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Abstract

Nonlinear time series models, especially those with regime-switching and GARCH errors, have become

increasingly popular in the economics and finance literature. However, much of the research has concen-

trated on the empirical applications of various models, with little theoretical or statistical analysis associated

with the structure of the processes or the associated asymptotic theory. In this paper we derive necessary and

sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order

STAR-GARCH model, and sufficient conditions for the existence of moments. This is important, among

others, to establish the conditions under which the traditional LM linearity tests based on Taylor expan-

sions are valid. Finally, we provide sufficient conditions for consistency and asymptotic normality of the

Quasi-Maximum Likelihood Estimator.
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1 Introduction

Recent years have witnessed a vast development of nonlinear techniques for modelling the condi-

tional mean and conditional variance of economic and financial time series. In the vast array of

new technical developments for conditional mean models, the Smooth Transition AutoRegressive

(STAR) specification, proposed by Chan and Tong (1986) and developed by Luukkonen, Saikkonen

and Ter̈asvirta (1988) and Teräsvirta (1994), has found a number of successful applications (see van

Dijk, Teräsvirta and Franses (2002) for a recent review). The term “smooth transition” in its present

meaning first appeared in Bacon and Watts (1971). They presented their smooth transition specifica-

tion as a model of two intersecting lines with an abrupt change from one linear regression to another at

an unknown change-point. Goldfeld and Quandt (1972, pp. 263-264) generalized the so-called two-

regime switching regression model using the same idea. In the time series literature, the STAR model

is a natural generalization of the Self-Exciting Threshold Autoregressive (SETAR) models pioneered

by Tong (1978) and Tong and Lim (1980) (see also Tong (1990)).

In terms of the conditional variance, Engle’s (1982) Autoregressive Conditional Heteroskedastic-

ity (ARCH) model and Bollerslev’s (1986) Generalised ARCH (GARCH) model are the most popular

specifications for capturing time-varying symmetric volatility in financial and economic time series

data.

Despite their popularity, the structural and statistical properties of these models were not fully

established until recently. Chan and Tong (1986) derived the sufficient conditions for strict station-

arity and geometric ergodicity of a two-regime STAR model, where the transition function is given

by the cumulative Gaussian distribution. Consistency and asymptotic normality of the nonlinear least

squares estimator are given under the assumption that the errors are homoskedastic and independent.

Although several papers have been published in the literature with general conditions for strict station-

arity and ergodicity of nonlinear time series models, especially threshold-type models, few attempts

have been made to comprehend the dynamics of more general smooth transition processes. In general,

only very restrictive sufficient conditions are provided (see Cline and Pu (1999a, 1999b) and Ferrante,

Fonseca and Vidoni (2003), among many others). More recently, Mira and Escribano (2000) derived

new conditions for consistency and asymptotic normality of the nonlinear least squares estimator.

However, estimation of the conditional variance was not considered in these papers.

Significant efforts have been made to fully understand the properties of univariate and multivari-

ate GARCH models. Nelson (1990) derived the necessary and sufficient log-moment condition for

stationarity and ergodicity of the GARCH(1,1) model. This condition was extended to higher-order

models by Bougerol and Picard (1992). Weak stationarity and the existence of fourth moments of

a family of power GARCH models have been investigated in He and Teräsvirta (1999a,b), while

Ling and McAleer (2002a,b) derived the necessary and sufficient conditions for the existence of all

moments for these models.

Concerning the estimation of parameters for GARCH models, Lee and Hansen (1994) and Lums-

daine (1996) proved that the local Quasi-Maximum Likelihood Estimator (QMLE) was consistent
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and asymptotic normal under strong conditions. Jeantheau (1998) established the consistency re-

sults of estimators for multivariate GARCH models. His proofs of consistency did not assume a

particular functional form for the conditional mean, but assumed a log-moment condition and some

regularity conditions for purposes of identification. More recently, Ling and McAleer (2003) pro-

posed the vector ARMA-GARCH model and proved the consistency of the global QMLE under only

the second-order moment condition. They also proved the asymptotic normality of the global (local)

QMLE under the sixth-order (fourth-order) moment condition. Comte and Lieberman (2003) studied

the asymptotic properties of the QMLE for the BEKK model of Engle and Kroner (1995). Berkes,

Horváth and Kokoszka (2003) proved the consistency and asymptotic normality of the QMLE of the

parameters of the GARCH(p,q) model under second- and fourth-order moment conditions, respec-

tively. Boussama (2000), McAleer, Chan and Marinova (2002), and Francq and Zakoı̈an (2004) also

considered the properties of the QMLE under different specifications of the symmetric and asymmet-

ric GARCH(p,q) model.

However, most of the theoretical results on GARCH models have assumed a constant or linear

conditional mean (see McAleer (2005) for further details). It has not yet been established whether

these results would also hold if the conditional mean were nonlinear. Chan and McAleer (2002)

combined the general STAR model with GARCH(p,q) errors, but their results were derived under the

assumption that the conditional mean parameters were known.

This paper extends existing results in the literature in several respects. The necessary and suf-

ficient conditions for strict stationarity and geometric ergodicity of a general class of STAR models

with GARCH(1,1) errors are established. STAR models with more than two regimes are also consid-

ered. Conditions for the existence of moments are also examined. Finally, consistency and asymptotic

normality of the QMLE are derived under weak conditions.

The structural and statistical properties developed in this paper can also be used to derive the

distributions associated with various test statistics proposed in the nonlinear time series literature.

These properties provide the foundation for developing more complete tests for important economic

and financial hypotheses. For instance, the correlation between prices over time is often used as a

test for the weak form of the Efficient Market Hypothesis (EMH), which assumes that prices follow

a linear process. However, if prices follow a nonlinear process, such as a STAR-type process, the

correlation between prices over time may appear insignificant in finite samples. Thus, formal tests of

nonlinear dependence would also provide an important diagnostic for testing the EMH.

The plan of the paper is as follows: Section 2 provides a description of the models considered

in the paper. Stationarity, ergodicity and the existence of moments are discussed in Section 3. The

asymptotic properties of the QMLE are considered in Section 4. Finally, Section 5 gives some con-

cluding remarks. All technical proofs are given in the Appendix.
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2 Model Specification

In this paper we consider three different classes of STAR-GARCH models. The first specification

is an additive logistic STAR model with multiple regimes in the conditional mean and GARCH er-

rors. This model nests the SETAR-GARCH process of Li and Lam (1995). A similar specification

with Gaussian errors was proposed in Suarez-Fariñas, Pedreira and Medeiros (2004) and Medeiros

and Veiga (2000, 2005) . The second specification is a restricted form of the multiple-regime lo-

gistic STAR model with GARCH errors. This particular functional form with homoskedastic er-

rors was discussed in van Dijk, Teräsvirta and Franses (2002). Finally, the third specification is the

Exponential STAR-GARCH (ESTAR-GARCH) model, of which the Exponential STAR (ESTAR)

(Ter̈asvirta 1994) model is a special case.

DEFINITION 1. TheR-valued process{yt, t ∈ Z} follows a first-order autoregressive model with

time-varying coefficients and GARCH(1,1) errors if

yt = λ0,t−1 + λ1,t−1yt−1 + εt, (1)

εt = ηt

√
ht, and (2)

ht = ω + αε2
t−1 + βht−1, (3)

where{ηt} is a sequence of independently and identically distributed zero mean and unit variance

random variables,ηt ∼ IID(0, 1), λ0,t−1 = f0(yt−1; λ), λ1,t−1 = f1(yt−1; λ), and fi(yt−1;λ),
i = 0, 1, is a nonlinear function ofyt−1 indexed by the vector of parametersλ.

It is clear that the model defined by equations (1)–(3) is similar to the functional coefficient

autoregressive model proposed by Chen and Tsay (1993).

Depending on the choice of the functionsf0(yt−1; λ) andf1(yt−1; λ), different specifications of

the STAR model can be derived. The following cases are considered:

1. The Multiple Regime Logistic STAR(1)-GARCH(1,1) (or MRLSTAR(1)-GARCH(1,1)) model:

f0(yt−1; λ) = θ0 +
m∑

i=1

θiG(yt−1; γi, ci), and (4)

f1(yt−1; λ) = φ0 +
m∑

i=1

φiG(yt−1; γi, ci), (5)

where

G (yt−1; γi, ci) =
1

1 + e−γi(yt−1−ci)
, (6)

with λ = (θ0, θ1, φ01, . . . , φ0m, φ11, . . . , φ1m, γ1, . . . , γm, c1, . . . , cm)′.
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2. The Generalized STAR(1)-GARCH(1,1) (or GSTAR(1)-GARCH(1,1)) model:

f0(yt−1; λ) = θ0 + θ1G(yt−1; γ, c), and (7)

f1(yt−1; λ) = φ0 + φ1G(yt−1; γ, c), (8)

where

G (yt−1; γ, c) =
1

1 + e−γ[
Qm

i=1(yt−1−ci)]
, (9)

with c = (c1, . . . , cm)′ andλ = (θ0, θ1, φ01, φ11, γ, c1, . . . , cm)′.

3. The Exponential STAR(1)-GARCH(1,1) (or ESTAR(1)-GARCH(1,1)) model:

f0(yt−1;λ) = θ0 + θ1G(yt−1; γ, c), and (10)

f1(yt−1;λ) = φ0 + φ1G(yt−1; γ, c), (11)

where

G (yt−1; γ, c) = 1− e−γ(yt−1−c)2 , (12)

with λ = (θ0, θ1, φ01, φ11, γ, c)′.

3 Probabilistic Properties

ASSUMPTION1. The sequence{ηt} of IID(0, 1) random variables is drawn from a continuous (with

respect to Lebesgue measure on the real line), unimodal, positive everywhere density, and bounded

in a neighborhood of 0.

ASSUMPTION2. The parameters of the model satisfy the following conditions:

(R.1a)γi > 0, i = 1, . . . , m, andc1 < c2 < · · · < cm in (4) and (5);

(R1.b)γ > 0 andc1 ≤ c2 ≤ · · · ≤ cm in (7) and (8);

(R.1c)γ > 0 in (10) and (11);

(R.2)ω > 0, α > 0, andβ > 0.

Assumption 1 is standard. Note that we do not assume symmetry of the distribution, which is par-

ticularly useful when modelling financial time series. The restrictions (R.1a)–(R.1c) in Assumption

2 are important to guarantee that the model is globally identifiable. Restriction (R.2) is a sufficient

condition forht > 0 with probability one.

Note thatzt = (yt, ht, ηt)
′ is a Markov chain with homogenous transition probability expressed

as

zt = F (zt−1) + et, (13)
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where

F (zt−1) =




λ0,t−1 + λ1,t−1yt−1

ω +
(
β + αη2

t−1

)

0




andet = (εt, 0, ηt)
′.

The following theorems state the necessary and sufficient conditions for strict stationarity and

geometric ergodicity of the STAR-GARCH models considered in this paper.

THEOREM 1 (STATIONARITY – MRLSTAR(1)-GARCH(1,1)MODEL). Defineθ =
∑m

i=0 θi and

φ =
∑m

i=0 φi. Under Assumption 1, and if (R.1a) in Assumption 2 holds, the process{yt, t ∈ Z}
defined by equations (1)–(3), (4), and (5) is strictly stationary and geometrically ergodic if and only

if E
[
log

(
β + αη2

t

)]
< 0, and one of the following restrictions holds:

φ0 < 1, φ < 1, and φ0φ < 1; (14)

φ0 = 1, φ < 1, and θ0 > 0; (15)

φ0 < 1, φ = 1, and θ < 0; (16)

φ0 = 1, φ = 1, and θ < 0 < θ0; (17)

φ0φ = 1, θ1 < 0, and θ + φθ0 > 0. (18)

Furthermore, the process{zt, t ∈ Z} admits a unique causal expansion.

THEOREM 2 (STATIONARITY – GSTAR(1)-GARCH(1,1)MODEL). Setθ = θ0 + θ1 and φ =
φ0 + φ1. Under Assumption 1, and if (R.1b) in Assumption 2 holds, the process{yt, t ∈ Z} de-

fined by equations (1)–(3), (7) and (8) is strictly stationary and geometrically ergodic if and only if

E
[
log

(
β + αη2

t

)]
< 0, and one the following holds:

1. m is even and|φ| < 1, or

2. m is odd and one of the following conditions holds:

φ0 < 1, φ < 1, and φ0φ < 1; (19)

φ0 = 1, φ < 1, and θ0 > 0; (20)

φ0 < 1, φ = 1, and θ < 0; (21)

φ0 = 1, φ = 1, and θ < 0 < θ0; (22)

φ0φ = 1, θ1 < 0, and θ + φθ0 > 0. (23)

Furthermore, the process{zt, t ∈ Z} admits a unique causal expansion.

THEOREM 3 (STATIONARITY – ESTAR(1)-GARCH(1,1)MODEL). Setφ = φ0 + φ1. Under

Assumption 1, and if (R.1c) in Assumption 2 holds, the process{yt, t ∈ Z} defined by equations (1)–
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(3), (10) and (11) is strictly stationary and geometrically ergodic if and only ifE
[
log

(
β + αη2

t

)]
< 0

and
∣∣φ∣∣ < 1. Furthermore, the process{zt, t ∈ Z} admits a unique causal expansion.

If the conditions of the above theorems are met, the processes{yt} and{ht} have the following

causal expansions:

yt = λ0,t−1 +
∞∑

j=1

j−1∏

k=0

(λ0,t−1−jλ1,t−1−k + λ1,t−1−kεt−j) , (24)

ht = ω


1 +

∞∑

j=1

j∏

k=1

(
β + αη2

t−i

)

 . (25)

THEOREM 4 (EXISTENCE OF MOMENTS – MRLSTAR(1)-GARCH(1,1)MODEL). Defineφ as

in Theorem 1. AssumeE [|ηt|n] < ∞. If θ1 < 1, φ < 1, θ1φ < 1, and E
[(

β + αη2
t

)n]
< 1,

the invariant probability distribution for the MLSTAR(1)-GARCH(1,1) process has a finitenth-order

moment.

THEOREM5 (EXISTENCE OFMOMENTS– GSTAR(1)-GARCH(1,1)MODEL). AssumeE
[|ηt|k

]
<

∞. If m is even and|φ| < 1, or m is odd andφ0 < 1, φ < 1, φ0φ < 1, andE
[(

β + αη2
t

)n]
< 1,

the invariant probability distribution for the GSTAR(1)-GARCH(1,1) process has a finitenth-order

moment.

THEOREM6 (EXISTENCE OFMOMENTS– ESTAR(1)-GARCH(1,1)MODEL). AssumeE
[|ηt|k

]
<

∞. If |φ| < 1 and E
[(

β + αη2
t

)n]
< 1, the invariant probability distribution for the ESTAR(1)-

GARCH(1,1) process has a finitenth-order moment.

4 Parameter Estimation and Asymptotic Theory

In this section we discuss the estimation of the STAR-GARCH models. Setψ =
(
λ′, π′

)′
, whereλ

is the vector of parameters of the conditional mean, as defined in Section 2, andπ = (ω, α, β)′ is the

vector of parameters of the conditional variance. As the distribution ofηt is unknown, the parameter

vectorψ is estimated by the quasi-maximum likelihood (QML) method.

Consider the following assumption.

ASSUMPTION3. The true parameter vectorψ0 ∈ Ψ ⊆ RN is in the interior ofΨ, a compact and

convex parameter space, whereN = dim(λ) + dim(π) is the total number of parameters.

The quasi-log-likelihood function of the STAR-GARCH model is given by:

LT (ψ) =
1
T

T∑

t=1

lt(ψ),

=
1
T

T∑

t=1

−1
2

ln(2π)− 1
2

ln(ht)− ε2
t

2ht
.

(26)

7



Note that the processesyt andht, t ≤ 0, are unobserved, and hence are only arbitrary constants.

Thus,LT (ψ) is a quasi-log-likelihood function that is not conditional on the true(y0, h0), making it

suitable for practical applications.

However, to prove the asymptotic properties of the QMLE, it is more convenient to work with the

unobserved process{(εu,t, hu,t) : t = 0,±1,±2, . . .}.
The unobserved quasi-log-likelihood function conditional onF0 = (y0, y−1, y−2, . . .) is

Lu,T (ψ) =
1
T

T∑

t=1

lu,t(ψ),

=
1
T

T∑

t=1

−1
2

ln(2π)− 1
2

ln(hu,t)−
ε2
u,t

2hu,t
.

(27)

The main difference betweenLT (ψ) andLu,T (ψ) is that the former is conditional on any initial val-

ues, whereas the latter is conditional on an infinite series of past observations. In practical situations,

the use of (27) is not possible.

Let

ψ̂T = argmax
ψ∈Ψ

LT (ψ) = argmax
ψ∈Ψ

(
1
T

T∑

t=1

lt(ψ)

)
,

and

ψ̂u,T = argmax
ψ∈Ψ

Lu,T (ψ) = argmax
ψ∈Ψ

(
1
T

T∑

t=1

lu,t(ψ)

)
.

DefineL(ψ) = E [lu,t(ψ)]. In the following subsection, we discuss the existence ofL(ψ) and

the identifiability of the STAR-GARCH models. Then, in Subsection 4.2, we prove the consistency

of ψ̂T andψ̂u,T . We first prove the strong consistency ofψ̂u,T , and then show that

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| a.s.→ 0,

so that the consistency of̂ψT follows. Asymptotic normality of both estimators is considered in

Subsection 4.3. We prove the asymptotic normality ofψ̂u,T . The proof ofψ̂T is straightforward.

4.1 Existence of the QMLE

The following theorem proves the existence ofL(ψ). It is based on Theorem 2.12 in White (1994),

which establishes thatL(ψ) exists under certain conditions of continuity and measurability of the

quasi-log-likelihood function.

THEOREM 7. Under Assumptions 1 and 2,L(ψ) exists, is finite, and is uniquely maximized atψ0 if:

1. {yt, t ∈ Z} follows the process defined by (1)–(6) and the conditions of Theorem 1 hold;
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2. {yt, t ∈ Z} follows the process defined by (1)–(3), (7)–(9), and the conditions of Theorem 2

hold; or

3. {yt, t ∈ Z} follows the process defined by (1)–(3), (10)–(12), and the conditions of Theorem 3

hold.

4.2 Consistency

The following theorem states the sufficient conditions for strong consistency of the QMLE.

THEOREM 8. Under Assumptions 1–3, the QMLE ofψ is strongly consistent forψ0, ψ̂
a.s.→ ψ0, if

1. {yt, t ∈ Z} follows the process defined by (1)–(6) and the conditions of Theorem 1 hold;

2. {yt, t ∈ Z} follows the process defined by (1)–(3), (7)–(9), and the conditions of Theorem 2

hold; or

3. {yt, t ∈ Z} follows the process defined by (1)–(3), (10)–(12), and the conditions of Theorem 3

hold.

4.3 Asymptotic Normality

First, we introduce the following matrices:

A(ψ0) = E


−∂2lu,t(ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ0


 , B(ψ0) = E


∂lu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

∂lu,t(ψ)
∂ψ′

∣∣∣∣∣
ψ0


 ,

and

AT (ψ) =
1
T

T∑

t=1

[
1

2ht

(
ε2
t

ht
− 1

)
∂2ht

∂ψ∂ψ′ −
1

2h2
t

(
2
ε2
t

ht
− 1

)
∂ht

∂ψ

∂ht

∂ψ′

+
(

εt

h2
t

)(
∂εt

∂ψ

∂ht

∂ψ′ +
∂ht

∂ψ

∂εt

∂ψ′

)
+

1
ht

(
∂εt

∂ψ

∂εt

∂ψ′ + εt
∂2εt

∂ψ

)] (28)

BT (ψ) =
1
T

T∑

t=1

∂lt(ψ)
∂ψ

∂lt(ψ)
∂ψ′

=
1
T

T∑

t=1

[
1

4h2
t

(
ε2
t

ht
− 1

)2
∂ht

∂ψ

∂ht

∂ψ′ +
ε2
t

ht

∂εt

∂ψ

∂εt

∂ψ′

− εt

2h2
t

(
ε2
t

ht
− 1

)(
∂ht

∂ψ

∂εt

∂ψ′ +
∂εt

∂ψ

∂ht

∂ψ′

)]
(29)

Consider the additional assumption:
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ASSUMPTION4. There exists no setΛ of cardinal 2 such thatPr[ηt ∈ Λ] = 1.

As in Francq and Zakoı̈an (2004), Assumption 4 is necessary for identifying reasons when the

distribution ofηt is non-symmetric.

The following theorem states the asymptotic normality result.

THEOREM9. Under Assumptions 1–3, 4, the additional assumptionE
[
ε4
t

]
= µ4 < ∞, and if either:

1. {yt, t ∈ Z} follows the process defined by (1)–(6) and the conditions of Theorem 1 hold;

2. {yt, t ∈ Z} follows the process defined by (1)–(3), (7)–(9), and the conditions of Theorem 2

hold; or

3. {yt, t ∈ Z} follows the process defined by (1)–(3), (10)–(12), and the conditions of Theorem 3

hold.

then

T 1/2(ψ̂T −ψ0)
d→ N (0,Ω) , (30)

whereΩ = A(ψ0)−1B(ψ0)A(ψ0)−1. If the distribution ofηt is symmetric andE
[
η4

t

]
= κ4, then

A(ψ0) =

(
A1 0

0 A2

)
, B(ψ0) =

(
B1 0

0 B2

)
, with

A1 = E


 1

h2
t

∂ht

∂λ

∂ht

∂λ′

∣∣∣∣∣
ψ0


 + E


 2

h2
t

∂εt

∂λ

∂εt

∂λ′

∣∣∣∣∣
ψ0


 ,

A2 = E


 1

h2
t

∂ht

∂π

∂ht

∂π′

∣∣∣∣∣
ψ0


 ,

B1 = (κ4 − 1)E


 1

h2
t

∂ht

∂λ

∂ht

∂λ′

∣∣∣∣∣
ψ0


 + 4E


 1

h2
t

∂εt

∂λ

∂εt

∂λ′

∣∣∣∣∣
ψ0


 , and

B2 = (κ4 − 1)E


 1

h2
t

∂ht

∂π

∂ht

∂π′

∣∣∣∣∣
ψ0


 .

Furthermore, the matricesA(ψ0) and B(ψ0) are consistently estimated byAT (ψ̂) and BT (ψ̂),
respectively.

5 Concluding Remarks

In this paper we have derived the necessary and sufficient conditions for strict stationarity and ge-

ometric ergodicity of three different classes of first-order STAR-GARCH models, and the sufficient
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conditions for the existence of moments. This is important in order to find the conditions under which

the traditional LM linearity tests are valid. The asymptotic properties of the QMLE have also been

considered. We have proved that the QMLE is strongly consistent and asymptotically normal under

weak conditions. These new results should be important for the estimation of STAR-GARCH models

in financial econometrics.

Appendix

A Proofs of Theorems 1– 6

The proofs of the theorems are based on Chan, Petruccelli, Tong and Woolford (1985), and makes use of the

results in Tweedie (1988).

Define zt as in (13). If there is a compact setA ∈ B, whereB is the Borelσ-algebra inR3, and a

non-negative measurable functiong : R3 → R, such thatg is bounded away from zero and infinity inA and

sup
z∈A

E [g(zt)|zt−1 = z] < ∞, and (A.1)

E [g(zt)|zt−1 = z] < g(z)− 1, z ∈ Ac, (A.2)

whereAc is the complement ofA, then the processzt is strictly stationary and geometrically ergodic.

A.1 Proof of Theorem 1

For purposes of the present paper, the most important features of the transition function are that it is a mono-

tonically increasing function with an inflection point atci, i = 1, . . . , m, and that it is limited by 0 when

yt−1 → −∞ and by 1 whenyt−1 →∞, sinceγi > 0, i = 1, . . . ,m (Assumption 2).

First, consider a compact setA = [−M, M ] × [0, M ] × [−M, M ], whereM is a positive constant such

that M >> cm and−M << c1. Hence, given an arbitrarily small positive numberδ, G(y; γ1, c1) ≤ δ if

yt−1 < −M and|G(y; γ1, c1)− 1| ≤ δ if yt−1 > M .

Setg(zt) = v(yt) + ht + |ηt|. Following Nelson (1990), and under the assumptions thatE[|ηt|] < ∞ and

E
[|ηt|2

]
< ∞, it is clear thatE[ht] < ∞ andE[|εt|] < ∞ if and only if E

[
log

(
β + αη2

t

)]
< 0. Thus, in order

to show thatzt is ergodic for each of the conditions (14)–(18) in Theorem 1, it is sufficient to show that

sup
y∈[−M,M ]

E [v(yt)|yt−1 = y] < ∞, and (A.3)

E [v(yt)|yt−1 = y] < g(y)− 1, y /∈ [−M, M ]. (A.4)

As G(y; γi, ci) → 0 asy → −∞ andG(y; γi, ci) → 1 asy → ∞, i = 1, . . . ,M , the result follows by

using Theorem 2.1 in Chan, Petruccelli, Tong and Woolford (1985).¥

A.2 Proof of Theorem 2

It is clear that, whenm is odd, the transition function is limited by 0 whenyt−1 → −∞ and by 1 when

yt−1 →∞, sinceγ > 0 (Assumption 2). The proof follows the same reasoning as in the proof of Theorem 1.

11



Whenm is even, the transition function is limited by 1 whenyt−1 → ±∞. Again, the proof follows along

the same lines as the proof of Theorem 1.¥

A.3 Proof of Theorem 3

It is clear that the transition function is limited by 1 whenyt−1 → ±∞. Again, the proof follows the same

reasoning as in the proof of Theorem 1.¥

A.4 Proof of Theorem 4

From Ling and McAleer (2002b),E
[(

β + αη2
t

)n]
< 1 is the necessary and sufficient condition forE [εn

t ] < ∞.

The remainder of the proof is similar to the proof of Theorem 2.3 in Chan, Petruccelli, Tong and Woolford

(1985).¥

A.5 Proof of Theorem 5

The proof is similar to the proof of Theorem 4.¥

A.6 Proof of Theorem 6

The proof is similar to the proof of Theorem 4.¥

B Proofs of Theorems 7–9

B.1 Proof of Theorem 7

It is easy to see thatF(zt), as in (13), is a continuous function in the parameter vectorψ. Similarly, we can see

thatF(zt) is continuous inzt, and therefore is measurable, for each fixed value ofψ.

Furthermore, under the restrictions in Assumption 2, and if the stationarity conditions of either Theo-

rem 1, 2, or 3 are satisfied, thenE

[
sup
ψ∈Ψ

|hu,t|
]

< ∞ andE

[
sup
ψ∈Ψ

|yu,t|
]

< ∞. By Jensen´s inequality,

E

[
sup
ψ∈Ψ

|ln |hu,t||
]

< ∞. Thus,E [|lu,t(ψ)|] < ∞ ∀ψ ∈ Ψ.

Let h0,t be the true conditional variance andε0,t = h
1/2
0,t ηt. In order to show thatL(ψ) is uniquely

maximized atψ0, rewrite the maximization problem as

max
ψ∈Ψ

[L(ψ)− L(ψ0)] = max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− ε2

t

hu,t
+ 1

]}
. (B.5)
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Writing εt = εt − ε0,t + ε0,t, equation (B.5) becomes

max
ψ∈Ψ

[L(ψ)− L(ψ0)] = max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t
+ 1

]
− E

[
[εt − ε0,t]

2

hu,t

]

− E

[
2ηth

1/2
0,t (εt − ε0,t)

hu,t

] }

= max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t
+ 1

]
− E

[
[εt − ε0,t]

2

hu,t

]}
,

(B.6)

where

E

[
2ηth

1/2
0,t (εt − ε0,t)

hu,t

]
= 0

by the Law of Iterated Expectations.

Note that, for anyx > 0, m(x) = ln(x)− x ≤ 0, so that

E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t

]
≤ 0.

Furthermore,m(x) is maximized atx = 1. If x 6= 1, m(x) < m(1), implying thatE[m(x)] ≤ E[m(1)], with

equality only ifx = 1 a.s.. However, this will occur only ifh0,t

hu,t
= 1, a.s.. In addition,

E

[
[εt − ε0,t]

2

hu,t

]
= 0

if and only if εt = ε0,t. Hence,ψ = ψ0. This completes the proof.¥

B.2 Proof of Theorem 8

Following White (1994), Theorem 3.5,̂ψu,T
a.s.→ ψ0 if the following conditions hold:

(1) The parameter spaceΨ is compact.

(2) Lu,T (ψ) is continuous inψ ∈ Ψ. Furthermore,Lu,T (ψ) is a measurable function ofyt, t = 1, . . . , T ,

for all ψ ∈ Ψ.

(3) L(ψ) has a unique maximum atψ0.

(4) lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− L(ψ)| = 0, a.s..

Condition (1) holds by assumption. Theorem 7 shows that Conditions (2) and (3) are satisfied. By Lemma

1, Condition (4) is also satisfied. Thus,ψ̂u,T
a.s.→ ψ0.

Lemma 2 shows that

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| = 0 a.s.,

implying thatψ̂T
a.s.→ ψ0. This completes the proof.¥
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B.3 Proof of Theorem 9

We start by proving asymptotic normality of the QMLE using the unobserved log-likelihood. When this is

shown, the proof using the observed log-likelihood is immediate by Lemmas 2 and 4. According to Theorem

6.4 in White (1994), to prove the asymptotic normality of the QMLE we need the following conditions in

addition to those stated in the proof of Theorem 8:

(5) The true parameter vectorψ0 is interior toΨ.

(6) The matrix

AT (ψ) =
1
T

T∑
t=1

(
∂2lt(ψ)
∂ψ∂ψ′

)

existsa.s. and is continuous inΨ.

(7) The matrixAT (ψ) a.s.→ A(ψ0), for any sequenceψT , such thatψT
a.s.→ ψ0.

(8) The score vector satisfies

1√
T

T∑
t=1

(
∂lt(ψ)

∂ψ

)
d→ N(0,B(ψ0)).

Condition (5) is satisfied by assumption. Condition (6) follows from the fact thatlt(ψ) is differentiable

of order two onψ ∈ Ψ, and the stationarity of the STAR-GARCH model. The non-singularity ofA(ψ0)
andB(ψ0) follows from Lemma 4. Furthermore, Lemmas 3 and 5 implies that Condition (7) is satisfied. In

Lemma 6 below, we prove that condition (8) is also satisfied. This completes the proof.¥

C Lemmas

LEMMA 1. Suppose thatyt follows a STAR-GARCH model satisfying the restrictions in Assumptions 1 and 2,

and the stationarity and ergodicity conditions are met. Then,

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− L(ψ)| = 0, a.s..

PROOF. Setg(Yt, ψ) = lu,t(ψ) − E [lu,t(ψ)], whereYt = [yt, yt−1, yt−2, . . .]
′. Hence,E [g(Yt,ψ)] = 0.

It is clear thatE

[
sup
ψ∈Ψ

|g(Yt, ψ)|
]

< ∞ by Theorem 7. Furthermore, asg(Yt,ψ) is strictly stationary and

ergodic, then lim
T→∞

sup
ψ∈Ψ

∣∣∣T−1
∑T

t=1 g(Yt, ψ)
∣∣∣ = 0, a.s.. This completes the proof.¥

LEMMA 2. Under the assumptions of Lemma 1,

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| = 0, a.s..

PROOF. First, write

ht =
t−1∑

i=0

βi
(
ω + αε2

t−1−i

)
+ βth0 and

hu,t = βt−1
(
ω + αε2

u,0

)
+

t−2∑

i=0

βi
(
ω + αε2

t−1−i

)
+ βthu,0,
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such that

|ht − hu,t| = |βt−1α
(
ε2
0 − ε2

u,0

)
+ βt (h0 − hu,0) |

≤ βt−1α
∣∣ε2

0 − ε2
u,0

∣∣ + βt |h0 − hu,0| .

Under the stationarity of the process, and if (R.2) in Assumption 2 and the log-moment condition hold, it is

clear that0 < β < 1. Furthermore,hu,0 andε2
0,u are well defined, as

Pr

[
sup
ψ∈Ψ

(hu,0 > K1)

]
→ 0 asK1 →∞, andPr

[
sup
ψ∈Ψ

(
ε2

u,0 > K2

)
]
→ 0 asK2 →∞.

Thus,

sup
ψ∈Ψ

|ht − hu,t| ≤ Khρt
1, a.s., and

sup
ψ∈Ψ

∣∣ε2
0 − ε2

u,0

∣∣ ≤ Kερ
t
2, a.s.,

whereKh andKε are positive and finite constants,0 < ρ1 < 1, and0 < ρ2 < 1. Hence, asht > ω and

log(x) ≤ x− 1,

sup
ψ∈Ψ

|lt − lu,t| ≤ sup
ψ∈Ψ

[
ε2
t

∣∣∣∣
hu,t − ht

hthu,t

∣∣∣∣ +
∣∣∣∣log

(
1 +

ht − hu,t

hu,t

)∣∣∣∣
]

≤ sup
ψ∈Ψ

(
1
ω2

)
Khρt

1ε
2
t + sup

ψ∈Ψ

(
1
ω

)
Khρt

1, a.s..

Following the same arguments as in the proof of Theorems 2.1 and 3.1 in Francq and Zakoı̈an (2004), it can be

shown that

lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| = 0, a.s..

This completes the proof.¥

LEMMA 3. Under the conditions of Theorem 9,

E

[∣∣∣∣∣
∂lt(ψ)

∂ψ

∣∣∣∣
ψ0

∣∣∣∣∣

]
< ∞, (C.7)

E

[∣∣∣∣∣
∂lt(ψ)

∂ψ

∣∣∣∣
ψ0

∂lt(ψ)
∂ψ′

∣∣∣∣
ψ0

∣∣∣∣∣

]
< ∞, and (C.8)

E

[∣∣∣∣∣
∂2lt(ψ)
∂ψ∂ψ′

∣∣∣∣
ψ0

∣∣∣∣∣

]
< ∞. (C.9)

PROOF. Set

∇0lu,t ≡ ∂lu,t(ψ)
∂ψ

∣∣∣∣∣
ψ0

, ∇0hu,t ≡ ∂hu,t

∂ψ

∣∣∣∣∣
ψ0

, ∇0εt ≡ ∂εt

∂ψ

∣∣∣∣∣
ψ0

,

∇2
0lu,t ≡ ∂2lu,t(ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ0

, ∇2
0hu,t ≡ ∂2hu,t

∂ψ∂ψ′

∣∣∣∣∣
ψ0

, and ∇2
0εt ≡ ∂2εt

∂ψ∂ψ′

∣∣∣∣∣
ψ0

.
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Then,

∇0lu,t =
1

2hu,t

(
ε2

t

hu,t
− 1

)
∇0hu,t − εt

hu,t
∇0εt

and

∇2
0lu,t =

(
ε2

t

hu,t
− 1

)
1

2hu,t
∇2

0hu,t − 1
2h2

u,t

(
2

ε2
t

hu,t
− 1

)
∇0hu,t∇0h

′
u,t

+
(

εt

h2
u,t

) (∇0εt∇0h
′
u,t +∇0hu,t∇0ε

′
t

)
+

1
hu,t

(∇0εt∇0ε
′
t + εt∇2

0εt

)
.

Setψ =
(
λ′, π′

)′
, where, as stated before,λ is the vector of parameters of the conditional mean andπ

is the vector of parameters of the conditional variance. As in the proof of Theorem 3.2 in Francq and Zakoı̈an

(2004), the derivatives with respect toπ are clearly bounded. We proceed by analyzing the derivatives with

respect toλ. As εt = yt − f0(yt−1; λ)− f1(yt−1; λ)yt−1, we have

∂εt

∂λ
= −∂f0(yt−1; λ)

∂λ
− ∂f1(yt−1; λ)

∂λ
yt−1, (C.10)

∂2εt

∂λ∂λ′
= −∂2f0(yt−1;λ)

∂λ∂λ′
− ∂2f1(yt−1; λ)

∂λ∂λ′
yt−1, (C.11)

∂hu,t

∂λ
= 2α

∞∑

i=0

(
βiεt−1−i

∂εt−1−i

∂λ

)
, and (C.12)

∂2hu,t

∂λ∂λ′
= 2α

∞∑

i=0

βi

(
εt−1−i

∂2εt−1−i

∂λ∂λ′
+

∂εt−1−i

∂λ

∂εt−1−i

∂λ′

)
. (C.13)

As the derivatives of the transition function are bounded, if the strict stationarity and ergodicity conditions

hold, (C.10)–(C.13) are clearly bounded. Hence, the remainder of the proof follows from the proof of Theorem

3.2 (part (i)) in Francq and Zaköıan (2004). This completes the proof.¥

LEMMA 4. Under the conditions of Theorem 9,A(ψ0) andB(ψ0) are nonsingular and, whenηt has a sym-

metric distribution, are block-diagonal.

PROOF. First, note that (R1a)–(R1c) in Assumption 2 and Assumption 4 guarantee the minimality (identifia-

bility) of the different specifications of the STAR models considered in this paper. Therefore, the results follow

from the proof of Theorem 3.2 (part (ii)) in Francq and Zaköıan (2004). This completes the proof.¥

LEMMA 5. Under the conditions of Theorem 9,

(a) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1
T

T∑
t=1

[
∂lu,t(ψ)

∂ψ
− ∂lt(ψ)

∂ψ

]∥∥∥∥∥ = 0, a.s.,

(b) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1
T

T∑
t=1

[
∂2lu,t(ψ)
∂ψ∂ψ′ − ∂2lt(ψ)

∂ψ∂ψ′

]∥∥∥∥∥ = 0, a.s, and

(c) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1
T

T∑
t=1

∂2lu,t(ψ)
∂ψ∂ψ′ − E

[
∂2lu,t(ψ)
∂ψ∂ψ′

]∥∥∥∥∥ = 0, a.s..

PROOF.
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First, assume thath0 andhu,0 are fixed constants. It is easy to show that

∣∣∣∣
∂ht

∂λ
− ∂hu,t

∂λ

∣∣∣∣ = 2αβt−1

∣∣∣∣ε0
∂ε0

∂λ
− εu,0

∂εu,0

∂λ

∣∣∣∣

≤ 2αβt−1

(∣∣∣∣ε0
∂ε0

∂λ

∣∣∣∣ +
∣∣∣∣εu,0

∂εu,0

∂λ

∣∣∣∣
)

< ∞,

as0 < β < 1 andyt is stationary and ergodic. Hence, following the same arguments as in the proof of Theorem

3.2 (part (iii)) in Francq and Zaköıan (2004), it is straightforward to show that

lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1
T

T∑
t=1

[
∂lu,t(ψ)

∂λ
− ∂lt(ψ)

∂λ

]∥∥∥∥∥ = 0.

Furthermore, as

∂ht

∂ω
− ∂hu,t

∂ω
= 0

∂ht

∂α
− ∂hu,t

∂α
= ε2

0 − ε2
u,0

∂ht

∂β
− ∂hu,t

∂β
= (t− 1)βt−2

(
ε2
0 − ε2

u,0

)
+ tβt−1 (h0 − hu,0) ,

it is clear that

lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1
T

T∑
t=1

[
∂lu,t(ψ)

∂π
− ∂lt(ψ)

∂π

]∥∥∥∥∥ = 0.

The proof of part (a) is now complete. The proof of part (b) follows along similar lines. The proof of part

(c) follows the same arguments as in the proof of Theorem 3.2 (part (v)) in Francq and Zaköıan (2004). This

completes the proof.¥

LEMMA 6. Under the conditions of Theorem 9,

1√
T

T∑
t=1

∂lt(ψ)
∂ψ

∣∣∣∣∣
ψ0

d→ N(0,B(ψ0)).

PROOF. Let ST =
∑T

t=1 c′∇0lu,t, wherec is a constant vector. ThenST is a martingale with respect toFt,

the filtration generated by all past observations ofyt. By the given assumptions,E [ST ] > 0. Using the central

limit theorem of Stout (1974),

T−1/2ST
d→ N (0, c′B(ψ0)c) .

By the Craḿer-Wold device,

T−1/2
T∑

t=1

∂lu,t(ψ)
∂ψ

∣∣∣∣∣
ψ0

d→ N (0,B(ψ0)) .

By Lemma 5,

T−1/2
T∑

t=1

∥∥∥∥∥∥
∂lu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

− ∂lt(ψ)
∂ψ

∣∣∣∣∣
ψ0

∥∥∥∥∥∥
a.s.→ 0.
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Thus,

T−1/2
T∑

t=1

∂lt(ψ)
∂ψ

∣∣∣∣∣
ψ0

d→ N(0, B0).

This completes the proof.¥
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LUUKKONEN, R., P. SAIKKONEN , AND T. TERÄSVIRTA (1988): “Testing Linearity Against Smooth Transi-

tion Autoregressive Models,”Biometrika, 75, 491–499.

MCALEER, M. (2005): “Automated Inference and Learning in Modeling Financial Volatility,”Econometric

Theory, 21, 232–261.

MCALEER, M., F. CHAN , AND D. MARINOVA (2002): “An Econometric Analysis of Asymmetric Volatility:

Theory and Application to Patents,”Journal of Econometrics, in press.

MEDEIROS, M. C., AND A. V EIGA (2000): “A Hybrid Linear-Neural Model for Time Series Forecasting,”

IEEE Transactions on Neural Networks, 11(6), 1402–1412.

(2005): “A Flexible Coefficient Smooth Transition Time Series Model,”IEEE Transactions on Neural

Networks, 16, 97–113.

M IRA , S., AND A. ESCRIBANO (2000): “Nonlinear Time Series Models: Consistency and Asymptotic Nor-

mality of NLS Under New Conditions,” inNonlinear Econometric Modeling in Time Series Analysis, ed. by

W. A. Barnett, D. Hendry, S. Hylleberg, T. Teräsvirta, D. Tjøsthein, and A. Ẅurtz, pp. 119–164. Cambridge

University Press.

NELSON, D. B. (1990): “Stationarity and Persistence in the GARCH(1,1) Model,”Econometric Theory, 6,

318–334.

19



NEWEY, W., AND D. MCFADDEN (1994): “Large Sample Estimation and Hypothesis Testing,” inHandbook

of Econometrics, ed. by R. F. Engle, and D. L. McFadden, vol. 4, pp. 2111–2245. Elsevier Science.

STOUT, W. F. (1974):Almost Sure Convergence. Academic Press, New York.
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