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Modeling and Forecasting Short-Term Electric
Load Demand: A Two-Step Methodology

Lacir J. Soares and Marcelo C. Medeiros

Abstract— The goal of this paper is to develop a fore-
casting model for the hourly electric load demand in the
area covered by an utility company located in the southeast
of Brazil. A different model is constructed for each hour
of the day. Each model is based on a decomposition of
the daily series of each hour in two components. The
first component is purely deterministic and is related to
trends, seasonality, and special days effect. The second one
is stochastic and follows a linear autoregressive model.
Nonlinear alternatives may be also considered in the
second step. The multi-step forecasting performance of
the proposed methodology is compared with a benchmark
model and the results indicate that our proposal is a useful
tool for electric load forecasting in tropical environments.

Index Terms— Short-term load forecasting, time series,
seasonality, linear models, SARIMA, decomposition.

I. I NTRODUCTION

ONE time series with major academic and practical
interest is the hourly electric load demand series.

From the academic point of view, the interest is remark-
able because it has a number of interesting features, such
as, trends, annual and daily seasonal patterns, influence
of external variables, and possible nonlinearities. In
addition, load series have been used along the years as a
benchmark data set for different forecasting models and
methods.

From the applied point of view, short-term load fore-
casting is a very important task for the electric utilities
in order to manage the production, the transmission, and
the distribution of electricity in a more efficient and
secure way. As an example of the importance of accurate
forecasts, it was estimated that an increase of only1% in
forecast error (in 1984) caused an increase of 10 million
pounds in operating costs per year for one electric utility
in the United Kingdom [1].

Over the years, different forecasting techniques have
been developed to model electric load demand both
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in the classical time series literature (See [2] for a
comprehensive review or [3], [4], [5], [6], [7] for recent
applications) and in the machine intelligence community;
see [8] and [9] for a recent survey or [10] for a successful
application.

In this paper, we propose a methodology based solely
on rigorous statistical arguments to model and forecast
the hourly electric load demand of part of the southeast
of Brazil. The area covered by the electric utility repre-
sents 25% of the province of Rio de Janeiro, totalizing
11,132 km2 with a population of more than ten million
people. The energy consumption corresponds to 75% of
the total consumption in the Rio de Janeiro province. It is
worth mentioning that this is one of the most important
regions for tourism in Latin America. We adopt the
same strategy as in [11], [12], [13], [14], and [15],
treating each hour as a separate time series, such that
24 different models are estimated, one for each hour of
the day. The model considered in the paper is based
on a two-step decomposition of the load series. In the
first step, a component based on Fourier series, dummy
variables, and a linear trend, is estimated to describe
the long-run trend, the annual seasonality, the effects of
the days of the week, and any other special days effect
such as public holidays. In the second step, different
linear AR (autoregressive) models are estimated and
lags are selected based on information criteria. The type
of decomposition considered here is not new. Similar
proposals have been discussed in the literature during
the last two decades; see, for example, [16], [17], and
[4]. However, we contribute to the literature in several
different directions. First, to the best of our knowledge,
the way in which we combine different aspects of
classical techniques is new and relies only on rigorous
classical statistical arguments. Recently, [14] proposed a
similar approach, but their methodology is fully based
on Bayesian statistics and it is computationally very
demanding. Our methodology is simpler and can be used
efficiently for real-time on-line load forecasting. Second,
although very simple, the model proposed in this paper
is robust and very flexible. For example, confidence
intervals may be easily constructed without assuming
any particular distribution for the errors of the model. In
addition, it is important to stress that different models,
such as neural networks or other nonlinear models,
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Fig. 1. Hourly loads from January 1, 1990 to December 31, 2000.

can be considered in the second step of the model-
ing strategy. However, we show in the paper that the
nonlinear effects are caused by time-varying conditional
variance and are not present in the conditional mean.
Thus, the linear model is adequate to describe the dataset
considered here. Exogenous variables, when available,
may be also easily incorporated into the model. Finally,
the model described in this paper is particularly useful
for short-term load forecasting in tropical environments,
where reliable temperature forecasts are not available.

The plan of the paper is as follows. Section II de-
scribes the dataset used in the paper. Section III presents
the model and the modeling strategy. The benchmark
model is discussed in Section IV. Section V-A shows
the modeling results and Section V-B presents the fore-
casting results. Final remarks are made in Section VI.

II. T HE DATA

In this paper we consider a dataset containing hourly
loads from January 1, 1990 to December 31, 2000. The
period from January 1, 1990 to December 31, 1998 is
used for estimation purposes (in-sample) and the data
concerning the years 1999 and 2000 are left for forecast
evaluation (out-of-sample). The data were obtained from
an utility company from Rio de Janeiro, Brazil and are
shown in Figures 1 and 2. This is the same dataset
considered in [15]. Figure 1 shows the hourly loads for
the entire sample and Figure 2 shows the daily loads for
each hour of the day during the in-sample period.

III. T HE MODEL

A. Mathematical Definition

Our approach to model the electric load time series
is based on a two-step procedure for each hour of the
day. The load is modeled as a sum of two components.
The first component is deterministic, representing the
trend, the annual cycle, and the effects of different types

of days. The second component is described as a low-
order linear autoregressive (AR) model. As discussed in
the Introduction, two-level models have been considered
extensively in the literature.

First, to remove the daily cycle we follow the ideas
of [13] 1 by considering a separate model for each hour
of the day, which avoids modeling complicated intra-
day patterns in the hourly load, commonly called load
profile, and enables each hour to have a distinct weekly
pattern; see also [11], [18], [12], [19], [14], and [15].
This last feature is desirable, since it is expected that
the day of the week will affect more work-time hours,
when shops and industry may or not be open, compared
to the first and last hours of the day, when most people
are expected to be asleep. In [8], the authors report that
difficulties in modeling the load profile are common to
several load forecasting models.

The data seem to have a linear positive trend; see
Figure 1. This is corroborated by the traditional Phillips-
Perron unit-root test [20], where the null hypothesis of
a stochastic trend (unit-root) is strongly rejected for all
the 24 individual series. Furthermore, the positive trend
in the load is correlated with economic and demographic
factors. Hence, it is expected that the trend has a high
positive correlation with the potential Gross Domestic
Product (GDP), which in the case of Brazil is known
to be almost linear; see [21] for a discussion. All
that said, we model the trend as a deterministic linear
function of time. Most papers in the load forecasting
literature take first-order differences of the load series
without previously testing for unit-roots; see [22] for
example. This has a major drawback. When the trend is
deterministic, taking first-differences introduces a non-
invertible moving average component in the data gener-
ating process, which causes serious estimation problems.
Furthermore, there is no linear autoregressive model that
is able to correctly describe the dynamics of the data; see
the discussion in Chapter 4 of [23]. Finally, it seems that
there is a break in the trend after 1999. As this break
belongs to the out-of-sample period, we ignore it during
the specification and estimation of the proposed model.
This is important in order to test the robustness of the
proposed model.

As shown in Figures 1 and 2, the time-series displays
a clear daily, weekly, and annual seasonality. Observing
Figure 2 we can see that the annual seasonality is more
apparent during the night. This is mainly due to the fact
that during the night the effects of the days-of-the-week
are less significant. The weekly seasonality – effects of
the days of the week and special days, such as holidays –
is modeled with dummy variables. Several authors claim

1The model described in [13] was the top first model in a load
forecast competition organized by Puget Sound Power and Light
Company, USA.
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Fig. 2. Load of each hour from January 1, 1990 to December 31, 1998.

that Tuesdays, Wednesdays, Thursdays and Fridays can
be modeled as a single type of day. Since we have a large
amount of data we prefer to model each day as a dummy
variable. We also consider dummies for holidays, part-
time holidays, and special days. Table I gives summary
of the variables used. Cottet and Smith [14] have adopted
a similar approach.

The annual cycle is modeled as a sum of sines and
cosines, as in a Fourier decomposition. The motivation
for that can be easily seen by the graphical inspection
of Figure 2. The number of trigonometric functions is
determined by the Bayesian Information Criteria (SBIC)
proposed by Schwarz [24]. Schneider, Takenawa, and
Schiffiman [25] and El-Keib, Ma, and Ma [26] have
considered the same strategy. However, they have applied
the Fourier decomposition to a single hourly series in-
stead of 24 different daily series. Furthermore, they have
determined the number of terms in the decomposition
in a different way than the one considered here. More
recently, Cotted and Smith [14] have used trigonometric
functions to model the seasonality in the load series. The

authors have also considered a distinct model for each
hour of the day, but they have kept fixed the number of
sines and cosines. In addition, their approach was based
on Bayesian statistics.

We do not include external variables, such as those
related to temperature. This is a point to draw attention
to, as some temperature measures (maxima, averages,
and others) could improve substantially the prediction
if used, particularly in the summer, when the air condi-
tioning appliances constitute great part of the load. The
reasons for not using weather variables are threefold.
First, as mentioned in the Introduction, the area covered
by the electric utility considered in this paper represents
25% of the province of Rio de Janeiro, totalizing 11,132
km22, which includes sub-regions with temperatures that
range from 10 degrees Celsius during the winter to
24 degrees during the summer; as well as other sub-
regions with temperatures that varies from 23 (winter)
to 42 (summer) degrees Celsius. For example, in a given

2The total area of the Rio de Janeiro province is 43,910 km2.
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day and at the same time, it is common to observe
two or more sub-regions with temperature differences
around 10 degrees Celsius. However, the available hourly
temperature measures are collected at few points in the
city of Rio de Janeiro (not the province) and do not
give a complete picture of the temperature profile of
the covered area. Second, the available data have a
large number of deficient observations, including outliers
and missing values, which distort the results and do
not bring any relevant contribution to the forecasting
performance of the model3. Finally, it is well known,
that the forecasting of hourly temperatures in tropical
environments is not precise, specially for a few days
ahead. All that said, we decide not to include the
temperature in our model. Nevertheless, it should be
mentioned that whenever available, including weather
variables in the model is straightforward.

The model proposed in this paper is called the Two-
Level Seasonal Autoregressive (TLSAR) model and is
defined as:

Definition 1: The time seriesLh,d representing the
load of the hourh, h = 1, . . . , 24 and dayd, d =
1, . . . , D, D is the total number of observations, follow
a Two-Level Seasonal AutoRegressive (TLSAR) model
if

Lh,d = LP
h,d + LS

h,d, (1)

where

LP
h,d = α0 + ρd +

H∑
r=1

αr cos (ωrd)

+ βr sin (ωrd) +
K∑

i=1

µiδi

(2)

is the “potential load”,

LS
h,d = φ′zh,d + εh,d (3)

is the “irregular load”,αr cos (ωrd) + βr sin (ωrd) is
known as therthharmonic, ω = 2π/365, δi, i =
1, . . . , K are dummy variables identifying the days of
the week, public holidays, special days, etc.α0, ρ, αr,
βr, r = 1, . . . , H, and µi, i = 1, . . . , K are unknown
parameters. The vectorzh,d is formed by constant and
a subset ofp lags of LS

h,d, φ ∈ Rp+1 is a vector of
unknown parameters andεh,d is an error term.

We make the following assumption about the error
term.

Assumption 1:The sequence of random variables
{εh,d}, h = 1, . . . , 24, is drawn from a continuous (with
respect to Lebesgue measure on the real line), positive
everywhere density, and bounded in a neighborhood of
0. Furthermore,E(εh,d|Fd−1) = 0 andE(ε2

h,d|Fd−1) =

3In [27], the authors also considered Brazilian data and temperature
was not included in the model.

σ2
h,d < ∞, ∀ t, whereFd−1 is the full information set at

day d− 1.

Two points are important to stress. First, Assumption
1 is weak. As in [28] and [6], we do not assume that
errors are Gaussian. The distribution of the errors may
be skewed and leptokurtic. However, different from these
authors, we allow for possible conditional heteroskedas-
ticity asE(ε2

h,d|Fd−1) is not assumed to be constant; see
[29] for a discussion. Second, although not considered
in this paper, the model for the “irregular load” may
include, if available, other exogenous variables, such
as, for example, hourly temperatures. In addition, the
specification do not need to be linear. In this paper, we
consider a simple linear autoregressive model because
more complicated neural network model do not improve
significantly the forecasting performance.

B. Modeling Strategy

As previously mentioned, the specification and esti-
mation of the TLSAR model is divided in two steps.
Summarizing, the estimation procedure is carried out as
follows:

• For each hour, estimateα0, ρ, αr, βr, andµi, r =
1, . . . , H, andi = 1, . . . ,K in (2) by ordinary least
squares (OLS). The number of harmonics (H) is
determined by minimizing the Schwarz Bayesian
Information Criteria (SBIC) [24]. The number of
dummies (K), representing the different types of
days is kept fixed and equal to 15, as described in
Table I.

• After estimating the “potential load”, we compute

TABLE I

TYPES OF DAYS USED IN THETLSAR MODEL.

Code Description
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday
8 Holiday (official or religious)
9 Working day after a holiday
10 Working day before a holiday
11 Working day between a holiday and a weekend
12 Saturday after a holiday
13 Work only during the mornings
14 Work only during the afternoons
15 Special holidays



5

the residualŝLS
h,d = Lh,d − L̂P

h,d, where

L̂P
h,d = α̂0 + ρ̂d +

H∑
r=1

α̂r cos (ωrd)

+ β̂r sin (ωrd) +
K∑

i=1

µ̂iδi.

• Again, using the SBIC, we select the best com-
bination of lags inzh,d in (3) among the first
seven lags of the series. The autoregressive model
is estimated by OLS and standard errors that are
robust to heteroskedasticity are computed using
White´s estimator [30]. Apart from the intercept,
statistically insignificant lags are excluded from the
model 4.

After a model is estimated, it is submitted to number
of misspecification tests. First, we test for no remaining
serial correlation in the residuals using the Ljung-Box
test [31]. We also test for possible nonlinearities in the
conditional mean, using the neural network test proposed
in [32] with the heteroskedasticity correction discussed
in [33]. This test is important to justify the linear speci-
fication of the “irregular component”. The Engle´s [34]
Lagrange Multiplier test for conditional heteroskedas-
ticy is also considered. Conditional heteroskedasticity,
if present, must be taken into account when computing
confidence intervals. Finally, in order to verify if the
trend is correctly modeled, we apply the Phillips-Perron
unit root test to the estimated residuals. Any evidence of
nonstationarity is an indication that the trend has been
incorrectly modeled. Although misspecification testing is
a standard procedure in time series econometrics, it has
been neglected in most of the applications in short-term
load forecasting.

In order to check the forecasting performance of the
TLSAR model in forecasting, we consider a benchmark
model as describe in Section IV.

IV. T HE BENCHMARK MODEL

The benchmark model considered in this paper is
a Seasonal Integrated Autoregressive Moving Average
(SARIMA) model with dummy variables to correct the
effects of holidays and special days. Several authors use
similar models as benchmarks; see, for example, [35]
and [4] among others.

Definition 2: The time seriesLh,d representing the
load of the hourh, h = 1, . . . , 24 and dayd, d =
1, . . . , D, D is the total number of observations, follow
a Dummy-Adjusted SARIMA (DASARIMA) model if

(1− φ1B) ∆7∆1Lh,d =

(1 + θ1B + θ2B
2 + θ3B

3)(1 + βB7)εh,d,
(4)

4We consider the standard 5% significance level.

where

∆7∆1Lh,d =∆7∆1Lh,d −
M∑

i=1

αiδi,d

−
M∑

i=1

λiδi,d−1 −
M∑

i=1

γiδi,d−7

(5)

and∆j = (1−Bj), j = 1, 7, B is the lag operator5, θk,
k = 1, 2, 3, β, αi, λi, γi, i = 1, . . . , M , are parameters,
δi , i = 1, . . . ,M are dummy variables identifying public
holidays, special days, etc.εh,d is a zero mean error term
with finite second-moment.

The selection of lags is based on the analysis of
the autocorrelation (ACF) and partial autocorrelation
(PACF) functions and one the use of the SBIC. The
ACF and PACF for each∆7∆1Lh,d =, h = 1, . . . , 24,
d = 1, . . . , D, are used to roughly identify the order the
ARMA component, which are further refined with the
SBIC. After estimating the models, the Ljung-Box au-
tocorrelation test is used to verify model adequacy. This
approach is the standard Box and Jenkins methodology
in time series analysis; see [36] for a detailed discussion.

In Table II we illustrate the types of days included
in the DASARIMA model. The classification of days is
different from the one considered in the TLSAR method-
ology because the first and seventh-order differences in
(5) remove the days-of-the-week effect. Consequently,
we have to consider only the anomalous days, such as
special holidays.

It is important to mention that the DASARIMA con-
siders that the trend in the load series is stochastic instead
of deterministic. This is a major difference between the
DASARIMA and TLSAR models and may be of extreme
importance as there is an apparent break in the trend in
the out-of-sample period.

5The lag operator is defined asBjyt = yt−j .

TABLE II

TYPES OF DAYS USED IN THEDASARIMA MODEL.

Code Description
1 Weekdays (Sun, Mon, Tue, Wed, Thu, Fri, and Sat)
2 Holiday (official or religious)
3 Working day after a holiday
4 Working day before a holiday
5 Working day between a holiday and a weekend
6 Saturday after a holiday
7 Work only during the mornings
8 Work only during the afternoons
9 Special holidays
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V. THE EXPERIMENT

The experiment considered in this paper consists in
computing from 1- to 7-days ahead, multi-step forecasts
of the hourly electric load using both the TLSAR and
DASARIMA models. Section V-A shows the specifi-
cation and estimation results. Forecasting results and
comparisons are described in Section V-B. All models
are estimated in a computer with a Pentium V 2.2
GHz processor with 1 Gb of Ram memory and running
Matlab. The computational time to specify and estimated
all the 24 models are negligible, not being over 60
seconds.

A. Specification and Estimation

Table III shows, for each hour of the day, the estimated
number of harmonics and the estimated parameters of
the autoregressive model with their White´s standard-
errors robust to heteroskedasticity. All autoregressive
coefficients are significant at a 5% level. The table also
shows thep-value of the Ljung-Box test for no error
serial autocorrelation of order 7 [31]. It is clear that
the errors are not serially correlated, which indicates
correct specification of the lags. Although not shown
in the Table, the Phillips-Perron test strongly rejects
the null of nonstationarity (unit-roots) for all the series,
indicating that the linear detrending has successfully
removed the trend from all the 24 series6. The p-
values of the neural network linearity test proposed in
[32] with the heteroskedasticity correction discussed in
[33] are also reported in Table III. At a 5% level,
the null of linearity is rejected, although not strongly,
only for hours 10, 13, and 14. When a 1% level is
considered, there is no evidence of nonlinearity for any
series, apart from hour 14. For those series, a neural
network model is estimated with Bayesian regularization
in conjunction with the Levenberg-Marquadt algorithm;
see [37] and [38]. However, the forecasting results are
inferior from the ones from the linear model, and are
thus omitted for the sake of conciseness. A similar
result has been reported in the literature by Darbellay
and Slama [35]. The authors have found that the short-
term evolution of the Czech electric load is primarily
a linear problem. On the other hand, when conditional
heteroskedasticity is tested using Engle´s ARCH LM test
[34], the null hypothesis of homoskedasticity is strongly
rejected for all series, indicating the presence of time-
varying conditional variances. In terms of estimation and
point forecasts, this is not a drawback. However, in order
to compute confidence intervals for the future loads it is
important to take the conditional heteroskedasticity into
account.

6Detailed results can be obtained from the authors.

Figure 3 shows the sum of the estimated harmonics
for each hour of the day. As can be seen, for most the
hours only two harmonics are sufficient to model the
annual pattern. Apart from hours 7, 8,14–15, 18–21, the
annual pattern is rather clear. First, there is a “summer
regime” that begins more or less in November and
goes approximately until March. The “winter regime”
starts in April and ends in July as the temperatures
usually start to raise in August. However, the extremely
high temperatures (over 30 degrees Celsius) are more
common from November to March. For that reason,
there is a “spring regime” starting approximately in
August and ending in October. This pattern is clearer
during the night, mostly because of the use of air-
conditioning. Hours 18–20 are quite different because of
several factors: Public lightning, daylight saving period,
holidays, etc.

Table IV shows the estimated results for the
DASARIMA model.

B. Forecasting

This section reports the forecasting results for both
the TLSAR and DASARIMA models. One of the most
used measure of forecasting accuracy in the load fore-
casting literature is the Mean Absolute Percentage Error
(MAPE) (see [39] and [35]), which measures the pro-
portionality between the error and the observed load.
An important point deserves attention. Several authors
(see, for example, [39]) achieve MAPEs as low as
2% when predicting the total daily load, but results
of different models cannot be compared on different
datasets because of the differences among load curves
in different countries. For example, a load profile of a
country with tropical weather, such as Brazil, is distinct
from one like USA or United Kingdom. Hence, if
different datasets are used, the same model(s) must be
used, and the comparison should be made among data
sets and not models. If the researcher wants to compare
the performance of different models, the same data with
the same forecasting period must be used.

As to the present dataset, Tables V–VII show the
MAPEs for one- to seven-days-ahead for the years of
1999 and 2000, both for the TLSAR model and the
DASARIMA benchmark specification. The bold figures
indicate which model attains the lowest MAPE. By
inspection of the tables, it is clear that the TLSAR model
outperforms the benchmark for all hours when one-step-
ahead forecasts are considered. The benchmark is better
than the TLSAR model only during the night and when
more than one-step-ahead forecasts are evaluated. The
superiority of the proposed model over the DASARIMA
specification is huge when the middle hours are ana-
lyzed. For example, consider hour 13 for 1999 (Table
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TABLE III

ESTIMATED PARAMETERS FOR THETLSAR MODEL.

Hour Number of Harmonics cφ0 cφ1 cφ2 cφ3 cφ4 cφ5 cφ6 cφ7 Ljung-Box NN
1 2 −0.052

(2.443)
0.855
(0.023)

−0.137
(0.026)

– 0.046
(0.018)

– – 0.057
(0.015)

0.982 0.318

2 2 −0.082
(2.321)

0.875
(0.023)

−0.148
(0.027)

– 0.044
(0.018)

– – 0.058
(0.015)

0.936 0.226

3 2 −0.067
(2.174)

0.912
(0.023)

−0.181
(0.026)

– 0.051
(0.018)

– – 0.052
(0.015)

0.943 0.456

4 2 −0.081
(2.080)

0.924
(0.022)

−0.191
(0.026)

– 0.056
(0.018)

– – 0.049
(0.015)

0.922 0.322

5 2 −0.083
(1.991)

0.933
(0.022)

−0.199
(0.025)

– 0.060
(0.017)

– – 0.047
(0.014)

0.702 0.306

6 2 −0.103
(1.886)

0.916
(0.022)

−0.175
(0.025)

– 0.054
(0.018)

– – 0.053
(0.014)

0.791 0.145

7 5 −0.164
(1.773)

0.814
(0.022)

−0.090
(0.023)

– 0.047
(0.018)

– – 0.068
(0.015)

0.995 0.068

8 3 −0.136
(1.770)

0.721
(0.018)

– – – – – 0.086
(0.014)

0.335 0.659

9 2 −0.140
(1.972)

0.660
(0.022)

– – – – – 0.115
(0.015)

0.972 0.424

10 2 −0.164
(2.092)

0.610
(0.024)

– – – – – 0.143
(0.016)

0.645 0.038

11 2 −0.211
(2.169)

0.577
(0.026)

– – – – – 0.156
(0.016)

0.988 0.094

12 2 −0.219
(2.135)

0.583
(0.026)

– – – – – 0.159
(0.016)

0.958 0.113

13 2 −0.224
(2.165)

0.592
(0.025)

– – – – – 0.154
(0.016)

0.911 0.027

14 3 −0.201
(2.302)

0.582
(0.034)

−0.004
(0.026)

0.042
(0.019)

– – – 0.138
(0.015)

0.940 0.001

15 3 −0.219
(2.402)

0.588
(0.033)

−0.007
(0.026)

0.045
(0.019)

– – – 0.130
(0.014)

0.884 0.133

16 2 −0.229
(2.363)

0.611
(0.023)

– – – – – 0.135
(0.015)

0.683 0.090

17 2 −0.267
(2.367)

0.555
(0.026)

– – 0.047
(0.022)

– – 0.136
(0.017)

0.972 0.146

18 1 −0.283
(2.167)

0.519
(0.023)

– – 0.084
(0.024)

– – 0.127
(0.017)

0.886 0.282

19 5 −0.318
(1.887)

0.597
(0.021)

– – 0.072
(0.021)

– 0.043
(0.020)

0.092
(0.018)

0.410 0.393

20 6 −0.291
(1.672)

0.641
(0.017)

– – 0.063
(0.016)

– – 0.110
(0.014)

0.661 0.053

21 3 −0.215
(1.654)

0.706
(0.027)

−0.043
(0.026)

0.049
(0.018)

– – 0.056
(0.018)

0.077
(0.018)

0.862 0.457

22 2 −0.210
(1.891)

0.784
(0.023)

−0.080
(0.023)

– 0.045
(0.017)

– 0.031
(0.020)

0.058
(0.019)

0.787 0.101

23 2 −0.185
(2.201)

0.825
(0.022)

−0.121
(0.023)

– 0.054
(0.017)

– – 0.058
(0.015)

0.938 0.382

24 2 −0.163
(2.374)

0.858
(0.021)

−0.144
(0.024)

– 0.046
(0.017)

– – 0.059
(0.015)

0.815 0.388

V). The MAPEs of the TLSAR model range from 2.86%
to 3.56%, while the MAPEs of the DASARIMA model
go from 5.04% to 15.72%. Considering the same hour
for year 2000 (Table VI) the results do not differ much.
The MAPEs of the TLSAR specification are between
3.8% and 4.6% while the ones from the benchmark are
from 5.6% to 17.12%. This superiority of the TSLAR
model is also confirmed by the average figures shown
at the bottom of the tables. One interesting point is that
during the peak hours (19-21) the TSLAR model attains
its lowest MAPEs. Comparing the results between the
years, we do not see a difference in the comparative
performance between the models. However, the results
in 2000 are slightly worse than the ones obtained by
the same model in 1999, mainly because the linear
trend is not re-estimated but seems to suffer a break
in the former year, as explained before. Even so, the
results are good and are qualitatively equal to the year
of 1999. This shows that the TSLAR model is quite
robust. It is important to note that when we speak of
h-steps-ahead, we consider the sectional data and hence

refer to days. As the primary data are hourly, one must
interpret as 24h-steps-ahead, so that1, 2, . . . , 7 daily
steps ahead actually correspond to24, 48, . . . , 168 hourly
steps ahead. In practice, it would be interesting to use the
model proposed here and the benchmark for the hours
and time horizons in which each one fares better, or
even in a combined way. However, forecast combination
is beyond the scope of this paper. Confidence intervals
may be computed taking into account the conditional
heteroskedasticity. One way of proceeding is estimat-
ing a GARCH (Generalized Autoregressive Conditional
Heteroskedastic) model [29]. Another option is to use a
block bootstrap [40] or the stationary bootstrap [41] to
resample the residuals.

Table VIII shows the MAPEs for each type of day.
As can be seen, the forecast performance of the TSLAR
model do not differ among different standard weekdays
(from Sunday to Saturday). However, as expected, during
anomalous days, such as Christmas, New Years-Eve,
Carnival, etc., the MAPEs are higher. Table IX shows
the results according to the month in order to check
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Fig. 3. Estimated harmonic shape for each hour.

if there are huge differences in performance depending
on the time of the year. It is evident that the forecasts
are worse during the warmer months, like January and
February. Furthermore, the best performance is attained
during the colder months (May–July).

Finally, comparing our results with the ones obtained
by Soares and Souza [15], who estimate a generalized
long memory model for the same dataset using a slightly
different time span, our results compare favorably.

VI. CONCLUSIONS

In this paper we considered a two-level model for
the hourly electric load demand from the area covered
by a specific utility in the southeast of Brazil. This
model applies to sectional data, that is, the load for each
hour of the day is treated separately as a series. This
model can be applied to other utilities presenting similar
seasonal patterns, such as many in Brazil and other
countries in Latin America and Africa. As previously
discussed, weather variables were not considered in the

model for three reasons: First, the area covered by
the electric utility considered in this paper represents
25% of the province of Rio de Janeiro, which includes
different sub-regions with completely distinct temper-
atures and the available hourly temperature measures
do not cover all that diversity in temperature ranges.
Second, the available dataset has a vast number of
outliers and missing data. Finally, it is well known that
hourly temperature forecasts in tropical environments
are not reliable, specially for a few days ahead. A
forecasting exercise against a specific class of Seasonal
ARIMA models (the benchmark) is highly favorable to
our proposal. This exercise included the entire years
of 1999 and 2000, forecasting one to seven-days-ahead
(24, 48, . . . , 168 hours ahead), using models estimated
up to the end of 1998.
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TABLE V

FORECASTING COMPARISON FOR EACH HOUR OF THE DAY FOR1999. MEAN ABSOLUTE PERCENTAGE ERROR FROM THETLSAR AND

SARIMA MODELS

TLSAR SARIMA

Hour
Forecasting horizon Forecasting horizon

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 3.76 5.12 5.67 5.82 5.95 6.07 6.18 3.93 4.93 5.63 5.84 5.83 5.63 4.72
2 3.68 5.17 5.74 5.93 6.06 6.19 6.33 3.85 4.79 5.37 5.50 5.45 5.39 4.66
3 3.60 5.06 5.67 5.89 5.96 6.10 6.25 3.77 4.65 5.30 5.43 5.28 5.21 4.49
4 3.63 4.93 5.54 5.76 5.87 6.01 6.15 3.72 4.65 5.31 5.46 5.38 5.23 4.43
5 3.38 4.55 5.14 5.37 5.47 5.62 5.73 3.47 4.24 5.02 5.21 5.18 4.89 4.08
6 3.08 4.15 4.63 4.84 4.93 5.07 5.17 3.34 4.38 5.34 5.93 5.97 5.42 4.36
7 2.83 3.60 3.94 4.06 4.13 4.20 4.27 3.69 6.26 8.26 9.13 9.20 8.42 6.32
8 2.69 3.28 3.53 3.61 3.67 3.74 3.80 4.09 8.43 11.04 11.8 11.99 11.38 8.38
9 2.74 3.29 3.47 3.51 3.56 3.59 3.60 4.63 10.33 13.18 13.76 13.98 13.62 10.05
10 2.76 3.28 3.46 3.46 3.49 3.50 3.51 4.91 11.38 14.42 14.89 15.07 14.84 11.05
11 2.76 3.28 3.45 3.44 3.44 3.46 3.47 4.95 11.81 15.19 15.48 15.67 15.57 11.40
12 2.71 3.21 3.32 3.33 3.33 3.33 3.34 5.02 12.06 15.61 15.81 15.93 15.96 11.58
13 2.86 3.38 3.52 3.55 3.55 3.56 3.56 5.04 11.69 15.32 15.64 15.72 15.50 11.19
14 3.11 3.71 3.88 3.92 3.90 3.90 3.89 5.10 12.01 15.91 16.14 16.20 16.04 11.45
15 3.23 3.84 4.02 4.07 4.08 4.07 4.07 5.16 12.45 16.78 17.08 17.16 16.89 11.79
16 3.18 3.70 3.97 3.99 4.01 4.01 4.02 5.11 12.40 16.92 17.33 17.34 16.93 11.70
17 3.04 3.50 3.72 3.76 3.78 3.79 3.80 4.82 11.57 16.16 16.57 16.64 16.11 10.97
18 2.81 3.25 3.43 3.51 3.53 3.54 3.55 4.27 8.97 11.95 12.46 12.56 12.19 8.65
19 2.73 3.27 3.41 3.46 3.51 3.54 3.56 3.54 6.04 7.55 8.02 8.01 7.89 6.12
20 2.33 2.76 2.80 2.82 2.87 2.89 2.93 3.07 4.90 5.63 5.98 5.94 5.77 4.88
21 2.31 2.78 2.89 2.94 2.92 2.95 3.02 2.85 4.47 5.44 5.84 5.82 5.44 4.42
22 2.56 3.18 3.45 3.46 3.44 3.47 3.53 3.08 4.85 6.21 6.73 6.70 6.09 4.76
23 3.50 4.35 4.68 4.69 4.67 4.73 4.82 4.19 5.66 6.96 7.43 7.33 6.85 5.47
24 4.71 5.85 6.28 6.36 6.35 6.43 6.56 5.42 6.60 7.57 7.93 7.95 7.54 6.43

Minimum 2.31 2.76 2.8 2.82 2.87 2.89 2.93 2.85 4.24 5.02 5.21 5.18 4.89 4.08
Average 3.08 3.85 4.15 4.23 4.27 4.32 4.38 4.21 7.9 10.09 10.48 10.51 10.20 7.64

Maximum 4.71 5.85 6.28 6.36 6.35 6.43 6.56 5.42 12.45 16.92 17.33 17.34 16.93 11.79

TABLE VI

FORECASTING COMPARISON FOR EACH HOUR OF THE DAY FOR2000. MEAN ABSOLUTE PERCENTAGE ERROR FROM THETLSAR AND

SARIMA MODELS

TLSAR SARIMA

Hour
Forecasting horizon Forecasting horizon

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 4.34 6.58 7.51 7.95 8.22 8.30 8.33 4.53 5.77 6.55 6.71 6.73 6.65 5.70
2 4.45 6.70 7.70 8.20 8.50 8.60 8.62 4.53 5.73 6.42 6.55 6.54 6.50 5.65
3 4.30 6.56 7.67 8.20 8.50 8.60 8.63 4.44 5.58 6.27 6.36 6.35 6.33 5.48
4 4.18 6.34 7.49 7.98 8.30 8.40 8.45 4.35 5.30 6.05 6.15 6.15 6.06 5.24
5 3.99 6.18 7.24 7.72 8.03 8.14 8.18 4.24 5.07 5.82 5.92 5.97 5.87 5.11
6 3.74 5.66 6.61 7.06 7.31 7.41 7.48 4.14 5.10 6.21 6.48 6.46 6.16 5.14
7 3.55 5.06 5.74 6.13 6.35 6.45 6.51 4.47 6.93 8.68 9.12 9.16 8.72 6.57
8 3.29 4.55 5.15 5.42 5.58 5.64 5.69 4.70 9.08 11.41 12.08 12.13 11.58 8.61
9 3.23 4.36 4.82 4.99 5.11 5.15 5.17 4.92 10.69 13.48 14.28 14.33 13.86 10.25
10 3.21 4.20 4.56 4.65 4.70 4.73 4.75 5.24 12.01 15.02 15.80 15.85 15.52 11.48
11 3.20 4.12 4.44 4.52 4.57 4.59 4.60 5.39 12.69 16.11 16.81 16.79 16.53 11.99
12 3.27 4.06 4.41 4.47 4.51 4.52 4.53 5.60 12.78 16.47 17.14 17.12 16.84 12.10
13 3.28 4.17 4.48 4.54 4.57 4.59 4.59 5.40 12.56 16.27 16.94 16.93 16.49 11.71
14 3.52 4.50 4.83 4.90 4.93 4.93 4.94 5.55 12.85 16.80 17.65 17.60 17.09 12.11
15 3.61 4.68 5.08 5.15 5.17 5.18 5.18 5.74 13.29 17.70 18.40 18.45 17.89 12.41
16 3.61 4.72 5.11 5.22 5.26 5.26 5.26 5.77 13.17 17.77 18.47 18.57 17.90 12.29
17 3.50 4.42 4.71 4.75 4.79 4.78 4.79 5.39 12.19 16.65 17.26 17.39 16.63 11.25
18 3.29 4.04 4.32 4.42 4.47 4.48 4.48 4.79 9.24 12.18 12.66 12.68 12.09 8.67
19 3.15 3.77 4.12 4.26 4.31 4.32 4.33 4.03 6.43 7.81 8.13 8.14 7.80 6.18
20 2.85 3.48 3.75 3.82 3.91 3.93 3.95 3.47 5.15 5.74 5.95 6.05 5.80 4.99
21 2.72 3.58 3.93 4.09 4.18 4.22 4.23 3.17 4.89 5.67 5.84 5.95 5.69 4.56
22 3.04 4.22 4.76 5.00 5.13 5.18 5.19 3.36 5.30 6.61 6.92 6.90 6.56 4.92
23 3.68 5.26 5.88 6.21 6.39 6.43 6.43 3.99 5.64 6.95 7.28 7.24 6.79 5.30
24 4.26 6.08 6.96 7.38 7.62 7.67 7.70 4.50 5.79 6.78 7.09 6.98 6.70 5.59

Minimum 2.72 3.48 3.75 3.82 3.91 3.93 3.95 3.17 4.89 5.67 5.84 5.95 5.69 4.56
Average 3.55 4.89 5.47 5.71 5.85 5.90 5.92 4.65 8.47 10.64 11.08 11.10 10.75 8.05

Maximum 4.45 6.70 7.70 8.20 8.50 8.60 8.63 5.77 13.29 17.77 18.47 18.57 17.90 12.41



11

TABLE VII

FORECASTING COMPARISON FOR EACH HOUR OF THE DAY FOR1999AND 2000. MEAN ABSOLUTE PERCENTAGE ERROR FROM THE

TLSAR AND DASARIMA MODELS

TLSAR DASARIMA

Hour
Forecasting horizon Forecasting horizon

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 4.05 5.85 6.59 6.89 7.09 7.19 7.26 4.23 5.35 6.09 6.27 6.28 6.14 5.21
2 4.07 5.93 6.72 7.07 7.28 7.40 7.47 4.19 5.26 5.90 6.03 5.99 5.95 5.16
3 3.95 5.81 6.67 7.04 7.23 7.35 7.44 4.10 5.12 5.79 5.90 5.82 5.77 4.99
4 3.91 5.64 6.51 6.87 7.09 7.21 7.30 4.04 4.97 5.68 5.80 5.77 5.65 4.83
5 3.69 5.37 6.19 6.54 6.75 6.88 6.96 3.85 4.66 5.42 5.56 5.57 5.38 4.59
6 3.41 4.91 5.62 5.95 6.12 6.24 6.33 3.74 4.74 5.77 6.21 6.21 5.79 4.75
7 3.19 4.33 4.84 5.10 5.24 5.33 5.39 4.08 6.59 8.47 9.12 9.18 8.57 6.45
8 2.99 3.92 4.34 4.51 4.62 4.69 4.75 4.39 8.76 11.23 11.94 12.06 11.48 8.50
9 2.99 3.82 4.14 4.25 4.33 4.37 4.39 4.78 10.51 13.33 14.02 14.16 13.74 10.15
10 2.99 3.74 4.01 4.06 4.10 4.12 4.13 5.08 11.70 14.72 15.35 15.46 15.18 11.27
11 2.98 3.70 3.94 3.98 4.01 4.03 4.03 5.17 12.25 15.65 16.15 16.23 16.05 11.70
12 2.99 3.64 3.86 3.90 3.92 3.93 3.94 5.31 12.42 16.04 16.47 16.53 16.40 11.84
13 3.07 3.78 4.00 4.05 4.06 4.07 4.08 5.22 12.12 15.79 16.29 16.33 16.00 11.45
14 3.32 4.11 4.36 4.41 4.42 4.42 4.42 5.33 12.43 16.36 16.90 16.90 16.56 11.78
15 3.42 4.26 4.55 4.62 4.63 4.62 4.63 5.45 12.87 17.24 17.74 17.80 17.39 12.10
16 3.39 4.21 4.54 4.61 4.63 4.64 4.64 5.44 12.78 17.35 17.90 17.95 17.42 11.99
17 3.27 3.96 4.21 4.26 4.29 4.29 4.30 5.10 11.88 16.40 16.92 17.01 16.37 11.11
18 3.05 3.64 3.88 3.96 4.00 4.01 4.02 4.53 9.11 12.07 12.56 12.62 12.14 8.66
19 2.94 3.52 3.77 3.86 3.91 3.93 3.95 3.79 6.23 7.68 8.07 8.07 7.84 6.15
20 2.59 3.12 3.28 3.32 3.39 3.41 3.44 3.27 5.03 5.69 5.96 5.99 5.78 4.93
21 2.51 3.18 3.41 3.51 3.55 3.59 3.62 3.01 4.68 5.56 5.84 5.89 5.56 4.49
22 2.80 3.70 4.10 4.23 4.28 4.33 4.36 3.22 5.08 6.41 6.82 6.80 6.33 4.84
23 3.59 4.80 5.28 5.46 5.54 5.58 5.63 4.09 5.65 6.95 7.36 7.29 6.82 5.39
24 4.48 5.97 6.62 6.87 6.98 7.05 7.13 4.96 6.19 7.17 7.51 7.46 7.12 6.01

Minimum 2.51 3.12 3.28 3.32 3.39 3.41 3.44 3.01 4.66 5.42 5.56 5.57 5.38 4.49
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Textos para Discussão 429, 2000.

[22] A. Reis and A. Silva, “Feature extraction via multiresolution
analysis for short-term load forecasting,”IEEE Transactions on
Power Systems, vol. 20, pp. 189–198, 2005.

[23] W. Enders,Applied Econometric Time Series, 2nd ed., ser. Wiley
Series in Probability and Statistics. New Jersey: Wiley, 2004.

[24] G. Schwarz, “Estimating the dimension of a model,”Annals of
Statistics, vol. 6, pp. 461–464, 1978.

[25] A. Schneider, T. Takenawa, and D. Schiffiman, “24-hour electric
utility load forecasting,” inComparative Models for Electrical
Load Forecasting, D. Bunn and E. Farmer, Eds. Wiley, 1985.

[26] A. El-Keib, X. Ma, and H. Ma, “Advancement of statistical based
modeling techniques for short-term load forecasting,”Electric
Power Systems Research, vol. 35, pp. 51–58, 1995.

[27] O. Carpinteiro, A. Reis, and A. Silva, “A hierarchical neural
model in short-term load forecasting,”Applied Soft Computing,
vol. 4, pp. 405–412, 2004.

[28] S.-J. Huang and K.-R. Shih, “Short-term load forecasting via

ARMA model identification including non-gaussian process con-
siderations,”IEEE Transactions on Power Systems, vol. 18, pp.
673–679, 2003.

[29] T. Bollerslev, “Generalized autoregressive conditional het-
eroskedasticity,”Journal of Econometrics, vol. 21, pp. 307–328,
1986.

[30] H. White, “A heteroskedasticity-consistent covariance matrix
estimator and a direct test for heteroskedasticity,”Econometrica,
vol. 48, pp. 827–838, 1980.

[31] L. G. Godfrey,Misspecification Tests in Econometrics, 2nd ed.,
ser. Econometric Society Monographs. New York, NY: Cam-
bridge University Press, 1988, vol. 16.

[32] T. Ter̈asvirta, C. F. Lin, and C. W. J. Granger, “Power of the
neural network linearity test,”Journal of Time Series Analysis,
vol. 14, pp. 309–323, 1993.

[33] M. C. Medeiros, T. Ter̈asvirta, and G. Rech, “Building neural
network models for time series: A statistical approach,”Journal
of Forecasting, in press.

[34] R. F. Engle, “Autoregressive conditional heteroskedasticity with
estimates of the variance of UK inflations,”Econometrica,
vol. 50, pp. 987–1007, 1982.

[35] G. Darbellay and M. Slama, “Forecasting the short-term demand
for electricity: Do neural networks stand a better chance?”
International Journal of Forecasting, vol. 16, pp. 71–83, 2000.

[36] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel,Time Series
Analysis, Forecasting and Control, 3rd ed. San Francisco:
Prentice Hall, 1994.



12

TABLE VIII

FORECASTING COMPARISON FOR EACH TYPE OF DAY.

1999 and 2000
Forecasting horizon

Day 1 2 3 4 5 6 7

Sunday 3.27 4.02 4.60 4.81 4.77 4.77 4.77
Monday 3.93 4.71 4.71 4.94 5.12 5.18 5.20
Tuesday 2.64 4.55 4.84 4.84 4.96 5.09 5.13

Wednesday 2.71 3.63 4.55 4.64 4.65 4.75 4.83
Thursday 3.11 4.13 4.62 5.01 5.08 5.05 5.16

Friday 2.84 4.05 4.51 4.71 4.93 4.94 4.96
Saturday 3.03 4.07 4.59 4.69 4.78 4.83 4.85
Others 5.21 6.03 6.23 6.25 6.35 6.45 6.46

minimum 2.64 3.63 4.51 4.64 4.65 4.75 4.77
average 3.34 4.40 4.83 4.99 5.08 5.13 5.17

maximum 5.21 6.03 6.23 6.25 6.35 6.45 6.46

1999
Forecasting horizon

Day 1 2 3 4 5 6 7
Sunday 3.10 3.53 4.02 4.02 3.94 3.92 3.96
Monday 3.26 3.88 3.85 4.06 4.08 4.15 4.17
Tuesday 2.29 3.75 3.78 3.79 3.94 4.02 4.07

Wednesday 2.55 3.13 3.87 3.89 3.85 3.95 4.03
Thursday 3.16 3.95 4.24 4.55 4.61 4.58 4.70

Friday 2.80 3.75 4.05 4.18 4.33 4.40 4.42
Saturday 2.85 3.62 3.86 3.93 3.91 3.93 3.99
Others 4.56 4.71 4.89 4.80 4.84 5.03 5.14

minimum 2.29 3.13 3.78 3.79 3.85 3.92 3.96
average 3.15 3.96 4.24 4.33 4.38 4.42 4.47

maximum 4.56 4.71 4.89 4.80 4.84 5.03 5.14

2000
Forecasting horizon

Day 1 2 3 4 5 6 7
Sunday 3.46 4.52 5.21 5.64 5.64 5.65 5.62
Monday 4.60 5.54 5.56 5.82 6.16 6.20 6.24
Tuesday 2.96 5.30 5.84 5.83 5.91 6.10 6.13

Wednesday 2.87 4.13 5.23 5.40 5.46 5.54 5.63
Thursday 3.06 4.33 5.00 5.49 5.57 5.55 5.64

Friday 2.88 4.33 4.95 5.23 5.51 5.47 5.49
Saturday 3.19 4.47 5.24 5.38 5.57 5.63 5.62
Others 6.02 8.56 8.26 8.29 8.30 8.39 8.47

minimum 2.87 4.13 4.95 5.23 5.46 5.47 5.49
average 3.53 4.83 5.41 5.63 5.77 5.82 5.85

maximum 6.02 8.56 8.26 8.29 8.30 8.39 8.47

[37] D. J. C. MacKay, “Bayesian interpolation,”Neural Computation,
vol. 4, pp. 415–447, 1992.
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networks,”Neural Computation, vol. 4, pp. 448–472, 1992.
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“Eletric load forecasting using an artificial neural network,”IEEE
Transactions on Neural Networks, vol. 6, pp. 442–449, 1991.
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[41] D. Politis and J. Romano, “The stationary bootstrap,”Journal
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TABLE IX

FORECASTING COMPARISON FOR EACH MONTH.

1999 and 2000
Forecasting horizon

Month 1 2 3 4 5 6 7

Jan 3.58 4.69 5.12 5.28 5.28 5.30 5.34
Feb 3.20 4.34 4.76 5.03 5.17 5.14 5.08
Mar 3.60 4.80 5.48 5.71 5.86 5.92 5.93
Apr 3.06 4.23 4.64 4.66 4.62 4.70 4.74
May 2.72 3.61 4.09 4.25 4.37 4.48 4.55
Jun 2.29 2.80 2.95 3.06 3.09 3.05 3.04
Jul 2.80 3.63 3.82 3.84 3.90 3.91 3.93
Aug 3.31 4.53 5.21 5.53 5.73 5.89 6.02
Sep 3.49 4.66 5.25 5.47 5.61 5.69 5.76
Oct 3.97 5.11 5.57 5.82 5.97 6.10 6.19
Nov 3.82 4.83 5.11 5.28 5.46 5.57 5.66
Dec 3.90 5.20 5.65 5.64 5.60 5.50 5.47

Minimum 2.29 2.80 2.95 3.06 3.09 3.05 3.04
Average 3.31 4.37 4.80 4.96 5.05 5.10 5.14

Maximum 3.97 5.20 5.65 5.82 5.97 6.10 6.19

1999
Forecasting horizon

Month 1 2 3 4 5 6 7
Jan 3.20 3.83 3.91 3.90 3.88 3.96 4.10
Feb 2.76 3.25 3.32 3.62 3.80 3.81 3.85
Mar 3.89 4.92 5.51 5.61 5.72 5.80 5.79
Apr 2.78 3.74 4.02 4.00 3.88 3.96 4.04
May 2.55 3.07 3.45 3.49 3.52 3.66 3.77
Jun 2.57 2.89 2.91 2.93 2.97 2.96 2.96
Jul 2.49 3.10 3.03 2.90 2.87 2.89 2.90

Aug t 2.86 3.58 3.75 3.79 3.82 3.86 3.88
Sep 3.11 4.16 4.68 4.77 4.72 4.79 4.87
Oct 3.73 4.74 5.21 5.52 5.71 5.86 5.99
Nov 3.87 4.97 5.45 5.73 5.94 6.11 6.29
Dec 3.16 3.90 4.38 4.38 4.28 4.11 4.06

Minimum 2.49 2.89 2.91 2.90 2.87 2.89 2.90
Average 3.08 3.84 4.13 4.22 4.26 4.31 4.37

Maximum 3.89 4.97 5.51 5.73 5.94 6.11 6.29

2000
Forecasting horizon

Month 1 2 3 4 5 6 7
Jan 3.96 5.55 6.32 6.66 6.68 6.65 6.58
Feb 3.62 5.40 6.15 6.40 6.50 6.42 6.27
Mar 3.32 4.68 5.45 5.80 6.00 6.03 6.07
Apr 3.34 4.71 5.25 5.32 5.37 5.45 5.45
May 2.89 4.15 4.72 5.02 5.22 5.30 5.33
Jun 2.02 2.72 2.99 3.19 3.20 3.15 3.12
Jul 3.12 4.15 4.60 4.78 4.93 4.93 4.96
Aug 3.77 5.48 6.67 7.27 7.64 7.92 8.17
Sep 3.88 5.16 5.83 6.17 6.49 6.58 6.64
Oct 4.21 5.48 5.94 6.12 6.23 6.33 6.40
Nov 3.77 4.70 4.76 4.82 4.98 5.02 5.04
Dec 4.64 6.49 6.92 6.90 6.92 6.89 6.89

Minimum 2.02 2.72 2.99 3.19 3.20 3.15 3.12
Average 3.55 4.89 5.47 5.70 5.85 5.89 5.91

Maximum 4.64 6.49 6.92 7.27 7.64 7.92 8.17
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