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ABSTRACT. In this paper a flexible multiple regime GARCH(1,1)-type model is developed to de-
scribe the sign and size asymmetries and intermittent dynamics in financial volatility. The results
of the paper are important to other nonlinear GARCH models. The proposed model nests some of
the previous specifications found in the literature and has the following advantages: First, contrary
to most of the previous models, more than two limiting regimes are possible and the number of
regimes is determined by a simple sequence of of tests that circumvents identification problems
that are usually found in nonlinear time series models. The second advantage is that the station-
arity restriction on the parameters is relatively weak, thereby allowing for rich dynamics. It is
shown that the model may have explosive regimes but can still be strictly stationary and ergodic. A
simulation experiment shows that the proposed model can generate series with high kurtosis, low
first-order autocorrelation of the squared observations, and exhibit the so-called “Taylor effect”,
even with Gaussian errors. Estimation of the parameters is addressed and the asymptotic properties
of the quasi-maximum likelihood estimator are derived under weak conditions. A Monte-Carlo
experiment is designed to evaluate the finite sample properties of the sequence of tests. Empirical
examples are also considered.

KeywoRrbDs: \olatilityy, GARCH models, multiple regimes, nonlinear time series, smooth transi-
tion, finance, asymmetry, leverage effect, excess of kurtosis, asymptotic theory.

1. INTRODUCTION

MODELING AND FORECASTINGthe conditional variance, or volatility, of financial time series
has been one of the major topics in financial econometrics. Forecasted conditional variances are
used, for example, in portfolio selection, derivative pricing and hedging, risk management, market
timing, and market making. Among solutions to tackle this problem, the ARCH (Autoregressive
Conditional Heteroscedasticity) model proposed by Engle (1982) and the GARCH (Generalized
Autoregressive Conditional Heteroscedasticity) specification introduced by Bollerslev (1986) are
among the most widely used, and are now fully incorporated into financial econometric practice.
One drawback of the GARCH model is the symmetry in the response of volatility to past shocks,
which fails to accommodate sign asymmetries. Starting with Black (1976), it has been observed
that there is an asymmetric response of the conditional variance of the series to unexpected news,
represented by shocks: Financial markets become more volatile in response to “bad news” (nega-
tive shocks) than to “good news” (positive shocks). Goetzmann, Ibbotson, and Peng (2001) found
evidence of asymmetric sign effects in volatility as far back as 1857 for the NYSE. They report

that unexpected negative shocks in the monthly return of the NYSE from 1857 to 1925 increase
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volatility almost twice as much as equivalent positive shocks in returns. Similar results were also
reported by Schwert (1990).

The above mentioned asymmetry has motivated a large number of different volatility models
which have been applied with relatively success in several situations. Nelson (1991) proposed the
Exponential GARCH (EGARCH) model. In his proposal, the natural logarithm of the conditional
variance is modeled as a nonlinear ARMA model with a term that introduces asymmetry in the
dynamics of the conditional variance, according to the sign of the lagged returns. Glosten, Ja-
gannanthan, and Runkle (1993) proposed the GJR model, where the impact of the lagged squared
returns on the current conditional variance changes according to the sign of the past return. A
similar specification, known as Threshold GARCH (TGARCH), model was developed by Rabe-
mananjara and Zakoian (1993) and Zakoian (1994). Ding, Granger, and Engle (1993) proposed
the Asymmetric Power ARCH which nests several GARCH specifications. Engle and Ng (1993)
popularized the news impact curve (NIC) as a measure of how new information is incorporated
into volatility estimates. The authors also developed formal statistical tests to check the presence
of asymmetry in the volatility dynamics. More recently, Fornari and Mele (1997) generalized
the GJR model by allowing all the parameters to change according to the sign of the past return.
Their proposal is known as the Volatility-Switching GARCH (VSGARCH) model. Based on the
Smooth Transition AutoRegressive (STAR) model, Hagerud (1997) and Gonzalez-Rivera (1998)
proposed the Smooth Transition GARCH (STGARCH) model. While the latter only considered
the Logistic STGARCH (LSTGARCH) model, the former discussed both the Logistic and the
Exponential STGARCH (ESTGARCH) alternatives. In the logistic STGARCH specification, the
dynamics of the volatility are very similar to those of the GJR model and depends on the sign of
the past returns. The difference is that the former allows for a smooth transition between regimes.
In the EST-GARCH model, the sign of the past returns does not play any role in the dynamics of
the conditional variance, but it is the magnitude of the lagged squared return that is the source of
asymmetry. Anderson, Nam, and Vahid (1999) combined the ideas of Fornari and Mele (1997),
Hagerud (1997), and Gonzalez-Rivera (1998) and proposed the Asymmetric Nonlinear Smooth
Transition GARCH (ANSTGARCH) model, and found evidence in favor of their specification.
Inspired by the Threshold Autoregressive (TAR) model, Li and Li (1996) proposed the Double
Threshold ARCH (DTARCH) model. Liu, Li, and Li (1997) generalized it, proposing the Double
Threshold GARCH (DT-GARCH) process to model both the conditional mean and the conditional
variance as a threshold process. More recently, based on the regression-tree literature, Audrino
and Buhlmann (2001) proposed the Tree Structured GARCH model to describe multiple limiting
regimes in volatility".

In this paper we contribute to the literature by proposing a new flexible nonlinear GARCH
model with multiple limiting regimes, called the Flexible Coefficient GARCH (FCGARCH) model,
that nests several of the models mentioned above. As most of the empirical papers in the financial

ISee also Cai (1994) and Hamilton and Susmel (1994) for regime switching GARCH specifications based on the
Markov-switching model.
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econometrics literature deal only with GARCH(1,1)-type of models, we focus our attention only
on the first-order FCGARCH specification.

Our proposal has the following advantages: First, contrary to most of the previous models in the
literature, more than two limiting regimes can be modeled. The number of regimes is determined
by a simple and easily implemented sequence of tests that circumvents the identification problem
in the nonlinear time series literature, and avoids the estimation of overfitted models. To the best
of our knowledge, the only two exceptions that explicitly model more than two limiting regimes
in the volatility are the DTGARCH and Tree-Structure GARCH models. However, in the former,
the authors did not discuss how to determine the number of regimes and only one fixed threshold
at zero is considered in the empirical application. In the latter, the proposed procedure is based
on the use of information criteria and may suffer from identification problems when an irrelevant
regime is estimated; see Hansen (1996) for a similar discussion considering threshold regression
models and Tesvirta and Mellin (1986) for the linear regression case. The second advantage is
that the stationarity restriction on the FCGARCH model parameters is relatively weak, thereby
allowing for rich dynamics. For example, the model may have explosive regimes and still be
strictly stationary and ergodic, being capable of describing intermittent dynamics. The system
spends a large fraction of time in a bounded region, but sporadically develops an instability that
grows exponentially for some time, and then suddenly collapses. Furthermore, data with very high
kurtosis can easily be generated even with Gaussian errors. This allows for a better description
of the large absolute returns of financial time series that standard GARCH models fail to describe
satisfactorily. Reproducing the above mentioned typical behavior of financial time series maybe
important in risk analysis and management. A simulation experiment shows that the FCGARCH
model is able to generate time series with high kurtosis and, at the same time, positive but low
first-order autocorrelations of squared observations, which are frequently observed in financial
time series. Furthermore, the FCGARCH model seems to be able to reproduce the so-called
“Taylor effect” (Granger and Ding 1995). Other models such as the GARCH and the EGARCH
models are not able to reproduce adequately the above mentioned stylized facts of financial time
series; see Malmsten and @evirta (2004) and Carnero, ite and Ruiz (2004) for comprehensive
discussions.

We discuss the theoretical aspects of the FCGARCH model. Conditions for strict stationarity
and for the existence of the second- and fourth-order moments; model identifiability; and the
existence, consistency, and asymptotic normality of the quasi-maximum likelihood estimators.
Consistency and asymptotic normality are proved under weak conditions. Our results are directly
applicable to other nonlinear GARCH specifications, such as the STGARCH model. Furthermore,
existing results in the literature are special cases of those presented in the paper.

A sequence of simple Lagrange multiplier (LM) tests is developed to determine the number of
limiting regimes and to avoid the specification of models with an excessive number of parameters.
Although the test is derived under the assumption that the errors are Gaussian, a robust version
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against non-Gaussian errors is also considered. A Monte Carlo experiment is designed to evaluate
the finite sample properties of the proposed sequence of tests with simulated data. The main
finding is that the robust version of the test works well in small samples, and compares favorably
with the use of information criteria.

An empirical example with seven stock indexes shows evidence of two regimes for three series
and three regimes for other three series. Only for one stock index there is no evidence of regime
switching. Furthermore, for all series with three regimes, the GARCH model associated with
the first regime, representing very negative returns (“very bad news”), is explosive. The model
in the middle regime, related to tranquil periods, has a slightly lower persistence than the stan-
dard estimated GARCH(1,1) models in the literature. Finally, the third regime, representing large
positive returns, has an associated GARCH(1,1) specification that is significantly less persistent
than the others. Thus, we find strong evidence of both size and sign asymmetries. In addition,
the FCGARCH model produces normalized residuals with lower kurtosis than the GARCH and
GJR models. When a forecasting exercise is considered, the proposed model outperforms several
concurrent GARCH specifications.

The structure of the paper is as follows. Section 2 presents the model. Its probabilistic properties
are analyzed in Section 3. Estimation of the FCGARCH model is considered in Section 4. Section
5 discusses the test for an additional regime. Section 6 summarizes the modeling cycle procedure.
A Monte Carlo simulation is presented in Section 7, and empirical examples are considered in
Section 8. Finally, Section 9 concludes the paper. All technical proofs are given in the Appendix.

2. THE MODEL

In this paper, we generalize the GARCH(1,1) and the Logistic STGARCH(1,1) formulations,
introducing a general regime switching scheme. The proposed model is defined as follows.

DEFINITION 1. A time seriesy; } follows a first-order Flexible Coefficient GARCH model with
m = H + 1 limiting regimes, FCGARCHn, 1, 1), if

Yt = hi/QEta
he = G (Wi 1) = ag + Bohi—1 + Aoyi 1+

H

> [ai+ Bihur + Xy f (sivse), t=1,...,T,
=1

(1)

where{e, } is a sequence of identically and independently distributed zero mean and unit variance
random variablesg; ~ 1ID(0,1), G (wy; ) is a nonlinear function of the vector of variables
w: = [y:—1, ht_1, 5¢), and is indexed by the vector of parameters

! 3+5H
'l,b: [QOaﬁ(]a)\Oaal?'"aaHaﬁlw-"ﬂHa)\lw"a)\H7’713--w’YHaCla---»CHa] €R * 3
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andf (s¢;vi,¢), i =1,..., H, is the logistic function defined as
1

2 f(seviye) = [

It is clear thatf (s¢; s, ¢;) is @ monotonically increasing function, such thfats;; vi, c;) — 1
ass; — oo and f (s¢;7i,¢;) — 0ass; — —oo. The parametet;, i = 1,..., H, is called the
slope parameteand determines the speed of the transition between two limiting regimes. When
~v; — oo, the logistic function becomes a step function, and the FCGARCH model becomes a
threshold-type specification. The variables known as théransition variable In this paper, we
considers; = y;_1. Hence, we model the differences in the dynamics of the conditional variance
according to the sign and size of shocks in past returns, which represent previous “news”. Of
course, there are other possible choicessfpsee Audrino and Trojani (forthcoming) and Chen,
Chiang, and So (2003) for some alternatives.

The number of limiting regimes is defined by the hyper-paramfétefor example, suppose that
in (1), H = 2, ¢; is highly negative, and; is very positive, than the resulting FCGARCH model
will have 3 limiting regimes that can be interpreted as follows. The first regime may be related to
extremely low negative shocks (“very bad news”) and the dynamics of the volatility are driven by
he = ag + Bohi—1 + Moy?_q asf (yi—1;vi,¢i) =~ 0,1 = 1,2. In the the middle regime, which
represents low absolute returns (“tranquil periods;)= ag+a; +(ﬂo+ﬁ1)ht_1+()\o+>\1)yt2,1
asf (yi—1;71,c1) = landf (ys—1; 72, c2) = 0. Finally, the third regime is related to high positive
shocks (“very good news”) anft = ag + g +ag + (8o + B1+ B2)hi—1 + (Mo + A1 + A2)y2 4, @s
f(ye—137,¢i) = 1,1 = 1,2. As the speed of the transitions between different limiting GARCH
models is determined by the parameteri = 1,2, the multiple regime interpretation of the
FCGARCH specification will become clearer the more abrupt are the transitipns () 2. In
practical applications, the restrictioh = 2 = - - - = vy may be imposed in order to reduce the
number of parameters and the eventual computational cost of the estimation algorithm.

It is important to notice that model (1) nests several well-known GARCH specifications, such
as:

The GARCH(1,1) model if;, =0ora; =3, =X ;=0,i=1...,h.

The LSTGARCH(1,1) model ify; = 3; =0,i=1...,handh = 1.

The GJR(1,1) model itf =1,y — o0, a3 = $1 = 0, andc; = 0.

e The VSGARCH(1,1) model i# = 1 andvy; — oo, ¢; = 0.

The ANSTGARCH(1,1) model iff = 1, andc; = 0.

The variance component of the DTARCH(1,1) modeljf - o ando; = 3; = 0,
i=1...,h.

The variance component of the DTGARCH(1,1) mode);if— oo ands; = h;_1.

2Representing multiple regimes with logistic functions dates back to Bacon and Watts (1971) and Chan and Tong
(1986); see also Tasvirta (1994) and van Dijk and Franses (1999).
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The nonlinear GARCH model proposed in Lanne and Saikkonen (2005) is a special case of
the FCGARCH model if3; = 0,7 = 1,...,H, orif s; = h;_1. The FCGARCH model is a
special case of the general GARCH specification presented in He afwshires (1999), Ling and
McAleer (2002), and Carrasco and Chen (2002) i ¢;_.

3. MAIN ASSUMPTIONS ANDPROBABILISTIC PROPERTIES OF THEEFCGARCH MODEL
We need to make the following set of assumptions:

AssUMPTIONL. The true parameter vectap, € ¥ C R3+5 is in the interior of®, a compact
and convex parameter space.

ASSUMPTION2. The sequencés;} of 1ID(0, 1) random variables is drawn from a continuous
(with respect to Lebesgue measure on the real line), symmetric, unimodal, positive everywhere
density, and bounded in a neighborhood of 0.

AssumPTION3. The parameters; and~;,i =1, ..., H, satisfy the conditions:
Rl —o<M<c <...<cyg <M < o0;
(R.2) v; > 0.
ASSUMPTION4. The parameters; andc;, i = 1,..., H, are such that the logistic functions

satisfy the following restrictionsy (s;;v1,¢1) > f (st;72,¢2) > ... > f(s;vH,cm), Vit €
[0, T7].

ASSUMPTIONS. The parameters;, 3;, and);, j = 0,..., H, satisfy the following restrictions:
(R3) Y ja; >0, VK =0,... H;
(R3) Y1y 8 > 0,andy" 0\ >0, VK =0,..., H.

Assumption 1 is standard. Assumption 2 is important for the mathematical derivations in this
section and in Section 5. Assumption 3 guarantees the identifiability of the model (see Section
4.2 for details). The restrictions stated in Assumptions 4 and 5 ensure strictly positive conditional
variances. Specifically, Assumption 4 ensures that the conditions in Assumption 5 are sufficient
for the strict positivity of the conditional variance.

Definings; = y:—1, model (1) may be written as

1/2
Yt zht/ Ets

(3)
hi = gi—1 + ct—1hi—1,

where
H

gt-1 = g(Yt—1,60-1) = o + Z @i fi—1,
i=1

H H
(50 +y ﬂifz‘,t—l) + </\0 +y /\ifi,t—1> 851] ;

i=1 i=1

ct—1 = c(Ye—1,64-1) =
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with fi i1 = f (ye—1; 7, ¢i)-
Following Nelson (1990), the next theorem states a necessary and sufficient log-moment con-
dition for the strict stationarity and ergodicity of the FCGAR@#]{,1) model.

THEOREM 1. Suppose thay, € R follows an FCGARCH(,1,1) process as in (1), with, =
y¢—1. Under Assumptions 2-5, the process= (y:, h;)’ is strictly stationary and ergodic if, and

only if,
} <o,V

Furthermore, there is a second-order stationary solution to (3) that has the following causal ex-
pansion:

i=1 i=1

(4) E {10g

H H
(50 + Zﬁifz’,t1> + (Ao +) Aifi,tl) e

1/2
Yt = ht/ Ets

oo k
he = gt—1 + Z H Gt—1-kCt—1—j,

k=0 j=0

®)

where the infinite sum converges almost surely (a.s.).

The log-moment condition is important as the condition in Theorem 1 can be satisfied even in
the absence of finite second-momentgQfsee McAleer (2005) for a comprehensive discussion
of log-moment conditions for volatility models.

COROLLARY 1. Under the assumptions of Theorem 1, a sufficient condition for strict stationary
and ergodicity ofu; = (¢, hy)’ in terms of the parameters is
H

(ﬁ0+)\0)+;;(ﬁi+)\i)§1.

1
2

Deriving a general sufficient condition for the existence of the momentgs f rather com-
plicated. However, the moment condition stated in the following theorem can be used to find a
necessary and sufficient condition for the existence of low-order momepts A$ mentioned in
the previous section, the model families of He anda$eirta (1999), Ling and McAleer (2002),
Lanne and Saikkonen (2005), and Carrasco and Chen (2002) do not nest the FCGARCH model
without additional restrictions. Hence, the direct application of the results of these authors is not
straightforward. In the subsequent corollary, we derive sufficient conditions for the existence of
the second- and forth-order momentgpf

THEOREMZ2. Suppose thaj; € R follows an FCGARCH(m,1,1) process as in (1), vith= y; 1
andE [e7*] = por < oo, for k = 1,2,3,.... Under Assumptions 2-5, and assuming that the
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moments of order up to = k — 1 exist,E [y7"] < oo, the2kth-order moment ofy; exists if
k

H
(6) Eq {Bo+Xogty + D (Bi+ Niery) fier| p <1
=1

COROLLARY 2. Suppose thay;, € R follows an FCGARCH(m,1,1) process as in (1), with=
y:—1. A sufficient condition for the existence of the second-order momentsof

Z@+A
=0

Furthermore, defingy = Zi:1 Giand)\y = Zi:l Ai. Under Assumptions 2-5, the fourth-order
moment ofy; exists ifE [¢}] = p4 < oo, (7) holds, and

l\.')\}—t

(7) ,30 + /\0 +

2 )\2
(8) 65+ BBy + %] + pa [/\0 + XAy + 2U] +2X080 + BoAu + Mofu + Aufu < 1.

REMARK 1. WhenH = 0, conditions (7) and (8) are the usual conditions for the existence of
the second- and fourth-order moments of GARCH models. \#henl, v; — oo, a1 = 0, and
(1 = 0, conditions (7) and (8) become the usual ones for the GJR model.

It is important to notice that, even with explosive regimes the FCGAREH, 1) may still
be strictly stationary, ergodic, and with finite fourth-order moment. Furthermore, some of the
parameters of the limiting GARCH models may exceed one. This flexibility generates models
with higher kurtosis than the standard GARCH(1,1), even with Gaussian errors.

REMARK 2. The IGARCH model with Gaussian errors is also capable of generating data with
high kurtosis. However, contrary to the FCGARCH model, it does not have finite second- and
fourth-order moments.

The following examples illustrate some interesting situations.
Consider 3000 replications of the following FCGARCH]1, 1) models with Gaussian errors,
each of which has 5000 observations.

(1) Example 1
Yt = hi/zgh Et ~ NlD(O, 1)
he =1 x 1074 +0.96h; 1 + 0.18y7_;+
(—0.9 x 107* — 0.60h;—1 — 0.10y7_;) f (5000 (y¢—1 + 0.005)) +
(1 x 107* + 0.10hs—1 + 0.05y7_;) f (5000 (yz—1 — 0.02)).
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(2) Example 2

Yt = h;ﬂst, e ~ NID(0,1)
hy =6 x 1075 + 1.10h,_1 + 0.10y2 |+
(=5 x 107° — 0.65h;—1 — 0.09y7_1) f (3000 (yz—1 + 0.005)) +
(1 x 107° + 0.10h¢—1 + 0.04y7_;) f (3000 (y;—1 — 0.005))..
(3) Example 3

Y = hi/Qet, g¢ ~ NID(0,1)

hi =6 x 107° +1.20h;_1 4 0.10y2_,+
(=5.5 x 107° — 1.20h;—1 — 0.10y7_;) f (2000 (y—1 + 0.001)) +
5x 107 f (2000 (y;—1 — 0.01)).

The models in Examples 1-3 have three extreme regimes, each with the first regime being
explosive agdy + Ao > 1. However, even with an explosive regime, the generated time series are
still stationary provided tha} (50 + Xo) + 3 3", (8 + A;) < 1. Furthermore, the fourth-order
moment exists, provided that condition (8) is also satisfied. Note als@ghat1 in Examples 2
and 3. The model in Example 3 has the interesting property that the GARCH effect is only present
in the extreme regimes. The regime associated with tranquil periods is homoskedastic.

Figure 1 shows the scatter plot of the estimated kurtosis and first-order autocorrelation of the
squared observations. The dots indicates the cases where the first-order autocorrelgtios of
greater than the first-order autocorrelatiorj@f?. The crosses indicate the opposite effect. The
simulated FCGARCH models seem to reproduce some of the stylized facts observed in financial
time series. Table 1 summarizes some statistics about the estimated kurtosis and autocorrelations.
As can be seen, the minimum value of the estimated kurtosis is over 3. In addition the mean
values of the estimated first-order autocorrelations are in accordance with the typical numbers that
are found in practical applications.

TABLE 1. SMULATED MODELS: DESCRIPTIVE STATISTICS

The table shows descriptive statistics for the estimated kurtosis and first-order autocorrelation
of the squared observations over 3000 replications of Models (1)—(3).

Kurtosis Autocorrelation
Example Min. Max. Mean Std. Dev. Min. Max. Mean Std. Dev.
1 7.18 18451 13.42 7.72 010 069 037 0.07
2 537 151.50 8.1 4.75 009 065 029 0.06

3 7.75 43412 15.88 14.99 0.02 0.72 0.22 0.08
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Estimated kurtosis ofy,

imated kurosis of y,

Esti

(©

FIGURE 1. Scatter plot of the estimated kurtosis and first-order autocorrelation of
the squared observations. The dots indicates the cases where the “Taylor effect” is
satisfied and the crosses indicate the opposite effect. Panel (a) concerns Example
1. Panel (b) concerns Example 2. Panel (c) concerns Example 3.

4. PARAMETER ESTIMATION

As the distribution ofz; is unknown, the parameters of the FCGARCH model are estimated
by quasi-maximum likelihood (QML). For GARCH(1,1) models, Lee and Hansen (1994) proved
that the local QMLE is consistent and asymptotically normal if all the conditional expectations
of e} < oo uniformly with x > 0. Lumsdaine (1996) required thBt[}?] < cc. Jeantheau
(1998) discussed consistency of the QMLE under weaker conditions. More recently, Ling and
McAleer (2003) proved the consistency of the global QMLE for a VARMA-GARCH model under
only the second-order moment condition. The authors also proved the asymptotic normality of the
global (local) QMLE under the sixth-order (forth-order) moment condition. Comte and Lieberman
(2003) and Berkes, Hoath, and Kokoszka (2003) proved consistency and asymptotic normality
of the QMLE of the parameters of the GARGHlY{) model under the second- and fourth-order
moment conditions, respectively.

As in Boussama (2000), McAleer, Chan, and Marinova (forthcoming), and Francq an@i#ako
(2004), we prove consistency and asymptotic normality of the QMLE of the FCGARCH 1)
under the log-moment condition in Theorem 1; see also Li, Ling, and McAleer (2002) and McAleer
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(2005). Extending the results in Jensen and Rahbek (2004) for non-stationary ARCH models to
the case of the FCGARCH model is not straightforward, and is beyond the scope of this paper.
However, this is an interesting topic for future research.

The guasi-log-likelihood function of the FCGARCH model is given by

T
1
) Lr() =5 > (),
t=1
wherel,(¢) = —%In(27) — $In(hy) — Qy—,’i Note that the processes andh;, t < 0, are un-

observed, and hence they are arbitrary constants. Th(s)) is a quasi-log-likelihood function
that is not conditional on the trugo, ho) making it suitable for practical applications.

However, to prove the asymptotic properties of the QMLE is more convenient to work with the
unobserved proceg8y., ¢, hyt) : t =0,£1,£2,...}, which satisfies

H

(10)  hut = 0 + Bohui—1 + Moyt + D [ + Bihus—1 + Xy 1] | Gui—13 70 ¢4) -
i=1

The unobserved quasi-log-likelihood function conditionalfen= (vo,y—1,y—2,...) IS
1 T
(11) Lur(¥) =7 2; bt (),

2
With Lu+() = —5In(27) — 3In(hus) — 5= The primary difference betweefir () and
L, (1) is that the former is conditional on any initial values, whereas the latter is conditional on
an infinite series of past observations. In practical situations, the use of (11) is not possible.

Let

hew PYeT

T
Wy = argmaxy () = argmax(} ; ztw)) :

and

~ 1<

’(/)u,T = argma)cu,T(/lp) = argmaX<T Z lu,t(’(zb)) .

pew Pew i
DefineL(y) = E [l,+(¢)]. In the following two subsections, we discuss the existena¥( ¢f)
and the identifiability of the FCGARCH model. Then, in Subsection 4.3, we prove the consistency
of pr and{b%T. We first prove the consistencyﬁ’fu,T. Using Lemma 3 in Appendix B, we show
thatiug |Lo7(1p) — Lr(3)| 2 0, and the consistency @T follows. The asymptotic normality
S

of both estimators is considered in Subsection 4.4. We start proving asymptotic normajmjnof
Then, using the results of Lemma 5, the proof{fqr is straightforward.

4.1. Existence of the QMLE. The following theorem proves the existencedify). It is based
on Theorem 2.12 in White (1994), which establishes that, under certain conditions of continuity
and measurability on quasi-log-likelihood functial()) exists.
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THEOREM 3. If (4) is satisfied, under Assumptions 2£%g)) exists and is finite.

4.2. Identifiability of the Model. A fundamental problem for statistical inference with nonlinear
time series models is the unidentifiability of the parameters. In order to guarantee unique iden-
tifiability of the quasi-log-likelihood function, the sources of uniqueness of the model must be
examined. Here, the main concepts and results will be discussed briefly. In particular, the condi-
tions that guarantee that the FCGARCH model is identifiable and minimal will be established and
proved. First, two related concepts will be discussed: The concept of minimality of the model,
established in Sussman (1992), also called “non-redundancy” in Hwang and Ding (1997); and the
concept of reducibility of the model.

DEFINITION 2. The FCGARCIKIn, 1,1) model is minimal (or non-redundant) if its input-output
map cannot be obtained from an FCGAR@HL, 1) model, where: < m.

One source of unidentifiability comes from the fact that a model may contain irrelevant “limiting
regimes”. A limiting regime is represented by the functions

pi = [0+ Bilhe—1 + Ayi ] f (ye-15vi¢) i =1,... H.

This means that there are cases where the model can be reduced without changing the input-output
map. Thus, the minimality condition can only hold for irreducible models.

DEFINITION 3. Defined; = [vi,c;]' and lety (y;-1;0;) = vi (ye—1 —¢;), i = 1,...,H. The
FCGARCH model defined in (1) is reducible if one of the following three conditions holds:
(1) One of the triplega, 3;, \;) vanishes jointly for somee [1, H];
(2) v = 0forsomei € [1, H];
(3) Thereisatleastonepait,j),i # j,i=1,...,H,j=1,...,H,suchthaty (y;—1;0;)|=
lo (y1-1:05)|, Vyi—1 € R, t =1,...,T (sign-equivalence).

DEFINITION 4. The FCGARCH model is identifiable if there are no two sets of parameters such
that the corresponding distributions of the population variajpkre identical.

Three properties of the FCGARCH model cause unidentifiability of the models:

(P.1) The property of interchangeability of the regimes. The value of the likelihood function
of the model does not change if the regimes are permuted. This resuitsdifferent
models that are indistinct among themselves. As a consequence, in the estimation of the
parameters, we will hav&! equal local maxima for the quasi-log-likelihood function.

(P.2) The fact thaf (y:—1;7vi,ci) = 1 — f(ye—15 =i, ¢i)-

(P.3) Conditions (1) — (2) in the definition of reducibility provide information about the presence
of irrelevant regimes, which translate into identifiability sources. If the model contains a
regime such thaty; = 0, g; = 0, and; = 0, then the parameterg and¢; remain
unidentified, for some € [1, H|. On the other hand, if; = 0, then the parameters, 3;,

i, ande; may take on any value without changing the quasi-log-likelihood function.
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Property (P.3) is related to the concept of reducibility. In the same spirit of the results stated in
Sussman (1992) and Hwang and Ding (1997), we show that, if the model is irreducible, properties
(P.1) and (P.2) are the only forms of modifying the parameters without affecting the log-likelihood.
Hence, by establishing the restrictions on the parameters of (1) that simultaneously avoid model
reducibility, any permutation of regimes, and symmetries in the logistic function, we guarantee
the identifiability of the model.

The problem of interchangeability, (P.1), can be prevented by imposing the Restrictions (R.1) in
Assumption 3. The consequences due to the symmetry of the logistic function (P.2) can be resolved
if we consider Restrictions (R.2) in Assumption 3. The presence of irrelevant regimes, (P.3), can
be circumvented by applying a “specific-to-general” modeling strategy as will be suggested in
Section 5.

Corollary 2.1 in Sussman (1992) and Corollary 2.4 in Hwang and Ding (1997) guarantee that
an irreducible model is minimal. The fact that irreducibility and minimality are equivalent implies
that there are no mechanisms, other than those listed in the definition of irreducibility, that can be
used to reduce the complexity of the model without changing the functional input-output relation.
Then, the restrictions in Assumption 3 guarantee that, if irrelevant regimes do not exist the model
is identifiable and minimal.

We need an additional assumption before establishing the sufficient conditions under which the
FCGARCH model is globally identifiable.

ASSUMPTIONG. The parameters;, (3;, and\; do not vanish jointly for somec [1, H].
Assumption 6 guarantees that there are no irrelevant regimes.

THEOREM4. Under Assumptions 3 and 6, the FCGARG@H 1, 1) model is globally identifiable.
Furthermore,£ (%)) is uniquely maximized ap,,.

4.3. Consistency. The proof of consistency of the QMLE for the FCGARCH model follows the
same reasoning given in Ling and McAleer (2003). The following theorem states and proves the
main consistency result.

THEOREMS. If (4) is satisfied, under Assumptions 148, % 1, andepy 2 4.

4.4. Asymptotic Normality. In order to prove asymptotic normality, we define:

| )
s 0L () 1 [ Ols()|  Olua(wp)
B(yy) =E |T 7 —7 =7 Z E : "
_ o, 9 |, TI 0% |, 2,
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Consider the additional matrices:
T
A S il A I A | -z
(V) = 7 ; { 202 O O’ (ht he o \ 2, oy ) 1 3

() Ol (v) 1 il(yf 1>28htaht
o n? o o

(12)

o' AT

hy

Briw) =

t=1 t=1

The following theorem states the asymptotic normality result.

THEOREMG. If (4) is satisfied and [¢}] = 14 < oo, under Assumptions 1-5,

(13) T2 (9 = 4po) 2 N (0, A(thy) " Blag) A(th) ),
whereA (¢,) andB(v)) are consistently estimated EA/T(zAp) and BT(@), respectively.

REMARK 3. Under Assumption 2, itis clear th&(v,) = 1 (E [¢}] — 1) A(s,), which reduces
to the information matrix equality whefh ] = 3.

5. DETERMINING THE NUMBER OF REGIMES

The number of regimes in the FCGARCH model, as represented by the number of transition
functions in (1), is not known in advance and should be determined from the data. One possibility
is to begin with a small model (such as GARCH(1,1) or white noise) and add regimes sequentially.
The decision to add another regime may be based on the use of model selection criteria (MSC) or
cross-validation. For example, Audrino andiBmann (2001) used Akaike’s Information Crite-
rion (AIC) to select the number of regimes in their Tree-Structured GARCH model. However, this
has the following drawback. Suppose the data have been generated by an FCGARCH model with
m regimes {n — 1 transition functions). Applying MSC to decide whether or not another regime
should be added to the model requires estimation of a modelrmwitbgistic functions. In this
situation, the larger model is not identified and its parameters cannot be estimated consistently
This is likely to cause numerical problems in quasi-maximum likelihood estimation. Even when
convergence is achieved, lack of identification causes a severe problem in interpreting the MSC.
The FCGARCH model withn regimes is nested in the model with+ 1 regimes.

A typical MSC comparison of the two models is then equivalent to a likelihood ratio test of
againstm + 1 regimes; see Tasvirta and Mellin (1986) for a discussion. The choice of MSC
determines the (asymptotic) significance level of the test. When the larger model is not identified
under the null hypothesis, the likelihood ratio statistic does not have an asymytalistribution
under the null.

3In the case of the tree-structured GARCH model of Audrino aiilBann (2001), the identification issue is related
to the location of the threshold. When an irrelevant regime is added, the location of the split cannot be estimated
consistently; see Hansen (1996) for a discussion.
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In this paper we tackle the problem of determining the number of regimes of the FCGARCH
model with a “specific-to-general” modeling strategy, but we circumvent the problem of identifi-
cation in a way that enables us to control the significance level of the tests in the sequence, and
compute an upper bound to the overall significance [&vel

The following is based on the assumption that the erpese Gaussian, but the results will be
made robust to nonnormal errors.

Consider an FCGARCH witlif limiting regimes, defined as

1/2
Y = ht/ Ets

(14) H-1
he =g + Bohi—1 + Noyi_1 + Z [ + Bihe—1 + Nivi 1] f (We—1; 7 ¢3) -
i=1

The idea is to test the presence of an additional regime, as represented by an extra term in (14) of
the form

(15) lovrr + Brrhi—1 + Auyi] f (ye—157vm, cn)
A convenient null hypothesis is
(16) Ho: vu =0,

against the alternativ, : vz > 0. Note that model (14) is not identified under the null hypoth-
esis. In order to remedy this problem, we follow Lundbergh and&érta (2002) and expand the
logistic function f (y:—1;vm, cgr) into a first-order Taylor expansion around the null hypothesis
~vu = 0°. After merging terms, the resulting model foris

H-1

a7 hy =G0 + Bohi—1 + Noyi—y + Z [ + Bihe—1 + N7 1] f (W13 7ir i) +
i=1

Y1 + O0he_ 141 + ﬂyffl + R,

whereR is the remainderiy = ag — W Gy = o — BHMHCH Ko = N\ — AwuCH o — 11
A
5 = ﬁH4’7H’ andp = H4’YH_
Define fi1—1 = f(y—1;7%i,¢i), ¢ = 1,...,H. UnderHy, R = 0 and the quasi-maximum
likelihood approach enables us to state the following result:

THEOREM 7. If the stationarity condition in Theorem 1 is satisfied, under Assumptions 2-5 and
the additional assumption th&t[|y¢|] < co under the null, the LM statistic given by

a®  Lu T{i(@f% >d}lzdd]{z(y >d}
== = — t td; = — t (s
2 t=1 hU,t t=1 t=1 hO,t

4An equivalent procedure has been adopted in Medeiros and Veiga (2005) and Medeiégsjriterand Rech (in
press).

“The idea of circumventing the identification problem by approximating the nonlinear contribution by a low-order
Taylor expansion under the null was originally proposed by Luukkonen, Saikkonen, gsVifer (1988).
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whereﬁo,t is the estimated conditional variance of the process under thedyus [z}, 1)

1 on, ] t—1 [ ¢ o H-1
/Z\t = Aiai,‘p, = =< it + Z H <ﬁ0 + Z /Bifi,j—l) ik )
hO,t Ho h»O,t k=1 _j:k+1 =1 i
-1 [ ¢ H-1 i
N 1 0h 1 N ~ -~ -~
ST F ) (m S @fi,ﬂ) .
ho.t o ot k=1 | j=k+1 i1 |
Re = |1 hog—1,Y7 15 fri—1- - fH-10-1,
Fram1hot—1s oy FH-14-170 41, FLi—1Yi1s - -+ s FH-10-1Y1 1,
PN ~ df1t1 ~ S = ~ OfH-1,4-1
(@14 Brhog—1+ Myi_q) 3’t v (@1 Brothos+ Auo1yf) =5,
Y1 8’}/H—l
!
PN ~ df1t-1 ~ = ~ fa-14-1
(@14 Brhog—14+ Myt q) a’t yoo (@14 Br—1hot—1+ )\H—lyt2_1)7’t )
c1 OcH—-1
N /
V= yt—laho,t—lyt—l,y?—l >
and
Ofit—1 ,
aZ’t = fi,tfl (1_fi,t71) (ytfl _Ci)a 1= 11"'7H1
Vi
Ofit-1 )
5t = —figr (L= fiet)yir =1, H,
(&

has ay? distribution with3 degrees of freedom under the null hypothesis.
REMARK 4. The sixth-order moment condition is necessary for the existerfegvot;).

Under the normality assumption, the test can be performed in stages, as follows.

(1) Estimate model (1) under the null, call the estimated vari%@geand comput& SRy =
~ 2
S (/e — 1)
2) Regres{ﬁ/ﬁo,t — 1) onz; andu; and compute the sum of the squared residua#s?; .
(3) Compute the LM statistic

SSRy — SSRy
19 LM =T——FF———

or the F statistic
(SSRy — SSRy1)/3
2 F = .
( O) SSRl/(T—5H—|—2)

UnderH,, LM is approximately distributed ag® with p degrees of freedom anfd has an F
distribution with3 and7" — 5H + 2 degrees of freedom.
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Although the test statistic is constructed under the assumption of normality, we can follow
Lundbergh and Tésvirta (2002) and consider a robust version of the LM test against nonnormal
errors. The robust version of the test can be constructed following the Procedure 4.1 of Wooldridge
(1990). The test is performed as follows:

(1) As above.

(2) Regressi; onz; and compute the residual vectors,t = 1,...,T.
2
(3) Regress 1 onéhy—f — 1) T, and compute the residual sum of squares, SSR. The test statis-
0,t
tic given by
(21) LMr=T -SSR

has an asymptotig? distribution with3 degrees of freedom under the null hypothesis.

As observed in Lundbergh and a&swirta (2002), the robust version of the LM test should
always be preferred to the nonrobust tests. At relevant sample sizes when the errors are normal,
they are about as powerful as the normality-based LM tests.

Finally, it is important to stress that the results of the sequence of LM tests may be affected by
possible outliers in the data. Nevertheless, an outlier-robust version of the LM test can be easily
developed, following van Dijk, Franses, and Lucas (1999a,1999b).

6. MODELING CYCLE

We are now ready to combine the above statistical ingredients into a practical modeling strat-
egy. We begin by testing linearity against an ARGH(odel at significance level 6. The
model under the null hypothesis is an homoskedastic model. If the null hypothesis is not rejected,
the homoskedastic model is considered as the data generating process. In case of rejection, a
GARCH(1,1) model is estimated and tested against an FCGARCH(1,1,1) model with two regimes
at the significance levelp, 0 < ¢ < 1. Another rejection leads to estimating a model with two
regimes and testing it against a model with three, at the significancedletelThe sequence is
terminated at the first non-rejection of the corresponding null hypothesis. The significance level
is reduced at each step of the sequence and converges to zero, thereby avoiding excessively large
models and controling the overall significance level. An upper bound for the overall significance
level may be obtained using the Bonferroni bound (Gourieroux and Monfort 1995, p. 203). The
selection of the parameteris ad hoc In order to avoid selecting small models (few regimes), it
is good practice to carry the modeling cycle with different values.dh the empirical examples
discussed in Section 8, we consider 1/2 andp = 1/3. The results are the same in both cases.

Evaluation following the estimation of the final model is performed by subjecting the model to
the misspecification tests, as discussed in Lundbergh aiddviga (2002).

6Bollerslev (1986) observed that under the null of homoskedasticity, there is no general Lagrange Multiplier test for
GARCH(p,q). This is due to the fact that the Hessian is singular if hoth 0 andq > 0.
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7. MONTE-CARLO EXPERIMENT

The purpose of this section is to check the performance of the test described in Section 5. We
use the following four data generating processes (DGPs):

(1) Model A:

GARCH(1,1):a = 1.0 x 1075, 3 = 0.85, A = 0.05.
(2) Model B:

GARCH(1,1):a = 1.0 x 1075, 8 = 0.90, A = 0.088.
(3) Model C:

FCGARCH3,1,1): ag = 1 x 1074, By = 0.96, \g = 0.18, a; = —0.9 x 1074,
B = —0.60, \; = —0.10, as = 1 x 1074, B = 0.10, Ao = 0.05, v1 = 5000, 72 = 5000,
c1 = —0.005, andcy = 0.02.

(4) Model D:
FCGARCH3,1,1): ap = 6 x 1072, By = 1.10, A9 = 0.10, a1 = —5 x 1072, B; =
—0.65, Ay = —0.09, ap = 1 x 1072, B3 = 0.10, Ay = 0.04, v1 = 3000, y2 = 3000,
¢1 = —0.005, andcy = 0.005.

In all DGPs the error term has a probability function either Gaussian or a standardiitbd 0
degrees of freedom. Model A has theoretical kurtosis 3.08 when the error distribution is Gaussian
and 4.16 when the errors aralistributed. Model B has a higher kurtosis: 8.55 with normality of
the errors and 152.9 when the distribution of the errorstis lurthermore, model A has a well
defined sixth-order moment even witkdistributed errors, while model B does not. We include
model B in our simulation in order to evaluate the effect of the violation of the sixth-order mo-
ment assumption in the behavior of the test. Models C and D are different specifications of an
FCGARCH3, 1, 1) model and were previously analyzed in the examples in Section 3. Using the
result of Theorem 2, it can be shown that Models C and D satisfy the sixth-order moment condi-
tion. All the simulations are based on series with 1000 observations and the first 500 observations
of each generated series are always discarded to avoid any initialization effect; see Lundbergh and
Terasvirta (2002). For each experiment, a total of 1000 replications have been generated. Only the
results concerning the robust version of the tests are shown in order to save space.

Results from simulating the modeling strategy can be found in Table 2. The table also contains
results on choosing the number of regimes using two information criteria: AIC and SBIC. The
sequence of LM tests is carried out with three different initial significance level§he value
of the hyper-parameteris 1/2, meaning that at each step the significance level of the additional
regime test is halved.

As can be seen from the table, both the AIC and the SBIC are very conservative, strongly
underestimating the number of regimes in most of the cases. On the other hand, although still
conservative, the sequence of LM tests selects the correct specification more often, specially in
comparison with the former two information criteria. Another important fact is related to the
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risk of specifying an overfitted model. It is clear from the table that, even with a large initial
significance level (10%), overfitting occurs very rarely (less than 1% of the cases).

TABLE 2. SMULATION : MODELING STRATEGY RESULTS

The table reports the frequency that a model with a given number of limiting regimes is selected over 1000 simulations.
1000 observations of each model is simulated at each replication. In all the simulations the pasa@gatds 2.6 is
the initial significance level of sequence of LM tests.

Error Number of LM test LM test LM test
Model Distribution ~ Regimes AIC  SBIC A=0.01) (6 =0.05) (6=0.10)
1 1 1 1 0.960 0.904
2 0 0 0 0.036 0.088
Gaussian 3 0 0 0 0 0.004
A >4 0 0 0 0.004 0.004
1 0.996 1 0.996 0.976 0.940
2 0.004 0 0.004 0.020 0.052
t with 10 d.f. 3 0 0 0 0 0.004
>4 0 0 0 0.004 0.004
1 1 1 0.992 0.956 0.908
2 0 0 0.008 0.040 0.080
Gaussian 3 0 0 0 0.004 0.004
B >4 0 0 0 0 0.008
1 0.996 1 0.996 0.952 0.896
2 0.004 0 0.004 0.044 0.088
t with 10 d.f. 3 0 0 0 0.004 0.012
>4 0 0 0 0 0.004
1 0.016 0.016 0 0 0
2 0.952 0.984 0.956 0.904 0.828
Gaussian 3 0.032 0 0.036 0.092 0.164
c >4 0 0 0.008 0.004 0.008
1 0.012 0.012 0.020 0.004 0
2 0.664 0.664 0.932 0.904 0.876
t with 10 d.f. 3 0.300 0.300 0.040 0.086 0.118
>4 0.024 0.024 0.008 0.006 0.006
1 0 0 0.012 0 0
2 0.964 0.976 0.880 0.760 0.652
Gaussian 3 0.032 0.024 0.098 0.236 0.346
D >4 0.004 0 0.010 0.004 0.002
1 0.004 0.004 0.060 0.008 0.008
2 0.972 0.972 0.744 0.724 0.652
t with 10 d.f. 3 0.016 0.016 0.188 0.258 0.338

>4 0.008 0.008 0.008 0.010 0.002
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8. EMPIRICAL EXAMPLES

We consider seven indexes: Amsterdam (EOE), Frankfurt (DAX), Hong Kong (Hang Seng),
London (FTSE100), New York, (S&P 500), Paris (CAC40), and Tokyo (Nikkei). These indexes
are chosen in order to represent some important financial markets. We split the sample into two
parts. The first one is for in-sample analysis and the second one is used to test the forecasting
performance of the models. For all series, except for the CAC40 index, the first sub-sample begins
in January, 7 1986 and ends in December, 31 1997 (3128 observations). The CAC40 index begins
in July, 9 1987 and ends in December, 31 1997, a total of 2736 observations. The second sub-
sample begins in January, 5 1998 and ends in November, 11 2005 (2050 observations).

In order to correctly specify the conditional mean, we follow Engle and Ng (1993). The proce-
dure involves a day-of-the-week effect adjustment and an autoregression which removes the linear
predictable part of the daily returns. Lgtbe the daily return at dayy We start regressing. on
a constant and four variables: Moueg, Wed, and Thy, which are dummy variables for Mon-
day, Tuesdays, Wednesdays, and Thursdays, respectively. The residual from the regrgssion,
therefore regressed on a constant and,on, . .., u;_7. We choose seven lags in order to remove
any remaining day-of-the-week effect not captured by the dummy variables. The residual from
the autoregressiom;, is the unpredictable return. An alternative, frequently used in the literature,
is to specify just a linear first-order linear autoregressive model for the returns. However, for the
series considered in this paper this approach fails in removing the all the serial correlation in the
returns, leading to a misspecified model for the conditional mean, which in turn, may lead to a
misspecification of the conditional variance; see McAleer (2005, p. 247) for a nice discussion.

Table 3 shows the adjustment results. Table 4 shows descriptive statistics and diagnostics,
whereo is the standard deviatios, K is the skewnesdy is the kurtosis, and)(10) and@S5(10)
are, respectively, thg-values of the Ljung-Box statistic for tenth-order serial correlation in the
unpredictable returns and squared retus¥s. N sb, Psb, and.Jsb are, respectively, the-values
of the sign bias, negative sign bias, positive sign bias, and joint tests for asymmetry proposed by
Engle and Ng (1993)ARC H (4) is thep-value of the fourth-order ARCH LM test described in
Engle (1982). From the Ljung-Box test statistic at the 1% significance level we find no significant
serial correlation left in the series after our adjustment procedure. The coefficients of skewness
and kurtosis both indicate that the series have a distribution that is fat-tailed and skewed to the left.
Furthermore, the Ljung-Box statistic in the squares and the ARCH LM test strongly suggest the
presence of time-varying volatility. Moreover, there are evidence of asymmetries in the conditional
variance of all the series. The negative sign bias and joint tests reject the null hypothesis of no
asymmetric effect for all the eight indexes. The positive sign bias test strongly rejects the null
hypothesis for the EOE, FTSE100, and CAC40 indexes. The sign bias test rejects the null for the
DAX, Hang Seng, and Nikkei indexes. The overall evidence is that the size of negative past returns
strongly affects the current volatility: Large negative unpredictable returns cause more volatility
than small ones.
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TABLE 4. DAILY UNPREDICTABLE RETURNS, DESCRIPTIVE STATISTICS AND DIAGNOSTICS

The table shows descriptive statistics and diagnostics for the unpredictable daily retisrise standard deviations,
SK is the skewnesdy is the kurtosis@)(10) is thep-value of the Ljung-Box statistic for tenth-order serial correlation
in the unpredictable return§S(10) is thep-value of the Ljung-Box statistic for tenth-order serial correlation in the
unpredictable squared returns, & N sb, Psb, and.J sb are, respectively, the-values of the sign bias, negative sign
bias, positive sign bias, and joint tests for asymmetry proposed by Engle and Ng (X9R3)H (4) is thep-value of
the fourth-order ARCH LM test described in Engle (1982).

Series o SK K Q(10) QS(10) Sb Nsb Psb Jsb ARCH(4)

EOE 0.011 -0.75 19.31 0.02 0.00 0.10 0.00 0.00 0.00 0.00
DAX 0.012 -0.99 14.93 0.99 0.00 001 000 0.12 0.00 0.00
Hang Seng 0.016 -4.84 11571  0.43 0.00 0.03 0.00 0.65 0.00 0.02
FTSE100 0.009 -1.34 2523 0.45 0.00 0.74 0.00 0.00 0.00 0.00
S&P 500 0.010 -4.44 100.71  0.99 0.00 0.16 0.00 0.43 0.00 0.00
CAC40 0.012 -0.46 10.17 0.62 0.00 052 0.00 0.01 0.00 0.00
Nikkei 0.014 -0.25 14.77 0.18 0.00 0.01 0.00 042 0.00 0.00

Using the unpredictable return series, we estimate the standard GARCH(1,1) model, as well as
the GJR-GARCH(1,1) specification. The estimation is performed using the Bollerslev-Wooldridge
quasi-maximum likelihood approach and the Marguardt algorithm. The adequacy of these models
is then checked using the sign bias, negative sign bias and positive sign bias tests. Table 5 reports
the estimation and diagnostic test results of GARCH(1,1) and GJR-GARCH(1,1) models for the
daily unpredictable returns. The number in parentheses below the estimates are the Bollerslev-
Wooldridge robust standard erroB¢, Pi, and Pcc are thep-values of the tests of unconditional
coverage, independence, and conditional coverage proposed by Christoffersen (1998) to evaluate
interval estimation. In the present case a 95% confidence interval is considered.

By inspection of Table 5 it is clear that, with the exception of the CAC40 index, the normalized
residuals from GJR-GARCH(1,1) have lower kurtosis than the ones from the GARCH(1,1) alter-
native. The skewness coefficients are also lower for the GJR-GARCH(1,1) model. Several other
interesting facts emerge from the table. First, the sum of the estinfgtadd )y coefficients in
the GARCH(1,1) models is over 0.94 for all series, indicating a high persistence in the dynamics
of the estimated volatility. For all the series, the coefficients are statistically significant at the 5%
level. Concerning the results of the sign-bias, negative sing-bias, positive sign-bias, and joint tests
it is clear from the analysis of the results in Table 5 that there are still asymmetric effects in the
normalized residuals from the GARCH(1,1) models. The only case where the test statistics is not
significant are the FTSE100. The analysis of the coverage tests indicates that the GARCH(1,1)
fails to produce correct confidence intervals for three of the series considered: DAX, Hang Seng,
and FTSE100.

When the GJR-GARCH(1,1) model is considered, it is important to mention that a negative
shock induces an explosive regime, as the sum of the estirfigtag, and\; parameters is greater
than one for all series, with the only exception of the CAC40 index; See Table 7. The parameter
A1 is significant for all series except from the FTSE100 and S&P500. Concerning the results of
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the sign bias, negative sign bias, positive sign bias, and joint tests it seems that there are still some
asymmetric effects in three out of the eight series considered here, namely: S&P500, CAC40, and
Nikkei indexes. Finally, the results of the coverage tests indicate that the GJR-GARCH(1,1) model
does not provide correct interval estimation for the DAX, and FTSE100 series. One may argue
that if a¢-distribution is considered instead of the Gaussian one, the coverage probability of the
GARCH and GJR-GARCH may be improved. However, as pointed out in Andersen, Bollerslev,
Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys (2001a, 2001b, 2003)
the distribution of the standardized returns are nearly Gaussian. For that reason, we decided to
keep the normality assumption in order to check if the presence of more than two regimes in the
dynamics of the conditional variance is one of the causes of the remaining excess of kurtosis and
poor coverage probabilities.

We proceed specifying an FCGARCH model having the GARCH(1,1) specification as our basis
model. Applying the robust version of the LM test developed in Section 5 the null hypothesis is
rejected for all series with the only exception of the FTSE100 index. At each step of the testing
sequence we halve the significance level of the test (1/2). We also carry the test sequence
with other values fop and the results do not change. The initial significance level for the sequence
of LM tests is 5%. Table 6 shows the estimation results and diagnostic statistics. The estimation is
performed by the quasi maximum likelihood method using the Sequential Quadratic Programming
numerical optimization algorithm. To avoid convergence problems, we divide the transition vari-
able,r;_1, by its unconditional standard deviation. The number in parentheses below the estimates
are the standard errors.

The sequence of robust LM tests shows evidence of two limiting regimes for three series: EOE,
Hang Seng, and Nikkei indexes. It is important to mention that for the EOE and Nikkei series
the parameter; is positive and statistically different from zero which contradicts the usual zero
threshold considered in the literature. For the Hang Seng the result is opposed: the patameter
is not statistically different from zero, corroborating previous results. It is important to mention
that comparing the AIC from the FCGARCH model with the one from the GARCH and GJR-
GARCH specifications, the FCGARCH outperforms the other two alternatives, indicating that the
final model is not overparametrized.

For the DAX, S&P500, and CAC40 three limiting regimes are found. It is clear that for all the
three series the first limiting (extreme) regime is associated with very negative shocks, representing
great losses. The middle regime is related to tranquil periods and the third and extreme regime
represents large positive shocks.

Observing the results in Table 6 it is clear that the estimated standardized residuals from FC-
GARCH model have kurtosis coefficients lower than both the GARCH(1,1) and GJR-GARCH(1,1)
models. For example, for the DAX index, the reduction in the estimated kurtosis is about 50%
when compared to the GJR-GARCH alternative. In addition, the standardized residuals from the
FCGARCH model are less skewed than the ones from the GARCH and GJR-GARCH models.
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The only exception is the Nikkei index, for which the GJR-GARCH specification has least skewed
normalized residuals. As in the GJR-GARCH(1,1) case, the FCGARCH model seems to de-
scribe adequately the asymmetric relation between returns and volatility, with the exception of the
S&P500, CAC40, and Nikkei series. For those series, a higher order model may be more adequate.
However, this investigation is beyond the scope of the paper. We do not report the standard errors
for the slope parameters because they are not very accurate as the magnitude of the egtimated
are very high, indicating a sharp transition among regimes. Moreover, as pointed out in Section
5, thet-statistic does not have its customary distribution under the null hypothesig thdt In
addition, when the coverage tests are considered, the FCGARCH model seems to outperform the
concurrent models considered in the paper and produces correct confidence intervals for all the
series.

One very interesting fact is the large value of the estimatsd which indicates a very persis-
tent regime associated with negative returns. Table 7 shows the persistence associated with each
limiting regime in both the GJR-GARCH and FCGARCH models. Considering the GJR-GARCH
model, the suny + A\g + A1 is the persistence associated with negative past returns (“bad news”),
whereas thej, + )¢ represents the persistence when the past return is positive (“good news”).
On the other hand, in the FCGARCH specification, the $igm- )\ is the persistence in the first
extreme regime that can be associated with “bad” or “very bad” news depending if the estimated
model has two or three limiting regimes. The s@g+ 81 + Ao + A1 is the persistence either in
the “tranquil period” or in “very good news regime”. Finally the last column in the table shows
the persistence of last limiting regime in the FCGARCH model and is associated with “good”
or “very good” news depending if the estimated model has two or three regimes. Some interest-
ing facts emerge from the table. First, the regime associated with negative returns is much more
persistent in the FCGARCH model than in the GJR-GARCH specification. Second, the GARCH
effect seems to be dissipated when the returns become more positive, specially when there are
three regimes and not only two. Finally, even with a very high persistent regime, all the models
are stationary, as restriction (7) is met for all cases.

Finally, we test the forecasting performance of the estimated FCGARCH models. We use the
mean absolute errors as a performance measure. The squared returns are used as a proxy to the
volatility. The results are shown in Table 8. Analyzing the results, we can observe that apart from
the S&P 500 case, the FCGARCH model performs slightly better than the other two specifications.
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TaBLE 7. GJR-GARCHAND FCGARCHMODELS: PERSISTENCE IN EACH REGIME

The table shows the persistence associated with each limiting regime in both the GJR-GARCH and
FCGARCH models. The surfy + Ao + A1 is the persistence associated with negative past returns

in the GJR-GARCH model (“bad news”), whereas the+ \o represents the persistence when the
past return is positive (“good news”). On the other hand, in the FCGARCH model, thgswimo

is the persistence in the first extreme regime that can be associated with “bad” or “very bad” news
depending if the estimated model has two or three limiting regimes. The&sund + Ao + A1 is the
persistence either in the “tranquil period” or in the “very good news regime”. Finally, the last column
in the table shows the persistence of last limiting regime in the FCGARCH model and is associated
with “good” or “very good” news depending if the estimated model has two or three regimes.

GJR-GARCH(1,1) model

FCGARCH(L,1) model

“Bad news” “Goodnews” (SGyp+ Xy Bo+ 5 Bo + 51+ B2
Series Bo + Ao + A1 Bo + Ao +Xo+ A1 FAo+ A1+ Ag
EOE 1.01 0.76 1.10 0.75 -
DAX 1.02 0.86 1.30 0.87 0.46
Hang Seng 1.07 0.83 1.25 0.62 -
S&P 500 1.02 0.93 1.68 1.00 0.31
CAC40 0.99 0.87 1.27 0.95 0.48
Nikkei 1.10 0.90 1.17 0.77 -

TABLE 8. FORECASTINGPERFORMANCE MEAN ABSOLUTE ERRORS

The table shows the mean absolute errors for the one-step-ahead forecasts computed
with different models. All the figures should be multiplied by~*. The “actual”
volatility proxy is the squared returns. The forecasting period is from January, 5
1998 to November, 11 2005 (2050 observations).

Series GARCH(1,1) GJR-GARCH(1,1) FC-GARGH(l,1)
EOE 2.35 2.30 2.25
DAX 2.70 2.63 2.55
Hang Seng 2.99 2.89 2.88
S&P 500 1.45 1.40 1.41
CAC40 2.16 2.11 2.08
Nikkei 2.32 2.32 231

9. CONCLUSIONS

In this paper we put forward a new nonlinear GARCH(1,1) model to describe the asymmetric
behavior observed in financial time series, as well as intermittent dynamics and excess of kurtosis.
The model is called the Flexible Coefficient Smooth Transition GARCH (FCGARCH) and is a
straightforward generalization of the Logistic Smooth Transition GARCH (LST-GARCH) model,
being capable of modeling multiple regimes in the conditional variance of the series. The proposed
model describes some of the stylized facts of financial time-series that existing techniques fail to
model satisfactorily. Conditions for strict stationarity and ergodicity of the proposed model was
established and the existence of the second- and fourth-order moments was carefully discussed.
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It was shown that the model may have explosive regimes and still be strictly stationary and er-
godic. Furthermore, estimation of the parameters was addressed and the asymptotic properties
of the quasi-maximum likelihood estimator was derived under second- and fourth-order moment
conditions. A modeling cycle based on a sequence of simple and easily implemented Lagrange
multiplier tests is discussed in order to avoid the estimation of unidentified models. A Monte-Carlo
experiment is designed to evaluate the methodology and it was shown that the modeling strategy
works well in moderate samples.

An empirical example with seven stock indexes showed that the FCGARCH model was able
to produce normalized residuals with lower kurtosis than the GARCH and GJR-GARCH models.
Moreover, the results showed evidence of two limiting regimes for three series and three limiting
regimes for other three. Only for one stock index there was no evidence of more than one regime.
In addition, for all the series with three limiting regimes, the first limiting (extreme) regime was
associated with very negative shocks, representing great losses. The middle regime was related
to tranquil periods and the third and extreme regime represented large positive shocks. Thus we
found strong evidence of both size and sign asymmetries. The first limiting regime for seven of the
series was extremely explosive indicating that bad news may induce very high volatility. When
a forecasting exercise was considered, the FCGARCH slightly outperformed the GARCH and
GJR-GARCH alternatives.
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APPENDIXA. PROOFS OFTHEOREMS ANDCOROLLARIES

A.1. Proof of Theorem 1. The conditional variancg, in (1) can be written as

t—1k—1 t

—1
(A.1) hy =gi—1+ Z H Ct—1—jGt—k—1 + H ci—1—jho.

k=1j=0 §=0
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Under Assumptions 4 and b, > 0 with probability one. Furthermore, it is clear that there is a positive
and finite constand/, such tha, > M with probability one. Then,

A.2 hy > M su c
(A.2) L= 1<k<€6) 15 H e
As the functionsf; ;, i = 1,..., H, are bounded ang, ~ 11D(0, 1), it is easy to show that the sequence

{e:} is strongly stationary and ergodic wiEh[|ct|1+5] < o0, Vt and for anys arbitrarily close to zero.

In addition, following the same arguments as in Corollary 1 in Trapletti, Leisch, and Hornik (2000), it is
straightforward to show thdt; } is alsoa-mixing with size—aq, for anya € R, such that the law of large
numbers for dependent and heterogeneously distributed observations applies (White 2001, Corollary 3.48,
p.49). Hence, the remaining of the proof is identical of the one of Theorem 2 in Nelson (1990). This
completes the proof.

Q.E.D

A.2. Proof of Corollary 1. Consider a positive constaint < oo and an indicator function defined as

1 ifhi_1 >N
(A.3) Ih, >N = .
0 otherwise.

Setly, ,«n=1—1Ip,_,>N.
Note that, since

H H H
yt}ilrgoo LZ_; /\ifi,t1‘| = ;Ai = Ay, ytliin_oo Lz_:l )\ifi,tl‘| =0,
H H H
li N = and i ifiz—1| =0,

there will always exist a finite constad/ > 0 and small numbers, > 0 andédg > 0 such that
’(Zil)\ifi,tq) - /\U’ < dx and‘ (Zfil @‘f:‘,tq) - ﬁU‘ < g, ifyp1>M and‘ZiH:l)\ifi,tq <oy

and| 312, i fiaa| < 0, f gy < M.
Take a large value for the constadtsand /N and write the following expected value.

Ilft 1|< I ]PI’ [IEt 1‘< 1/2]
tfl tf

I‘gt 1|> ‘|Pr IlEf 1|> 71/ ]
tfl

E[log(ci—1)] =E llog(ct 1)

+ E |log(ci—1)

p+ E |log(ci—1)

Il£t—1|< _IW
ht—l

=E llog(ctl) I€t1>h—Af/2] (]. —p)
t—1

An upper bound fop can be made arbitrarily small by increasing As a consequence, for any small
numbers > 0 and largeM, there is a constan¥ such that

Eflog(ci—1)] <6 +E |log(ci—1)

Q]O—M~

I|5t—1|2 M
hf
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The log-moment condition can be expressed as

E [log(Ct 1) I\sf 1\> 1/ ‘| <0

E [log(ct 1) I, N /2] <log{E [(ct 1)

Then, to satisfy the log-moment condition is sufficient that

However,

I\sf 1>

el

E [(Ctl) I€t1>h1_1_v111/2‘| <1
Then, asi, anddz can be made arbitrarily small,
E|Bu +E§71)\U|I|5t—l‘> v | T E 5o+ i1 Ilft—1|< A
“r{” i
E (thl) I\Etfﬂz% = 5
< ButAu+PotHo
- 2
Then, if

H
1
ﬂo + o) + Z Bi + Ai)
=0
is sufficient to guarantee the log-moment condltlon.

Q.E.D

A.3. Proof of Theorem 2. First sety?* = hfe*. Then, a€ [e7*] < oo by assumptionE [y#*] < oo if,
and only if,E [h}] < co. The binomial formula yields

ko /p H p
hi = Z (p> (040 + Zaifi,t—l>
i=1

p=0

H k—p
Bo + Xogi_q + Z (Bi + Nigj_1) fi,t-l] hyP.

=1

Letu, = [n,hf~1, ... ] Then,
(A.4) w =cy1 + Cijuy_q,

J
wherec;_; € R¥ is a vector with typical element given lay_; ; = (ao + Zfil ozifi7t_1) v J=0,...,k,
andC;_1 is ak x k upper triangular matrix with diagonal elements given by

H J
Cio1j5 = |Bo+ Aogi—1 + Z (Bi + Xigr 1) fi,t—1‘| ;

i=1

j=0,...,k. Therefore,
(A.5) E [u|Fi—2] < const. + E[C_1|Fi_o]uy_1,

sincec;_1,; < (ao + Zfil \ai\) < 00. F;_o is the filtration given by all information up to time— 2.
BecauseC;_; is upper triangular, the eigenvalues are equal to the diagonal elements. Thus, the condition
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for the existence of thekth-order moment ofj; is
k

H
Bo+ Xty + D (Bi+ Nig?y) fi,t—l] < 1.

=1

(A6) E[Ci—ixk) =E{E[Ci_1 k| Fi—2]} =E

Q.E.D

A.4. Proof of Corollary 2. According to results in Theorem 2, the second-order moment condition is

(A7) E

H
ﬁo + )\08?,1 + Z (ﬁz + )\ﬁ:‘?,l) fi,t1‘| < 1.

i=1
Defining two constantd/ and N and following the same rationale as in the proof of Corollary 1, the result
is straightforward. The proof of the fourth-order moment condition follows the same lines and is omitted in
order to save space.

This completes the proof.

Q.E.D

A.5. Proof of Theorem 3. It is easy to see tha¥ (w; 1) in (1) is continuous in the parameter vectpr
This follows from the fact that, for each valuewt, f (y:—1;7vi,¢), ¢ =1,..., H, in (1) depend continu-
ously onv; ande;. Similarly, we can see tha&t (w;, 1) is continuous inw;, and therefore measurable, for
each fixed value of the parameter vecgar

Furthermore, under the restrictions in Assumption 5 and if the stationarity condition of Theorem 1 is

pew
o0, Vap € W. This completes the proof.

satisfied, theit | sup |h, || < co. By Jensen’s inequality [sup |1n|hu7t||] < 00. Thusk [|l,+ ()] <
peT

Q.E.D

A.6. Proof of Theorem 4. Definez, = [1,h,_1,y7,] andg; = [a;, 5;,\;]', j = 0,..., H. Remember

also the definition oB; andp(y:—1;0;), ¢ = 1,..., H. The parameter vectap can be written ag) =
(00, .., P, 01, ...,0%] ', Suppose thai is another vector of parameters such that

H H
(A8) Goze + > Dlzf (yi-1:0,) = boze + 3 izef (yi—1:05).

=1 =1
In order to show global identifiability of the FCGARCH model, we need to prove that, under Restrictions
(R.1) and (R.2) in Assumptions 3 and 6, (A.8) is satisfied if, and onhp if; sz
Equation (A.8) can be rewritten as

2H
(A.9) ¢62t - (E)Zt - Z%}ztf (yt71§§j) =0,

j=1
where@, = 6, forj =1,...,H,0, = 0;_p for j = H + 1,....2H,¢; = ¢, for j =1,... . H, and
b;=¢; yforj=H+1,... 2H.

For simplicity of notation letp; = ¢ (y,—1;0,),7 =1,...,2H. Lemma 2.7 in Hwang and Ding (1997)

implies that if p;, and¢;, are not sign-equivalent, € {1,...,2H}, jo € {1,...,2H}, (A.9) holds if,
and only if, ¢, c?bo, andaj vanish jointly for everyj € {l,...,2H}. However, Assumption 6 precludes
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that possibility. Henceyp;, andy;, must be sign-equivalent. But restriction (R.2) in Assumption 4 avoid
that two functionsp;, andy;, coming from the same model being sign-equivalent. Consequently:
{0,...,H} andj, € {H+1,...,2H+1} such thatp;, andy;, are sign-equivalent. Under restriction (R.2)
the only possibility is that the regimes are permuted. Restriction (R.1) excludes that possibility. Hence, the
only case where (A.8) holds is whe) = ¢,, and6; = 6;,i=1,..., H.

Let h§0> be the true conditional variance. To show tiidt)) is uniquely maximized at),, rewrite the
maximization problem as

(0) (0)
max [L(¢) — L(¢,)] = max {—E l— In (ht ) + oy +1

pew PHET Pyt Pt

In addition, for anyx > 0, —m(z) = —In(x) + = > 0, so that

h(o) h(o)
_El=In| =t— -t
[ " <hu,t * hu,t

Furthermoremn(x) is maximized at: = 1. If x # 1, m(x) < m(1), implying thatE[m(z)] < E[m(1)]

<0.

with equality only ifz = 1 with probability one. However, this will occur only i In <Z§Oj> = 0 with
probability one. By the mean value theorem, this is equivalent to showing that |

Ohuy 1
0P hyy

with probability one. By Lemma 1 this occurs if and onlwif= 1),. This completes the proof.

(v — 4p) 0

Q.ED

A.7. Proof of Theorem 5. Following Newey and McFadden (1991)4,Abu,T 2 1, if the following condi-
tions hold:

(1) The parameter spad is compact.
(2) L,,7(7) is continuous imp € ¥. Furthermorel, r(v) is a measurable function af, t =
1,...,T,forallyp € ¥.

(3) L(%p) has a uniqgue maximum gf,.

@) Lur(¥p) 5 L(3).
Condition (1) is met by assumption. Theorem 3 shows that Condition (2) is trivially satisfied. Theorem

4 proves that Condition (3) is fulfilled and, by Lemma 2, Condition (4) is also satisfied. 7@@ LN Pg.

Lemma 3 shows that

sup Lo () — Lr(p)| 50,
Ppew

implying that{bT 2 1. This completes the proof.

Q.E.D
A.8. Proof of Theorem 6. We start proving asymptotically normality of the QMLE using the unobserved
log-likelihood. Once this is shown, the proof using the observed log-likelihood is immediate by Lemmas 3

and 5. To prove the asymptotically normality of the QMLE we need the following conditions in addition to
the ones stated in the proof of Theorem 5.

’See also White (1994) and Wooldridge (1994).
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(5) The true parameter vectgr, is interior tow.

(6) The matrix
0?1 (¢
Z (Wﬁw )

exists and is continuous M.
(7) The matrixA7 () 2 A(v,), for any sequence, such thatp, 2 .
(8) The score vector satisfies

t Z (alt ) ZN(0,B(ey)).

Condition (5) is satisfied by assumption. Condition (6) follows from the factiilidt) is differentiable
of order two onyp € ¥ and the stationarity of the FCGARCH model. Lemma 5 imply that Condition
(7) is satisfied. Furthermore, non-singularity Af«,) follows immediately from identification of the
FCGARCH model and the non-singularity Bf(1),); see Hwang and Ding (1997). In Lemma 4 we prove
that condition (8) is also met. This completes the proof.

Q.E.D

A.9. Proof of Theorem 7. The local approximation to the instantaneous quasi-log-likelihood function in
a neighborhood of{; is

2
Yi

A.10 l _——71 2r — = In(h

( ) t 2H7T 2n(t) th,

with h, given by (17). Letp = [1/:’1,1/:’2]' with
~ ~ !
P = &OaﬂOa)\Oaalv--~70‘H—17ﬁ1a-~-76H—17>\1a-~-7)\H—17’Yla-~-77H—17017---7CH—1}
andy, = [, 4, ,0}/-

Furthermore, it can be shown that the score vector is given by

Il 7
(A.11) a(®) = [a(¥,), a(®,)] Zl%’é’;] Zi( )[ ]

99,

wherez, = ;- 2ht andu, = ;- Zhe.
Lt 1 2

The information matrix is given by
aw) =€ [-Gi| =€ op ()~ (1) aw (a6 )

_E {1% 8ht} _ %E lztzt ztutl _

2hZ O O’ wz, uul

A consistent estimator foA (1) is

(A.12) Ar(¥) = 5=y

see Engle (1982).
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Definingd; = [z}, u}] and following Godfrey (1988, p. 16), theM statistic is given by
LM = a(3)|r [Ar(3) 3]~ a(®) |3,

T [y T -7 2
:22<htt— )dt [Zdtd;] Z(é—l)dt.
t=1 t=1

t=1

(A.13)

Then, Lemmas 4 and 5 yield the result. This completes the proof.
Q.ED

APPENDIXB. LEMMAS

LEMMA 1. Suppose thay, is generated by (1), satisfying Assumptions 3-5. d_be a constant vector
with the same dimension as Then

d (ag;t) =0 a.s. iffd = 0.

PROOF The proof follows the same reasoning as the one from Lemma 5 in Lumsdaine (1996). Define

;= %ﬁ andf;, = f(y:; Vi, ). Itis straightforward to show that

& = BWi—1)§_1 + ki1,

where
Koo = |1 heen, Y7y, fraen, oo, faeets
frie—ihi—1, ooy fai—1hi—1, fl’t,lyt{h e fH’tflyt{l’
(1 + Bihe—s + iyia) ag;—l s (0w + Brhicy + Auy? ) ajgi;l ’
)
(0 s + ) L (o By + Ay ) PHEL

and3(y:) = Bo + Zil Bifie- Thend'¢, = d'B(yi—1)€;_, + d’k;—1. Since by assumptiod’¢, = 0
andd’¢,_, = 0 with probability one, this implies thad’x;_; = 0 with probability one. Sinces; is
nondegenaratel’€, = 0 with probability one if and only id = 0. This completes the proof.

Q.E.D

LEMMA 2. Under assumptions of Lemma 1,

sup | Lo () — L(3p)| 5 0.

Ppew

PROOF The proof of this lemma follows closely the proof of Lemma 4.3 in Ling and McAleer (2003). Set

9(Yy, ) =1, (¢)—E [l (¥)], whereY, = [yi, y1—1, Yi—2, - - .]’. Theorem 3 implies thd iugl lg(Yt,9)|| <
S

oo. In addition, becausg(Y+, v) is stationary wittE [¢(Y+, )] = 0, by Theorem 3.1 in Ling and McAleer
(2003) sup |71 Zthl g(Yq, q,b)‘ = 0,(1). This completes the proof.
pelr

Q.E.D
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LEMMA 3. Under assumptions of Lemma 1

sup Lo (¥) — Lo ()] 50

PET

PROOFE The proof of this lemma is adapted from the proof of item (i) of Lemma 6 in Lumsdaine (1996).

Write - -
huo =Y k(@) + > 6 r()y?,
k=1 k=1
It is clear that under the condition of Theorem 1,

Pr | sup (hyo) > K| -0 as K — oo
Pl

andh,, o is well defined.
SetB(y) = fo + -, Bif (ye; v, ;). Combining (9) and (11) we get

hu,t _ht: (Hﬁ(y])) (hu,O - hO) or hu,t+ (Hﬂ(y])) hOth - (Hﬁ(%)) hu 0

j=1

Therefore, dividing the left-hand-side of the above expressiola.bye have:

‘m (hh)] <1+ (Eﬂ(yj)) Z] < (jri[lmm) e

Define two finite positive constandsands. From the fact thab; > § and3(y;) < &

T b P T b p T [ b P
7723 In <;;:) <|7- In <;;:>H <1723 T] Blw) ;:;0
t=1 1 t=1 \j=1

In

Then, by Theorem 1 and Slutsky’s Theorem, the upper bound of the final expression converges in prob-
ability uniformly to zero, so that

Pr supZIln wt) —In(h)| > K| =0 asT — oo, VK > 0.
el 1

Now we have to prove that

sup 2.

PHET

| ()] <

ey (i)

Itis clear that
P

o~
I
-
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Define X; = y? and¢, = ‘(szlﬁ(yj)) (ho — hmo)’. Under the condition of Theorem X, is a
strictly stationary and ergodic time series, Wil X;|] < co. Furthermore, it is clear by Theorem 1 that
sup |&| < €, whereC is a finite constant an@—! Zthl |&:] = 0,(1). Then, by Lemma 4.5 in Ling and

t

McAleer (2003)~' -7 | X, = 0,(1). Hence,
14

1 T t .
Z yt2 H ﬁ(yJ) (hO - hu,O) & 0.
t=1 j=1

Tp/2é2p

This completes the proof.

Q.ED

LEMMA 4. Under the conditions of Theorem 6, thEr{alg)g;”)’ 1 exists and is finite. Furthermore,
Yp=1p,

B(v,) is finite, positive definite, and

1 o Ol (v)
ﬁt; 0

LN(0, B(3y)).
w:"f’o

PROOF. First, itis straightforward to show that, if the condition of Theorem 1is satisfied,H}‘{éi%Epi) ’ ]
Y=1p,

exists and is finite. Now, set

(B.14) Volus = 317;;1/()’/’) and Vo, , = agizt |
¥=1o Y=1o
Then,
1 1
(B.15) Volut Vol = 7 (6 =267 + 1) 55~ Vohu Vol
u,t

Let§ < oo be a positive constant such thiat, > ¢. If the log-moment condition of Theorem 1 is met,
then, using the same arguments as in the proof of Lemma 1 in Boussama (2000),
1

E
Mot

Vohu,tth;’t < 1\/[7

whereM is a constant vector with finite elements, and
1 1
(B.16) E [VoluVoli,,] < {ME [(ef — 267 +1)] = ;M (s = 1),

wherep, = E [¢}] < oo. HenceE [Vl Vol,, ;| < coandB(t,) < co. Under conditions of Theorems
1 and 4,B(1,) is positive definite.

Now, let St = Zthl c'Vol,.+, Wherec is a constant vector. Thefiy is a martingale with respect to
F:, the filtration generated by all past observationg;0fBy the given assumptiors[St] > 0. Using the
central limit theorem of Stout (1974)

71257 2 N(0,¢/B(ep)c) -
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Finally, by the Crarar-Wold device,
2 N (0, B(3h))

Sy i Ot ()
t=1 a¢ Pp=1o

In a similar manner to the proof of Lemma 3, we can show that

T
_ ol (Y)
1/2 _ou p
T Z 9 = 0.
t=1 P=1po Y=1po
Thus
-1/2 alt D
Z = N(0, By).
P=1p,
This completes the proof.
Q.E.D
LEMMA 5. Under the conditions of Theorem 6
T
1 Plus(¥) Plust(P) || »
(a) sup || = : E{ = 0, and
wew | T & ooy’ oy’
T
0?1y ( 8%(1/:)] p
b su = 0.
©F o E { aww Doy
PrROOEF First set
(9 lu t(":b) 8 hut
B.17 Valut = d Vih,, .
(B.17) = ooy an L= Dpoy
Y=1)o
Then,
(B.18) v, = (Y q) ey, L (5 G ol
. oblu,t — huyt 2hut oltu,t — 2h/7%qt huyt 0tbu,t V 0ly, ¢

Under the condition of Theorem 1 it can be showrVga,, ; has only second-order terms, gtV h, ;] <
M, < oo, whereM,, is a constant matrix. Then,

1
—erM

1
(B.19) Vilus < (g7 — 1) 5M2
andE [vgzu,t] < oo. By Theorem 3.1 in Ling and McAleer (2003), (a) holds. The proof of (b) follows
closely the one of Lemma 3 and the details are omitted.
This completes the proof.

Q.ED
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