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Abstract—The goal of this paper is to develop a fore- in the classical time series literature (See [2] for a
casting model for the hourly electric load demand in the comprehensive review or [3], [4], [5], [6], [7] for recent

area covered by an utility company located in the southeast aoplications) and in the machine intelligence community:
of Brazil. A different model is constructed for each hour P ) g 4

of the day. Each model is based on a decomposition of S€€ [8] and [9] for a recent survey or [10] for a successful

the daily series of each hour in two components. The application.
first component is purely deterministic and is related to In this paper, we propose a methodology based solely

trends, seasonality, and special days effect. The second oneyn rigorous statistical arguments to model and forecast
is stochastic and follows a linear autoregressive model. the hourly electric load demand of part of the southeast

Nonlinear alternatives may be also considered in the . . s
second step. The multi-step forecasting performance of of Brazil. The area covered by the electric utility repre-

the proposed methodology is compared with a benchmark Sents 25% of the province of Rio de Janeiro, totalizing
model and the results indicate that our proposal is a useful 11,132 kn? with a population of more than ten million

tool for electric load forecasting in tropical environments.  people. The energy consumption corresponds to 75% of
Index Terms— Short-term load forecasting, time series, the total consumption in the Rio de Janeiro province. Itis

seasonality, linear models, SARIMA, decomposition. worth mentioning that this is one of the most important
regions for tourism in Latin America. We adopt the
|. INTRODUCTION same strategy as in [11], [12], [13], [14], and [15],

NE time series with major academic and practicdreating each hour as a separate time series, such that
interest is the hourly electric load demand serieg@4 different models are estimated, one for each hour of
From the academic point of view, the interest is remarkhe day. The model considered in the paper is based
able because it has a number of interesting features, s@ha two-step decomposition of the load series. In the
as, trends, annual and daily seasonal patterns, influeificgt step, a component based on Fourier series, dummy
of external variables, and possible nonlinearities. Ivariables, and a linear trend, is estimated to describe
addition, load series have been used along the years dbelong-run trend, the annual seasonality, the effects of
benchmark data set for different forecasting models aitlle days of the week, and any other special days effect
methods. such as public holidays. In the second step, different
From the applied point of view, short-term load forelinear AR (autoregressive) models are estimated and
casting is a very important task for the electric utilitiesags are selected based on information criteria. The type
in order to manage the production, the transmission, anél decomposition considered here is not new. Similar
the distribution of electricity in a more efficient andproposals have been discussed in the literature during
secure way. As an example of the importance of accurdte last two decades; see, for example, [16], [17], and
forecasts, it was estimated that an increase of o%lyin  [4]. However, we contribute to the literature in several
forecast error (in 1984) caused an increase of 10 milligifferent directions. First, to the best of our knowledge,
pounds in operating costs per year for one electric utilifjfe way in which we combine different aspects of
in the United Kingdom [1]. classical techniques is new and relies only on rigorous
Over the years, different forecasting technigues haetassical statistical arguments. Recently, [14] proposed a
been developed to model electric load demand bosimilar approach, but their methodology is fully based
o . on Bayesian statistics and it is computationally very
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of days. The second component is described as a low-
order linear autoregressive (AR) model. As discussed in
the Introduction, two-level models have been considered
extensively in the literature.

First, to remove the daily cycle we follow the ideas
of [13] ! by considering a separate model for each hour
of the day, which avoids modeling complicated intra-
day patterns in the hourly load, commonly called load
profile, and enables each hour to have a distinct weekly
pattern; see also [11], [18], [12], [19], [14], and [15].
This last feature is desirable, since it is expected that
the day of the week will affect more work-time hours,
when shops and industry may or not be open, compared
to the first and last hours of the day, when most people
are expected to be asleep. In [8], the authors report that

can be considered in the second step of the mogdjfficulties in modeling the load profile are common to
everal load forecasting models.

. . S
ing strategy. However, we show in the paper that the The data seem to have a linear positive trend; see

nonlinear effects are caused by time-varying Condltlonﬁllgure 1. This is corroborated by the traditional Phillips-

variance and are not present in the conditional mean. . .
Thus, the linear model is adequate to describe the datzlgg{ron unit-root test [20], where the null hypothesis of

considered here. Exogenous variables, when availabic?StOCh.aSt.iC. trend (u_nit—root) Is strongly rejectg .d for all
may be also easily incorporated into thé model FinaIIt e 24 individual series. Furthermore, the positive trend

) . X ) . ) n the load is correlated with economic and demographic
the model described in this paper is particularly usef"flzllctors Hence, it is expected that the trend has a high
for short-term load forecasting in tropical environments ' '

. . ositive correlation with the potential Gross Domestic
where reliable temperature forecasts are not availabl o -
. . roduct (GDP), which in the case of Brazil is known
The plan of the paper is as follows. Section Il de:

i . : to be almost linear; see [21] for a discussion. All
scribes the dataset used in the paper. Section Il presents™~ . T

i that said, we model the trend as a deterministic linear
the model and the modeling strategy. The benchma,rrk

model is discussed in Section IV. Section V-A sh unction of time. Most papers in the load forecasting

ow : . )
the modeling results and Section V-B presents the forF('et-.e rature tak_e flrst-orde_r dlfferem_:es of _the load series
without previously testing for unit-roots; see [22] for

casting results. Final remarks are made in Section Vl'example. This has a major drawback. When the trend is
deterministic, taking first-differences introduces a non-
Il. THE DATA invertible moving average component in the data gener-
In this paper we consider a dataset containing hour@fing process, which causes serious estimation problems.
loads from January 1, 1990 to December 31, 2000. Th#irthermore, there is no linear autoregressive model that
period from January 1, 1990 to December 31, 1998 is able to correctly describe the dynamics of the data; see
used for estimation purposes (in-sample) and the dake discussion in Chapter 4 of [23]. Finally, it seems that
concerning the years 1999 and 2000 are left for forecdbere is a break in the trend after 1999. As this break
evaluation (out-of-sample). The data were obtained frolelongs to the out-of-sample period, we ignore it during
an utility company from Rio de Janeiro, Brazil and aréhe specification and estimation of the proposed model.
shown in Figures 1 and 2. This is the same datasEis is important in order to test the robustness of the
considered in [15]. Figure 1 shows the hourly loads fgrroposed model.
the entire sample and Figure 2 shows the daily loads forAs shown in Figures 1 and 2, the time-series displays
each hour of the day during the in-sample period.  a clear daily, weekly, and annual seasonality. Observing
Figure 2 we can see that the annual seasonality is more
apparent during the night. This is mainly due to the fact
) o that during the night the effects of the days-of-the-week
A. Mathematical Definition are less significant. The weekly seasonality — effects of
Our approach to model the electric load time serigbe days of the week and special days, such as holidays —
is based on a two-step procedure for each hour of tiemodeled with dummy variables. Several authors claim
day' -I.-he load is mOde.Ied asa Sum of two Comp.onentSlThe model described in [13] was the top first model in a load
The first component is deterministic, representing th,

) Srecast competition organized by Puget Sound Power and Light
trend, the annual cycle, and the effects of different typ&smpany, USA.

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Fig. 1. Hourly loads from January 1, 1990 to December 31, 2000

1. THE MODEL
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Fig. 2. Load of each hour from January 1, 1990 to December 31, 1998.

that Tuesdays, Wednesdays, Thursdays and Fridays eathors have also considered a distinct model for each
be modeled as a single type of day. Since we have a latygur of the day, but they have kept fixed the number of
amount of data we prefer to model each day as a dumrsipnes and cosines. In addition, their approach was based
variable. We also consider dummies for holidays, parbn Bayesian statistics.
time holidays, and special days. Table | gives summaryWe do not include external variables, such as those
of the variables used. Cottet and Smith [14] have adopteslated to temperature. This is a point to draw attention
a similar approach. to, as some temperature measures (maxima, averages,
The annual cycle is modeled as a sum of sines aﬁﬂd others).could improve substantially the predictiqn
cosines, as in a Fourier decomposition. The motivatidhused, particularly in the summer, when the air condi-
for that can be easily seen by the graphical inspecti$iening appliances constitute great part of the load. The
of Figure 2. The number of trigonometric functions i€8asons for not using weather variables are threefold.
determined by the Bayesian Information Criteria (SBICYIrSt: @ mentioned in the Introduction, the area covered
proposed by Schwarz [24]. Schneider, Takenawa, a Y the electric u.tlllty congldered in t.hIS papefr.represents
Schiffiman [25] and El-Keib, Ma, and Ma [26] have29%0 of the province of Rio dg Jane!ro, totalizing 11,132
considered the same strategy. However, they have appli@ﬂﬂ’ which includes sub-regions with temperatures that
the Fourier decomposition to a single hourly series if@Ng€ from 10 degrees Celsius during the winter to
stead of 24 different daily series. Furthermore, they ha¢é degrees during the summer; as well as other sub-
determined the number of terms in the decompositidf9ions with temperatures that varies from 23 (winter)
in a different way than the one considered here. Mof@ 42 (Summer) degrees Celsius. For example, in a given
recently, Cotted and Smith [14] have used trigonometric
functions to model the seasonality in the load series. The&The total area of the Rio de Janeiro province is 43,916.km



day and at the same time, it is common to observ;%d < 00, Vi, whereF,_; is the full information set at
two or more sub-regions with temperature differencetay d — 1.

around 10 degrees Celsius. However, the available hourlyTywo points are important to stress. First, Assumption
temperature measures are collected at few points in t§s weak. As in [28] and [6], we do not assume that
city of Rio de Janeiro (not the province) and do nGkrrors are Gaussian. The distribution of the errors may
give a complete picture of the temperature profile qfe skewed and leptokurtic. However, different from these
the covered area. Second, the available data haveyghors, we allow for possible conditional heteroskedas-
large number of deficient observations, including outliefigity asE(s2 ,|F, ;) is not assumed to be constant; see
and missing values, which distort the results and qog] for a discussion. Second, although not considered
not bring any relevant contribution to the forecastingy this paper, the model for the “irregular load” may
performance of the modél Finally, it is well known, include, if available, other exogenous variables, such
that the forecasting of hourly temperatures in tropicgs, for example, hourly temperatures. In addition, the
environments is not precise, specially for a few daygpecification do not need to be linear. In this paper, we
ahead. All that said, we decide not to include thgonsider a simple linear autoregressive model because

temperature in our model. Nevertheless, it should kfore complicated neural network model do not improve
mentioned that whenever available, including weathgfgnificantly the forecasting performance.

variables in the model is straightforward.

The model proposed in this paper is called the Two-
Level Seasonal Autoregressive (TLSAR) model and is
defined as:

Definition 1: The time seriesL, 4 representing the
load of the hourh, h = 1,...,24 and dayd, d =
1,...,D, D is the total number of observations, follow
a Two-Level Seasonal AutoRegressive (TLSAR) mod
if

B. Modeling Strategy

As previously mentioned, the specification and esti-
ation of the TLSAR model is divided in two steps.
ummarizing, the estimation procedure is carried out as

follows:
Lha=Lf 4+ Ly 4, 1)

o For each hour, estimatey, p, o, 5,, andu;, r =
1,...,H,andi =1,..., K in (2) by ordinary least
squares (OLS). The number of harmonids$)(is
determined by minimizing the Schwarz Bayesian

where

H
Lid = ag + pd + ZO‘T cos (wrd)

= K (2) Information Criteria (SBIC) [24]. The number of
+ B, sin (wrd) + ZM@ dummies ), representing the different types of
Py days is kept fixed and equal to 15, as described in
Table I.

's the "potential load", « After estimating the “potential load”, we compute

Lﬁ,d = ¢/Zh,d + €h,d 3
is the “irregular load”, o, cos (wrd) + B, sin (wrd) is TABLE |
th i _ S
known as ther harm0n_|c,w N 27T,/?f65’ Oiy 1 = TYPES OF DAYS USED IN THETLSAR MODEL.
1,..., K are dummy variables identifying the days of
the week, public holidays, special days, etg, p, o, Code Description
Bryr=1,...,H,andu;, i = 1,..., K are unknown 1 Sunday
parameters. The vectar, , is formed by constant and 2 ~ Monday
X 11 3 Tuesday
a subset ofp lags of Ly ;,, ¢ € RP™ is a vector of 4 Wednesday
unknown parameters arg 4 is an error term. 5 Thursday
We make the following assumption about the error 6 Friday
term. 7 Sat_urday - o
Assumption 1:The sequence of random variables g \Tv?)lulrﬁ;é (gg;c':f'té’rr ger']'g;%i?
{enat h=1,...,24,is drawn from a continuous (with Working day before a holiday

respect to Lebesgue measure on the real line), positive 11 Working day between a holiday and a weekend
everywhere density, and bounded in a neighborhood of 12  Saturday after a holiday
0. FurthermoreE(eh,dU-‘d_l) =0 and E(g}% d\]—‘d_l) = 13 Work only during the mornings

’ 14 Work only during the afternoons

3In [27], the authors also considered Brazilian data and temperature 15 Special holidays
was not included in the model.




the residuals.y , = Ly.q — LY ;, where where
M

H
LY =8+ pd+ Y _ drcos (wrd) A7A1Lp g =071 Lpg — Z @ibid
r=1 =1 (5)
K M M
+ B, sin (wrd) + Zﬁ,& =3 Xibia1— Y Yibia-7
i=1 i=1 i=1
. Again, using the SBIC, we select the best comAndA; = (1-B), j =1,7, Bis the lag operatot, 6,
bination of lags inz, 4 in (3) among the first ¥ =1,2,3, f, ai, Ai, 7, ¢ =1,..., M, are parameters,
seven lags of the series. The autoregressive model ¢ = 1, .., M are dummy variables identifying public

is estimated by OLS and standard errors that aR®lidays, special days, ete, q is a zero mean error term

robust to heteroskedasticity are computed usiriijith finite second-moment.

White’s estimator [30]. Apart from the intercept, The selection of lags is based on the analysis of

statistically insignificant lags are excluded from thehe autocorrelation (ACF) and partial autocorrelation

model*. (PACF) functions and one the use of the SBIC. The

After a model is estimated, it is submitted to numbeACF and PACF for eaci\7A Ly g =, h = 1,...,24,

of misspecification tests. First, we test for no remaining=1, ..., D, are used to roughly identify the order the
serial correlation in the residuals using the Ljung-BoARMA component, which are further refined with the
test [31]. We also test for possible nonlinearities in thEBIC. After estimating the models, the Ljung-Box au-
conditional mean, using the neural network test propostatorrelation test is used to verify model adequacy. This
in [32] with the heteroskedasticity correction discussegpproach is the standard Box and Jenkins methodology
in [33]. This test is important to justify the linear speciin time series analysis; see [36] for a detailed discussion.

fication of the “irregular component”. The Engle’s [34] |n Table Il we illustrate the types of days included
Lagrange Multiplier test for conditional heteroskedasp the DASARIMA model. The classification of days is
ticy is also considered. Conditional heteroskedasticityifferent from the one considered in the TLSAR method-
if present, must be taken into account when computinglogy because the first and seventh-order differences in
confidence intervals. Finally, in order to verify if the(5) remove the days-of-the-week effect. Consequently,

unit root test to the estimated residuals. Any evidence ghecial holidays.

nonstationarity is an indication that the trend has beenIt is important to mention that the DASARIMA con-
incorrectly modeled. Although misspecification testing is. P . L .

o . .2 Siders that the trend in the load series is stochastic instead

a standard procedure in time series econometrics, it hafs D L X .

Qf deterministic. This is a major difference between the

been neglected in most of the applications in Short'terB]ASARIMA and TLSAR models and mav be of extreme
load forecasting. y

In order to check the forecasting performance of t importance as there is an apparent break in the trend in

TLSAR model in forecasting, we consider a benchmark - out-of-sample period.
model as describe in Section IV.

IV. THE BENCHMARK MODEL 5The lag operator is defined &/y: = y;— ;.

The benchmark model considered in this paper is
a Seasonal Integrated Autoregressive Moving Average
(SARIMA) model with dummy variables to correct the
effects of holidays and special days. Several authors use
similar models as benchmarks; see, for example, [35]

TABLE I
TYPES OF DAYS USED IN THEDASARIMA MODEL.

and [4] among others. Code Description
Definition 2: The time seriesL; 4 representing the 1 Weekdays (Sun, Mon, Tue, Wed, Thu, Fri, and Sat)
load of the hourh, h = 1,...,24 and dayd, d = 2 Holiday (official or religious)
1,...,D, D is the total number of observations, follow 3  Working day after a holiday
Dummy-Adjusted SARIMA (DASARIMA) model if ~ & Working day before a holiday
a y-Ad 5 Working day between a holiday and a weekend
_ AA T, o — 6 Saturday after a holiday
(1—¢1B) A7A;Lh’d 3 . (4) 7 Work only during the mornings
(14 61B + 0,B* + 03B°)(1 + BB )ep 4, 8  Work only during the afternoons
9 Special holidays

4We consider the standard 5% significance level.



V. THE EXPERIMENT Figure 3 shows the sum of the estimated harmonics

The experiment considered in this paper consists éﬂr each IhOItJr ththe day. As can tf)f(_a _se(int, for rr&olstt;he
computing from 1- to 7-days ahead, multi-step forecas Qurs Ion )t/t woAarn;?nlcs hare Sl; ';'iz 1(; Tg ;1 tr?
of the hourly electric load using both the TLSAR and''"t& Patiern. Apart irom hours 7, ©,24-15, 16-21, €
DASARIMA models. Section V-A shows the specifi-ann_ual pattern is _rather clear. First, t_here is a “summer
cation and estimation results. Forecasting results ah'me that begins more or less in November and

comparisons are described in Section V-B. All modefd°€S approximately until March. The “winter regime

are estimated in a computer with a Pentium V 2Etarts in April and ends in July as the temperatures

GHz processor with 1 Gb of Ram memory and runnin sually start to raise in August. However, the extremely
engh temperatures (over 30 degrees Celsius) are more

Matlab. The computational time to specify and estimat
b pecify ommon from November to March. For that reason,

all the 24 models are negligible, not being over 6 . . o . . .
there is a “spring regime” starting approximately in
seconds. L2 X .
August and ending in October. This pattern is clearer
during the night, mostly because of the use of air-
A. Specification and Estimation conditioning. Hours 18-20 are quite different because of

Table 11l shows, for each hour of the day, the estimatetfVeral factors: Public lightning, daylight saving period,
number of harmonics and the estimated parameters gidays, etc. _
the autoregressive model with their White's standard- 1able IV shows the estimated results for the
errors robust to heteroskedasticity. All autoregressifé*SARIMA model.
coefficients are significant at a 5% level. The table also
shows thep-value of the Ljung-Box test for no errorg Forecasting
serial autocorrelation of order 7 [31]. It is clear that

the errors are not serially correlated, which indicates 11iS Section reports the forecasting results for both
correct specification of the lags. Although not showH€ TLSAR and DASARIMA models. One of the most
in the Table, the Phillips-Perron test strongly rejecllsl.seq measure Of, forecasting accuracy in the load fore-
the null of nonstationarity (unit-roots) for all the seriest@sting literature is the Mean Absolute Percentage Error

indicating that the linear detrending has successfulSMA,PE) (see [39] and [35]), which measures the pro-
removed the trend from all the 24 seriés The p- ortionality between the error and the observed load.
values of the neural network linearity test proposed AN important point deserves attention. Several authors

[32] with the heteroskedasticity correction discussed #3€€ for example, [39]) achieve MAPEs as low as
[33] are also reported in Table IIl. At a 5% Ievel,2% yvhen predicting the total daily load, but results
the null of linearity is rejected, although not strongly®! different models cannot be compared on different
only for hours 10, 13, and 14. When a 1% level igatqsets because_ of the differences among Ioad curves
considered, there is no evidence of nonlinearity for ary) different countries. For example, a load profile of a
untry with tropical weather, such as Brazil, is distinct

series, apart from hour 14. For those series, a neu ik ited Kinad i
network model is estimated with Bayesian regularizatioflrlOm one like USA or United Kingdom. Hence, |

in conjunction with the Levenberg-Marquadt algorithmfjifferent datasets are E‘Sed' the same model(s) must be
ed, and the comparison should be made among data

see [37] and [38]. However, the forecasting results at®
inferior from the ones from the linear model, and argets and not models. If the researcher wants to compare

thus omitted for the sake of conciseness. A simildf'€ Performance of different models, the same data with

result has been reported in the literature by Darbelld}¢ Same forecasting period must be used.

and Slama [35]. The authors have found that the short-AS 10 the present dataset, Tables V-VII show the
term evolution of the Czech electric load is primarily/APES for one- to seven-days-ahead for the years of
a linear problem. On the other hand, when conditiond?99 and 2000, both for the TLSAR model and the
heteroskedasticity is tested using Engle’s ARCH LM teSASARIMA benchmark specification. The bold figures

[34], the null hypothesis of homoskedasticity is strongl{f’dicate which model attains the lowest MAPE. By
rejected for all series, indicating the presence of timdSPection of the tables, it is clear that the TLSAR model
gutperforms the benchmark for all hours when one-step-

varying conditional variances. In terms of estimation an ) -
point forecasts, this is not a drawback. However, in ord ead forecasts are considered. The benchmark is better

to compute confidence intervals for the future loads it 5@ the TLSAR model only during the night and when

important to take the conditional heteroskedasticity int§©re than one-step-ahead forecasts are evaluated. The
account. superiority of the proposed model over the DASARIMA

specification is huge when the middle hours are ana-
SDetailed results can be obtained from the authors. lyzed. For example, consider hour 13 for 1999 (Table



TABLE Il
ESTIMATED PARAMETERS FOR THETLSAR MODEL.

Hour  Number of Harmonics &5 & & &3 &1 &= &5 & Ljung-Box NN

1 2 —0.052 0.855 —0.137 - 0.046 - - 0.057 0.982 0.318
(2.443) (0.023) (0.026) (0.018) (0.015)

2 2 —0.082 0.875 —0.148 - 0.044 - - 0.058 0.936 0.226
(2.321) (0.023) (0.027) (0.018) (0.015)

3 2 —0.067 0.912 —0.181 - 0.051 - - 0.052 0.943 0.456
(2.174) (0.023) (0.026) (0.018) (0.015)

4 2 —0.081 0.924 —0.191 - 0.056 - — 0.049 0.922 0.322
(2.080) (0.022) (0.026) (0.018) (0.015)

5 2 —0.083 0.933 —0.199 - 0.060 - - 0.047 0.702 0.306
(1.991) (0.022) (0.025) (0.017) (0.014)

6 2 —0.103 0.916 —0.175 - 0.054 - - 0.053 0.791 0.145
(1.886) (0.022) (0.025) (0.018) (0.014)

7 5 —0.164 0.814 —0.090 - 0.047 - - 0.068 0.995 0.068
(1.773) (0.022) (0.023) (0.018) (0.015)

8 3 —0.136 0.721 - - - - - 0.086 0.335 0.659
(1.770) (0.018) (0.014)

9 2 —0.140 0.660 - - - - - 0.115 0.972 0.424
(1.972) (0.022) (0.015)

10 2 —0.164 0.610 - - - - - 0.143 0.645 0.038
(2.092) (0.024) (0.016)

11 2 —0.211 0.577 - - - - - 0.156 0.988 0.094
(2.169) (0.026) (0.016)

12 2 —0.219 0.583 - - - - - 0.159 0.958 0.113
(2.135) (0.026) (0.016)

13 2 —0.224 0.592 - - - - - 0.154 0.911 0.027
(2.165) (0.025) (0.016)

14 3 —0.201 0.582 —0.004 0.042 - - - 0.138 0.940 0.001
(2.302) (0.034) (0.026) (0.019) (0.015)

15 3 —0.219 0.588 —0.007 0.045 - - - 0.130 0.884 0.133
(2.402) (0.033) (0.026) (0.019) (0.014)

16 2 —0.229 0.611 - - - - - 0.135 0.683 0.090
(2.363) (0.023) (0.015)

17 2 —0.267 0.555 - - 0.047 - - 0.136 0.972 0.146
(2.367) (0.026) (0.022) (0.017)

18 1 —0.283 0.519 - - 0.084 - - 0.127 0.886 0.282
(2.167) (0.023) (0.024) (0.017)

19 5 —0.318 0.597 - - 0.072 - 0.043 0.092 0.410 0.393
(1.887) (0.021) (0.021) (0.020) (0.018)

20 6 —0.291 0.641 - - 0.063 - - 0.110 0.661 0.053
(1.672) (0.017) (0.016) (0.014)

21 3 —0.215 0.706 —0.043 0.049 - - 0.056 0.077 0.862 0.457
(1.654) (0.027) (0.026) (0.018) (0.018) (0.018)

22 2 —0.210 0.784 —0.080 - 0.045 - 0.031 0.058 0.787 0.101
(1.891) (0.023) (0.023) (0.017) (0.020) (0.019)

23 2 —0.185 0.825 —0.121 - 0.054 - - 0.058 0.938 0.382
(2.201) (0.022) (0.023) (0.017) (0.015)

24 2 —0.163 0.858 —0.144 - 0.046 - - 0.059 0.815 0.388
(2.374) (0.021) (0.024) (0.017) (0.015)

V). The MAPEs of the TLSAR model range from 2.86%efer to days. As the primary data are hourly, one must
to 3.56%, while the MAPEs of the DASARIMA modelinterpret as 24h-steps-ahead, so tha2,...,7 daily

go from 5.04% to 15.72%. Considering the same hosteps ahead actually correspon@4048, . . ., 168 hourly

for year 2000 (Table VI) the results do not differ muchsteps ahead. In practice, it would be interesting to use the
The MAPEs of the TLSAR specification are betweemodel proposed here and the benchmark for the hours
3.8% and 4.6% while the ones from the benchmark aamd time horizons in which each one fares better, or
from 5.6% to 17.12%. This superiority of the TSLAReven in a combined way. However, forecast combination
model is also confirmed by the average figures shovig beyond the scope of this paper. Confidence intervals
at the bottom of the tables. One interesting point is thatay be computed taking into account the conditional
during the peak hours (19-21) the TSLAR model attainseteroskedasticity. One way of proceeding is estimat-
its lowest MAPEs. Comparing the results between thag a GARCH (Generalized Autoregressive Conditional
years, we do not see a difference in the comparativeteroskedastic) model [29]. Another option is to use a
performance between the models. However, the resuftock bootstrap [40] or the stationary bootstrap [41] to
in 2000 are slightly worse than the ones obtained bysample the residuals.

the same model in 1999, mainly because the linearTable VIII shows the MAPEs for each type of day.
trend is not re-estimated but seems to suffer a brealks can be seen, the forecast performance of the TSLAR
in the former year, as explained before. Even so, thgodel do not differ among different standard weekdays
results are good and are qualitatively equal to the ye@rom Sunday to Saturday). However, as expected, during
of 1999. This shows that the TSLAR model is quitetnomalous days, such as Christmas, New Years-Eve,
robust. It is important to note that when we speak afarnival, etc., the MAPEs are higher. Table IX shows
h-steps-ahead, we consider the sectional data and hetie results according to the month in order to check
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Fig. 3. Estimated harmonic shape for each hour.

if there are huge differences in performance dependingodel for three reasons: First, the area covered by
on the time of the year. It is evident that the forecasthe electric utility considered in this paper represents
are worse during the warmer months, like January a2%% of the province of Rio de Janeiro, which includes
February. Furthermore, the best performance is attaindifferent sub-regions with completely distinct temper-
during the colder months (May—July). atures and the available hourly temperature measures

Finally, comparing our results with the ones obtainedo not cover all that diversity in temperature ranges.
by Soares and Souza [15], who estimate a generaliz8dcond, the available dataset has a vast number of
long memory model for the same dataset using a slightbwtliers and missing data. Finally, it is well known that
different time span, our results compare favorably.  hourly temperature forecasts in tropical environments
are not reliable, specially for a few days ahead. A
forecasting exercise against a specific class of Seasonal
ARIMA models (the benchmark) is highly favorable to

In this paper we considered a two-level model fopur proposal. This exercise included the entire years
the hourly electric load demand from the area covereg 1999 and 2000, forecasting one to seven-days-ahead
by a specific utility in the southeast of Brazil. This24, 48, ..., 168 hours ahead), using models estimated
model applies to sectional data, that is, the load for eagh to the end of 1998.
hour of the day is treated separately as a series. This
model can be applied to other utilities presenting similar
seasonal patterns, such as many in Brazil and other
countries in Latin America and Africa. As previously 1) p. Bunn and E. Farmer, “Economic and operational context of
discussed, weather variables were not considered in the electric load prediction,” inlComparative Models for Electrical

VI. CONCLUSIONS
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TABLE V
FORECASTING COMPARISON FOR EACH HOUR OF THE DAY FOR999. MEAN ABSOLUTE PERCENTAGE ERROR FROM THELSAR AND
SARIMA MODELS

TLSAR SARIMA
Hour Forecasting horizon Forecasting horizon
1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 376 512 567 582 595 6.07 6.18 393 493 563 5.84 5.83 5.63 472
2 368 517 574 593 6.06 6.19 6.33 3.85 4.79 5.37 5.50 5.45 5.39 4.66
3 360 506 567 589 59 6.10 6.25 3.77 4.65 5.30 5.43 5.28 521 4.49
4 363 493 554 576 587 6.01 6.15 3.72 4.65 5.31 5.46 5.38 5.23 4.43
5 338 455 514 537 547 562 573 3.47 4.24 5.02 5.21 5.18 4.89 4.08
6 3.08 415 463 484 493 507 517 3.34 4.38 5.34 5.93 5.97 542 4.36
7 283 360 394 4.06 413 420 427 3.69 6.26 8.26 9.13 9.20 8.42 6.32
8 269 328 353 361 367 374 380 4.09 8.43 11.04 11.8 11.99 11.38 8.38
9 274 329 347 351 356 359 3.60 4.63 1033 13.18 13.76 13.98 13.62 10.05
10 276 328 346 346 349 350 351 491 1138 1442 1489 1507 14.84 11.05
11 276 328 345 344 344 346 347 495 1181 1519 1548 1567 1557 11.40
12 271 321 332 333 333 333 334 5,02 12.06 1561 1581 1593 1596 11.58
13 286 338 352 355 355 356 3.56 504 1169 1532 1564 1572 1550 11.19
14 311 371 388 392 390 390 3.89 510 1201 1591 16.14 16.20 16.04 1145
15 323 384 402 407 4.08 4.07 407 516 1245 16.78 17.08 17.16 16.89 11.79
16 318 370 397 399 401 4.01 4.02 511 1240 16.92 17.33 17.34 16.93 11.70
17 304 350 372 376 378 379 380 482 1157 16.16 16,57 16.64 16.11 10.97
18 281 325 343 351 353 354 355 4.27 8.97 11.95 1246 1256 12.19 8.65
19 273 327 341 346 351 354 356 3.54 6.04 7.55 8.02 8.01 7.89 6.12
20 233 276 280 282 287 289 293 3.07 4.90 5.63 5.98 5.94 5.77 4.88
21 231 278 289 294 292 295 3.02 2.85 4.47 5.44 5.84 5.82 5.44 4.42
22 256 318 345 346 344 347 353 3.08 4.85 6.21 6.73 6.70 6.09 4.76
23 350 435 468 469 467 473 482 4.19 5.66 6.96 7.43 7.33 6.85 5.47
24 471 585 628 6.36 635 6.43 6.56 5.42 6.60 7.57 7.93 7.95 7.54 6.43
Minimum 231  2.76 2.8 282 287 289 293 2.85 4.24 5.02 5.21 5.18 4.89 4.08
Average 3.08 385 415 423 427 432 438 4.21 7.9 10.09 10.48 10.51 10.20 7.64
Maximum 471 585 6.28 6.36 6.35 643 6.56 542 1245 1692 17.33 17.34 16.93 11.79
TABLE VI

FORECASTING COMPARISON FOR EACH HOUR OF THE DAY FOR000. MEAN ABSOLUTE PERCENTAGE ERROR FROM THELSAR AND
SARIMA MODELS

TLSAR SARIMA
Hour Forecasting horizon Forecasting horizon
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 434 658 751 795 822 830 833 453 5.77 6.55 6.71 6.73 6.65 5.70
2 445 6.70 7.70 820 850 860 8.62 4.53 5.73 6.42 6.55 6.54 6.50 5.65
3 430 656 7.67 820 850 860 8.63 4.44 558 6.27 6.36 6.35 6.33 5.48
4 418 634 749 798 830 840 845 4.35 5.30 6.05 6.15 6.15 6.06 5.24
5 399 6.18 7.24 772 803 814 818 4.24 5.07 5.82 5.92 5.97 5.87 5.11
6 374 566 661 706 731 741 748 4.14 5.10 6.21 6.48 6.46 6.16 5.14
7 355 506 574 613 635 645 651 4.47 6.93 8.68 9.12 9.16 8.72 6.57
8 329 455 515 542 558 564 569 4.70 9.08 1141 12.08 1213 11.58 8.61
9 323 436 482 499 511 515 517 492 1069 1348 1428 1433 13.86 10.25
10 321 420 456 465 470 473 475 524 1201 15.02 1580 1585 1552 11.48
11 320 412 444 452 457 459 460 539 1269 16.11 16.81 16.79 16.53 11.99
12 327 406 441 447 451 452 453 560 12.78 16.47 17.14 17.12 16.84 12.10
13 328 417 448 454 457 459 459 540 1256 16.27 16.94 1693 1649 11.71
14 352 450 483 490 493 493 494 555 1285 16.80 1765 17.60 17.09 12.11
15 361 468 508 515 517 518 518 574 1329 17.70 1840 1845 17.89 1241
16 361 472 511 522 526 526 526 577 1317 1777 1847 1857 17.90 12.29
17 350 442 471 475 479 478 479 539 1219 16.65 17.26 17.39 16.63 11.25
18 329 4.04 432 442 447 448 448 4.79 9.24 12.18 12.66 12.68 12.09 8.67
19 315 377 412 426 431 432 433 4.03 6.43 7.81 8.13 8.14 7.80 6.18
20 285 348 375 382 391 393 395 3.47 5.15 5.74 5.95 6.05 5.80 4.99
21 272 358 393 409 418 422 423 3.17 4.89 5.67 5.84 5.95 5.69 4.56
22 3.04 422 476 500 513 518 519 3.36 5.30 6.61 6.92 6.90 6.56 4.92
23 368 526 588 621 6.39 6.43 6.43 3.99 5.64 6.95 7.28 7.24 6.79 5.30

24 426 6.08 696 738 762 767 7.70 4.50 5.79 6.78 7.09 6.98 6.70 5.59

Minimum 272 348 375 382 391 393 3.9 3.17 4.89 5.67 5.84 5.95 5.69 4.56
Average 355 489 547 571 585 590 592 4.65 8.47 10.64 11.08 11.10 10.75 8.05

Maximum 445 6.70 7.70 820 850 860 8.63 577 1329 17.77 1847 1857 1790 1241
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TABLE VI
FORECASTING COMPARISON FOR EACH HOUR OF THE DAY FOR999AND 2000. MEAN ABSOLUTE PERCENTAGE ERROR FROM THE
TLSAR AND DASARIMA MODELS

TLSAR DASARIMA
Hour Forecasting horizon Forecasting horizon
T 2 3 7 5 6 7 1 2 3 4 5 6 7
1 405 58 659 689 709 719 7.26 4.23 5.35 6.09 6.27 6.28 6.14 5.21
2 407 593 6.72 707 728 740 7.47 4.19 5.26 5.90 6.03 5.99 5.95 5.16
3 395 581 667 704 723 735 744 4.10 5.12 5.79 5.90 5.82 5.77 4.99
4 391 564 651 687 7.09 721 730 4.04 4.97 5.68 5.80 5.77 5.65 4.83
5 369 537 619 654 675 688 6.96 3.85 4.66 5.42 5.56 5.57 5.38 4.59
6 341 491 562 595 6.12 624 6.33 3.74 474 577 6.21 6.21 5.79 4.75
7 319 433 484 510 524 533 539 4.08 6.59 8.47 9.12 9.18 8.57 6.45
8 299 392 434 451 462 469 475 439 876 1123 11.94 1206 1148 8.50
9 299 382 414 425 433 437 439 478 1051 1333 1402 1416 13.74 10.15
10 299 374 401 406 410 412 413 508 1170 1472 1535 1546 1518 11.27
11 298 370 394 398 401 403 403 517 1225 1565 16.15 1623 16.05 11.70
12 299 364 386 390 392 393 394 531 1242 16.04 16.47 1653 1640 11.84
13 3.07 378 400 405 406 407 408 522 1212 1579 1629 1633 16.00 11.45
14 332 411 436 441 442 442 442 533 1243 1636 1690 1690 1656 11.78
15 342 426 455 462 463 462 463 545 1287 1724 1774 17.80 17.39 12.10
16 339 421 454 461 463 464 464 544 1278 1735 1790 1795 17.42 11.99
17 327 396 421 426 429 429 430 510 1188 16.40 16.92 17.01 16.37 11.11
18 3.05 364 388 396 400 401 402 453 911 12,07 1256 1262 1214 8.66
19 294 352 377 38 391 393 395 379 6.23 7.68 8.07 8.07 7.84 6.15
20 259 312 328 332 339 341 344 3.27 5.03 5.69 5.96 5.99 5.78 4.93
21 251 318 341 351 355 359 362 3.01 4.68 5.56 5.84 5.89 5.56 4.49
22 280 370 410 423 428 433 436 3.22 5.08 6.41 6.82 6.80 6.33 4.84
23 359 480 528 546 554 558 5.63 409 565 6.95 7.36 7.29 6.82 5.39
24 448 597 662 687 698 7.057.13 496  6.19 7.17 7.51 7.46 7.12 6.01
Minimum 251 312 328 332 339 341 344 3.01 4.66 5.42 5.56 5.57 5.38 4.49
Average  3.32 437 481 497 506 511 515 443 818 1037 1078 10.81 1048 7.85
Maximum 448 597 672 7.07 728 7.40 7.47 545 1287 17.35 17.90 17.95 1742 12.10
1999
Minimum 231 276 28 282 287 289 293 2.85 4.24 5.02 5.21 5.18 4.89 4.08
Average 3.08 385 415 423 427 432 438 4.21 7.9 10.09 1048 1051 10.20 7.64
Maximum 471 585 628 6.36 6.35 6.43 6.56 542 1245 16.92 17.33 17.34 1693 11.79
2000
Minimum 272 348 375 382 391 393 395 317 489 5.67 5.84 5.95 5.69 4.56
Average 355 489 547 571 585 590 592 465 847 1064 11.08 11.10 1075 8.05
Maximum 445 670 7.70 820 850 860 8.63 577 1329 17.77 1847 1857 17.90 12.41
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TABLE VI
FORECASTING COMPARISON FOR EACH TYPE OF DAY

1999 and 2000
Forecasting horizon
Day 1 2 3 4 5 6 7

Sunday 3.27 4.02 4.60 4.81 4.77 4.77 4.77
Monday 3.93 471 471 4.94 5.12 5.18 5.20
Tuesday 2.64 4.55 4.84 4.84 4.96 5.09 5.13
Wednesday 2.71 3.63 455 464 465 475 483
Thursday 3.11 4.13 4.62 5.01 5.08 5.05 5.16
Friday 2.84 4.05 451 471 4.93 4.94 4.96
Saturday 3.03 4.07 459 469 478 483 4.85
Others 521 6.03 6.23 625 635 645 6.46

minimum 264 363 451 464 465 475 477
average 334 440 483 499 508 513 517
maximum 521 6.03 623 625 635 645 6.46

1999
Forecasting horizon
Day 1 2 3 4 5 6 7

Sunday 310 353 402 402 394 392 3096
Monday 326 388 385 406 408 415 417
Tuesday 229 375 378 379 394 402 4.07
Wednesday 255 313 387 389 385 395 4.03
Thursday 316 395 424 455 461 458 470
Friday 280 375 405 418 433 440 442
Saturday 285 362 38 393 391 393 3.99
Others 456 471 489 480 484 503 514

minimum 229 313 378 379 385 392 396
average 3.15 396 424 433 438 442 447
maximum 456 471 489 480 484 503 514

2000
Forecasting horizon
Day 1 2 3 4 5 6 7

Sunday 3.46 452 5.21 5.64 5.64 5.65 5.62
Monday 4.60 5.54 5.56 5.82 6.16 6.20 6.24
Tuesday 296 530 584 583 591 610 6.13
Wednesday 2.87 413 523 540 546 554 563
Thursday 3.06 4.33 5.00 5.49 5.57 5.55 5.64
Friday 2.88 433 495 5.23 5.51 5.47 5.49
Saturday 3.19 4.47 5.24 5.38 5.57 5.63 5.62
Others 6.02 856 826 829 830 839 847

minimum 287 413 495 523 546 547 549
average 353 483 541 563 577 582 585
maximum 6.02 856 826 829 830 839 847

[37] D.J. C. MacKay, “Bayesian interpolatiorifeural Computation
vol. 4, pp. 415-447, 1992,
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TABLE IX
FORECASTING COMPARISON FOR EACH MONTH

1999 and 2000
Forecasting horizon

Month 1 2 3 4 5 6 7
Jan 3.58 4.69 5.12 5.28 5.28 5.30 5.34
Feb 3.20 434 476 5.03 5.17 5.14 5.08
Mar 360 480 548 571 586 592 5093
Apr 3.06 423 464 466 462 470 474
May 2.72 3.61 4.09 4.25 4.37 448 455
Jun 2.29 2.80 2.95 3.06 3.09 3.05 3.04
Jul 2.80 3.63 3.82 3.84 3.90 3.91 3.93
Aug 331 453 521 553 573 589 6.02
Sep 3.49 4.66 5.25 5.47 5.61 5.69 5.76
Oct 3.97 5.11 5.57 5.82 5.97 6.10 6.19
Nov 3.82 4.83 5.11 5.28 5.46 5.57 5.66
Dec 390 520 565 564 560 550 547

Minimum 229 280 295 3.06 309 3.05 3.04

Average 331 437 480 496 505 510 514

Maximum 3.97 5.20 5.65 5.82 5.97 6.10 6.19
1999
Forecasting horizon

Month 1 2 3 4 5 6 7
Jan 3.20 3.83 391 3.90 3.88 3.96 4.10
Feb 276 325 332 362 380 381 385
Mar 389 492 551 561 572 580 579
Apr 278 374 402 400 388 396 4.04
May 2.55 3.07 3.45 3.49 3.52 3.66 3.77
Jun 2.57 2.89 291 2.93 2.97 2.96 2.96
Jul 2.49 3.10 3.03 2.90 2.87 2.89 2.90
Aug t 286 358 375 379 382 386 388
Sep 3.11 416 4.68 4.77 472 479 4.87
Oct 3.73 474 5.21 5.52 5.71 5.86 5.99
Nov 3.87 4.97 5.45 5.73 5.94 6.11 6.29
Dec 3.16 3.90 438 4.38 428 411 4.06

Minimum 2.49 2.89 291 2.90 2.87 2.89 2.90

Average 3.08 3.84 413 422 4.26 431 437

Maximum 3.89 4.97 5.51 5.73 5.94 6.11 6.29
2000
Forecasting horizon

Month 1 2 3 4 5 6 7
Jan 396 555 632 666 668 6.65 6.58
Feb 362 540 6.15 640 650 642 6.27
Mar 332 468 545 580 6.00 6.03 6.07
Apr 334 471 5.25 5.32 5.37 5.45 5.45
May 2.89 4.15 4.72 5.02 5.22 5.30 5.33
Jun 2.02 2.72 2.99 3.19 3.20 3.15 3.12
Jul 312 415 460 478 493 493 4.96
Aug 3.77 5.48 6.67 7.27 7.64 7.92 8.17
Sep 3.88 5.16 5.83 6.17 6.49 6.58 6.64
Oct 4.21 5.48 5.94 6.12 6.23 6.33 6.40
Nov 377 470 476 482 498 502 504
Dec 464 649 692 690 692 6.89 6.89

Minimum 2.02 2.72 2.99 3.19 3.20 3.15 3.12

Average 355 489 547 570 585 589 5091

Maximum 464 649 692 7.27 764 7.92 8.17
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