k(%) < 1, ∀i ∈ I(%). Note that, by Assumption [A1], it is always possible to

find constants α̃i
k(%) satisfying the condition above.

Now, evaluating equation (8) at ηi,T , we obtain that,

X
k∈I−i(ξ)

ψ
i,T

µ,kp
T (µ)YµW

i(ξ)
�
α̃i

k(ξ)− αi
k(ξ)

�
+ φ

i,T

µ pT (µ)YµW
i(ξ)

0
@1−

X
k∈I−i(ξ)

α̃i
k(ξ)

1
A 6 V .

�

Lemma 8. Under the assumptions on Theorem 2, given ξ ∈ D,

λ
i,T
ξ pT (ξ, g) > ui(ξ, xi,T (ξ) + 1g)− ui(ξ, xi,T (ξ)) > 0, ∀T > t(ξ),

where 1g = (χg(g′); g′ ∈ G) ∈ RG
+ and

χg(g′) :=

(
1, if g′ = g;

0, if g′ 6= g.

Proof. Given T > t(ξ), evaluating equation (8) at ηi,T = (xi,T , θ
i,T
, ϕi,T , d

i,T
, bi,T ) where,

xi,T (µ, g′) =

(
xi,T (µ, g′), if (µ, g′) 6= (ξ, g),

xi,T (µ, g′) + 1, if (µ, g′) = (ξ, g),

and

bi,Tk (µ) = αi
k(%) eµ(pT , (xi,T , θ

i,T
, ϕi,T )), ∀µ ∈ %+ \Di,T , ∀% ∈ Di,T

? , ∀k ∈ I−i(%, T );

we obtain that,

−λi,T
ξ pT (ξ, g) +

X
µ∈ξ+∩Di

λ
i,T
µ

X
g′∈G

pT (µ, g′)Yµ(g′, g) 6 ui(ξ, xi,T (ξ))− ui(ξ, xi,T (ξ) + 1g).

Finally, as matrices Yµ have non-negative entries, we conclude the proof. �
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Lemma 9. Under assumptions [A1]-[A3] and [A5]-[A8], there exists a subsequence (Tk)k∈N ⊂ N such that:�
pTk , qTk , sTk ; (xi,Tk , θ

i,Tk , ϕi,Tk , d
i,Tk , b

i,T
)i∈I

�
−→k→+∞

�
p, q, s; (xi, θ

i
, ϕi, d

i
, b

i
)i∈I

�
(λ

i,T
, ψ

i,Tk , φ
i,Tk )i∈I −→k→+∞ (λ

i
, ψ

i
, φ

i
)i∈I .

Proof. It follows from lemmas 6 and 7 that, for each ξ ∈ D, the sequence

ZT (ξ) :=

8<
:
��
pT (ξ), qT (ξ), si,T (ξ); ηi,T (ξ), λ

i,T
ξ , ζ

i,T

ξ , ςi,T
ξ

�
; i ∈ I(ξ)

�
, if T > t(ξ),

0 , otherwise,

is bounded. Since the event-tree D is countable, Tychonoff’s Theorem guarantees the existence of a common

subsequence (Tk)k>1 ⊂ N such that, for each ξ,

lim
k→+∞

ZTk (ξ) =
��
p(ξ), q(ξ), si(ξ); ηi(ξ), λ

i
ξ, ζ

i

ξ, ς
i
ξ

�
; i ∈ I(ξ)

�
.

Moreover, Lemma 8 assures that, for each ξ ∈ D, λ
i
ξp(ξ, g) > ui(ξ, xi(ξ)+1g)−ui(ξ, xi(ξ)) > 0. So, given

i ∈ I, for each µ ∈ ξ+ \Di, pT (µ)YµW
i(ξ) converges to p(µ)YµW

i(ξ) > 0. Finally, Lemma 7 implies that,

for each i ∈ I and ξ ∈ Di
?, we have:

�
ψ

i,Tk

µ,i′ ; µ ∈ ξ+ \Di, i′ ∈ I−i(ξ)
�
→k→+∞

ζ
i

ξ

p(µ)YµW i(ξ)
< +∞ ,

�
φ

i,Tk

µ ; µ ∈ ξ+ \Di
�
→k→+∞

ςi
ξ

p(µ)YµW i(ξ)
< +∞.

�

Lemma 10. Under assumptions [A1]-[A3] and [A5]-[A8], the following transversality condition holds for

each i ∈ I:

(12) lim
N→+∞

X
{ξ∈Di: t(ξ)=N}

λ
i
ξ

0
@p(ξ)xi(ξ) +

X
r∈I?

−i(ξ)

d
i
r(ξ) + q(ξ) (θ

i
(ξ)− ϕi(ξ))

1
A = 0.

Proof. Given ξ ∈ Di,Tk , consider the following allocation:

ηi,Tk (µ) := (xi,Tk (µ), θi,Tk (µ), ϕi,Tk (µ), di,Tk (µ), bi,Tk
µ ) =

(
0 , if µ = ξ ;

ηi,Tk (µ) , otherwise.

It follows from equations (8)-(11) that,

ui(ξ, xi,Tk (ξ))+f i,Tk

 
ξ,

d
i,Tk (ξ)

pTk (ξ)v(ξ)

!
χi,Tk (ξ)+gi,Tk

�
ξ, b

i,Tk
ξ

�
χ

D
i,Tk
?

(ξ)

> −
X

µ∈ξ+\Di,Tk

λi,Tk
µ

0
@pTk (µ)xi,Tk (µ) +

X
r∈I?

−i(µ)

d
i,Tk
r (µ) + qTk (µ) (θ

i,Tk (µ)− ϕi,Tk (µ))

1
A

+λ
i,Tk
ξ

0
@pTk (ξ)xi,Tk (ξ) +

X
r∈I?

−i(ξ)

d
i,Tk
r (ξ) + qTk (ξ) (θ

i,Tk (ξ)− ϕi,Tk (ξ))

1
A ,

where χi,Tk (ξ) = 1, if I?
−i(ξ, T ) 6= ∅, and equal to zero otherwise. Also, χ

D
i,Tk
?

(ξ) = 1, if ξ ∈ D
i,Tk
? , and

equal to zero otherwise. Therefore, it follows that,

λ
i,Tk
ξ

0
@pTk (ξ)xi,Tk (ξ) +

X
r∈I?

−i(ξ)

d
i,Tk
r (ξ) + qTk (ξ) (θ

i,Tk (ξ)− ϕi,Tk (ξ))

1
A
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6
X

{µ∈Di,Tk ; µ>ξ}

 
ui(µ, xi,Tk (µ)) + f i,Tk

 
µ,

d
i,Tk (µ)

pTk (µ)v(µ)

!
χi,Tk (ξ) + gi,Tk

�
µ, b

i,Tk
µ

�
χ

D
i,Tk
?

(ξ)

!
.

Now, Lemma 6 and assumptions [A6]-[A8] assure the existence of a summable plan (ai
ξ; ξ ∈ Di) ⊂ RDi

+

such that the right hand side of equation above is, for each k > 1, less than or equal to
P

{µ∈Di:µ>ξ}
ai

µ.

Thus, taking the limit as k goes to infinity, Lemma 9 implies that:

λ
i
ξ

0
@p(ξ)xi(ξ) +

X
r∈I?

−i(ξ)

d
i
r(ξ) + q(ξ) (θ

i
(ξ)− ϕi(ξ))

1
A 6

X
{µ∈Di:µ>ξ}

ai
µ.

Summing on ξ ∈ Di, with t(ξ) = N , and taking the limit as N goes to infinity, we conclude that:

lim
N→+∞

X
{ξ∈Di: t(ξ)=N}

λ
i
ξ

0
@p(ξ)xi(ξ) +

X
r∈I?

−i(ξ)

d
i
r(ξ) + q(ξ) (θ

i
(ξ)− ϕi(ξ))

1
A 6 0.

�

The existence of an equilibrium is a direct consequence of the following result.

Lemma 11. Under assumptions [A1]-[A3] and [A5]-[A8], the allocation
�
p, q, s; (xi, θ

i
, ϕi, d

i
, b

i
)i∈I

�
is an

equilibrium for our economy.

Proof. Conditions (ii) and (iii) in Definition 2 are satisfied, as
�
p, q, s; (xi, θ

i
, ϕi, d

i
, b

i
)i∈I

�
is a limit of

equilibria of truncated economies. Thus, it is sufficient to assure the individual optimality of plans (ηi)i∈I :=

(ηi(ξ); ξ ∈ Di )i∈I ∈
Q

i∈I Γi.

Now, using the notations of Appendix A, it follows from Lemma 2 that, for each finitely–lived agent

i ∈ I, one has ηi,Tk ∈ Ψi((pTk , qTk , sTk , ηTk )−i), for each k high enough. Since the optimal strategies

correspondence, Ψi, is closed, taking the limit as k goes to infinity, we obtain that ηi ∈ Ψi((p, q, s, η)−i).

Thus, using the same arguments made in Lemma 5, assumptions [A6]-[A8] assure that ηi is an optimal plan

for agent i.

In order to finish our proof, we have to assure that plans ηi are also optimal for infinitely–lived agents.

Fix i ∈ I. Suppose, by contradiction, that there exists δ > 0 and ηi = (xi, θi, ϕi, di, bi) ∈ Bi(p, q, si),

such that, V i(p, (xi, di, bi))− V i(p, (xi, d
i
, b

i
)) > δ.

Fix N ∈ N such that N > t(ξ), for some ξ ∈ Di. Consider, for each Tk > N the allocation,

ηi,Tk (µ) := (xi,Tk (µ), θi,Tk (µ), ϕi,Tk (µ), di,Tk (µ), bi,Tk
µ ) =

(
ηi(µ) , if t(µ) < N ;

ηi,Tk (µ) , in other case.

It follows from equations (8)-(11) that,

V i,N−1(pTk , (xi,Tk , d
i,Tk , b

i,Tk )− V i,N−1(pTk , (xi, di, bi)

>
X

{µ∈Di,Tk : t(µ)6N}

λ
i,Tk
µ Li

µ((pTk , qTk , si,Tk ), ηi,Tk ).

Since ηi ∈ Bi(p, q, si), taking the limit, as k goes to infinity, we obtain that:

V i,N−1(p, (xi, di, bi))−V i,N−1(p, (xi, d
i
, b

i
) 6

X
{µ∈Di: t(µ)=N}

λ
i
µ

0
@p(µ)xi(µ) +

X
r∈I?

−i(µ)

d
i
r(µ)

1
A
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+
X

{µ∈Di: t(µ)=N}

λ
i
µ q(µ) (θ

i
(µ)− ϕi(µ)).

As we know that there exists N? such that:

V i,N−1(p, (xi, di, bi))− V i,N−1(p, (xi, d
i
, b

i
) >

δ

2
, ∀N > N?,

we have,

δ

2
6 lim

N→+∞

X
{µ∈Di: t(µ)=N}

λ
i
µ

0
@p(µ)xi(µ) +

X
r∈I?

−i(µ)

d
i
r(µ) + q(µ) (θ

i
(µ)− ϕi(µ))

1
A = 0,

a contradiction. �
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