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Abstract

Nonlinear time series models, especially those with regime-switching and GARCH errors, have become
increasingly popular in the economics and finance literature. However, much of the research has concen-
trated on the empirical applications of various models, with little theoretical or statistical analysis associated
with the structure of the processes or the associated asymptotic theory. In this paper we derive necessary and
sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order
STAR-GARCH model, and sufficient conditions for the existence of moments. This is important, among
others, to establish the conditions under which the traditional LM linearity tests based on Taylor expan-
sions are valid. Finally, we provide sufficient conditions for consistency and asymptotic normality of the
Quasi-Maximum Likelihood Estimator.
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1 Introduction

Recent years have witnessed a vast development of nonlinear techniques for modelling the condi-
tional mean and conditional variance of economic and financial time series. In the vast array of
new technical developments for conditional mean models, the Smooth Transition AutoRegressive
(STAR) specification, proposed by Chan and Tong (1986) and developed by Luukkonen, Saikkonen
and Teasvirta (1988) and Tasvirta (1994), has found a number of successful applications (see van
Dijk, Terasvirta and Franses (2002) for a recent review). The term “smooth transition” in its present
meaning first appeared in Bacon and Watts (1971). They presented their smooth transition specifica-
tion as a model of two intersecting lines with an abrupt change from one linear regression to another at
an unknown change-point. Goldfeld and Quandt (1972, pp. 263-264) generalized the so-called two-
regime switching regression model using the same idea. In the time series literature, the STAR model
is a natural generalization of the Self-Exciting Threshold Autoregressive (SETAR) models pioneered
by Tong (1978) and Tong and Lim (1980) (see also Tong (1990)).

In terms of the conditional variance, Engle’s (1982) Autoregressive Conditional Heteroskedastic-
ity (ARCH) model and Bollerslev’s (1986) Generalised ARCH (GARCH) model are the most popular
specifications for capturing time-varying symmetric volatility in financial and economic time series
data.

Despite their popularity, the structural and statistical properties of these models were not fully
established until recently. Chan and Tong (1986) derived the sufficient conditions for strict station-
arity and geometric ergodicity of a two-regime STAR model, where the transition function is given
by the cumulative Gaussian distribution. Consistency and asymptotic normality of the nonlinear least
squares estimator are given under the assumption that the errors are homoskedastic and independent.
Although several papers have been published in the literature with general conditions for strict station-
arity and ergodicity of nonlinear time series models, especially threshold-type models, few attempts
have been made to comprehend the dynamics of more general smooth transition processes. In general,
only very restrictive sufficient conditions are provided (see Cline and Pu (1999a, 1999b) and Ferrante,
Fonseca and Vidoni (2003), among many others). More recently, Mira and Escribano (2000) derived
new conditions for consistency and asymptotic normality of the nonlinear least squares estimator.
However, estimation of the conditional variance was not considered in these papers.

Significant efforts have been made to fully understand the properties of univariate and multivari-
ate GARCH models. Nelson (1990) derived the necessary and sufficient log-moment condition for
stationarity and ergodicity of the GARCH(1,1) model. This condition was extended to higher-order
models by Bougerol and Picard (1992). Weak stationarity and the existence of fourth moments of
a family of power GARCH models have been investigated in He andsVata (1999a,b), while
Ling and McAleer (2002a,b) derived the necessary and sufficient conditions for the existence of all
moments for these models.

Concerning the estimation of parameters for GARCH models, Lee and Hansen (1994) and Lums-
daine (1996) proved that the local Quasi-Maximum Likelihood Estimator (QMLE) was consistent



and asymptotic normal under strong conditions. Jeantheau (1998) established the consistency re-
sults of estimators for multivariate GARCH models. His proofs of consistency did not assume a
particular functional form for the conditional mean, but assumed a log-moment condition and some
regularity conditions for purposes of identification. More recently, Ling and McAleer (2003) pro-
posed the vector ARMA-GARCH model and proved the consistency of the global QMLE under only
the second-order moment condition. They also proved the asymptotic normality of the global (local)
QMLE under the sixth-order (fourth-order) moment condition. Comte and Lieberman (2003) studied
the asymptotic properties of the QMLE for the BEKK model of Engle and Kroner (1995). Berkes,
Horvath and Kokoszka (2003) proved the consistency and asymptotic normality of the QMLE of the
parameters of the GARCH{;) model under second- and fourth-order moment conditions, respec-
tively. Boussama (2000), McAleer, Chan and Marinova (2002), and Francq anthadR004) also
considered the properties of the QMLE under different specifications of the symmetric and asymmet-
ric GARCH(p,q) model.

However, most of the theoretical results on GARCH models have assumed a constant or linear
conditional mean (see McAleer (2005) for further details). It has not yet been established whether
these results would also hold if the conditional mean were nonlinear. Chan and McAleer (2002)
combined the general STAR model with GARGH) errors, but their results were derived under the
assumption that the conditional mean parameters were known.

This paper extends existing results in the literature in several respects. The necessary and suf-
ficient conditions for strict stationarity and geometric ergodicity of a general class of STAR models
with GARCH(1,1) errors are established. STAR models with more than two regimes are also consid-
ered. Conditions for the existence of moments are also examined. Finally, consistency and asymptotic
normality of the QMLE are derived under weak conditions.

The structural and statistical properties developed in this paper can also be used to derive the
distributions associated with various test statistics proposed in the nonlinear time series literature.
These properties provide the foundation for developing more complete tests for important economic
and financial hypotheses. For instance, the correlation between prices over time is often used as a
test for the weak form of the Efficient Market Hypothesis (EMH), which assumes that prices follow
a linear process. However, if prices follow a nonlinear process, such as a STAR-type process, the
correlation between prices over time may appear insignificant in finite samples. Thus, formal tests of
nonlinear dependence would also provide an important diagnostic for testing the EMH.

The plan of the paper is as follows: Section 2 provides a description of the models considered
in the paper. Stationarity, ergodicity and the existence of moments are discussed in Section 3. The
asymptotic properties of the QMLE are considered in Section 4. Finally, Section 5 gives some con-
cluding remarks. All technical proofs are given in the Appendix.



2 Model Specification

In this paper we consider three different classes of STAR-GARCH models. The first specification
is an additive logistic STAR model with multiple regimes in the conditional mean and GARCH er-
rors. This model nests the SETAR-GARCH process of Li and Lam (1995). A similar specification
with Gaussian errors was proposed in SuarezflaariPedreira and Medeiros (2004) and Medeiros
and Veiga (2000, 2005) . The second specification is a restricted form of the multiple-regime lo-
gistic STAR model with GARCH errors. This particular functional form with homoskedastic er-
rors was discussed in van Dijk, Bavirta and Franses (2002). Finally, the third specification is the
Exponential STAR-GARCH (ESTAR-GARCH) model, of which the Exponential STAR (ESTAR)
(Terasvirta 1994) model is a special case.

DEFINITION 1. TheR-valued procesgy;,t € Z} follows a first-order autoregressive model with
time-varying coefficients and GARCH(1,1) errors if

Y = Aojt—1 + A —1Ye—1 + &, (1)
Et =MV ht, and (2)
ht = w + ag?_; + Bhi_1, 3)

where{n;} is a sequence of independently and identically distributed zero mean and unit variance
random variablesy, ~ 11D(0,1), Aot—1 = fo(ye—1;A), A1 = fi(ye—1; A), and fi(ye—1; ),
1= 0,1, is a nonlinear function of; 1 indexed by the vector of parametexs

It is clear that the model defined by equations (1)—(3) is similar to the functional coefficient
autoregressive model proposed by Chen and Tsay (1993).

Depending on the choice of the functiofigy;—1; A) and f1 (y:—1; ), different specifications of
the STAR model can be derived. The following cases are considered:

1. The Multiple Regime Logistic STAR(1)-GARCH(1,1) (or MRLSTAR(1)-GARCH(1,1)) model:

foyr-1: ) =00 + > _ 0:G(ye—15%,¢:), and 4)
i=1

e X) =do+ > G (Y157 ¢, (5)
1=1

where
1

1 + e~ Yilyi-1—ci)’

(6)

G (yt—1;7i, ¢i)

with X = (907017¢017 .. '7¢0m7¢11a .. 'a¢1m7’717 <oy YmyCly - e 7Cm),-



2. The Generalized STAR(1)-GARCH(1,1) (or GSTAR(1)-GARCH(1,1)) model:

foye—1; X) = 0o + 601G (yi—1;7, ¢), and (7)
filye—1; X) = ¢o + ¢1G(ye—15 7, €), (8)
where .
G (yt-1;7,¢) = S =, 9)
1+ e—"/[ i:1(yt71—01)]

with ¢ = (Cl, R ,Cm), and\ = (90,91, D01, P11,7Y,Cly -« - » Cm)/.

3. The Exponential STAR(1)-GARCH(1,1) (or ESTAR(1)-GARCH(1,1)) model:

fo(yi—1;A) = 6o + 61G(yt—157,¢), and (10)
Ji(ye—1:A) = o + ¢1G (yi—1:7, ¢), (11)

where
G (yeo157,0) = 1 — e 7 W-179" (12)

W|th A= (907 61; ¢017 ¢117’Y7 C)I'

3 Probabilistic Properties

AssumMPTION1. The sequencgny:} of 1ID(0, 1) random variables is drawn from a continuous (with
respect to Lebesgue measure on the real line), unimodal, positive everywhere density, and bounded
in a neighborhood of 0.

AsSSUMPTIONZ2. The parameters of the model satisfy the following conditions:
(R1a)y; >0,i=1,...,m,andc; < cy < --- < ¢, in (4) and (5);

(R1.b)y >0andc; < co <--- < ¢y in(7) and (8);

(R.1c)y > 0in (10) and (11);

(R2)w >0, > 0,ands > 0.

Assumption 1 is standard. Note that we do not assume symmetry of the distribution, which is par-
ticularly useful when modelling financial time series. The restrictions (R.1a)—(R.1c) in Assumption
2 are important to guarantee that the model is globally identifiable. Restriction (R.2) is a sufficient
condition forh, > 0 with probability one.

Note thatz; = (y;, hs,n¢)’ is @ Markov chain with homogenous transition probability expressed
as

z; =F (2z,-1) + e, (13)



where
A0ji—1 + A t—1Ye—1
F(zi1)=] w+ (ﬂ + Oé’l7t2_1)
0

andet = (€t, 0, 77t)/-
The following theorems state the necessary and sufficient conditions for strict stationarity and
geometric ergodicity of the STAR-GARCH models considered in this paper.

THEOREM 1 (STATIONARITY — MRLSTAR(1)-GARCH(1,1)MODEL). Defined = Y-, 6; and

¢ =Y., ¢i. Under Assumption 1, and if (R.1a) in Assumption 2 holds, the prdegss € Z}
defined by equations (1)—(3), (4), and (5) is strictly stationary and geometrically ergodic if and only
if E [log (8 + an?)] < 0, and one of the following restrictions holds:

b0 <1, ¢ <1, andggo < 1; (14)
bo=1, ¢ <1, andfy > 0; (15)
bo<1, ¢=1, andf < 0; (16)
po=1, ¢=1, andf < 0 < bp; (17)
pop =1, 01 <0, andf + 4y > 0. (18)

Furthermore, the procesgz;, t € Z} admits a unique causal expansion.

THEOREM 2 (STATIONARITY — GSTAR(1)-GARCH(1,1MODEL). Setd = 6y + 6; and ¢ =

¢o + ¢1. Under Assumption 1, and if (R.1b) in Assumption 2 holds, the prdegss € Z} de-
fined by equations (1)—(3), (7) and (8) is strictly stationary and geometrically ergodic if and only if
E [log (6 + anf)] < 0, and one the following holds:

1. mis evenandg| < 1, or

2. m is odd and one of the following conditions holds:

b0 <1, ¢ <1, andpgop < 1; (19)
bo=1, ¢ <1, andby > 0; (20)
bo<1, ¢=1, andf < 0; (21)
bo=1, ¢=1, andf < 0 < fy; (22)
pop =1, ; <0, andd + ¢y > 0. (23)

Furthermore, the procesgz;, t € Z} admits a unique causal expansion.

THEOREM 3 (STATIONARITY — ESTAR(1)-GARCH(1,1MODEL). Set¢ = ¢g + ¢;1. Under
Assumption 1, and if (R.1c) in Assumption 2 holds, the proggss € Z} defined by equations (1)—



(3), (10) and (11) is strictly stationary and geometrically ergodic if and ony[tog (8 + an?)] < 0
and \5} < 1. Furthermore, the proces,,t € Z} admits a unique causal expansion.

If the conditions of the above theorems are met, the procdggsesind{h,} have the following
causal expansions:

oo j—1
Yt = Aoj—1 + Z H (A0t—1—j A t—1—k + Al p—1-kEL—j) 5 (24)
=1 k=0
oo J
=1 k=1

THEOREM 4 (EXISTENCE OF MOMENTS — MRLSTAR(1)-GARCH(1,1)M0ODEL). Define¢ as
in Theorem 1. Assumg[|n|"] < oco. If 61 < 1, ¢ < 1, 619 < 1, andE [(8+ an?)"] < 1,
the invariant probability distribution for the MLSTAR(1)-GARCH(1,1) process has a fitliterder
moment.

THEOREM5 (EXISTENCE OFMOMENTS— GSTAR(1)-GARCH(1,1MODEL). Assumé [|n|*] <
co. If mis evenandg| < 1, ormis odd andgy < 1, ¢ < 1, oo < 1, andE [(8+ an?)"] < 1,

the invariant probability distribution for the GSTAR(1)-GARCH(1,1) process has a fitliterder
moment.

THEOREM6 (EXISTENCE OFMOMENTS— ESTAR(1)-GARCH(1,1MODEL). Assumé [|n;|*] <
co. If |¢| < TandE[(8+an?)"] < 1, the invariant probability distribution for the ESTAR(1)-
GARCH(1,1) process has a finit¢h-order moment.

4 Parameter Estimation and Asymptotic Theory

In this section we discuss the estimation of the STAR-GARCH modeISszet(X, 77’)', where\
is the vector of parameters of the conditional mean, as defined in Section®,-an(d, «, 3)’ is the
vector of parameters of the conditional variance. As the distributiop &funknown, the parameter
vectorp is estimated by the quasi-maximum likelihood (QML) method.

Consider the following assumption.

AssUMPTION3. The true parameter vectap, € ¥ C R” is in the interior of¥, a compact and
convex parameter space, wheé¥e= dim(\) + dim(r) is the total number of parameters.

The quasi-log-likelihood function of the STAR-GARCH model is given by:

(26)



Note that the processes andh, t < 0, are unobserved, and hence are only arbitrary constants.
Thus,Lr(v) is a quasi-log-likelihood function that is not conditional on the tfug (), making it
suitable for practical applications.

However, to prove the asymptotic properties of the QMLE, it is more convenient to work with the
unobserved proced$e, 1, hy ) : t =0,£1,£2,...}.

The unobserved quasi-log-likelihood function conditionaln= (yo, y—1,y—2,...) IS

1 T
ﬁu,T('l,b> = T Z lu,t(d))a
t=1

1 ) (27)
9

1 < 1
== —>In(27) — S In(hyy) — -
T3 n(2m) = 5 Inff) st

The main difference betweefy (¢) andL,, (1) is that the former is conditional on any initial val-
ues, whereas the latter is conditional on an infinite series of past observations. In practical situations,
the use of (27) is not possible.

Let

@T = argmaxLr (1) = argmax ( ! th(’l,[))> ,

Ppew Ppew T i—1

and

Ppew Ppew

T
'z,Abu,T = argmaxL, 7 (1) = argmax (111 ;lu,t(v,b)) .

DefineL(¢) = E[l,+(¢)]. In the following subsection, we discuss the existencé€@p) and
the identifiability of the STAR-GARCH models. Then, in Subsection 4.2, we prove the consistency
of @T andz?:uvT. We first prove the strong consistencyﬂ»;j, and then show that

sup |Lo1(¥) — Lr(3)] = 0,
YW

so that the consistency qTﬁT follows. Asymptotic normality of both estimators is considered in
Subsection 4.3. We prove the asymptotic normalitfbng. The proof ofﬂ;T is straightforward.

4.1 Existence of the QMLE

The following theorem proves the existenceddt)). It is based on Theorem 2.12 in White (1994),
which establishes that () exists under certain conditions of continuity and measurability of the
quasi-log-likelihood function.

THEOREM7. Under Assumptions 1 and Z()) exists, is finite, and is uniquely maximized/gtif:

1. {y:,t € Z} follows the process defined by (1)—(6) and the conditions of Theorem 1 hold;



2. {y,t € Z} follows the process defined by (1)—(3), (7)—(9), and the conditions of Theorem 2
hold; or

3. {y, t € Z} follows the process defined by (1)—(3), (10)—(12), and the conditions of Theorem 3
hold.
4.2 Consistency
The following theorem states the sufficient conditions for strong consistency of the QMLE.
THEOREMS8. Under Assumptions 1-3, the QMLExfis strongly consistent fog, {b L2 g, if
1. {y:,t € Z} follows the process defined by (1)—(6) and the conditions of Theorem 1 hold;

2. {y,t € Z} follows the process defined by (1)—(3), (7)—(9), and the conditions of Theorem 2
hold; or

3. {y,t € Z} follows the process defined by (1)—(3), (10)—(12), and the conditions of Theorem 3
hold.

4.3 Asymptotic Normality

First, we introduce the following matrices:

L)) {azutw) Oy () ]
A(vyy) =E {, , B(yy) =E ’ — ,
oy ¥y o ¥y o ¥,
and
=1 e 8%h, 1 (e Ohy Ohy
AT 2 o (5t =1) v ~ 37 (35~ 1) By o8
" <5t) <3€t‘3‘ht +5’%35t> L L <35t‘95t n 32&)
w2 ) \ovpoy " opoy ) h \opay oy
1 = A1) ly(3)
B (¢) = r 7
r T; np o
. 1 L 1 E% 2 8ht 8ht 6,52 0@ Get
_T; 4h%<ht‘ > O o' hy 0% O @9

_ e (e (Ol Do | O Oy
on? \ hy P O | Onp Oy

Consider the additional assumption:



ASSUMPTION4. There exists no set of cardinal 2 such thaPr[n, € A] = 1.

As in Francq and Zakan (2004), Assumption 4 is necessary for identifying reasons when the
distribution ofr; is non-symmetric.
The following theorem states the asymptotic normality result.

THEOREM9. Under Assumptions 1-3, 4, the additional assumplige}'| = 1.4 < oo, and if either:
1. {y:,t € Z} follows the process defined by (1)—(6) and the conditions of Theorem 1 hold;

2. {y,t € Z} follows the process defined by (1)—(3), (7)—(9), and the conditions of Theorem 2
hold; or

3. {y, t € Z} follows the process defined by (1)—(3), (10)—(12), and the conditions of Theorem 3
hold.

then
TV2(3hy — 4pg) % N (0,9), (30)

whereQ = A (1)~ 'B(1po)A(zpy) '. If the distribution ofy, is symmetric andt [7] = x4, then

A(tpg) = (%1 L) , B() = <]?)1 ;) , with

2 Oey Oy
E | 225t 25t
] * {hgaxax ] !
Pq Py
11’0]
] , and
P

1 Og; Ogy

4E | = — =

] N {h% A ON

K
d’j

Furthermore, the matriced\ (v»,) and B(v,) are consistently estimated bgcT(z,Ab) and BT(’(//\J),

respectively.

h2 OX ON

AlE{l Ohy Ohy

| 1 on, o
M%@%%/

1 Oh, Oy
B = (ks — 1)E | - == 22
1= (ke —1) {h? X ON

1 Ohy Ohy

BQ = (H4 — 1)E |:h%871'a7r’

5 Concluding Remarks

In this paper we have derived the necessary and sufficient conditions for strict stationarity and ge-
ometric ergodicity of three different classes of first-order STAR-GARCH models, and the sufficient

10



conditions for the existence of moments. This is important in order to find the conditions under which
the traditional LM linearity tests are valid. The asymptotic properties of the QMLE have also been
considered. We have proved that the QMLE is strongly consistent and asymptotically normal under
weak conditions. These new results should be important for the estimation of STAR-GARCH models
in financial econometrics.

Appendix

A Proofs of Theorems 1-6

The proofs of the theorems are based on Chan, Petruccelli, Tong and Woolford (1985), and makes use of the
results in Tweedie (1988).

Definez; as in (13). If there is a compact sgt € B, whereB is the Borels-algebra inR?, and a
non-negative measurable functign R? — R, such thay is bounded away from zero and infinity i and

supE [g(z¢)|z:—1 = 2z] < 00, and (A1)
z€ A
E [g(zt)|zt—1 = Z] < g(Z) - 17 YAS Aca (AZ)

where. A€ is the complement afi, then the process is strictly stationary and geometrically ergodic.

A.1 Proof of Theorem 1

For purposes of the present paper, the most important features of the transition function are that it is a mono-

tonically increasing function with an inflection point gt i = 1,...,m, and that it is limited by 0 when
y—1 — —oo and by 1 wheny;_; — oo, sincey; > 0,¢ = 1,..., m (Assumption 2).
First, consider a compact sdt = [—M, M] x [0, M] x [-M, M|, whereM is a positive constant such

that M >> ¢,, and—M << ¢;. Hence, given an arbitrarily small positive numberG(y; v1,¢1) < 4 if
Yyi—1 < —M and|G(y;11,c1) — 1| < 0if yi—1 > M.

Setg(z:) = v(y:) + he + |n¢|. Following Nelson (1990), and under the assumptionsEfat|] < oo and
E [|m|?] < oo, itis clear thaE[h,] < co andE[|e,;|] < oo if and only if E [log (8 + an?)] < 0. Thus, in order
to show thatz, is ergodic for each of the conditions (14)—(18) in Theorem 1, it is sufficient to show that

sup  E[v(y)|yi—1 = y] < oo, and (A.3)
y€[—M,M)]
Elo(y)lyi—1 =yl <g(y) — 1, y ¢ [-M, M]. (A.4)

As G(y;vi,¢i) — 0asy — —oo andG(y;vi,¢;) — 1 asy — oo, i = 1,..., M, the result follows by
using Theorem 2.1 in Chan, Petruccelli, Tong and Woolford (1985).

A.2 Proof of Theorem 2

It is clear that, whenn is odd, the transition function is limited by 0 whefp ; — —oc and by 1 when
Yt—1 — 00, sincey > 0 (Assumption 2). The proof follows the same reasoning as in the proof of Theorem 1.

11



Whenm is even, the transition function is limited by 1 whgn ; — +oo. Again, the proof follows along
the same lines as the proof of Theorenill.

A.3 Proof of Theorem 3
It is clear that the transition function is limited by 1 whgn; — +oo. Again, the proof follows the same
reasoning as in the proof of TheoremilL.

A.4 Proof of Theorem 4

From Ling and McAleer (2002bE, [(3 + an?)"] < 1is the necessary and sufficient conditionfde}’] < co.
The remainder of the proof is similar to the proof of Theorem 2.3 in Chan, Petruccelli, Tong and Woolford
(1985).1

A.5 Proof of Theorem 5

The proof is similar to the proof of Theorem L

A.6 Proof of Theorem 6

The proof is similar to the proof of Theorem i

B Proofs of Theorems 7-9

B.1 Proof of Theorem 7

Itis easy to see thd(z,), as in (13), is a continuous function in the parameter veptdBimilarly, we can see
thatF(z,) is continuous ire;, and therefore is measurable, for each fixed valug.of
Furthermore, under the restrictions in Assumption 2, and if the stationarity conditions of either Theo-

rem 1, 2, or 3 are satisfied, thé&n| sup |h, |
hew

< oo andE [sup |yu7t|‘| < oo. By Jensen’s inequality,
pew

E lsup [In hut|] < 0o. Thus,E[|l,:(¥)]] < o Vp € .
Ppew

Let i+ be the true conditional variance asgl; = hé{tQUt. In order to show that’()) is uniquely
maximized aup,, rewrite the maximization problem as

pagie et =g (e[ (52 - 7541} ®9

)

12



Writing e, = € — €0+ + €0,+, €quation (B.5) becomes

max [£(eh) — L(th,)] = maX{E {m (’m) _hoe 1] _E [W]

Ypewr Yew hu,t hu,t Pt

3

_E [%héff (ee — 5070] } (B.6)

where

2muhg! (0 — £0.4)
E : =0
hu,t

by the Law of Iterated Expectations.
Note that, for any: > 0, m(z) = In(z) — = <0, so that

ho,t ho,t
Elln({—)—-—] <0.
|:n (hu,t) hu,t:| o 0
Furthermorem(x) is maximized atc = 1. If  # 1, m(z) < m(1), implying thatE[m(z)] < E[m(1)], with
equality only ifz = 1 a.s.. However, this will occur only % =1, a.s.. In addition,

E [&?t - Eo,t]Q -0
hu,t

if and only ife; = €9 .. Henceap = 1p,. This completes the prooll

B.2 Proof of Theorem 8
Following White (1994), Theorem S.Q;M,T L3 4, if the following conditions hold:
(1) The parameter spack is compact.

(2) L, r(v)is continuous iny € ¥. Furthermoref,, r(v) is a measurable function gf, t = 1,...,T,
forall ¢ € .

(3) L(%) has a unique maximum at,.
(4) Tlim sup |Lyr(¥) — L(Y)| =0, a.s..
—)OO’l,bE‘I’

Condition (1) holds by assumption. Theorem 7 shows that Conditions (2) and (3) are satisfied. By Lemma
1, Condition (4) is also satisfied. Thug,, ;- “ ;.
Lemma 2 shows that

lim sup |Ly7(¥) — Lr(¢)] =0a.s.,
THOO’!/JG‘I’

implying thathpT “% 4p,. This completes the prooll
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B.3 Proof of Theorem 9

We start by proving asymptotic normality of the QMLE using the unobserved log-likelihood. When this is
shown, the proof using the observed log-likelihood is immediate by Lemmas 2 and 4. According to Theorem
6.4 in White (1994), to prove the asymptotic normality of the QMLE we need the following conditions in
addition to those stated in the proof of Theorem 8:

(5) The true parameter vectqr, is interior tow.

(6) The matrix

existsa.s. and is continuous .
(7) The matrixAr (1) “3 A(3,), for any sequence ., such thatp, “3 p,,.

(8) The score vector satisfies
T

1 (alt("b)
77 2o

Condition (5) is satisfied by assumption. Condition (6) follows from the factiifi4t) is differentiable
of order two ony) € ¥, and the stationarity of the STAR-GARCH model. The non-singularitAéi))
andB(v,) follows from Lemma 4. Furthermore, Lemmas 3 and 5 implies that Condition (7) is satisfied. In
Lemma 6 below, we prove that condition (8) is also satisfied. This completes the firoof.

) 4 N(0,B(1,)).

C Lemmas

LEMMA 1. Suppose thay; follows a STAR-GARCH model satisfying the restrictions in Assumptions 1 and 2,
and the stationarity and ergodicity conditions are met. Then,

lim sup |L,7(¢) — L(¢Y)] =0, a.s..

T~>oo¢€\1,

PROOF. Setg(th’lp) = lu,t(¢) -E [lu,t(w)]’ WhereYt = [ytayt—17yt—27 e ']/' HenceaE [Q(Yta"b)} =0.

It is clear thatE | sup |g(Y+,%)|| < oo by Theorem 7. Furthermore, g§Y:, ) is strictly stationary and
pew

ergodic, thenTlim sup |T~1 Zthl g(Yq, 1/:)’ =0, a.s.. This completes the prooll
00w

LEMMA 2. Under the assumptions of Lemma 1,

lim sup |Ly,7(¥) — Lr(¢)| =0, a.s..
Tﬁooweq,

PrROOE First, write

t—1

hy=>» B (w+aeg}_,_;)+ B'ho and

1=0
t—2
hue =B (Wt ael ) + Zﬁi (w+aeiy;) + B'huo,
=0

14



such that

|hs — hu,t| = |ﬁt_104 (5% - 55,0) + ﬁt (ho — hu,O) ‘
< B aled — el o] + B [ho — huol -

Under the stationarity of the process, and if (R.2) in Assumption 2 and the log-moment condition hold, it is
clear thad) < 5 < 1. Furthermoreh,, o andsgﬁu are well defined, as

Pr | sup (hy,o > K;i)| — 0asK; — oo, andPr | sup (530 > Kg) — 0asKy — 0.
PYew Pew ’

Thus,
sup |he — hy | < Kpnpl, a.s.,and
Ppew

2 _ 2 t
sup |50 - 5u70| < K.py, a.s.,
YW

Bt — by

hthu,t

where K, and K. are positive and finite constants,< p; < 1, and0 < p, < 1. Hence, as; > w and
sup |l — Lue| < sup [E? +

log(z) <z —1,
(o)
pew pew Pt

1 1
< sup (2) thtlsf + sup <) th'i, a.s..
PYew \W Pew \W

Following the same arguments as in the proof of Theorems 2.1 and 3.1 in Francq ai@h42k84), it can be
shown that

lim sup [Ly,7(¢) — Lr()| =0,a.s..
THOO’!/)E‘I’

This completes the prooll

LEMMA 3. Under the conditions of Theorem 9,

E 8%5;#) " ] < 00, (C.7)
E 6%5;/:) ‘% 6;1(;/#) . ] < oo, and (C.8)
E _ nggz,) . ] < 0. (C.9)
PROOF. Set
ol Ohy, 0
Volus = éﬁ) L Voha = 61; N Vo, = a% N
Vil = 8;;55:,)) ) , Vihy, = g;lg:;, ) , and Vie, = 816/1266;/ . .

15



Then,

1 g2 €t
Volut = L 1) Vohys — —V
ot 2hu,t < u,t ) 0 ot hu,t 0ct

and

&%

2 1 2
2t = (L — 2R, 2L 1) Vohy Vol
Vohue =7, Qhutv g, Py, ) Ve Vol

u?

€ ! !
+( ’ >(vostv0 W,y + VohutVoer) + Voe:Voe, +e:Vaer) -

L (

hu,t
Sety = (X, rr’)', where, as stated beforg,is the vector of parameters of the conditional mean and

is the vector of parameters of the conditional variance. As in the proof of Theorem 3.2 in Francq afahZako

(2004), the derivatives with respect #oare clearly bounded. We proceed by analyzing the derivatives with

respectto. Ase; =y — fo(ye—1; A) — f1(ye—1; N)y:—1, we have

Oer — Ofo(ye—1:A)  O0fi(yi—13A)

D%ey P folyi—1;0)  O*fr1(ye—1; )
- N N c.11
ONON ONON oaoN b (C.11)
ag;ft =20y (ﬁ‘atlia‘gg;i) , and (C.12)
1=0
32hu,t o €t 1—i Oct—1—i Ogy_1—;
AN Zﬂ <€t SToNN T T oa on > (€.13)

As the derivatives of the transition function are bounded, if the strict stationarity and ergodicity conditions
hold, (C.10)—(C.13) are clearly bounded. Hence, the remainder of the proof follows from the proof of Theorem
3.2 (part ¢)) in Francq and Zakian (2004). This completes the pro®.

LEMMA 4. Under the conditions of Theorem A,(¢»,) andB(v,) are nonsingular and, when. has a sym-
metric distribution, are block-diagonal.

PrROOFE First, note that (R1a)—(R1c) in Assumption 2 and Assumption 4 guarantee the minimality (identifia-
bility) of the different specifications of the STAR models considered in this paper. Therefore, the results follow
from the proof of Theorem 3.2 (pari) in Francq and Zakian (2004). This completes the pro@.

LEMMA 5. Under the conditions of Theorem 9,

1 <& Ous(p) azt
@ |25 [ 0
L [020,0()  O%L(ep
by g e TZ: [awc’w az/:aw =0, a5, and
T 021, 4() 021, 4 ()
© A S thzl oy E{ Doy’ } =0, as.

PROOF
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First, assume that, andh,, ¢ are fixed constants. It is easy to show that

8ht 8hu’t - t—1 850 8511,0
Ih T On |20 fogx w0y
Oe Qe
< t—1 0 u,0
_2045 ( 8)\ + 6uO 8}\ > <OO,

as0 < 8 < 1 andy is stationary and ergodic. Hence, following the same arguments as in the proof of Theorem
3.2 (part (7)) in Francq and Zakian (2004), it is straightforward to show that

8lu t(’lb) 8lt
I =
Jim o |7 ; 1 -0
Furthermore, as
Ohy _ Ohuy _
Oow ow
6ht ahu,t _ 2 2
8a — aa = 50 — 6u70
Oh Ohy, _ -
O — Tt — (1 1)5 (e — ) + 16 (ho — ).
it is clear that
lim sup Ol t(w) alt =0.
Tﬂoolpe\p T 1 or

The proof of part (a) is now complete. The proof of part (b) follows along similar lines. The proof of part
(c) follows the same arguments as in the proof of Theorem 3.2 (pgrin( Francq and Zakian (2004). This
completes the prool

LEMMA 6. Under the conditions of Theorem 9,

\}Za“d, % N0, B(xby)).

0

PROOF. Let St = Zthl ¢'Vol, +, wherec is a constant vector. The$y is a martingale with respect t6;,
the filtration generated by all past observationg0fBy the given assumptionk,[Sr] > 0. Using the central
limit theorem of Stout (1974),

77128, 4 N (0, ¢/B(ep)c) .

By the Cran&r-Wold device,

%N (0, B(ty)) -
o

—1/2 Z alu 1

By Lemma 5,

T
T_l/QZ a.s.

t=1

Mue(¥p)|  O(v)
oY oY

Yo

17



Thus,

T
_ Ol () d
1/2 t
T E 9 — N(0, By).
t=1 K0
This completes the prooll
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