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GENERAL EQUILIBRIUM EXISTENCE WITH ASSET-BACKED
SECURITIZATION

MARIANO STEINERT AND JUAN PABLO TORRES-MARTÍNEZ

Abstract. We propose a specification of a general equilibrium model with securitization of

collateral-backed promises and discuss the role of physical collateral to avoid, in equilibrium,

pessimistic beliefs about the future rates of default. Promises are pooled in either pass-through

securities or collateralized loans obligations (CLO), allowing the existence of different seniority lev-

els among tranches in the same CLO. In case of default, borrowers may also suffer extra-economic

penalties, which are internalized into a structure of non-ordered preferences. In this context, we

prove the existence of an equilibrium in that investors are not over-pessimistic about the payments

of derivatives.

Keywords. Asset Backed-Securitization, Extra-economic Default Penalties, Collateral, Non-

ordered Preferences.

JEL Classification: D52, D91.

1. Introduction

In financial markets, securitization of debt contracts has been a mean for financial institutions to

reduce risk in their balance sheets. Moreover, it allows better portfolio diversification, as investors

have access to a broader pool of assets. In this sense, securitization has an important role in

improving efficiency.

Assets that are issued to diversify the credit risk are traditionally called Asset Backed Securities

(ABS), when protected by a pool of loans or receivables, and Mortgage Backed Securities (MBS),

when backed by residential or commercial mortgage loans. However, a consensus does not exist

about the differentiation of the two classes.1 For simplicity, we consider the Mortgage Backed

Securities as particular types of ABS.

From the risk distribution perspective, there are two ways a given poll of assets (e.g. loans,

mortgage, receivables, bonds) can be securitized into a family of ABS: 1) allowing the amount of

default to be divided pro-rata among the different ABS; or 2) allowing senior-subordinated structures
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2 Asset Backed Securitization

among the different derivatives at the moment of payments. When payments are distributed pro-

rata, ABS are also called Pass-through securities. On the other hand, when there is a senior-

subordinated structure among the ABS, they are called Collateralized Loan Obligations (CLO) or

tranches. When the underlying loans are mortgages, we could also refer to CLO as Collateralized

Mortgage Obligations (CMO).

Our objective is to insert these structures in a general equilibrium model, generalizing the seminal

works that extend the traditional General Equilibrium Model to allow for credit risk, collateral and

extra-economic penalties (see Geanakoplos [10], Geanakoplos and Zame [11] and Dubey, Geanakoplos

and Shubik [7]). Moreover, we are interested in studying the role of physical collateral requirements

to avoid excess of investor pessimism about the future rates of default.

Our economy has two time periods and there is uncertainty about the state of nature in the

second period. Commodities may be durable, assets are real, and a finite number of agents, which are

characterized by non-ordered preferences, can trade on spot markets. There are two types of financial

contracts available in these markets: (i) primitive securities, that are sold by the borrowers and are

backed by physical collateral requirements, that can depend of the prices; and (ii) derivatives, which

are bought by the lenders and are backed by classes of primitives. In the case of default, borrowers are

burdened by both the seizure of collateral requirements and by extra-economic penalties, which are

incorporated into our structure of preferences. These extra-economic penalties reflect the existence

of legal or moral enforcements and may differ among agents.

We suppose that financial intermediaries, whose role is limited to pool individual claims, buy the

debts and issue derivatives. These ABS may be (i) families of tranches, which receive payments

following a senior-subordinated structure, guaranteeing that tranches with lower priority receive

nothing unless those with higher priority are fully paid; or (ii) Pass-through securities. The value of

aggregate derivatives purchases must match, at equilibrium, the value of short sales on primitives.

Moreover, as financial markets are anonymous, lenders take the rates of payment of the derivatives

as given. At equilibrium, these rates are determined in such manner that the total value of deliveries

matches the total value of payments.

Given this context, suppose that (i) prices of primitive assets are zero, and (ii) lenders are over-

pessimistic, in the sense that they expect to suffer total default at each state of nature. Then agents

can not borrow anything at the first period, and lenders can not expect to receive any payment

at the second period. Therefore, assets are not traded and a pure spot market equilibrium always

exists. However, assets are protected by physical collateral requirements and goods are durable.

Thus, it is not rational that lenders expect to suffer total default in a derivative, whenever both the

depreciated collateral and the original promises of their primitives have positive values.

Hence, using the fact that promises are backed by physical collateral requirements, we propose

and show the existence of an equilibrium refinement, called non-trivial equilibrium, in which over-

pessimistic beliefs are ruled out. A non-trivial equilibrium will be an equilibrium in which agents

can expect to suffer total default, in a given state of nature, only on derivatives that are backed by

primitives that have either zero real promises or zero depreciated bundle of collateral requirements.
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1.1. Insertion in Literature and Contributions. The study of securitization structures in a

general equilibrium context, in which agents can default in their promises, has experienced an

increasing importance over the last few years. Geanakoplos [10] and Geanakoplos and Zame [11]

studied the existence of an equilibrium in models in which borrowers are burdened by collateral

requirements in order to protect lenders from credit risk. In these models of collateralized loans,

the only enforcement in case of default is the seizure of the collateral. Therefore, borrowers make

strategic default and trade directly with lenders, that expect to receive the minimum between the

depreciated value of the collateral and the value of the original promises. In this context, equilibrium

existence follows from the scarceness of physical collateral requirements, which guarantees that short

sales are bounded at equilibrium.

Extensions of these models, allowing endogenous collateral requirements, were made recently

by Araujo, Fajardo and Páscoa [2] and Martins-da-Rocha and Torres-Mart́ınez [13]. In order to

overcome the non convexity induced by assets returns, in a context in which borrowers can choose

their collateral guarantees, Araujo, Fajardo and Páscoa [2] suppose that there exists a continuum

of agents that trade assets. Financial intermediaries pool the debts of borrowers associated with

a given promise and issue a single derivative security, which is bought by the lenders. Investors

expect to receive, at each state of nature in the future, the mean value of the payments made by

the debtors. In a similar context, but with a finite number of agent types, Martins-da-Rocha and

Torres-Mart́ınez [13] neutralize the non-convexity on asset returns allowing lenders to raise capital

by securitizing part of these assets. In both models, equilibrium with endogenous collateral always

exists.

Our financial structure differs from their models in at least two aspects: (i) in our model, financial

intermediaries can issue more than one derivative, allowing Pass-through derivatives and senior-

subordinated structures; (ii) although we allow collateral requirements that can depend on prices,

borrowers can not choose directly their guarantees.

Other types of models allow default without physical collateral requirements, but they burden

borrowers by extra-economic penalties, proportional to the real value of default. In this context,

Zame [16] studies the advantages of default in order to promote efficiency and Dubey, Geanakoplos

and Shubik [7] prove the existence of an equilibrium in a two-period model with incomplete markets.

As we do not assume the existence of utility functions, the linear utility penalties used in the

articles above do not make sense in our framework. Therefore, we allow extra-economic enforcements

in a broader sense, internalizing the default punishments into the non-ordered preferences. As a

particular case, we obtain the representation of preferences used by Dubey, Geanakoplos and Shubik

[7].

Furthermore, models in which agents take payment rates of assets as given can have a pure

spot market equilibrium, whose existence can be easily proved. As explained before, this problem

comes from very pessimistic beliefs of lenders about future rates of payment. In order to avoid this

pathology and to allow assets to be traded at equilibrium, it is interesting to refine this equilibrium

concept.
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In this direction, Dubey, Geanakoplos and Shubik [7] propose a refinement concept as a limit of

abstract ε-boosted equilibriums, in which an abstract agent (that can be interpreted as a govern-

ment) buys and sells ε units of each asset and gives no default at each state of nature. Hence, for a

fixed ε, lenders are not very pessimistic, as they perfectly foresee strictly positive payments for each

asset. By taking the limit, when ε goes to zero, they obtain a refined equilibrium.

In our model, as primitives are backed by physical bundles, we can introduce another refinement

concept using the fact that primitive assets deliver, in case of default, at least the depreciated value

of the collateral. Thus, as explained before, lenders expect to receive a positive payment when the

physical collateral, associated to the underlying primitives, does not disappear from the economy.

Although we can not guarantee that assets are traded at equilibrium, our refinement concept assures

that the absence of negotiation, when it is the case, is not a consequence of over-pessimistic beliefs.

The paper is organized as follows: Section 2 describes the model; in Section 3, we state the defini-

tion of Equilibrium with Asset-Backed Securitization; in Section 4 we discuss the role of collateral to

avoid over-pessimistic beliefs, and state our refinement concept; and Section 5 is devoted to analyze

the assumptions and to state our main result about existence. After some concluding remarks, we

make the proof of equilibrium existence in the Appendix.

2. Model

We consider a two-period economy in which agents have uncertainty about the future state of

nature. Time periods are denoted by t ∈ {0, 1} and we suppose that at the first period, t = 0, there

is no uncertainty (i.e., only one state of nature, denoted by s = 0, is reached). At the second period,

t = 1, a state of nature is revealed among a finite number of possibilities, s ∈ S. For convenience of

notation, we put S∗ = {0} ∪ S to denote the set of states of nature in the economy.

At each state s ∈ S∗ a finite number of perfect divisible commodities l ∈ L are negotiated in

spot markets. These goods can be durable at the first period and, as in Geanakoplos [10] and

Geanakoplos and Zame [11], they may suffer depreciation contingent to the state of nature at the

second period. This structure, given by linear transformations that are represented by matrixes

Ys ∈ RL×L
+ , guarantees that when an agent chooses a bundle x at t = 0, he expects to receive a

bundle Ys x if the state of nature s ∈ S is reached.2 Note that this structure is general enough to

allow perishable goods and perfect durable goods as particular cases.

2With more notation, we could have personalized depreciation functions. Moreover, we could also have a depreci-

ation structure characterized by concave functions and we would still be able to guarantee equilibrium. However, as

we let the seizure of the depreciated physical collateral requirements be a mechanism of enforcement of the promises

payments, it would not be clear what would be the depreciated collateral bundle when a borrower consume more than

the required collateral. Take for example the following case: There exists only one good and its depreciation is given

by Ys(x) =
√

x for all states of nature. If a borrower is obligated to constitute 1 unit of collateral and he decides

to consume a total of 4 units of the good, we have that his depreciated bundle at each state is 2 units of the good.

What would be his depreciated collateral bundle? Ys(1) = 1,
Ys(4)

4
= 1

2
or Ys(4)− Ys(3) = 2−√3 ∼= 0.27. All being

perfctly reasonable answers, but different from each other. On the other hand, with linear depreciation functions the

three cases above would be equal.
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Commodities in L are traded, at state s ∈ S∗, at prices ps ∈ RL
+. We will denote the commodity

price process as p = (ps)S
s=0 and, as usual, we suppose that all physical goods are in positive net

supply, that is, there exists physical endowments Ws ∈ RL
++, at each state s ∈ S∗.

A finite number of agents, h ∈ H, trades commodities at every state, choosing consumption

allocations in the commodity space Xs = RL
+. The space of consumption in the economy is given by

X = Πs∈S∗Xs. Moreover, as in Gale and Mas-Collel [8], at each state of nature the agents receive an

initial nominal income given by functions mh
s (ps) ≥ 0. Note that if we suppose that agents receive,

at each state s ∈ S∗, a physical endowment ωh
s ∈ RL

+, the usual framework of general equilibrium

models, mh
s (ps) = psω

h
s , is a particular case of this structure of income functions. We use this

general structure to overcome the survival assumption, i.e. ωh = (ωh
s )s∈S À 0 for all h ∈ H.3

In our economy, we consider a financial structure in which assets are subject to credit risk. We

allow borrowers to negotiate real securities, called primitive assets, which are subject to default

and backed by physical collateral requirements, which can depend on the price level. On the other

side, financial intermediaries, which are limited to pool individual claims, make an asset-backed

securitization of these debts contracts, selling derivatives to the lenders.

To give credit risk protection, it is sufficient to impose mechanisms on the financial structure of

original loans, in order to burden borrowers in case of default. On this direction, we suppose that

enforcements mechanisms, as the seizure of the physical collateral requirements or the punishment

via extra-economic penalties, are allowed.

We divide primitive assets into different classes and, for a given class of these debts contracts, we

allow the existence of a finite number of derivatives. These derivatives can be of two types: (i) pass-

through securities (i.e. the payments made by the original promises are distributed pro rata among

the derivatives) and (ii) collateralized loans obligations (CLO), also called tranches, (i.e. securities

that have associated an exogenous seniority structure, establishing an order in which derivatives

should be payed). For sake of simplicity, only one type of derivative is associated with a given

class of primitive assets. In equilibrium, analogous to Araujo, Fajardo and Páscoa [2], the value of

the aggregate short sales must match the value of its derivatives aggregate purchase within each

family of derivatives. In this sense, our model does not allow, at equilibrium, overcollateralization

of asset-backed securities.

Remark 1. Although, in real financial markets Collateralized Loan Obligations have an important

role protecting lenders from prepayment risk, in our model the main goal of this structure is to give

lenders more protection from default risk as we work with a two-period model.

In a multi-period model, prepayment risk appears when borrowers have an incentive to pay their

promises before the period that was established when they took the loan. However, as derivative

promises are state contingent, the amount received as a prepayment need to be reinvested by the

issuer of the derivatives in order to pay the future commitments. If financial intermediaries do not

3One way of seeing this is considering another example of income function: mh
s (ps) = psωh

s (ps), where we let

the physical endowment to be a function of prices ps. In this setting we can replace the assumption ωh
s À 0 for

psωh
s (ps) > 0 whenever ps 6= 0. This allows that, for each price ps, ωh

s (ps) do not need to be interior.
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have others investment opportunities available, which would give enough return to pay in full the

derivatives, the prepayments made by the borrowers can generate default to the investors, without

the existence of any default in the primitives.

Formally, a finite number of primitive assets k ∈ K can be sold at the first period for an unitary

price qk ∈ R+. These assets make real promises As,k ∈ RL
+ at each state of nature s ∈ S. Thus,

when an agent h sells ϕh
k units of the primitive k, he pays an amount qkϕh

k and he is burden to

constitute a personalized bundle Ck(p0, qk)ϕh
k . The function Ck : RL

+ × R+ → RL
+ denotes the

price-dependent rule to constitute the unitary collateral requirement on asset k, which all agents

take as given.4

Our approach includes the case considered by Geanakoplos and Zame [11], Ck(p0, qk) = Ck, in

which the collateral requirements do not depend on the price level. Moreover, as in Araujo, Páscoa

and Torres-Mart́ınez [3], we can consider the case in which, except for some upper and lower bounds,

the value of the collateral requirements maintain a fixed margin f over the asset price, where the

margin of the collateral requirements is given by the ratio between the value of collateral and the

asset price, p0Ck

qk
,

Ck(p0, qk)1 = min
{

f, max
{

qkf

po,1
, f

}}
,

Ck(p0, qk)l = 0, ∀ l 6= 1.

Furthermore, we suppose that, at each state s ∈ S, the agents can be burdened not only by

the seizure of the depreciated bundle of collateral, but also by other non-economic mechanisms,

which are incorporated in their preferences. These mechanisms, analogous to utility penalties in

Dubey, Geanakoplos and Shubik [7], can induce the agents to pay more than the collateral value at

t = 1. Hence, an agent h, who borrows ϕh
k units of k, delivers, at each state s ∈ S, a non-negative

amount δh
s,k, which is chosen jointly with the portfolio and consumption allocations and satisfy

δh
s,k ≥ min {psAs,k; psYsCk(p0, qk)}ϕh

k .

In real markets, financial institutions use both primitive promises and pass-through securities as

collateral for CLO. For sake of simplicity, we suppose that CLO are backed only by the original

promises. Therefore, we suppose that primitives in K are divided into two disjoint sets AP and AC .

Promises in AP will back pass-through securities while promises in AC will secure collateralized

loan obligations. Moreover, families of securities are backed by classes of primitives. Thus, we

suppose that the sets Ai, i ∈ {P, C}, are partitioned, exogenously, into ζi disjoint classes Ag
i ⊂ Ai,

i ∈ {P, C} and g ∈ {1, 2, . . . , ζi}. For notation convenience, when there is no possibility of mistakes,

we refer to a generic class Ag
i as Ai.

The promises within each class Ai, i ∈ {P,C}, are pooled by a financial intermediary that issues a

finite collection, J(Ai), of short-lived (asset-backed) real assets, denoted by j ∈ J(Ai). For notation

4Although, in their model of exogenous collateral, Geanakoplos and Zame [11] allow lenders to hold part of the

collateral requirements, in our case it is not clear what would be the rule for distributing collateral bundles among

investors, because we allow a pool of primitive promises. Thus, we suppose that the physical guarantees are both

constituted and held by debtors.
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convenience, we will denote by J the collection of all derivatives that can be traded on the markets

and by n(Ai) = #J(Ai) the number of derivatives associated to the class of primitives Ai.

Pass-through Securities: Given a class AP ⊂ AP , each derivative j ∈ J(AP ) makes individual

real promises As,j ∈ RL
+ at each state s ∈ S, and can be bought at prices qj at the first period.

There are no priorities among the different claims j ∈ J(AP ) and, therefore, each Pass-through

receives a pro rata share of the total deliveries made by the primitive assets k ∈ AP .

As markets are anonymous (i.e. lenders do not know the identity of the borrowers), agents ex-

pect to receive, for each traded unit of the asset j ∈ J(AP ), a percentage rs,j of the promises As,j .

However, as agents know that derivatives in J(AP ) are pass-through securities, they expect identical

anonymous payment rates for each of them, that is, rs,j = rs,j′ for all derivatives j and j′ in J(AP ).

For sake of simplicity, we denote the payment rate, common to all the derivatives in a family J(AP ),

as rs,AP
. Thus, if an agent h buys θh

j units of j ∈ J(AP ), for some AP ⊂ AP , he pays an amount

qj θh
j and expects to receive, at each state s ∈ S, an amount rs,AP psAs,j θh

j .

Collateralized Loan Obligations: Given a class AC ⊂ AC , the family of derivatives J(AC) is

given by J(AC) := {j1(AC), j2(AC), . . . , jn(AC)(AC)}, where the CLO jm(AC) has priority over the

assets (jr(AC))r>m in relation to promise payments. Analogous to Pass-through securities, each

tranche j ∈ J(AC) makes individual real promises As,j ∈ RL
+ at every state s ∈ S and can be bought

at prices qj at the first period.

Now, as lenders know the securitization structure (i.e., they know what the priorities are among

assets in the same family), but markets are anonymous, they expect to receive for each traded

unit of the asset j ∈ J(AC) a percentage of the original promises, given by anonymous payment

rates rs,j . As tranches with lower priority levels suffer default before those with higher priority

levels, if a tranche jm(AC) pays in full at state s ∈ S, rs,jm(AC) = 1, then all the derivatives

jm′
(AC), with m′ < m, pay in full too, rs,jm′ (AC) = 1. Moreover, if an asset jm(AC) gives a

partial default, rs,jm(AC) ∈ (0, 1), then all the tranches with higher priority over it pay in full (i.e.

rs,jm′ (AC) = 1, for m′ < m) and all the derivatives that are subordinated to jm(AC) give total

default (i.e. rs,jm′ (AC) = 0, for m′ > m). Therefore, we can suppose that the anonymous payment

rates, for the derivatives in the class J(AC), belong, at each state of nature, to the non-convex set

R(AC) :=
{

r = (rm) ∈ [0, 1]n(AC) : ∃m, 1 ≤ m ≤ n(AC),
(
rm′ = 1, ∀m′ < m

) ∧ (
rm′ = 0, ∀m′ > m

)}
.

It is important to remark that the anonymous payment rates, for both pass-through securities

and CLO, are taken as given by the agents, but in equilibrium they are determined in such way

that, at each node, the total value of the deliveries will be equal to the total payments.

As it was mentioned above, each agent h ∈ H is characterized by preferences that may depend

on the real amount of default. Formally, denoting the total real default made by an agent, in each

primitive asset and at each state, by d = (ds,k)(s,k)∈S×K ∈ RS×K
+ , we suppose that for each h there
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exists a correspondence Qh : X ×RK×S
+ ³ X ×RK×S

+ , that represents the agent’s preferences over

consumption bundles and amounts of default, in the sense that Qh(x, d) denotes the collection of

plans (x′, d′) that are strictly preferred to (x, d) by agent h. Note that with this characterization of

agents preferences we do not need to assume completeness, transitivity or continuity.

Remark 2. We have some interesting particular cases. First, given a function Uh : RL×S∗
+ → R+,

for a given collection of numbers λh
s,k ∈ R+, we can put

Qh (x, d) ≡
{

(x′, d′) : Uh(x′)−
∑

s∈S

∑

k∈K

λh
s,kd′s,k > Uh(x)−

∑

s∈S

∑

k∈K

λh
s,kds,k

}
,

to recover the representation of preferences used by Dubey, Geanakoplos and Shubik [7], in which an

agent h feels a utility level of consumption given by Uh and is burdened by utility penalties propor-

tional to the real amount of default. Moreover, given a strictly monotonic set function Ωh : X ³ X,

we can define the individual preferences Qh(x, d) := Ωh(x)×RK×S
+ in order to have a representation

of preferences (possibly non-ordered) in a model in which the only enforcement in case of default

is given by the seizure of collateral guarantees. Of course, the traditional analytic representation

of preferences by utility functions, as in Geanakoplos and Zame (2002), is a particular case putting

Ωh(x) :=
{
x′ ∈ X : Uh(x′) > Uh(x)

}
.

Finally, as agents are price takers, given commodity prices p = (ps)s∈S∗ , a price vector for

both primitive and derivative assets q = (qk, qj)k∈K,j∈J , and anonymous payment rates for the

derivatives r = (rs,j)(s,j)∈S×J , an agent h ∈ H can choose consumption-financial allocations[
xh

0 , xh
s , ϕh

k , δh
s,k, θh

j

]
(s,k)∈S×K, j∈J

subject to,

- First period budget constraint,

(1) p0x
h
0 +

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

qjθ
h
j −

∑

k∈Ai

qkϕh
k





 ≤ mh

0 (p0),

- Collateral requirements constraint,

(2) xh
0 ≥

∑

k∈K

Ck(p0, qk)ϕh
k ,

- Payments constraints,

(3) δh
s,k ≥ min {psAs,k; psYsCk(p0, qk)}ϕh

k , ∀(s, k) ∈ S ×K.

- Second period, state by state, budget constraints,

(4) psx
h
s ≤ mh

s (ps) + psYsx
h
o +

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

rs,jpsAs,jθ
h
j −

∑

k∈Ai

δh
s,k





 , ∀s ∈ S.

When commodity-financial prices are (p, q), and rates of payment are r, the budget set of the

agent h ∈ H, denoted by Bh(p, q, r), is given by the collection of consumption-financial allocations
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(xh, ϕh, δh, θh) that satisfies equations (1) to (4).

It follows from the considerations above that our Economy with Asset Backed Securitization

E(S∗,H,L,F) is characterized by the set of all states of nature S∗ = {0}∪S, the set of agents char-

acteristics H = (X,Qh, mh)h∈H , the physical market structure L = (L, (Ys)s∈S , (Ws)s∈S∗) and the

financial structure F =
[
K, J,AP ,AC , J(AP ), J(AC), (As,k, As,j)s∈S , Ck

]
k∈K,AP⊂AP ,AC⊂AC , j∈J

.

3. Equilibrium

In order to define equilibrium, we must make clear what the agents optimality condition is in the

context of our general preferences. Although the preferences depend only on consumption bundles

and real default, the levels of default are not direct decision variables of the agents. However, since

each agent is rational, he can perfectly foresee the real default generated by any allocation in his

budget set, allowing him to realize which allocations are strictly preferred to any consumption-

financial allocation.

More formally, given commodity prices for the states of nature in the second period, p−0 =

[(ps)s∈S ], when an agent h chooses a short position ϕh
k on primitive k and chooses payments (δh

s,k)s∈S ,

he knows the total real amount of his default, at state s ∈ S, is given by

Ds,k(ps, ϕ
h
k , δh

s,k) =

[
psAs,kϕh

k − δh
s,k

]+

ps vs
,

where, as in Dubey, Geanakoplos and Shubik [7], the vector vs ∈ RL
++ is exogenously given and

allows the agents to measure the amount of default in real terms.

Therefore, as traders are price takers, given a consumption and financial allocation (xh, ϕh, δh, θh)

in X := Xh ×Rk ×RK×S
+ ×RJ

+, the agent h can determine the consumption and default allocation

(xh, dh) generated by (xh, ϕh, δh, θh), which is given by

T
(
p−0, x

h, ϕh, δh, θh
)

:=
(
xh, Ds,k(ps, ϕ

h
k , δh

s,k)
)
(s,k)∈S×K

.

Thus, each agent knows the set of feasible consumption and default allocations T (p−0, Bh(p, q, r)).

Therefore, given prices (p, q) and anonymous rates of payment r, an allocation (xh, ϕh, δh, θh) will

be optimal for the agent h if and only if
[
Qh ◦ T (p−0, x

h, ϕh, δh, θh)
] ∩ [

T (p−0, Bh(p, q, r))
]

= ∅.
That is, it does not exist an allocation in the budget set that generates a consumption-default alloca-

tion that is strictly preferred to the consumption and default allocation generated by the allocation
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(xh, ϕh, δh, θh).5

We can now define the concept of equilibrium in the economy with asset-backed securitization.

Definition 1. An equilibrium for the economy E(S∗,H,L,F) is given by prices and rates of payment

[p, q, r] ∈ P := RL×S∗
+ × RJ

+ × RK
+ × [0, 1]S×J , and allocations [xh, ϕh, δ

h
, θ

h
] ∈ X, for each agent

h ∈ H, such that

(A) For each agent h ∈ H, (xh, ϕh, δ
h
, θ

h
) ∈ Bh(p, q, r).

(B) Physical Markets are cleared,
∑

h∈H

xh
0 = W0,

∑

h∈H

xh
s = Ws + Ys(W0), ∀s ∈ S.

(C) Agents make optimal choices,
[
Qh ◦ T (p−0, x

h, ϕh, δ
h
, θ

h
)
]
∩ [

T
(
p−0, Bh(p, q, r)

)]
= ∅ ∀h ∈ H.

(D) For each Ai ⊂ Ai, with i ∈ {P, C}, the value of derivatives aggregate purchases must match

the value of the aggregate short sales,
∑

h∈H

∑

j∈J(Ai)

qj θ
h

j =
∑

h∈H

∑

k∈Ai

qkϕh
k ,

(E) At each state s ∈ S and for each class Ai ⊂ Ai, with i ∈ {P, C}, the total payments of the

derivatives must be equal to the total deliveries made by the borrowers,
∑

h∈H

∑

j∈J(Ai)

rs,j psAs,jθ
h

j =
∑

h∈H

∑

k∈Ai

δ
h

s,k.

(F) At each state s ∈ S and for each class Ai ⊂ Ai, with i ∈ {P, C}, the payment rates must be

consistent with the financial structure,

rs,j = rs,AP , ∀ j ∈ J(AP ), ∀AP ⊂ AP ,

(rs,j)j∈J(AC) ∈ R(AC), ∀AC ⊂ AC .

Remark 3 (Equilibrium Rates of Payment and Assets Pricing). It follows from equilibrium condi-

tions (E) and (F) that, if a pass-through derivative j ∈ J(AP ) is negotiated and, at state s ∈ S, the

value of its promises is strictly positive, then the rate of payment rs,AP is given by the ratio between

the total deliveries made by borrowers and the total payments received by lenders. Furthermore,

5We have to state our optimality condition as
[
Qh ◦ T (p−0, xh, ϕh, δh, θh)

] ∩ [
T (p−0, Bh(p, q, r))

]
= ∅, since we

want to make clear the relationship between our framework and Dubey, Geanakoplos e Shubik [7] model, letting

the agents have the same decision variables as in their model. We are aware that some readers could find more

natural to allow agents to choose directly the variables (x, ϕ, d, θ), instead of (x, ϕ, δ, θ), where d denotes the real

amount of default. In this context, we would have to redefine our budget set, and the optimality condition would be

Qh(xh, dh)∩Bh
x,d(p, q, r) = ∅, where Bh

x,d(p, q, r) is the projection of the new budget set in the variables (x, d). How-

ever, this approach may generate technical problems on the proof of lower hemicontinuity of budget correspondences,

if preferences are defined, as it is natural, only over non-negative amounts of default.
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given a tranche jm(AC), the equilibrium rate of payment rs,jm(AC), when it is negotiated (and the

values of its promises is strictly positive), takes into account the payments made to the previous

tranches, in the sense that

rs,jm(AC) = max



0 ;min





∑
h∈H

∑
k∈AC

δ
h

k −
∑m−1

i=1 ps As,ji(AC)

∑
h∈H θ

h

ji(AC)

ps As,jm(AC)

∑
h∈H θ

h

jm(AC)

; 1







 .

Finally, it is important to remark that the existence of extra-economic enforcements can allow bor-

rowers to raise more capital than the collateral value. However, if extra-economic penalties do not

exist, the value of the unitary physical collateral will be, at equilibrium, strictly greater than the

value of the asset. In other case, when an agent makes the joint operation of buying the collateral

and selling the promises, he has an arbitrage opportunity, since he raises non-negative transfers

today, receives non-negative returns tomorrow and has the right to consume the collateral require-

ments.

4. Collateral Avoids Over-pessimistic Beliefs

Our definition of equilibrium could generate misleading results. When agents are allowed to have

pessimistic beliefs about the future derivatives rates of payment, it is always possible to trivially

guarantee the existence of an equilibrium. In fact, suppose that the price of primitives and the

rates of payment of derivatives are equal to zero, i.e. (qk, rs,j)(s,j,k)∈S×J×K = 0. Since an agent h

does not expect to receive any payment if he buys a derivative, he has no incentive to do it, so the

allocation θ
h

= 0 is optimal. Similarly, since primitive assets have zero price, ϕh = 0 is optimal for

each agent h ∈ H. Furthermore, as agents will not have any promise to pay at the second period,

δ
h

s,k = 0, for all s ∈ S and k ∈ K, is also optimal. Therefore, the model becomes equivalent to a

general equilibrium model with durable goods and without financial markets. Existence of a pure

spot market equilibrium in this framework is not difficult to prove.

Note that, when over-pessimistic beliefs are allowed, the proof mentioned above would be as good

as any other. Thus, it would not be satisfactory to guarantee the existence of equilibrium without

excluding this possibility.

It is worth to note that this problem is not idiosyncratic to our model. In fact, it should be

considered at every model in which agents take the payment rates of assets promises as given.

Although the expected rates of payment are determined endogenously in equilibrium, if derivatives

are not traded, any rate of payment is consistent with equilibrium. Thus, agents could be extremely

pessimistic, believing that no deliveries would be made in any state, for any asset, which in turn

leads to non-negotiation of derivatives.

In their seminal paper, Dubey, Geanakoplos and Shubik [7] address this topic proposing a refined

equilibrium concept in order to avoid these over-pessimistic beliefs. They define a ε-boosted equi-

librium as an equilibrium of an abstract economy, in which exists an external agent who buys and

sells ε units of each asset (that may be interpreted as a government that guarantees an infinitesimal

minimum delivery rate), and always delivers the total promises, injecting new commodities in the
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economy. Therefore, lenders are not over-pessimistic and the rates of payment at each ε-boosted

equilibrium are strictly positive. When ε goes to zero, they obtain a refined equilibrium.

In their refinement, Dubey, Geanakoplos and Shubik [7] use the touch of optimism introduced by

the ε-agent to banish extremely pessimistic beliefs about the future rates of default. In our model,

however, physical collateral requirements introduce a new dimension: it is natural to suppose lenders

will expect to receive positive payments when the depreciated collateral bundles of the underling

primitives are different from zero. In this sense, collateral avoids over-pessimistic belief without

having to use an external agent.

More formally, we propose another refinement concept in which we guarantee that, at each state

of nature: (i) equilibrium payment rates are strictly positive for the Pass-through securities that

are backed by debt contracts that, independent of the structure of extra-economic penalties, give

positive returns, (ii) when primitives associated with a CLO give positive returns, independent of

extra-economic enforcements, the most senior tranche, which made non zero promises at this state,

has non-zero anonymous payment rate, (iii) when some derivative has a positive rate of payment,

at least one of the primitives that backs it has positive price. That is,

Definition 2. An equilibrium [(p, q, r); (xh, ϕh, δ
h
, θ

h
)h∈H ] is non-trivial if the expected payment

rates are not over-pessimistic. That is,

i. At each state s ∈ S, and for each class AP ⊂ AP ,
[

min
k∈AP

{psAs,k; psYsCk(p0, qk)} > 0
]
⇒ [

rs,AP > 0
] ∧ [∃ k′ ∈ AP , qk′ > 0

]
;

ii. At each state s ∈ S, and for each class AC ⊂ AC ,
[

min
k∈AC

{psAs,k; psYsCk(p0, qk)} > 0
]
⇒ [

rs,jm
AC

> 0, ∀m ≤ m?
] ∧ [∃ k′ ∈ AC , qk′ > 0

]
,

where m? := min{m : ‖As,jm(AC)‖1 6= 0}.

We are only interested in equilibria in which agents anticipate that derivatives deliveries are

strictly positive when physical collateral requirements of underling primitives do not disappear from

the economy. Therefore, derivatives have non-zero equilibrium rates of payments whenever the

minimum possible payment of their underling primitive assets is strictly positive. Moreover, a class

of primitives that backs derivatives with non-trivial rates of payments has at least one asset with

non-zero price.

Note that it would not be reasonable to ask agents to expect more optimistic rates of payment,

since they do not know what is the total amount of primitives that was sold by the borrowers. In

fact, rates of payment depend, in equilibrium, on both the total units of primitives sold and the

total units of derivatives bought (see Remark 3 above).

Furthermore, in the framework of Dubey, Geanakoplos and Shubik [7] it is not possible to im-

plement our refinement concept of equilibrium, because their loans are not backed by physical

requirements and, hence, the minimum deliveries are always zero.

Finally, note that even with our refinement concept, it is possible that at equilibrium it does

not exists a class of primitives that satisfies the conditions stated in Definition 2. In this case, a
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pure spot market equilibrium can be assured in a trivial manner and, as we say above, our proof is

superfluous. Hence, we discuss in Remark 4 (after the statement of the assumptions) the character-

istics over the financial structure that guarantee that a family of derivatives has, in any equilibrium,

non-trivial rates of payments.

5. Equilibrium Existence

In order to guarantee the existence of a non-trivial equilibrium, we will make the following

assumptions.

Assumption 1.

For each agent h ∈ H and each state of nature s ∈ S∗, the income function mh
s (p) is continuous,

strictly positive ( mh
s (ps) > 0) whenever ps 6= 0 and satisfies

∑

h∈H

mh
s (ps) = psWs, for all ps ∈ RL

+.

As it was mentioned before, this first hypothesis is weaker than the usual strong survival assump-

tion used in the general equilibrium literature. We are only assuming that whenever the prices are

not all equal to zero, agents will have some income. Hence, we are not interested how agents obtain

their incomes (we can even think that there exists some kind of central planner that does not allow

anyone to starve). Moreover, we also assume that the aggregate income of agents matches the total

value of the endowment available in the economy.

Assumption 2.

For each agent h ∈ H, the correspondence Qh : X × RK×S
+ ³ X × RK×S

+ has open graph, is

irreflexive (that is, (x, d) /∈ Qh(x, d) for all (x, d)), has convex-values, and satisfies the following

conditions:

(i) strictly monotonicity on (xs)s∈S∗ , that is, (x′, d) ∈ Qh(x, d), for all x′ > x;

(ii) if (x′, d′) ∈ Qh(x, d), then for all d′′ < d′, (x′, d′′) also belongs to Qh(x, d);

where, given vectors w and z in an Euclidean space, w > z is defined as wi ≥ zi for all i and

wi′ > zi′ for at least one i′.

As noted above, we are not assuming that individual preferences are complete, transitive nor

continuous. Moreover, the assumptions made over correspondences Qh can appear to be too de-

manding, since we assume open graph instead of lower hemicontinuity with open values as usual.

However, we need this assumption, as well as item (ii), in order to use the Gale and Mas-Collel

Fixed Point Theorem in the proof of our main result (see Appendix).

Assumption 3.

The collateral requirements functions Ck : RL
+×R+ → RL

+ are continuous and different from zero

in their domain. Moreover, for each primitive k ∈ K, the function Ck, if it is not constant, satisfies

YsCk(p0, qk) 6= 0 for all (p0, qk) ∈ RL
+ × R+ and for each s ∈ S.
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Thus, when collateral requirements depend on price levels, the commodities that are used as

guarantees will be non-perishable. Moreover, it is important to remark that physical collateral

requirements, which act as enforcement mechanisms in case of default, also guarantee that at equi-

librium short sales of primitives are bounded.6

Assumption 4.

Given an agent h ∈ H and given ε > 0, there exists, for each (xh, dh) ∈ X ×RS×K
+ and for each

pair (s, l) ∈ S∗ × L, a constant Zh
s,l(x

h, dh, ε) ∈ R++ such that the allocation (yh, 0), with

yh
s′,l′ =

{
ε, if (s′, l′) 6= (s, l),

Zh
s,l(x

h, dh, ε), if (s′, l′) = (s, l),

is strictly preferred to (xh, dh), i.e. (yh, 0) ∈ Qh(xh, dh). Moreover, the functions

Zh
s,l : X × RK×S

+ × R++ → R++,

are non-decreasing in x, and non-increasing in d.

This assumption guarantees that all equilibrium commodity prices are uniformly bounded from

below at each state of nature s ∈ S∗ (see Appendix). This property on prices is sufficient to assure

that there exists an equilibrium with non-trivial rates of payment.7

Assumption 5.

Assets are non-trivial, in the sense that, for each k ∈ K (respectively, for each j ∈ J), the vector

of real promises Ak = (As,k)s∈S (respectively, Aj = (As,j)s∈S) is different from zero. Moreover, for

6If we had let the collateral bundle to be zero (i.e. in case of default, only extra-economic penalties burden agents

payments), then we would have to suppose that primitives short sales are exogenously bounded in order to guarantee

existence of an equilibrium. Moreover, for this kind of asset, it would never be possible to guarantee, using our proof

of equilibrium, that rates of payments of its associated derivatives are strictly positive.
7In the framework of Dubey, Geanakoplos and Shubik [7], in which

Qh (x, d) :=



(x′, d′) : Uh(x′)−

∑

s∈S

∑

k∈K

λh
s,kd′s,k > Uh(x)−

∑

s∈S

∑

k∈K

λh
s,kds,k



 ,

where Uh : RL×S∗
+ → R+ and λh

s,k ∈ R+, Assumption 4 is implied by their hypothesis in utilities,

lim||z||∞→+∞ Uh(z) = +∞. In fact, our condition is weaker, because we do not need to assume, for instance,

that Uh(a, 0, . . . , 0) goes to infinity when a ∈ R+ goes to infinity.

Moreover, these authors use the assumption of unbounded utilities to prove that there exists an equilibrium even

without interior individual endowments. In our context, Assumption 4 will guarantee that all equilibrium commodity

prices are uniformly bounded from below and, therefore, there exists p > 0 such that, given equilibrium commodity

prices p, we have ps,l ≥ p, for all states of nature s ∈ S∗ and for all commodity l ∈ L (see Lemma 4 in the Appendix).

Thus, fixing endowments wh = (wh
s )s∈S∗ ∈ RL×S∗

+ , that satisfy for each state of nature
∑

h∈H wh
s À 0, and restating

our Assumption 1, in order to require that the last condition
∑

h∈H mh(ps) = psWs only holds for the prices ps ≥ p.

We can define income functions as mh
s (ps) =

∑
l∈L max{ps,l, p}wh

s,l in order to guarantee, as consequence of our main

result, that there exists a non-trivial equilibrium for an economy in which agents are endowed by physical bundles

that do not need to be interior points of RL
+. Note that, in our context in which commodities may be durable, this

property is particularly interesting, because it allows some agents to be endowed, at the states of nature in the second

period, only with perishable commodities.
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each class of primitives Ai ⊂ Ai, with i ∈ {P,C}, we have that
[ ∑

k∈Ai

(As,k)l 6= 0

]
⇔


 ∑

j∈J(Ai)

(As,j)l 6= 0


 , ∀s ∈ S, ∀ l ∈ L.

This last assumption guarantees that, independently of the price level, one derivative has positive

real promises if and only if at least one primitive also has it.

We can now state our main result,

Theorem. Under Assumptions 1-5 our economy E(S∗,H,L,F) has a non-trivial equilibrium.

Sketch of the proof: We guarantee, in the Appendix, the existence of a non-trivial equilibrium

following the steps below:

¦ We define, for each agent h ∈ H, a correspondence that, given a price vector, associates, to

each consumption-financial allocation, the set of consumption-financial allocations that are strictly

preferred to it. These correspondences are lower hemicontinuous, strictly monotonic, irreflexive

and have open and convex values (see Proposition 1). Moreover, in order to guarantee that agents

budget set correspondences are lower hemicontinuous, we suppose that (i) first period commodities

and derivatives prices are in the simplex, (ii) primitive assets prices satisfy
∑

k∈Ai
qk ≥

∑
j∈J(Ai)

qj

for any class Ai ⊂ Ai, and (iii) the commodities prices at each state in the second period belong to

the simplex.

¦ As we work in an economy in which agents are characterized by non-ordered preferences, we

find an equilibrium using Gale-Mas-Colell Fixed Point Theorem. Thus, we need to truncate our

economy. In this direction, we prove in Lemma 1 that equilibrium allocations are bounded. Hence

we define, for each M = (M1,M2) ∈ R2
+ with M2 > M1, a truncated economy EM that coincides

with the original economy, but has the endogenous variables truncated in the following way: (i)

short sales of primitives, purchases of derivatives and deliveries are bounded using upper bounds

found on Lemma 1; (ii) consumption allocations are bounded by M1; and (iii) the rates of payment

of each derivative are restricted to belong to [β, 1], where the lower bound β is equal to 1
M1

, if it

satisfies one of the refinement conditions, and equal to 1
M2

in other case. Note that payment rates

of CLO, associated to AC , are not restricted to belong to R(AC), because this set is not convex.

¦ Furthermore, for each abstract economy, we define reaction correspondences for the agents, and

abstract reaction correspondences for auctioneers, who choose prices (for commodities and assets)

and rates of payment for the derivatives. The same auctioneer fixes the rates of payment for a family

of Pass-troughs and different auctioneers fix the rate of payment of each tranche in the same CLO.

Using Gale-Mas-Colell Fixed Point Theorem, we prove that there exists, for each vector (M1,M2)

an equilibrium for the truncated economy EM , in the sense that all reaction correspondences have

empty-value (see Lemma 2).

¦ Now, for M1 sufficiently large, we prove that: (i) agents allocations are feasible and optimal in

the truncated budget set (Lemma 3); (ii) market clearing conditions in the first period are satisfied
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for physical and financial markets (Lemma 3); and (iii) commodities prices are uniformly bounded

from below at each state of nature s ∈ S∗ (Lemma 4).

¦ Moreover, Lemma 5 and Lemma 6 prove, using the reaction correspondences of the auctioneers,

for M1 sufficiently large, that (i) Pass-through rates of payment satisfy equilibrium condition (F);

(ii) CLO payment rates belong to a truncated space of payments (that converges to the space R(AC)

when M2 goes to infinity); and (iii) the excess of payments received by the lenders over the deliveries

made by the borrowers is bounded by a constant multiplied by 1
M2

.

¦ In Lemma 7 we prove that the physical markets excess of demand, at each state in the second

period, is also bounded by a constant multiplied by 1
M2

. Furthermore, we guarantee that agents

allocations, obtained as equilibrium for the truncated economies EM , are optimal choices in the

original economy for each M .

¦ Finally, as we have two degrees of freedom, M1 and M2, we prove in Lemma 8 that, for a

sufficiently large M1, when M2 goes to infinity the equilibrium of the truncated economies con-

verges to an equilibrium of the original economy. As payment rates of derivatives associated with

primitives that satisfy our refinement condition are bounded from below by 1
M1

, and optimality

condition implies that there exists at least one primitive that has positive price, we guarantee that

this equilibrium is non-trivial. ¤

Particularly, when the seizure of the collateral requirements, which are independent of prices, is

the only enforcement in case of default, our main result guarantees that there exists a non-trivial

equilibrium in the context of the original Geanakoplos e Zame [11] model, allowing asset-backed

securitization and non-ordered preferences. Moreover, when there is only one derivative associated

with each primitive, we obtain an extension of Geanakoplos and Zame [11] to allow non-ordered

preferences.8

Remark 4 (Assets with Non-trivial Rates of Payment). We can guarantee, independently of the

equilibrium prices, that some derivatives always have positive rates of payment, even if they are

not negotiated. In fact, as we suppose that preferences are strictly monotonic on consumption,

equilibrium commodity prices (if they exist) will be strictly positive, p À 0, which implies that for

each class of primitives Ai, with i ∈ {P,C}, a necessary and sufficient condition to guarantee that

min {psAs,k; psYsCk(p0, qk)} > 0, ∀k ∈ Ai ,

is that mink∈Ai {||As,k||1; ||YsCk(p0, qk)||1} > 0. Now, it follows from Assumption 3 that this last

condition does not depend on (p0, qk). In fact, if collateral requirements are price dependent, we

know that their depreciated bundle is, at each state of nature, different from zero, which implies

that the condition above is equivalent to mink∈Ai {||As,k||1} > 0. Hence, when collateral are fixed,

as in Geanakoplos and Zame [11], a family of derivatives will have positive rates of payment at

8In the context of endogenous collateral models, Martins-da-Rocha and Torres-Mart́ınez [13] also obtain this last

result as a particular case of their main theorem.
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some state s ∈ S if both mink∈Ai
{||As,k||1} > 0 and mink∈K ||YsCk||1 6= 0. Therefore, under our

assumptions, the requirement that guarantees that a family of derivatives has a non-zero vector of

rates of payment is independent of equilibrium prices.

6. Concluding Remarks

In this paper, we prove that the financial structures of asset-backed securitization are consistent

with a general equilibrium model in which assets are subject to default and borrowers are enforced

by the seizure of collateral requirements or by extra-economic penalties. Equilibrium exists even

when agents are only characterized by non-ordered preferences, which internalize extra-economic

punishments. Furthermore, we propose a refinement concept of equilibrium in order to avoid the

absence of asset trading as consequence of over-pessimism about rates of default. Thus, physical col-

lateral requirements have an important role in order to avoid unduly pessimistic belief on derivatives

rates of default.

Our framework may be extended in some directions. A natural one would be to consider a multi-

period model with long-lived assets. In this context, if we permit borrowers to prepay their debts

before the contracted period, two interesting points would appear. First, how these prepayments are

made and that incentives the borrowers have to make them? Second, how the financial intermediaries

would reinvest the amount prepaid? Thus, it would be necessary to model the decision making of

the issuers, endogenizing the asset structure, as in DeMarzo and Duffie [5], Allen and Gale [1], and

Diamond [6].

Although in our model collateral requirements can depend on prices, agents do not have the pos-

sibility to choose personalized guarantees. Thus, it is interesting to allow borrowers to endogenously

choose this guarantees in a context with asset-backed securitization. In the particular case in which

primitives within the same class differ from each other only on physical collateral requirements, we

can argue as in Geanakoplos [10] that this structure approximates an endogenous collateral context.

In fact, assets will be priced in equilibrium and agents will choose the pair of primitive price and

collateral bundle that best suits their interests. Of course, a more realistic endogenous collateral

model, though, would have to allow agents to directly choose the physical collateral requirements,

as in Araujo, Fajardo and Páscoa [2] and Martins-da-Rocha and Torres-Mart́ınez [13].

Furthermore, in DeMarzo and Duffie [5], Araujo, Fajardo and Páscoa [2], and Martins-da-Rocha

and Torres-Mart́ınez [13] the promises made by the borrowers are pooled in only one nominal

security, which incorporates in their promises the default given by the original claims. In this context,

these models suppose that financial intermediaries issue endogenous asset-backed derivatives. We

can allow this type of structure and the existence of equilibrium will be a direct consequence of

our main result, after redefinition of some variables. In fact, when classes of primitives are pooled

in only one derivative, it is sufficient to suppose that agents, instead of taking anonymous rates of

payment as given, observe nominal promises made by the derivatives.

Thus, our model of Asset-Backed Securitization provides a natural framework to study these

extensions and to analyze the advantages of asset backed securitization in order to promote efficiency.
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Appendix: Proof of the Theorem

In order to guarantee the equilibrium existence, we restrict our space of prices. In the first period, we

consider prices (p0, qK , qJ) that belong to the convex-compact set,

Ξ =



(p0, qK , qJ) ∈ RL

+ × [0, 1]K × RJ
+ : (p0, qJ) ∈ ∆#L+#J−1

+ ,
∑

j∈J(Ai)

qj ≤
∑

k∈Ai

qk, ∀Ai ⊂ Ai



 ,

where qK = (qk)k∈K , qJ = (qj)j∈J and, as usual, Ai denotes a generic class of primitives of Ai, with

i ∈ {P, C}. Moreover, we restrict the commodity prices ps, at each state of nature in the second period,

to belong to ∆#L−1
+ . For convenience of notation, we denote a generic vector of commodity-financial

prices and derivatives rates of payment by π = (p, q, r), a generic individual allocation for an agent h by

ηh = (xh, ϕh, δh, θh), and by η = (ηh)h∈H a generic vector of allocations in the economy. Also, let Ξk be

the projection of the set Ξ into the commodity prices and the price of the primitive k, that is,

Ξk =
{

(p0, qk) ∈ RL
+ × [0, 1] : ∃ (qJ , qk′)k′ 6=k , (p0, qK , qJ) ∈ Ξ

}
.

Moreover, without loss of generality, we suppose that
∑

k∈Ai
As,k ≤

∑
j∈J(Ai)

As,j for each Ai ⊂ Ai with

i ∈ {P, C} and for each s ∈ S.

Remark 5. Note that, if we prove that there always exists a non-trivial equilibrium (π, η) for any economy

E that satisfies
∑

k∈Ai
As,k ≤ ∑

j∈J(Ai)
As,j , for each Ai ⊂ Ai with i ∈ {P, C} and for each s ∈ S, it

is always possible to find a non-trivial equilibrium for any economy E ′ in which primitive and derivative

promises only satisfy Assumption 5. In fact, for such E ′ we have that
[ ∑

k∈Ai

(A′s,k)l 6= 0

]
⇔

[ ∑

j∈J(Ai)

(A′s,j)l 6= 0

]
, ∀s ∈ S, ∀ l ∈ L,

and consequently there exists λ ∈ R++ such that
∑

k∈Ai
A′s,k ≤ ∑

j∈J(Ai)
λA′s,j , for each Ai ⊂ Ai with

i ∈ {P, C} and for each s ∈ S. If there is an equilibrium (π, η) for an economy E , which is equal to E ′
except for the derivatives promises, defined as As,j = λA′s,j , we can consider the allocation (π′, η′) given by

(p′, q′K , r′ ; x′, ϕ′, δ
′
) = (p, qK , r ; x, ϕ, δ), θ

′
= λ θ and q′J = 1

λ
qJ . One can easily verify that the allocation

(π′, η′) is an equilibrium for the economy E ′.

We define the decision correspondence Ψh : (∆#L−1
+ )S × X ³ X, by

Ψh(p−0, η
h) := (Tp−0)

−1 ◦Qh ◦ T (p−0, η
h),

where the continuous function Tp−0 : X→ X ×RK×S
+ is defined by Tp−0(η

h) := T (p−0, η
h). It follows that,

given prices (p, q) and rates of payment r, an allocation ηh is optimal for the agent h ∈ H if and only if

Ψh(p−0, η
h) ∩Bh(p, q, r) = ∅.

Proposition 1. Under Assumption 2, for each agent h ∈ H, the correspondence Ψh is lower hemicontin-

uous, has convex and open values, is strictly monotonic on (xs)s∈S∗ , and is irreflexive, in the sense that

ηh /∈ Ψh(p−0, η
h), for all (p−0, η

h) ∈ (∆#L−1
+ )S × X.

Proof: For convenience of notation, define F := (∆#L−1
+ )S . Also, we denote by f a generic element of F.

Using our notation, Ψh(f, ηh) = (Tf )−1 ◦Qh ◦ T (f, ηh),
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Step 1 : Ψh has open values. Fix a vector (f, ηh) ∈ F × X. Since Qh has open values, Qh(T (f, ηh)) is an

open set. As Tf is continuous, (Tf )−1(Qh(T (f, ηh))) is also open, which implies that Ψh has open values.

Step 2 : Ψh has convex values. Fix a vector (f, ηh) ∈ F × X. It is sufficient to show that, given λ ∈ [0, 1]

and ηh
1 and ηh

2 in Ψh(f, ηh), we have that
[
ληh

1 + (1− λ)ηh
2

] ∈ (Tf )−1
(
Qh(T (f, ηh))

)
. Since Qh is convex-

valued, we know that λT (f, ηh
1 ) + (1 − λ)T (f, ηh

2 ) ∈ Qh(T (f, ηh)). Moreover, by definition of the function

T , there exists (x1, x2) ∈ X ×X such that

T (f, ηh
i ) =

(
xi,

(
Ds,k(f, ηh

i )
)

(s,k)∈S×K

)
, i ∈ {1, 2}.

As the functions Ds,k(f, ·) are convex, we have that

λT (f, ηh
1 ) + (1− λ)T (f, ηh

2 ) =

(
λx1 + (1− λ)x2,

[
λDs,k(f, ηh

1 ) + (1− λ)Ds,k(f, ηh
2 )

]
(s,k)∈S×K

)

≥
(

λx1 + (1− λ)x2,
[
Ds,k(f, ληh

1 + (1− λ)ηh
2 )

]
(s,k)∈S×K

)

= T (f, ληh
1 + (1− λ)ηh

2 )

Therefore, it follows from item (ii) in Assumption 2 that T (f, ληh
1 + (1 − λ)ηh

2 ) belongs to Qh(T (f, ηh)),

which implies that
(
ληh

1 + (1− λ)ηh
2

) ∈ (Tf )−1
(
Qh(T (f, ηh))

)
.

Step 3 : Ψh is lower-hemicontinuous. It is sufficient to show that given an (relative) open set U ⊂ X, the

lower inverse (Ψh)− [U ] = {(f, ηh) ∈ F × X : Ψh(f, ηh) ∩ U 6= ∅ }, is an (relative) open set of F × X. If

(Ψh)− [U ] is empty, the proof is immediate. Thus, suppose that (Ψh)− [U ] 6= ∅ and fix a vector (f, ηh) ∈
(Ψh)− [U ]. We are interested in proving that there exists µ > 0 such that

Vµ(f, ηh)
⋂

(F× X) ⊂ (Ψh)− [U ] ,

where Vµ(f, ηh) denotes the open neighborhood (in the Euclidean norm) of (f, ηh) with radius µ. Now, fix

a vector η̂h ∈ Ψh(f, ηh) ∩ U .

We know that η̂h ∈ U and T (f, η̂h) ∈ Qh ◦ T (f, ηh), which implies that
(
T (f, ηh), T (f, η̂h)

) ∈ Graph Qh.

As the correspondence Qh has open graph, there exists ν > 0 such that

Vν

(
T (f, ηh), T (f, η̂h)

) ⋂ [
(X × RK×S

+ )× (X × RK×S
+ )

]
⊂ Graph Qh.

Moreover, as the function T is continuous, there exists µ > 0 such that, if (f ′, η′h) ∈ Vµ(f, ηh) ∩ [F× X]

then (
T (f ′, η′h), T (f ′, η̂h)

)
∈ Vν

(
T (f, ηh), T (f, η̂h)

) ⋂ [
(X × RK×S

+ )× (X × RK×S
+ )

]
.

Therefore, for all (f ′, η′h) ∈ Vµ(f, ηh) ∩ [F× X], we have that T (f ′, η̂h) ∈ Qh
(
T (f ′, η′h)

)
, which implies

η̂h ∈ Ψh(f ′, η′h). Finally, as η̂h ∈ U , the allocation (f ′, η′h) belongs to (Ψh)− [U ], which concludes the proof

of this step.

The fact that Ψh is strictly monotonic and irreflexive follows directly from properties on Qh. ¤

It is useful to define, for each agent h ∈ H, a set function Ψ̂h :
(
∆#L−1

+

)S

×X ³ X, called augmented de-

cision correspondence, as the set function that associates to each vector (p−0, η
h) the collection of allocations

η̂h that satisfies

η̂h = λη̃h + (1− λ)ηh for 0 < λ ≤ 1, η̃h ∈ Ψh(p−0, η
h).
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Note that Ψh(p−0, η
h) ⊂ Ψ̂h(p−0, η

h). Moreover, as noted in Gale-Mas-Colell [8, 9], the correspondence Ψ̂h

preserves all properties of Ψh: it is irreflexive, strictly monotonic and lower hemicontinuous, with open and

convex values (see Proposition above).

Lemma 1. Given prices and rates of payment π = (p, q, r), if individual allocations (ηh)h∈H satisfy equilib-

rium conditions (A)-(C) then, for each agent h ∈ H, the vector (xh, ϕh, δh) ∈ X × RK
+ × RK×S

+ is bounded.

Proof: Let η = (xh, ϕh, δh, θh)h∈H be a vector that satisfies the equilibrium conditions (A)-(C). Condition

(B) implies that, at the first period,
∑

h∈H xh
0 = W0. As each term in the left hand side of the equality

above is non-negative, it follows that, for each commodity l ∈ L and for each agent h ∈ H, the consumption

allocation satisfies xh
0,l ≤ W0,l. Thus, agents consumption bundles are bounded at t = 0. Moreover, it

follows from Condition (A) that ηh ∈ Bh(π) and, therefore,

(5)
∑

k∈K

Ck,l(p0, qk)ϕh
k ≤ xh

0,l ≤ W0,l.

Since we restrict prices (p0, qk) to the compact set Ξk, it follows from Assumption (3) that there exists

a finite lower bound ck = min(p0,qk)∈Ξk

∑
l∈L Ck,l(p0, qk) > 0. Then, summing over l ∈ L, we have from

equation (5) that

(6) ϕh
k ≤ 1

ck

∑

l∈L

W0,l =: Ωk,

which implies that short sales are bounded. Now, equilibrium condition (B) guarantees that, at each state

s ∈ S,
∑

h∈H xh
s = Ws + Ys W0. Since each term on left hand side, in the last equation, is non negative, it

follows that individual consumptions bundles, xh
s , are bounded.

Finally, as we restrict commodity prices, at each state of nature s ∈ S, to belong to the simplex ∆#L−1
+ ,

the value of primitive promises, psAs,kϕh
k , is bounded for each (h, k) ∈ H ×K. Thus, it follows from equi-

librium condition (C) that borrowers do not have any incentive, at the optimum, to pay more than the face

value of the original promises. Therefore, payments δh are bounded from above, node by node, primitive

by primitive. ¤

Now, as consumption allocations, short sales positions and payments are bounded at equilibrium (if it

exists), we will truncate endogenous variables in order to find an optimal allocation for the economy.

Our goal is to prove that, given upper and lower bounds on allocations, there exists an equilibrium

for a truncated economy (as defined below). Furthermore, we show that this truncated equilibria alloca-

tions converge, when the appropriated limit is taken, to an equilibrium allocation of our original economy

E(S∗,H,L,F).

The Truncated Economy EM . We define, for each M ∈ M = {(M1, M2) ∈ R2
++ : M1 < M2},

a truncated economy EM in which the structure of uncertainty and the physical markets are the same

as in E(S∗,H,L,F). Each agent h ∈ H can demand commodities, can sell primitives k ∈ K and can

buy derivatives j ∈ J restricted to the space of allocations XM , which is given by the set of vectors

ηh = (xh, ϕh, δh, θh) ∈ X that satisfies

‖xh‖∞ ≤ M1, ‖ϕh‖∞ ≤ 2Ω, ‖ θh‖∞ ≤ 2 (#H)Ω and ‖δh‖∞ ≤ 2Ω max
(s,k)∈S×K

‖As,k‖1,

where ‖ ‖∞ denotes the sup-norm and Ω := maxk∈K Ωk is the maximum of short sales upper bounds defined

at equation (6) on Lemma 1. Moreover, in order to guarantee the existence of a non-trivial equilibrium (as
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defined at Section 4), we need to find a lower bound, above from zero, for the anonymous rates of payment

of the derivatives:

¦ Given a class AC ⊂ AC of primitives, we define the truncated space of CLO payment rates as the

set of vectors (rs,jm
AC

) ∈ Rn(AC)
+ that belongs to

Υs
M (AC) :=

n(AC)∏
m=1

[βs,m
M (AC), 1] ,

where, denoting by cs,k := max(p0,qk)∈Ξk
‖YsCk(p0, qk)‖1,

βs,1
M (AC) =

{
1

M1
, if mink∈AC {||As,k||1, cs,k} > 0;

1
M2

, in other case,

and for m > 1,

βs,m
M (AC) =





1
M1

, if
[
mink∈AC {||As,k||1, cs,k} > 0

]
∧

[
||As,jm′ (AC)||1 = 0, ∀m′ < m

]
;

1
M2

, in other case.

¦ Given a class AP ⊂ AP of primitives, we define the truncated space of Pass-through payment rates

as

Υs
M (AP ) =

{
r = (ri) ∈ [βs

M (AC), 1]n(AP ) : ri = ri′ , 1 ≤ i, i′ ≤ n(AP )
}

,

where, similar to the case of Collateralized Loan Obligations,

βs
M (AP ) =

{
1

M1
, if mink∈AP {||As,k||1, cs,k} > 0;

1
M2

, in other case.

The space of prices and rates of payments π = (p, q, r) is given, in our truncated economy EM , by

PM := Ξ× (∆#L−1
+ )S ×

∏

i∈{P,C}

∏

Ai⊂Ai

∏
s∈S

Υs
M (Ai).

Moreover, for a given vector of prices and anonymous payment rates π ∈ PM , let Bh
M (π) = Bh(π) ∩ XM

be the truncated budget set. For each agent h, we define the truncated augmented decision correspondence

Ψ̂h,M : (∆#L−1
+ )S × XM ³ XM as the restriction of the correspondence Ψ̂h to the truncated space of allo-

cations XM .

Now, associated to each agent h ∈ H, we define a reaction correspondence ψh
M : PM × XH

M ³ XM via

ψh
M (π, η) =

{
Ḃh

M (π) if ηh /∈ Bh
M (π),

Ḃh
M (π) ∩ Ψ̂h,M (p−0, η

h) if ηh ∈ Bh
M (π),

where Ḃh
M (π) denotes the interior of Bh

M (π) relative to XM . Reaction correspondences are also defined for

each state s ∈ S∗. Let ψ0
M : PM × XH

M ³ Ξ be

ψ0
M (π, η) =



(p′0, q

′
K , q′J) : p′0

[∑

h∈H

xh
0 −W0

]
+

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

q′j
∑

h∈H

θh
j −

∑

k∈Ai

q′k
∑

h∈H

ϕh
k





 > 0



 ,

and, for each s ∈ S, let ψs
M : PM × XH

M ³ ∆#L−1
+ be

ψs
M (π, η) =

{
p′s ∈ ∆#L−1

+ : p′s

(∑

h∈H

[
xh

s − Ysx
h
0

]
−Ws

)
> ps

(∑

h∈H

[
xh

s − Ysx
h
0

]
−Ws

)}
.
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Given a class AP of primitives, we define, for each state of nature s ∈ S, a reaction correspondence

ψs,AP
M : PM×XH

M ³ Υs
M (AP ), which associates a vector (π, η) with the set of vectors r′ := r′s,AP

(1, 1, . . . , 1) ∈
Υs

M (AP ) that satisfies

r′s,AP

∑

j∈J(AP )

psAs,j

∑

h∈H

θh
j −

∑

k∈AP

∑

h∈H

δh
s,k




2

<


rs,AP

∑

j∈J(AP )

psAs,j

∑

h∈H

θh
j −

∑

k∈AP

∑

h∈H

δh
s,k




2

,

where π = (p, q, r) and (rs,j)j∈J(AP ) := rs,AP (1, 1, . . . , 1). Finally, given a class AC of primitives, for each

state of nature s ∈ S, and for each m ∈ {1, 2, . . . , n(AC)}, we define the reaction correspondence

ψ
s,jm(AC)
M : PM × XH

M ³ [βs,m
M (AC), 1] ,

as the set function that associates, to each vector (π, η) ∈ Pm × XH
M , the set of numbers r′ ∈ [βs,m

M (AC), 1]

that satisfies

r′psAs,jm(AC)

∑

h∈H

θh
jm(AC) +

m−1∑
i=1

rs,ji(AC)psAs,ji(AC)

∑

h∈H

θh
ji(AC) −

∑

k∈AC

∑

h∈H

δh
s,k




2

<




m∑
i=1

rs,ji(AC)psAs,ji(AC)

∑

h∈H

θh
ji(AC) −

∑

k∈AC

∑

h∈H

δh
s,k




2

.

Definition 3. Given M ∈M, an equilibrium for the truncated economy EM is a vector

(π, η) =
(
(pM , qM , rM ), (xh

M , ϕh
M , δ

h
M , θ

h
M )h∈H

)
∈ PM × XH

M

at which all the reaction correspondences defined above have an empty value.

Lemma 2. Given a vector M ∈ M, if Assumptions 1-3 hold, there exists an equilibrium for the truncated

economy EM .

Proof: Observe that from Assumption 1 and Assumption 3, Ḃh
M (π) has non-empty values and has open

graph. Then, it follows from Assumption 2, that the reaction correspondences (ψs
M )s∈S∗ , (ψs,AP

M ){s∈S,AP⊂AP },

(ψh
M )h∈H , and (ψs,j

M ){(s,j)∈S×J(AC), AC⊂AC} satisfy the assumptions of the Gale-Mas-Colell Fixed Point The-

orem (see Gale and Mas-Colell [8, 9]), that is, all correspondences are lower hemicontinuous with convex

and open values, have the same domain, and the product of the image spaces coincides with the domain.

Thus, there exists a vector (πM , ηM ) ∈ PM × XH
M such as

- ψh
M (πM , ηM ) = ∅ or ηh

M ∈ ψh
M (πM , ηM ), for each agent h ∈ H;

- ψ0
M (πM , ηM ) = ∅ or ((pM )0, qM ) ∈ ψ0

M (πM , ηM );

- ψs
M (πM , ηM ) = ∅ or (pM )s ∈ ψs

M (πM , ηM ), for each state of nature s ∈ S;

- ψs,AP
M (πM , ηM ) = ∅ or (rM )s,AP ∈ ψs,AP

M (πM , ηM ), for each class of primitives AP ⊂ AP and state

of nature s ∈ S;

- ψ
s,jm(AC)
M (πM , ηM ) = ∅ or (rM )s,jm(AC) ∈ ψ

s,jm(AC)
M (πM , ηM ), for each state of nature s ∈ S, for

each class AC ⊂ AC and for each m ∈ {1, 2, . . . , n(AC)}.
Clearly it is not possible to ηh

M /∈ Bh
M (πM ), because in this case it would neither be a fixed point, nor

an empty value. Moreover, we can not have ηh
M ∈ ψh

M (πM , ηM ) because it contradicts the fact that

ηh
M /∈ Ψ̂h,M ((p−0)M , ηh

M ). Thus, we must have ψh
M (πM , ηM ) = ∅, for each agent h ∈ H.

As noted above, ηh
M ∈ Bh

M (πM ). Adding over the agents, it follows from Assumption 1 that

(pM )0


 ∑

h∈H

(xh
M )0 −W0


 +

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

(qM )j

∑

h∈H

(θ
h
M )j −

∑

k∈Ai

(qM )k

∑

h∈H

(ϕh
M )k





 ≤ 0.
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Thus, ((pM )0, qM ) /∈ ψ0
M (πM , ηM ) and, therefore, ψ0

M (πM , ηM ) is an empty set. Finally, one can easily

see that, from the definition, the correspondences ψs
M , ψs,AP

M and ψ
s,jm(AC)
M may not have a fixed point.

Then, we must have that ψs
M (πM , ηM ) = ∅, ψs,AP

M (πM , ηM ) = ∅ and ψ
s,jm(AC)
M (πM , ηM ) = ∅. ¤

Now, for convenience of notation, when mistakes are not possible, we suppress the subscript of the alloca-

tions (πM , ηM ). So, using this notation, with M ∈M fixed, we already know that an equilibrium allocation

for the truncated economy, (π, η), satisfies ηh ∈ Bh
M (π) and Ψ̂h,M (p−0, η

h) ∩ Ḃh
M (π) = ∅. Moreover, the

fact that both sets Ψ̂h,M (p−0, η
h) and Ḃh

M (π) are open implies that Ψ̂h,M (p−0, η
h) ∩ closure [Ḃh

M (π)] = ∅.
As Ḃh

M (π) is non-empty and convex, we conclude that Ψ̂h,M (p−0, η
h) ∩ Bh

M (π) = ∅. Furthermore, since

ψ0(π, η) = ∅, for any (p′, q′K , q′J) ∈ Ξ1 we have that

(7) p′0

[∑

h∈H

xh
0 −W0

]
+

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

q′j
∑

h∈H

θ
h
j −

∑

k∈Ai

q′k
∑

h∈H

ϕh
k





 ≤ 0.

Thus, suppose that
∑

h xh
0,l − W0,l > 0 for some l ∈ L. Then, setting p′0,l = 1, p′0,l′ = 0 for all l′ 6= l,

qJ = 0 and qK = 0, we obtain a contradiction. Moreover, suppose that
∑

h θ
h
j >

∑
h ϕh

k for some pair

(k, j) ∈ Ai × J(Ai). Thus, letting p0 = 0, qj = 1, and qj′ = 0 for all j′ 6= j, qk = 1, and qk′ = 0 for all

k′ 6= k, we obtain a contradiction with equation (7). Hence, it follows that
∑

h xh
0,l −W0,l ≤ 0 for l ∈ L,

and
∑

h θ
h
j ≤

∑
h ϕh

k for each pair (k, j) ∈ Ai × J(Ai), and for all Ai ∈ Ai with i ∈ {P, C}.

Lemma 3. There exists M?
1 > 0 such that, for each M1 > M?

1 , if Assumptions 1-3 hold, each equilibrium

allocations (π, η) for a truncated economy EM , with M = (M1, M2) ∈M, satisfies

(3.1) For each agent h ∈ H, ηh ∈ Bh
M (π);

(3.2) Ψ̂h,M (p−0, η
h) ∩Bh

M (π) = ∅, ∀h ∈ H;

(3.3)
∑

h∈H xh
0 = W0;

(3.4)
∑

j∈J(Ai)
qj

∑
h∈H θ

h
j =

∑
k∈Ai

qk

∑
h∈H ϕh

k , for each class Ai ⊂ Ai with i ∈ {P, C};
(3.5) For each s ∈ S and AP ⊂ AP ,

rs,AP ∈ arg max
r∈[βs

M
(AP ),1]

−

r

∑

j∈J(AP )

psAs,j

∑

h∈H

θ
h
j −

∑

k∈AP

∑

h∈H

δ
h
s,k




2

;

(3.6) For each s ∈ S, AC ⊂ AC , jm(AC) ∈ J(AC), the payment rate rs,jm(AC) minimizes the function


r F s,m

AC
(π, η) +

m−1∑
i=1

rs,ji(AC)F
s,i
AC

(π, η)−
∑

k∈AC

∑

h∈H

δ
h
s,k




2

,

subject to r ∈ [βs,m
M (AC), 1], where F s,i

AC
(π, η) := psAs,ji(AC)

∑
h∈H θ

h
ji(AC);

(3.7) There exists X < M?
1 such that, for each s ∈ S∗ and l ∈ L, the consumption allocations (xh

s,l)h∈H

satisfy, xh
s,l ≤ Ws,l ≤ X ;

(3.8) For each s ∈ S and l ∈ L,

∑

h∈H

xh
s,l − (YsW0)l −Ws,l ≤

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

rs,jpsAs,j

∑

h∈H

θ
h
j −

∑

k∈Ai

∑

h∈H

δ
h
s,k





 ;

(3.9)
∑

h θ
h
j ≤

∑
h ϕh

k for each pair (k, j) ∈ Ai × J(Ai), for all Ai ⊂ Ai, with i ∈ {P, C}.
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Proof: As discussed above, items (3.1), (3.2) and (3.9) hold for each M = (M1, M2) ∈ M. Now, as∑
h xh

0,l −W0,l ≤ 0 for l ∈ L, there exists M ′
1 such that, for each M1 > M ′

1, an equilibrium consumption

allocation of the truncated economy EM satisfies xh
0,l < M1. Thus, given M1 > M ′

1, suppose that agent h

equilibrium allocation satisfies

p0x
h
0 +

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

qjθ
h
j −

∑

k∈Ai

qkϕh
k





 < mh

0 (p0).

As xh
0 is interior, there exists x̂h

0 À xh
0 such that η̂h = (x̂h

0 , ϕh, δ
h
, θ

h
) ∈ Bh

M (π). From the strict monotonicity

of Ψ̂h,M on x0, we have that Ψ̂h,M (p−0, η
h)∩Bh

M (π) 6= ∅, which contradicts item (3.2). Thus, for each agent

h, the budget constraint for the first period must hold with equality. Summing over the agents, it follows

from Assumption 1 that

(8) p0

[∑

h∈H

xh
0 −W0

]
+

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

qj

∑

h∈H

θ
h
j −

∑

k∈Ai

qk

∑

h∈H

ϕh
k





 = 0.

Now, given a class Ai, defining k′ as ∑

h∈H

ϕh
k′ = min

k∈Ai

∑

h∈H

ϕh
k ,

it follows from
∑

h∈H θ
h
j ≤

∑
h∈H ϕh

k , for all (j, k) ∈ J(Ai)× Ai, that

∑

j∈J(Ai)

qj

∑

h∈H

θ
h
j −

∑

k∈Ai

qk

∑

h∈H

ϕh
k ≤

∑

j∈J(Ai)

qj

∑

h∈H

ϕh
k′ −

∑

k∈Ai

qk

∑

h∈H

ϕh
k′(9)

=
∑

h∈H

ϕh
k′


 ∑

j∈J(Ai)

qj −
∑

k∈Ai

qk


 ≤ 0,

where the last inequality is a consequence of
∑

j∈J(Ai)
qj ≤

∑
k∈Ai

qk. It follows from (9) and from the

inequality
∑

h xh
0 ≤ W0 that the left hand side of equation (8) is a sum of non-positive terms. Thus, each

term must be zero, and condition (3.4) hold, i.e

∑

j∈J(Ai)

qj

∑

h∈H

θ
h
j −

∑

k∈Ai

qk

∑

h∈H

ϕh
k = 0,

for each class Ai ⊂ Ai with i ∈ {P, C}. Moreover, suppose that there exists a commodity l ∈ L such that,∑
h∈H xh

0,l < W0,l. From equation 8, we must have p0,l = 0. But it follows from the strict monotonicity of

Ψ̂h,M on x0,l that Bh
M (π) ∩ Ψ̂h,M (p−0, η

h) 6= ∅, which is a contradiction. Therefore, item (3.3) holds.

It follows from Lemma 2 that, given a state of nature s ∈ S, a class of primitives AP ⊂ AP and

M = (M1, M2) ∈M, we have, for each r ∈ [βs
M (AP ), 1],


r

∑

j∈J(AP )

psAs,j

∑

h∈H

θ
h
j −

∑

k∈AP

∑

h∈H

δ
h
s,k




2

≥

rs,AP

∑

j∈J(AP )

psAs,j

∑

h∈H

θ
h
j −

∑

k∈AP

∑

h∈H

δ
h
s,k




2

.

Hence,

rs,AP ∈ arg max
r∈[βs

M
(AP ),1]

−

r

∑

j∈J(AP )

psAs,j

∑

h∈H

θ
h
j −

∑

k∈AP

∑

h∈H

δ
h
s,k




2

and (3.5) is proved. With analogous arguments, we can guarantee item (3.6).

Furthermore, given an equilibrium (π, η) for the abstract economy EM , with M = (M1, M2) and M1 > M ′
1,

we know that ψs
M (π, η) = ∅ for each state of nature s ∈ S. Then, for all prices p′s ∈ ∆#L−1

+ we have

(10) p′s

(∑

h∈H

[
xh

s − Ysx
h
0

]
−Ws

)
≤ ps

(∑

h∈H

[
xh

s − Ysx
h
0

]
−Ws

)
.
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Moreover, it follows from item (3.1) that ηh ∈ Bh
M (π) for each agent h ∈ H. Thus, given an state of nature

s ∈ S,

(11) ps

(∑

h∈H

[
xh

s − Ysx
h
0

]
−Ws

)
≤

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

rs,jpsAs,j

∑

h∈H

θ
h
j −

∑

k∈Ai

∑

h∈H

δ
h
s,k





 .

Letting, at equation (10), p′s,l = 1 and p′s,l′ = 0 for each l′ 6= l, we have from (10), (11) and item (3.3) that

(12)
∑

h∈H

xh
s,l − (YsW0)l −Ws,l ≤

∑

i∈{P,C}


 ∑

Ai⊂Ai


 ∑

j∈J(Ai)

rs,jpsAs,j

∑

h∈H

θ
h
j −

∑

k∈Ai

∑

h∈H

δ
h
s,k





 ,

which proofs (3.8). As in the economy EM , (a) the positions on primitives, ϕh
j , are bounded by above by

2Ω and (b) the aggregated purchase of each derivative,
∑

h∈H θ
h
j , is bounded by the total short position on

primitives; it follows from equation (12) that

∑

h∈H

xh
s,l − (YsW0)l −Ws,l ≤ 2

∑
j∈J

‖As,j‖1 (#H)Ω.

Then, for each l ∈ L,

xh
s,l ≤ max

(s,l)∈S×L

{
Ws,l + (YsW0)l + 2

∑
j∈J

‖As,j‖1 (#H)Ω

}
, ∀h ∈ H,

which guarantees that consumption allocations xh
s , s ∈ S, are uniformly bounded from above, indepen-

dently of the value of M1 > M ′
1. Moreover, item (3.3) guarantees that first period consumption alloca-

tions, xh
0 , are also uniformly bounded, independent of M = (M1, M2). Therefore, there exists X > 0 and

M?
1 > max{X , M ′

1} such that, xh
s,l ≤ Ws,l ≤ X < M?

1 , for all (s, l) ∈ S∗ × L, which proofs item (3.7). ¤

Definition 4. Given M ∈M, a M-semi-equilibrium is an allocation (π̃M , η̃M ) ∈ PM ×XH
M which satisfies

items (3.1)-(3.8).

It is important to remark that item (3.9) does not enter into the definition of M -semi-equilibrium. Note

that, given M = (M1, M2), it follows from Lemma 3 that, for a given M1 > M?
1 , an M -semi-equilibrium

always exists . For convenience of notation, we also suppress the subscript M on M -semi-equilibrium allo-

cations when mistakes are not possible.

Lemma 4. There exists M??
1 > M?

1 such that, if Assumptions 1-4 hold, for each M-semi-equilibrium (π̃, η̃),

with M = (M1, M2) and M1 > M??
1 , the commodity prices p̃s,l, with (s, l) ∈ S∗ × L, have a uniform lower

bound p, strictly greater than zero and independent of M = (M1, M2).

Proof: Fix M = (M1, M2) with M1 > M?
1 . It follows from (3.7) that, a M -semi-equilibrium allocation

(π̃, η̃) satisfies x̃h
s,l ≤ X < M1, for all (s, l) ∈ S∗ × L, which guarantees that p̃s,l > 0.9 Moreover, it follows

9In other case, as preferences are strictly monotonic on consumption, each agent h ∈ H could increase the

consumption of a zero-price commodity, choosing another allocation η̂h that improves their situation and still belongs

to the budget set Bh
M (π̃), which contradicts item (3.2).
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from Assumption 1 that, for each s ∈ S and each h ∈ H, mh
s := min

ps∈∆
#L−1
+

mh
s (ps) > 0, because ∆#L−1

+

is compact. Also, defining, for each pair of different commodities (l, l′), the compact set

G(l, l′) =

{
p0 ∈ RL

+ :

(
p0,l′ ≥ 1− p0,l

#L + #J − 1

)
∧ (∃(qK , qJ) , (p0, qK , qJ) ∈ Ξ)

}
,

we have that, since p0 = 0 does not belong to G(l, l′),

mh
0 := min

l∈L
min
l′ 6=l

min
p0∈G(l,l′)

mh
0 (p0) > 0, ∀h ∈ H.

Given a M -semi-equilibrium (π̃, η̃) the vector (p̃0, q̃J) ∈ ∆#L+#J−1
+ . Therefore, for a fixed l ∈ L, in order

to guarantee that p̃0,l is uniformly bounded independent of M , we have to consider two possibilities, as in

Seghir and Torres-Mart́ınez (2004):

Case I: There exists a commodity l′ 6= l for which p̃0,l′ ≥ 1−p̃0,l

#L+#J−1
.

In this case, p̃0 ∈ G(l, l′), which implies that mh
0 (p̃0) ≥ mh

0 . Thus, any agent h can choose the allocation

(x̂h, 0, 0, 0), defined by

x̂h
s′′,l′′ =





ε , if (s′′, l′′) 6= (0, l),

min
{

mh
0

2p̃0,l
, M1

}
, if (s′′, l′′) = (0, l),

where ε := minh∈H

{
mh

0
2

; mins∈S
mh

s
2

}
> 0.

On the other hand, since each consumption allocation (x̃h)h∈H is uniformly bounded, it follows from

Assumption 4 that

Zh
0,l(x̃, d̃, ε) ≤ Z̃ε := max

h∈H
max

(s′′,l′′)∈S∗×L
Zh

s′′,l′′ ((X ,X , . . . ,X ), 0, ε) .

As the left hand side in the inequality above does not depends on M , there exists (M?
1 )′ ≥ M?

1 such that, if

M1 > (M?
1 )′, Z̃ε < M1. Thus, it follows from Assumption 4 and from the optimality condition (3.2) that,

for each fixed M -semi-equilibrium with M1 > (M?
1 )′, Z̃ε >

mh
0

2p̃0,l
, which implies that

p̃0,l ≥ pI

0
:= max

h∈H

mh
0

2Z̃ε

> 0.

Case II: There exists an asset j ∈ J for which q̃j ≥ 1−p̃0,l

#L+#J−1
.

Define W 0 = minl∈L W0,l. Note that, there always exists an agent h(p̃0) ∈ H that can demand
W0
#H

units of each good at the first period, without making any financial transaction. In fact, suppose that such

agent does not exist. Then, it follows from the first period budget constraint that mh
0 (p̃0) < ‖p̃0‖1 W0

#H
for all

h ∈ H. Assumption 1, however, implies that
∑

h∈H mh
0 (p̃0) ≥ ‖p̃0‖1W 0, which is a contradiction. Moreover,

since we are restricting (p0, qK , qJ) ∈ Ξ, it follows that there exists k ∈ K for which q̃k ≥ 1−p̃0,l

(#L+#J−1)#K
.

Now, the agent h(p̃0) can demand the bundle x̂h(p̃0), defined as

x̂
h(p̃0)

s′,l′ =





ε′ , if (s′, l′) 6= (0, l),

min
{

ε′ + qkγ
p̃0,l

, M1

}
, if (s′, l′) = (0, l),

where ε′ := minh∈H

{
W0
2#H

; mins∈S
mh

s
2

}
> 0, selling γ units of the primitive k, without making any other

financial transaction, and paying all his promises at the second period, where γ satisfy

γ

(
max

(p0,qk)∈Ξk

‖Ck,l(p0, qk)‖1
)
≤ W 0

2#H
; γ ≤ 2Ω(#H); γAs,k ≤ ε′, ∀s ∈ S.
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Therefore, this allocation belongs to the budget set of agent h(p̃0) and γ is independent on prices. Hence, it

follows from Assumption 4 and from optimality condition (3.2) that there exists (M?
1 )0 > (M?

1 )′ such that,

for each fixed M -semi-equilibrium, with M = (M1, M2), if M1 > (M?
1 )0 then ε′ + q̃kγ

p̃0,l
≤ Z̃ε′ , which implies

that

p̃0,l ≥ pII

0
:=

γ

γ + (#L + #J − 1)#K Z̃ε′
.

Therefore, Cases I and II imply that the commodity M -semi-equilibrium prices for the first period (where

M1 > (M?
1 )0) are uniformly bounded from below by p̃0,l ≥ p

0
:= min{pI

0
; pII

0
}.

Now, since p̃0,l ≥ p
0
, define εS as

εS := min
h∈H

{
min

p0∈Ξ1
mh

0 (p0); min
s∈S

mh
s

}
> 0,

where Ξ1 denotes the set of prices p0 ≥ p
0
(1, 1, . . . , 1) such that there exists prices q for which (p0, q) ∈ Ξ.

Thus, for a given M -semi-equilibrium (π̃, η̃), with M1 > (M?
1 )0, and for a fixed pair (s, l) ∈ S × L, any

agent can demand an allocation (x̂h, 0, 0, 0), defined as

x̂h
s′,l′ =





εS , if (s′, l′) 6= (s, l),

min
{

mh
s

2p̃s′,l′
, M1

}
, if (s′, l′) = (s, l).

Then, there exist M??
1 > max{Z̃εS , (M?

1 )0} such that it follows from Assumption 4 and from the opti-

mality condition (3.2) that, if M1 > M??
1 , then Z̃εS >

mh
s

2p̃s′,l′
. This implies that the commodity M -semi-

equilibrium prices at the second period are uniformly bounded from below by

p̃s,l ≥ p
s

:= max
h∈H

mh
s

2Z̃εS

> 0.

Therefore, we conclude that, for each M -semi-equilibrium (π̃, η̃) with M1 > M??
1 , the commodity prices

(p̃s)s∈S∗ satisfy p̃s,l ≥ p := mins∈S∗ p
s
. ¤

Now, take M = (M1, M2) ∈ M such that M1 > M??
1 . Fix an M -semi-equilibrium allocation (π̆, η̆)

that also satisfies item (3.9) (note that, it is sufficient to take an equilibrium of the truncated economy

EM ). Given a class of primitives Ai, with i ∈ {P, C}, it follows from items (3.4) and (3.9) that, if there

exists j′ ∈ J(AP ) such that
∑

h∈H θ̆h
j′ < maxj∈J(Ai)

∑
h∈H θ̆h

j , then q̆j′ = 0. Optimality condition on agents

allocations (item (3.2)) implies that, for such j′, r̆s,j′ p̆sAs,j′ = 0 for all s ∈ S. However, as (i) the payment

rate of j′ is bounded from below by 1
M2

> 0, and (ii) the commodity prices, at each state s ∈ S, are

strictly positive; we must have that ‖As,j′‖1 = 0 for all s ∈ S, which is a contradiction with Assumption 5.

Therefore,
∑

h∈H θ̆h
j′ =

∑
h∈H θ̆h

j for all j, j′ ∈ J(Ai), Ai ⊂ Ai with i ∈ {P, C}. Analogously, if there exists

a primitive k ∈ Ai that satisfies
∑

h∈H ϕ̆h
k > mink′∈Ai

∑
h∈H ϕ̆h

k′ , then q̆k = 0.

Thus, it follows from item (3.4) that

∑
j∈J

q̆j

∑

h∈H

θ̆h
j =

∑

k∈Ai

q̆k min
k′∈Ai

∑

h∈H

ϕ̆h
k′ ,

which implies that
∑

h∈H θ̆h
j = mink′∈Ai

∑
h∈H ϕ̆h

k′ for all j in J(Ai). Therefore,
∑

h∈H θ̆h
j =

∑
h∈H ϕ̆h

k , for

all pair (k, j) ∈ Ai × J(Ai) such that the M -semi-equilibrium price q̆k is strictly positive.
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Define a new allocation (π̃, η̃) ∈ PM × XH
M as

(
π̃; x̃h, δ̃h, θ̃h

j

)
=

(
π̆; x̆h, δ̆h, θ̆h

j

)
, ∀j ∈ J ;

ϕ̃h
k =

{
ϕ̆h

k , if q̆k > 0;

0 , if q̆k = 0.
∀h ∈ H, ∀k ∈ K;

It follows that the allocation (π̃, η̃) is still a M -semi-equilibrium. Moreover, for a given class Ai ⊂ Ai with

i ∈ {P, C}, the following conditions are satisfied,

∑

h∈H

θ̃h
j =

∑

h∈H

ϕ̃h
k , ∀ (k, j) ∈ Ai × J(Ai), for which q̃k > 0;(13)

∑

h∈H

ϕ̃h
k = 0, ∀ k ∈ K, for which q̃k = 0.(14)

Lemma 5. There exists M???
1 > M??

1 such that, for each M = (M1, M2) with M1 > M???
1 , there exists a

M-semi-equilibrium (π̃, η̃) in which each class of primitives AP ⊂ AP has associated anonymous payment

rates (r̃s,j)j∈J(AP ), s∈S that satisfy (13), (14) and

(5.1) r̃s,j = r̃s,j′ , for all j, j′ ∈ J(AP ), for all s ∈ S;

(5.2)

0 ≤
∑

j∈J(AP )

r̃s,j p̃sAs,j

∑

h∈H

θ̃h
j −

∑

k∈AP

∑

h∈H

δ̃h
s,k ≤ 2

M2

∑

j∈J(AP )

‖As,j‖1(#H)2 Ω.

Proof: We already know that, for each M = (M1, M2) with M1 > M??
1 , there exists a M -semi-equilibrium

that satisfies equations (13) and (14). Then, for a given M with M1 > M??
1 , fix an M -semi-equilibrium in

which (13) and (14) hold. Given s ∈ S and AP ⊂ AP , it follows from the fact that (r̃s,j)j∈J(AP ) ∈ Υs
M (AP )

that

r̃s,j = r̃s,j′ , ∀j, j′ ∈ J(AP ), ∀s ∈ S,

which proves item (5.1). As the value of r̃s,j is independent from j ∈ J(AP ) we will denote it by r̃s,AP .

Note that equations (13) and (14), jointly with Assumption 5, imply that

∑

k∈AP

∑

h∈H

δ̃h
s,k =

∑

{k∈AP : q̃k 6=0}

∑

h∈H

δ̃h
s,k ≤

∑

{k∈AP : q̃k 6=0}
p̃sAs,k

∑

h∈H

ϕ̃h
k(15)

= p̃s

∑

{k∈AP : q̃k 6=0}
As,k max

j∈J(AP )

∑

h∈H

θ̃h
j ≤ p̃s

∑

j∈J(AP )

As,j

∑

h∈H

θ̃h
j .

Moreover, in order to prove item (5.2), we must consider two situations. First, if
∑

h∈H ϕ̃h
k = 0 for all

k ∈ AP , it follows from item (3.4) and the fact that q̃j > 0 for j ∈ J that
∑

h∈H θ̃j = 0 for all j ∈ J(AP ).

Thus, for any r ∈ [βs
M (AP ), 1], we have that

r
∑

j∈J(AP )

p̃sAs,j

∑

h∈H

θ̃h
j −

∑

k∈AP

∑

h∈H

δ̃h
s,k = 0, ∀s ∈ S,

and, as a particular case, r̃s,AP satisfies the above equation. So, whenever primitives in AP are not negotiated

(5.2) holds.

On the other hand, if
∑

h∈H ϕ̃h
k > 0 for some k ∈ AP , we have to analyze two sub-cases:
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Case I: Suppose that mink∈AP {||As,k||1, cs,k} = 0, then βs
M (AP ) = 1

M2
and, since (π̃, η̃) is a M -semi-

equilibrium, we know that

r̃s,AP ∈ arg max
r∈[ 1

M2
,1]
−


r

∑

j∈J(AP )

p̃sAs,j

∑

h∈H

θ̃h
j −

∑

k∈AP

∑

h∈H

δ̃h
s,k




2

.

Therefore, it follows from (15) that

(16) r̃s,AP

∑

j∈J(AP )

p̃sAs,j

∑

h∈H

θ̃h
j ≥

∑

k∈AP

∑

h∈H

δ̃h
s,k.

Thus, if 1
M2

∑
j∈J(AP ) p̃sAs,j

∑
h∈H θ̃h

j ≤
∑

k∈AP

∑
h∈H δ̃h

s,k, then

(17) r̃s,AP

∑

j∈J(AP )

p̃sAs,j

∑

h∈H

θ̃h
j −

∑

k∈AP

∑

h∈H

δ̃h
s,k = 0.

Otherwise, if 1
M2

∑
j∈J(AP ) p̃sAs,j

∑
h∈H θ̃h

j >
∑

k∈AP

∑
h∈H δ̃h

s,k, we have that r̃s,AP = 1
M2

, which implies,

jointly with (16) and (17), that

0 ≤ r̃s,AP

∑

j∈J(AP )

p̃sAs,j

∑

h∈H

θ̃h
j −

∑

k∈AP

∑

h∈H

δ̃h
s,k ≤ 1

M2

∑

j∈J(AP )

p̃sAs,j

∑

h∈H

θ̃h
j

≤ 2

M2

∑

j∈J(AP )

‖As,j‖1(#H)2 Ω,

which guarantees that item (5.2) holds whenever mink∈AP {||As,k||1, cs,k} = 0 and
∑

h∈H ϕ̃h
k > 0 for some

k ∈ AP .

Case II: If mink∈AP {||As,k||1, cs,k} > 0, we have that βs
M (AP ) = 1

M1
. It follows from Assumption 3

that, for each k ∈ AP , one of the following two conditions are satisfied:

a. YsCk(p0, qk) 6= 0 for all (p0, qk) ∈ Ξk and for each s ∈ S;

b. Ck(p0, qk) = Ck for all (p0, qk) ∈ Ξk.

When item (b) holds, we have that cs,k = cs,k := min(p0,qk)∈Ξk
‖YsCk(p0, qk)‖1 for each s ∈ S. On the

other hand, since we restrict (p0, qk) to the compact set Ξk, if item (a) holds, then cs,k > 0. This implies

that, given a class Ai and a state s, mink∈AP {||As,k||1, cs,k} > 0 if and only if mink∈AP

{||As,k||1, cs,k

}
> 0.

Thus, it follows from Lemma 4 that

∑

k∈AP

∑

h∈H

δ̃h
s,k ≥

∑

k∈AP

min {p̃sAs,k, p̃sYsCk(p̃0, q̃k)}
∑

h∈H

ϕ̃h
k ≥ p

∑

k∈AP

min
{‖As,k‖1, cs,k

} ∑

h∈H

ϕ̃h
k

≥ p
∑

k∈AP : q̃k 6=0

min
{‖As,k‖1, cs,k

}
max

j∈J(AP )

∑

h∈H

θ̃h
j

≥ p min
k∈AP

{‖As,k‖1, cs,k

}
max

j∈J(AP )

∑

h∈H

θ̃h
j .

Moreover, we know that ςs(AP ) := p mink∈Ap

{‖As,k‖1, cs,k

}
is strictly positive and it follows from

Assumption 5 that
∑

j∈J(AP ) ‖As,j‖1 > 0. Therefore, there exists M???
1 (AP ) > M??

1 , such that if M ∈ M
with M1 > M???

1 (AP ), we have that 1
M1

∑
j∈AP

||As,j ||1 ≤ ςs(AP ). Then,

1

M1
p̃s

∑

j∈AP

As,j

∑

h∈H

θ̃h
j ≤ ςs(AP ) max

j∈J(AP )

∑

h∈H

θ̃h
j ≤

∑

k∈AP

∑

h∈H

δ̃h
s,k ≤ p̃s

∑

j∈AP

As,j

∑

h∈H

θ̃h
j ,

which guarantees that the global maximum of −
(
r

∑
j∈J(AP ) psAs,j

∑
h∈H θ

h
j −

∑
k∈AP

∑
h∈H δ

h
s,k

)2

is at-

tainable in this case. This implies that r̃s,AP

∑
j∈J(AP ) p̃sAs,j

∑
h∈H θ̃h

j −
∑

k∈AP

∑
h∈H δ̃h

s,k = 0. If we

take M???
1 = maxAP⊂AP M???

1 (AP ), then item (5.2) holds whenever mink∈AP {||As,k||1, cs,k} > 0 and
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∑
h∈H ϕ̃h

k > 0 for some k ∈ AP . This concludes the proof of Lemma 5. ¤

For any M -semi-equilibrium (π̆, η̆), consider any allocation (π̆′, η̆′) defined by

(p̆′, q̆′, (r̆′s,AP
){s∈S,AP⊂AP }, η̆

′) = (p̆, q̆, (r̆s,AP ){s∈S,AP⊂AP }, η̆)

and, for each class AC ⊂ AC ,

(18) r̆′s,jm(AC) =





βs,m
M (AC) if

∑
h∈H θh

jm(AC) = 0,

α(jm(AC)) if
∑

h∈H θh
jm(AC) 6= 0 ∧ ‖As,jm(AC)‖1 = 0,

r̆s,jm(AC) otherwise,

where α(jm(AC)) ∈ [βs,m
M (AC), 1]. It follows that BM (π̆′) ⊂ BM (π̆). Thus, the fact that r̆s,j appears

multiplied by As,j and
∑

h∈H θ̆j at item (3.6) implies that any (π̆′, η̆′) is also a M -semi-equilibrium.

Lemma 6. There exists M
?
1 > M???

1 such that for each M = (M1, M2) ∈ M, with M1 > M
?
1 , there

exists a M-semi-equilibrium (π̃, η̃) in which conditions (5.1) and (5.2) hold, and for each class of primitives

AC ⊂ AC we have

(6.1) The rates of payment (r̃s,j)j∈J(AC) ∈ Rs
M (AC), for all s ∈ S, where10

Rs
M (AC) ≡ {

r ∈ Υs
M (AC) : ∃ r′ ∈ R(AC), rm = max{ r′m, βs,m}} ;

(6.2)

0 ≤
∑

j∈J(AC)

r̃s,j p̃sAs,j

∑

h∈H

θ̃h
j −

∑

k∈AC

∑

h∈H

δ̃h
s,k ≤ 2

M2

∑

j∈J(AP )

‖As,j‖1(#H)2 Ω.

Proof: Given M = (M1, M2) ∈ M, with M1 > M???
1 , take a M -semi-equilibrium (π̆, η̆) that satisfies the

properties (5.1) and (5.2) and equations (13) and (14). We know that such a M -semi-equilibrium exists

from Lemma 5. Thus, consider a different allocation (π̃, η̃) with

(p̃, q̃, r̃s,AP , η̃){s∈S,AP⊂AP } = (p̆, q̆, (r̆s,AP ){s∈S,AP⊂AP }, η̆)

and

(19) r̃s,jm(AC) =





βs,m
M (AC) if

∑
h∈H θh

jm(AC) = 0;

r̆s,jm(AC) if
∑

h∈H θh
jm(AC) 6= 0 ∧ ‖As,jm(AC)‖1 6= 0;

1 if
∑

h∈H θh
jm(AC) 6= 0 ∧ ‖As,jm(AC)‖1 = 0 ∧m = 1;

r̃s,jm−1(AC) if
∑

h∈H θh
jm(AC) 6= 0 ∧ ‖As,jm(AC)‖1 = 0 ∧m 6= 1 ∧ r̃s,jm−1(AC) = 1;

βs,m
M (AC) if

∑
h∈H θh

jm(AC) 6= 0 ∧ ‖As,jm(AC)‖1 = 0 ∧m 6= 1 ∧ r̃s,jm−1(AC) 6= 1.

Since (π̃, η̃) respects equation (18), (π̃, η̃) is a M -semi-equilibrium and it still satisfies the properties (5.1)

and (5.2) of Lemma 5 as well as equations (13) and (14). We will show that (π̃, η̃) satisfies all conditions of

this lemma.

Fix a class AC ⊂ AC . We have two cases,

Case I: Suppose that
∑

h∈H ϕ̃h
k = 0 for all k ∈ AC .

10Equivalently, the set Rs
M (AC) can be defined as

Rs
M (AC) ≡ {

r ∈ Υs
M (AC) : ∃m, 1 ≤ m ≤ n(AC),

(
rm′ = 1, ∀m′ < m

) ∧ (
rm′ = βs,m(AC), ∀m′ > m

)}
.
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It follows from item (3.4), and the fact that q̃j > 0 for j ∈ J , that
∑

h∈H θ̃j = 0 for all j ∈ J(AC). Thus,

for any (rs,j)j∈J(AC) ∈ Υs
M (AC), we have that

∑

j∈J(AC)

r̃s,j p̃sAs,j

∑

h∈H

θ̃h
j −

∑

k∈AC

∑

h∈H

δ̃h
s,k = 0, ∀s ∈ S

and, as a particular case, (r̃s,j)j∈J(AC) satisfies the above equation. Consequently, whenever the primitives

are not negotiated, the property (6.2) holds. Moreover, since
∑

h∈H θ̃h
j = 0 for all m ∈ {1, 2, . . . , n(AC), it

follows from (19) that r̃s,jm(AC) = βs,m
M (AC) for all j ∈ J(AC). Thus, (r̃s,jm(AC))

n(AC)
m=1 belongs to Rs

M (AC),

and item (6.1) holds whenever the primitives are not negotiated.

Case II: Suppose that
∑

h∈H ϕ̃h
k > 0 for some k ∈ AC .

It follows from (13) that
∑

h∈H θ̃h
j > 0 for all j ∈ J(AC). Since (π̃, η̃) is a M -semi-equilibrium, we know

that

(20) r̃s,jm(AC) = arg max
r∈[β

s,m
M

(AC),1]
−


r F s,m

AC
(π̃, η̃) +

m−1∑
i=1

r̃s,ji(AC)F
s,i
AC

(π̃, η̃)−
∑

k∈AC

∑

h∈H

δ̃h
s,k




2

,

where F s,i
AC

(π̃, η̃) := p̃sAs,ji(AC)

∑
h∈H θ̃h

ji(AC).

Moreover, as
∑

h∈H θ̃h
j > 0 for all j ∈ J(AC), we have that F s,i

AC
(π̃, η̃) = 0 if and only if ‖As,ji(AC)‖1 = 0.

Now, define for each state of nature s ∈ S the set Is
AC

= {m : ‖As,jm(AC)‖1 6= 0}.
If Is

AC
is empty, then it follows from (19) that r̃s,jm(AC) = 1, for all m ∈ {1, 2, . . . , n(AC)}. Thus, item

(6.1) holds in this case. Otherwise, suppose that Is
AC

6= ∅ and consider the following claims,

Claim 1. Given m ∈ Is
AC

, if

(21) F s,m
AC

(π̃, η̃) +

m−1∑
i=1

r̃s,ji(AC)F
s,i
AC

(π̃, η̃) ≤
∑

k∈AC

∑

h∈H

δ̃h
s,k

holds, then r̃s,jm(AC) = 1, and r̃s,jm′ (AC) = 1 for each m′ < m with m′ ∈ Is
AC

.

Proof: As m ∈ Is
AC

, if (21) holds, then rs,jm(AC) = 1 is the unique maximizer of the objective function in

(20), and consequently r̃s,jm(AC) = 1. Now, suppose that there exists m′ in Is
AC

such that r̃s,jm′ (AC) < 1

and m′ < m. Since (21) holds for m,

(22)

m′∑
i=1

r̃s,ji(AC)F
s,i
AC

(π̃, η̃) <
∑

k∈AC

∑

h∈H

δ̃h
s,k,

which is a contradiction with auctioneer optimality condition (3.6). Therefore, r̃s,jm′ (AC) = 1. £

Claim 2. Given m ∈ Is
AC

, if

(23) βs,m
M (AC)F s,m

AC
(π̃, η̃) +

m−1∑
i=1

r̃s,ji(AC)F
s,i
AC

(π̃, η̃) <
∑

k∈AC

∑

h∈H

δ̃h
s,k < F s,m

AC
(π̃, η̃) +

m−1∑
i=1

r̃s,ji(AC)F
s,i
AC

(π̃, η̃)

holds, then r̃s,jm(AC) ∈ (βs,m
M (AC), 1),

(24) r̃s,jm(AC)F
s,m
AC

(π̃, η̃) +

m−1∑
i=1

r̃s,ji(AC)F
s,i
AC

(π̃, η̃) =
∑

k∈AC

∑

h∈H

δ̃h
s,k,

and r̃s,jm′ (AC) = 1 for each m′ < m with m′ ∈ Is
AC

.
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Proof: If (23) is satisfied, the global maximum of the objective function (20) is attainable and, therefore,

(24) holds. Moreover, we have that r̃s,jm(AC) ∈ (βs,m
M (AC), 1). Now, suppose that there exists m′ < m such

that r̃s,jm′ (AC) < 1 and m′ ∈ Is
AC

. Since (23) holds for m, we have that

(25)

m′∑
i=1

r̃s,ji(AC)F
s,i
AC

(π̃, η̃) <
∑

k∈AC

∑

h∈H

δ̃h
s,k,

which is a contradiction with (3.6). Therefore, r̃s,jm′ (AC) = 1. £

Claim 3. Given m ∈ Is
AC

, if

(26) βs,m
M (AC)F s,m

AC
(π̃, η̃) +

m−1∑
i=1

r̃s,ji(AC)F
s,i
AC

(π̃, η̃) ≥
∑

k∈AC

∑

h∈H

δ̃h
s,k,

holds, then r̃s,jm(AC) = βs,m
M (AC) and r̃s,jm′ (AC) = βs,m′

M (AC) for each m′ > m with m′ ∈ I(AC).

Proof: If (26) holds, then rs,jm(AC) = βs,m
M (AC) is the unique maximizer of objective function in (20)

and, therefore, r̃s,jm(AC) = βs,m
M (AC). Moreover, since (26) is valid for each m′ > m, if m′ ∈ I(AC), then

r̃s,jm′ (AC) = βs,m
M (AC). £

Now, we can easily see that each m ∈ Is
AC

satisfies the conditions of one and only one Claim. Additionally,

the set of m ∈ Is
AC

that satisfies the conditions of a specific Claim may be empty. Moreover, the following

facts are valid:

- There exists at most one m for which conditions of Claim 2 holds.

- If m ∈ Is
AC

satisfies the condition of Claim 1 or 2, then each m′ < m, with m′ ∈ Is
AC

, satisfies the

condition of Claim 1.

- If m ∈ Is
AC

satisfies the condition of Claim 2 or 3, then each m′′ > m, with m′′ ∈ Is
AC

, satisfies the

condition of Claim 3.

Therefore, suppose that there exists m ∈ Is
AC

that satisfies the condition of Claim 2. Then, it follows

from items above and (19) that (i) r̃s,jm′ (AC) = 1, for all m′ < m; (ii) r̃s,jm(AC) ∈ (βs,m
M (AC), 1); and (iii)

r̃s,jm′′ (AC) = βs,m′′
M (AC), for all m′′ > m. This guarantees that condition (6.1) holds in this case.

If there exists no m ∈ Is
AC

that satisfies condition of Claim 2, we have two possibilities:

- There exists m ∈ Is
AC

such that r̃s,jm(AC) = βs,m
M (AC). In this case, define m̃ = min{m′ ∈ Is

AC
:

r̃s,jm′ (AC) = βs,m′
M (AC)}. Items above guarantee that m̃ satisfies the condition of Claim 3. This

implies, using (19), that

r̃s,jm′ (AC) = 1, ∀m′ < m̃;

r̃s,jm′ (AC) = βs,m′
M (AC), ∀m′ > m̃.

- All m ∈ Is
AC

satisfy r̃s,jm(AC) = 1. Thus, r̃s,jm′ (AC) = 1, for all m′ ∈ {1, 2, . . . , n(AC)}.
Therefore, condition (6.1) always holds.

We will now prove that (6.2) always holds when
∑

h∈H θ̃h
j > 0 for all j ∈ J(AC).
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Note that, analogously to equation (15), it follows from equations (13) and (14), jointly with Assumption

5 that

∑

k∈AC

∑

h∈H

δ̃h
s,k =

∑

{k∈AC : q̃k 6=0}

∑

h∈H

δ̃h
s,k ≤

∑

{k∈AC : q̃k 6=0}
p̃sAs,k

∑

h∈H

ϕ̃h
k(27)

= p̃s

∑

{k∈AC : q̃k 6=0}
As,k max

j∈J(AC)

∑

h∈H

θ̃h
j ≤ p̃s

∑

j∈J(AC)

As,j

∑

h∈H

θ̃h
j .

Thus, it follows from (3.6) and (27) that having
∑

j∈J(AC) r̃s,j p̃sAs,j

∑
h∈H θ̃h

j <
∑

k∈AC

∑
h∈H δ̃h

s,k, would

lead us to a contradiction. Therefore,
∑

j∈J(AC) r̃s,j p̃sAs,j

∑
h∈H θ̃h

j ≥
∑

k∈AC

∑
h∈H δ̃h

s,k.

Now, suppose that mink∈AC {||As,k||1, cs,k} > 0 and define m∗ = min{m′ : ‖As,jm′ (AC)‖1 6= 0}. Thus,

it follows from the definition of Υs
M (AC) that βs,m

M (AC) = 1
M1

for all m ≤ m∗. Analogously to the

argument made in Case II of the proof of Lemma 5, we have that mink∈AC {||As,k||1, cs,k} > 0 if and only

if mink∈AC

{||As,k||1, cs,k

}
> 0, and that

∑

k∈AC

∑

h∈H

δ̃h
s,k ≥ p min

k∈AC

{‖As,k‖1, cs,k

}
max

j∈J(AC)

∑

h∈H

θ̃h
j .

Therefore, we know that ςs(AC) := p mink∈AC

{‖As,k‖1, cs,k

}
is strictly positive and that ‖As,jm∗ (AC)‖1 >

0. Thus, there exists M
?
1 (AC) > M???

1 such that for each M -semi-equilibrium, with M1 > M
?
1 (AC), we have

that 1
M1
‖As,jm∗ (AC)‖1 < ςs(AC). Then,

(28)
1

M1
p̃sAs,jm∗ (AC)

∑

h∈H

θ̃h
jm∗ (AC) < ςs(AC)

∑

h∈H

θ̃h
jm∗ (AC) ≤

∑

k∈AC

∑

h∈H

δ̃h
s,k,

and it follows from the fact that, for any m < m∗, ‖As,jm(AC)‖1 = 0 and from (3.6) that

(29)

m∗∑
m=1

r̃s,jm(AC)p̃sAs,jm(AC)

∑

h∈H

θ̃h
jm(AC) −

∑

k∈AC

∑

h∈H

δ̃h
s,k ≤ 0.

Thus, when mink∈AC {||As,k||1, cs,k} > 0, if r̃s,jm(AC) = βs,m
M (AC), we have that r̃s,jm(AC) = 1

M2
, because

otherwise r̃s,jm(AC) = 1
M1

, which implies that m ≤ m?, contradicting (28) and (3.6).

Furthermore, when mink∈AC {||As,k||1, cs,k} = 0, from definition we have that βs,m
M (AC) = 1

M2
for each

m ∈ {1, 2, . . . , n(AC)} and, consequently, if r̃s,jm(AC) = βs,m
M (AC), then r̃s,jm(AC) = 1

M2
.

Now, it follows from Claims above that
∑m

i=1 r̃s,ji(AC)p̃sAs,ji(AC)

∑
h∈H θ̃h

ji(AC) −
∑

k∈AC

∑
h∈H δ̃h

s,k is

greater than zero if and only if r̃s,jm(AC) = βs,m
M (AC) = 1

M2
. Thus, define m∗∗ = min{m : r̃s,jm(AC) = 1

M2
}.

Note that m∗ < m∗∗.

Finally,

0 ≤
∑

j∈J(AC)

r̃s,j p̃sAs,j

∑

h∈H

θ̃h
j −

∑

k∈AP

∑

h∈H

δ̃h
s,k

=

m∗∗−1∑
m=1

r̃s,jm(AC)F
s,m
AC

(π̃, η̃) +

n(AC)∑
m=m∗∗

r̃s,jm(AC)F
s,m
AC

(π̃, η̃)−
∑

k∈AC

∑

h∈H

δ̃h
s,k

≤
n(AC)∑

m=m∗∗

1

M2
p̃sAs,jm(AC)

∑

h∈H

θ̃h
jm(AC)

≤ 2

M2

∑

j∈J(AC)

‖As,j‖1(#H)2 Ω,

which guarantees that item (6.2) always holds.
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Therefore, lemma holds taking M
?
1 = maxAC⊂AC M

?
1 (AC). ¤

Lemma 7. For each M = (M1, M2) ∈M with M1 > M
?
1 , there exists a M-semi-equilibrium (π̃, η̃) in which

conditions (5.1), (5.2), (6.1) and (6.2) hold and the following properties are satisfied:

(7.1) For each s ∈ S and l ∈ L,

∑

h∈H

x̃h
s,l − (YsW0)l −Ws,l ≤ 2

M2

∑

i∈{P,C}

∑

Ai⊂Ai

∑

j∈J(Ai)

‖As,j‖1(#H)2 Ω;

(7.2) For each h ∈ H, Ψ̂h(p̃−0, η̃
h) ∩Bh(π̃) = ∅.

Proof: We know from Lemma 6 that there exists, for each M ∈M with M1 > M
?
1 , a M -semi-equilibrium

(π̃, η̃) that satisfies conditions (5.1), (5.2), (6.1) and (6.2). Therefore, fix (π̃, η̃) in which all the above

properties hold. Item (7.1) follows directly from items (3.8), (5.2) and (6.2).

We already know from item (3.2) that Ψ̂h,M (p̃−0, η̃
h) ∩ Bh

M (π̃) = ∅. Suppose that it exists y ∈
Ψ̂h(p̃−0, η̃

h) ∩ Bh(π̃). It follows from the definition of augmented preferences that for λ ∈ (0, 1] suffi-

ciently small, z := λy + (1 − λ)η̃h ∈ Ψ̂h(p̃−0, η̃
h) and ‖z‖∞ < M1, because ‖η̃h‖∞ < M1. Therefore, as

z ∈ Bh
M (π̃) we have a contradiction with Ψ̂h,M (p̃−0, η̃

h) ∩ Bh
M (π̂) = ∅. This concludes the proof of item

(7.2). ¤

Finally, the proof of Theorem 1 is a direct consequence of Lemma below.

Lemma 8. There exists a non-trivial equilibrium for the economy E(S∗,H,L,F), which can be obtained as

the limit of a sequence of M-semi-equilibriums when M2 goes to infinity and M1 > M
?
1 .

Proof: We know from Lemma 7 that there exists, for each M ∈M with M1 > M
?
1 , a M -semi-equilibrium

(π̃M , η̃M ) that satisfies conditions (5.1), (5.2), (6.1), (6.2), (7.1) and (7.2). Thus, fix a M1 > M
?
1 and

construct a sequence of M -semi-equilibriums (π̃M2 , η̃M2), indexed only by M2, which satisfy the above

conditions for all M2. It follows from the fact that (π̃M2 , η̃M2) belongs to a compact set, independent of

M2, that there exists a convergent subsequence. We will denote the limit of this subsequence as (π̂, η̂).

It is straightforward that items (3.3), (3.4) and (5.1) still hold for the limit allocation (π̂, η̂). Moreover,

one can easily see that at the limit items (3.1), (5.2), (6.2) and (7.1) become, respectively,

(3.1*) For each h ∈ H, η̂ ∈ Bh(π̂);

(5.2*) For each AP ∈ AP and each s ∈ S,
∑

j∈J(AP )

r̂s,j p̂sAs,j

∑

h∈H

θ̂h
j −

∑

k∈AP

∑

h∈H

δ̂h
s,k = 0;

(6.2*) For each AC ∈ AC and each s ∈ S,
∑

j∈J(AC)

r̂s,j p̂sAs,j

∑

h∈H

θ̂h
j −

∑

k∈AC

∑

h∈H

δ̂h
s,k = 0;

(7.1*) For each s ∈ S and l ∈ L,
∑

h∈H

x̂h
s,l − (YsW0)l −Ws,l ≤ 0;
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where item (3.1*) follows from the closed graph of the budget set correspondence Bh.

Moreover, we know that, for each M2, the second-periods budget constraints are satisfied with equality.

Then, the limit second period budget constraints still hold with equality. This fact, jointly with the items

(5.2*), (6.2*) and (7,1*) above, imply that, for each (s, l) ∈ S × L,

(30)
∑

h∈H

x̂h
s,l − (YsW0)l −Ws,l = 0.

Note that, every convergent sequence of elements belonging to Rs
M (AC) for each M2 has a limit atR(AC).

This implies that (r̂s,j)j∈J(AC) ∈ R(AC) for all AC ⊂ AC and s ∈ S. Moreover, it follows from the fact

that M1 is fixed and from the definition of Rs
M (AC) that if mink∈AC {||As,k||1, cs,k} > 0, for a given class

of primitives AC ⊂ AC and state s ∈ S, we have that (r̃s,jm
AC

)M2 ≥ 1
M1

for all m ≤ m? and for all M2,

where m? := min{m : ‖As,jm(AC)‖1 6= 0}. Analogously, if mink∈AP {||As,k||1, cs,k} > 0, for a given class of

primitives AP ⊂ AP and state s ∈ S, we have that (r̃s,AP )M2 ≥ 1
M1

Therefore, the limit expected rates of payment satisfy
[

min
k∈AC

{||As,k||1, cs,k} > 0

]
⇒ r̂s,jm

AC
≥ 1

M1
, ∀m ≤ m?

and [
min
k∈AP

{||As,k||1, cs,k} > 0

]
⇒ r̂s,AP >

1

M1
,

which implies, using the fact that p̂s,l ≥ p, for all (s, l), that

[min {p̂sYsCk(p̂0, q̂k); p̂sAs,k} > 0, ∀k ∈ AC ] ⇒ r̂s,jm
AC

> 0, ∀m ≤ m?,

and

[min {p̂sYsCk(p̂0, q̂k); p̂sAs,k} > 0, ∀k ∈ AP ] ⇒ r̂s,AP > 0.

In order to prove the optimality of the limit (π̂, η̂), we will first show that, for a given agent h ∈ H, there is

nothing in the interior of the budget set that is strictly preferred that η̂h. Suppose that there is an allocation

y such that y ∈ Ψ̂h(p̂−0, η̂
h) ∩ Ḃh(π̂). Since Ψ̂h is lower hemicontinuous and (π̃M2 , η̃M2) → (π̂, η̂), there

exists yM2 ∈ Ψ̂h((p̃−0)M2 , η̃M2) such that yM2 → y. Since ḂM has open values, for M2 sufficiently large,

yM2 ∈ Ψ̂h((p̃−0)M2 , η̃h
M2) ∩ Ḃh(π̃M2), which is a contradiction with (7.2). Thus, Ψ̂h(p̂−0, η̂

h) ∩ Ḃh(π̂) = ∅.
Moreover, it follows from Lemma 4 that the M -semi-equilibrium commodity prices are lower bounded and,

therefore, the limit allocation has prices strictly greater than zero. This implies that the interior of the limit

budget set has non-empty values, Ḃh(π̂) 6= ∅. Now, as Bh also has convex values, we have that the closure

of Ḃh(π̂) is equal to the original budget set, Bh(π̂). Then, it follows that Ψ̂h(p̂−0, η̂
h) ∩ Bh(π̂) = ∅. Since

Ψh(p̂−0, η̂
h) ⊂ Ψ̂h(p̂−0, η̂

h), we have that Ψh(p̂−0, η̂
h)∩Bh(π̂) = ∅. That completes the proof of optimality.

Finally, given a class of primitives Ai, for which there exists at least one derivative j ∈ J(Ai) that have

positive rates of payment (in at least one state of nature), optimality conditions on agents allocations guar-

antee that the price q̂j > 0. Thus, as (p̂, q̂K , q̂J) ∈ Ξ, there exists at least one primitive k ∈ Ai for which

q̂k > 0. This concludes the proof. ¤
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