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MODELING MULTIPLE REGIMES IN FINANCIAL VOLATILITY WITH A
FLEXIBLE COEFFICIENT GARCH(1,1) MODEL

MARCELO C. MEDEIROS AND ALVARO VEIGA

ABSTRACT. In this paper a flexible multiple regime GARCH(1,1)-type model is developed to de-

scribe the sign and size asymmetries and intermittent dynamics in financial volatility. The results

of the paper are important to other nonlinear GARCH models. The proposed model nests some of

the previous specifications found in the literature and has the following advantages: First, contrary

to most of the previous models, more than two limiting regimes are possible and the number of

regimes is determined by a simple sequence of of tests that circumvents identification problems

that are usually found in nonlinear time series models. The second advantage is that the station-

arity restriction on the parameters is relatively weak, thereby allowing for rich dynamics. It is

shown that the model may have explosive regimes but can still be strictly stationary and ergodic. A

simulation experiment shows that the proposed model can generate series with high kurtosis, low

first-order autocorrelation of the squared observations, and exhibit the so-called “Taylor effect”,

even with Gaussian errors. Estimation of the parameters is addressed and the asymptotic properties

of the quasi-maximum likelihood estimator are derived under weak conditions. A Monte-Carlo

experiment is designed to evaluate the finite sample properties of the sequence of tests. Empirical

examples are also considered.

KEYWORDS: Volatility, GARCH models, multiple regimes, nonlinear time series, smooth transi-

tion, finance, asymmetry, leverage effect, excess of kurtosis, asymptotic theory.

1. INTRODUCTION

MODELING AND FORECASTING the conditional variance, or volatility, of financial time series

has been one of the major topics in financial econometrics. Forecasted conditional variances are

used, for example, in portfolio selection, derivative pricing and hedging, risk management, market

timing, and market making. Among solutions to tackle this problem, the ARCH (Autoregressive

Conditional Heteroscedasticity) model proposed by Engle (1982) and the GARCH (Generalized

Autoregressive Conditional Heteroscedasticity) specification introduced by Bollerslev (1986) are

among the most widely used, and are now fully incorporated into financial econometric practice.

One drawback of the GARCH model is the symmetry in the response of volatility to past shocks,

which fails to accommodate sign asymmetries. Starting with Black (1976), it has been observed

that there is an asymmetric response of the conditional variance of the series to unexpected news,

represented by shocks: Financial markets become more volatile in response to “bad news” (nega-

tive shocks) than to “good news” (positive shocks). Goetzmann, Ibbotson, and Peng (2001) found

evidence of asymmetric sign effects in volatility as far back as 1857 for the NYSE. They report

that unexpected negative shocks in the monthly return of the NYSE from 1857 to 1925 increase
1
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volatility almost twice as much as equivalent positive shocks in returns. Similar results were also

reported by Schwert (1990).

The above mentioned asymmetry has motivated a large number of different volatility models

which have been applied with relatively success in several situations. Nelson (1991) proposed the

Exponential GARCH (EGARCH) model. In his proposal, the natural logarithm of the conditional

variance is modeled as a nonlinear ARMA model with a term that introduces asymmetry in the

dynamics of the conditional variance, according to the sign of the lagged returns. Glosten, Ja-

gannanthan, and Runkle (1993) proposed the GJR model, where the impact of the lagged squared

returns on the current conditional variance changes according to the sign of the past return. A

similar specification, known as Threshold GARCH (TGARCH), model was developed by Rabe-

mananjara and Zakoian (1993) and Zakoian (1994). Ding, Granger, and Engle (1993) proposed

the Asymmetric Power ARCH which nests several GARCH specifications. Engle and Ng (1993)

popularized the news impact curve (NIC) as a measure of how new information is incorporated

into volatility estimates. The authors also developed formal statistical tests to check the presence

of asymmetry in the volatility dynamics. More recently, Fornari and Mele (1997) generalized

the GJR model by allowing all the parameters to change according to the sign of the past return.

Their proposal is known as the Volatility-Switching GARCH (VSGARCH) model. Based on the

Smooth Transition AutoRegressive (STAR) model, Hagerud (1997) and Gonzalez-Rivera (1998)

proposed the Smooth Transition GARCH (STGARCH) model. While the latter only considered

the Logistic STGARCH (LSTGARCH) model, the former discussed both the Logistic and the

Exponential STGARCH (ESTGARCH) alternatives. In the logistic STGARCH specification, the

dynamics of the volatility are very similar to those of the GJR model and depends on the sign of

the past returns. The difference is that the former allows for a smooth transition between regimes.

In the EST-GARCH model, the sign of the past returns does not play any role in the dynamics of

the conditional variance, but it is the magnitude of the lagged squared return that is the source of

asymmetry. Anderson, Nam, and Vahid (1999) combined the ideas of Fornari and Mele (1997),

Hagerud (1997), and Gonzalez-Rivera (1998) and proposed the Asymmetric Nonlinear Smooth

Transition GARCH (ANSTGARCH) model, and found evidence in favor of their specification.

Inspired by the Threshold Autoregressive (TAR) model, Li and Li (1996) proposed the Double

Threshold ARCH (DTARCH) model. Liu, Li, and Li (1997) generalized it, proposing the Double

Threshold GARCH (DT-GARCH) process to model both the conditional mean and the conditional

variance as a threshold process. More recently, based on the regression-tree literature, Audrino

and B̈uhlmann (2001) proposed the Tree Structured GARCH model to describe multiple limiting

regimes in volatility1.

In this paper we contribute to the literature by proposing a new flexible nonlinear GARCH

model with multiple limiting regimes, called the Flexible Coefficient GARCH (FCGARCH) model,

that nests several of the models mentioned above. As most of the empirical papers in the financial

1See also Cai (1994) and Hamilton and Susmel (1994) for regime switching GARCH specifications based on the
Markov-switching model.
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econometrics literature deal only with GARCH(1,1)-type of models, we focus our attention only

on the first-order FCGARCH specification.

Our proposal has the following advantages: First, contrary to most of the previous models in the

literature, more than two limiting regimes can be modeled. The number of regimes is determined

by a simple and easily implemented sequence of tests that circumvents the identification problem

in the nonlinear time series literature, and avoids the estimation of overfitted models. To the best

of our knowledge, the only two exceptions that explicitly model more than two limiting regimes

in the volatility are the DTGARCH and Tree-Structure GARCH models. However, in the former,

the authors did not discuss how to determine the number of regimes and only one fixed threshold

at zero is considered in the empirical application. In the latter, the proposed procedure is based

on the use of information criteria and may suffer from identification problems when an irrelevant

regime is estimated; see Hansen (1996) for a similar discussion considering threshold regression

models and Teräsvirta and Mellin (1986) for the linear regression case. The second advantage is

that the stationarity restriction on the FCGARCH model parameters is relatively weak, thereby

allowing for rich dynamics. For example, the model may have explosive regimes and still be

strictly stationary and ergodic, being capable of describing intermittent dynamics. The system

spends a large fraction of time in a bounded region, but sporadically develops an instability that

grows exponentially for some time, and then suddenly collapses. Furthermore, data with very high

kurtosis can easily be generated even with Gaussian errors. This allows for a better description

of the large absolute returns of financial time series that standard GARCH models fail to describe

satisfactorily. Reproducing the above mentioned typical behavior of financial time series maybe

important in risk analysis and management. A simulation experiment shows that the FCGARCH

model is able to generate time series with high kurtosis and, at the same time, positive but low

first-order autocorrelations of squared observations, which are frequently observed in financial

time series. Furthermore, the FCGARCH model seems to be able to reproduce the so-called

“Taylor effect” (Granger and Ding 1995). Other models such as the GARCH and the EGARCH

models are not able to reproduce adequately the above mentioned stylized facts of financial time

series; see Malmsten and Teräsvirta (2004) and Carnero, Peña, and Ruiz (2004) for comprehensive

discussions.

We discuss the theoretical aspects of the FCGARCH model. Conditions for strict stationarity

and for the existence of the second- and fourth-order moments; model identifiability; and the

existence, consistency, and asymptotic normality of the quasi-maximum likelihood estimators.

Consistency and asymptotic normality are proved under weak conditions. Our results are directly

applicable to other nonlinear GARCH specifications, such as the STGARCH model. Furthermore,

existing results in the literature are special cases of those presented in the paper.

A sequence of simple Lagrange multiplier (LM) tests is developed to determine the number of

limiting regimes and to avoid the specification of models with an excessive number of parameters.

Although the test is derived under the assumption that the errors are Gaussian, a robust version
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against non-Gaussian errors is also considered. A Monte Carlo experiment is designed to evaluate

the finite sample properties of the proposed sequence of tests with simulated data. The main

finding is that the robust version of the test works well in small samples, and compares favorably

with the use of information criteria.

An empirical example with seven stock indexes shows evidence of two regimes for three series

and three regimes for other three series. Only for one stock index there is no evidence of regime

switching. Furthermore, for all series with three regimes, the GARCH model associated with

the first regime, representing very negative returns (“very bad news”), is explosive. The model

in the middle regime, related to tranquil periods, has a slightly lower persistence than the stan-

dard estimated GARCH(1,1) models in the literature. Finally, the third regime, representing large

positive returns, has an associated GARCH(1,1) specification that is significantly less persistent

than the others. Thus, we find strong evidence of both size and sign asymmetries. In addition,

the FCGARCH model produces normalized residuals with lower kurtosis than the GARCH and

GJR models. When a forecasting exercise is considered, the proposed model outperforms several

concurrent GARCH specifications.

The structure of the paper is as follows. Section 2 presents the model. Its probabilistic properties

are analyzed in Section 3. Estimation of the FCGARCH model is considered in Section 4. Section

5 discusses the test for an additional regime. Section 6 summarizes the modeling cycle procedure.

A Monte Carlo simulation is presented in Section 7, and empirical examples are considered in

Section 8. Finally, Section 9 concludes the paper. All technical proofs are given in the Appendix.

2. THE MODEL

In this paper, we generalize the GARCH(1,1) and the Logistic STGARCH(1,1) formulations,

introducing a general regime switching scheme. The proposed model is defined as follows.

DEFINITION 1. A time series{yt} follows a first-order Flexible Coefficient GARCH model with

m = H + 1 limiting regimes, FCGARCH(m, 1, 1), if

yt = h
1/2
t εt,

ht = G (wt; ψ) = α0 + β0ht−1 + λ0y
2
t−1+

H∑

i=1

[
αi + βiht−1 + λiy

2
t−1

]
f (st; γi, ci) , t = 1, . . . , T,

(1)

where{εt} is a sequence of identically and independently distributed zero mean and unit variance

random variables,εt ∼ IID(0, 1), G (wt; ψ) is a nonlinear function of the vector of variables

wt = [yt−1, ht−1, st]
′, and is indexed by the vector of parameters

ψ = [α0, β0, λ0, α1, . . . , αH , β1, . . . , βH , λ1, . . . , λH , γ1, . . . , γH , c1, . . . , cH , ]′ ∈ R3+5H ,
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andf (st; γi, ci), i = 1, . . . , H, is the logistic function defined as

(2) f (st; γi, ci) =
1

1 + e−γi(st−ci)
.

It is clear thatf (st; γi, ci) is a monotonically increasing function, such thatf (st; γi, ci) → 1
asst → ∞ andf (st; γi, ci) → 0 asst → −∞. The parameterγi, i = 1, . . . ,H, is called the

slope parameterand determines the speed of the transition between two limiting regimes. When

γi → ∞, the logistic function becomes a step function, and the FCGARCH model becomes a

threshold-type specification. The variablest is known as thetransition variable. In this paper, we

considerst = yt−1. Hence, we model the differences in the dynamics of the conditional variance

according to the sign and size of shocks in past returns, which represent previous “news”. Of

course, there are other possible choices forst; see Audrino and Trojani (forthcoming) and Chen,

Chiang, and So (2003) for some alternatives.

The number of limiting regimes is defined by the hyper-parameterH. For example, suppose that

in (1), H = 2, c1 is highly negative, andc2 is very positive, than the resulting FCGARCH model

will have 3 limiting regimes that can be interpreted as follows. The first regime may be related to

extremely low negative shocks (“very bad news”) and the dynamics of the volatility are driven by

ht = α0 + β0ht−1 + λ0y
2
t−1 asf (yt−1; γi, ci) ≈ 0, i = 1, 2. In the the middle regime, which

represents low absolute returns (“tranquil periods”),ht = α0+α1+(β0+β1)ht−1+(λ0+λ1)y2
t−1

asf (yt−1; γ1, c1) ≈ 1 andf (yt−1; γ2, c2) ≈ 0. Finally, the third regime is related to high positive

shocks (“very good news”) andht = α0 +α1 +α2 +(β0 +β1 +β2)ht−1 +(λ0 +λ1 +λ2)y2
t−1, as

f (yt−1; γi, ci) ≈ 1, i = 1, 2. As the speed of the transitions between different limiting GARCH

models is determined by the parameterγi, i = 1, 2, the multiple regime interpretation of the

FCGARCH specification will become clearer the more abrupt are the transitions (γi À 0) 2. In

practical applications, the restrictionγ1 = γ2 = · · · = γH may be imposed in order to reduce the

number of parameters and the eventual computational cost of the estimation algorithm.

It is important to notice that model (1) nests several well-known GARCH specifications, such

as:

• The GARCH(1,1) model ifγi = 0 or αi = βi = λi = 0, i = 1 . . . , h.

• The LSTGARCH(1,1) model ifαi = βi = 0, i = 1 . . . , h andh = 1.

• The GJR(1,1) model ifH = 1, γ1 →∞, α1 = β1 = 0, andc1 = 0.

• The VSGARCH(1,1) model ifH = 1 andγ1 →∞, c1 = 0.

• The ANSTGARCH(1,1) model ifH = 1, andc1 = 0.

• The variance component of the DTARCH(1,1) model ifγi → ∞ and αi = βi = 0,

i = 1 . . . , h.

• The variance component of the DTGARCH(1,1) model ifγi →∞ andst = ht−1.

2Representing multiple regimes with logistic functions dates back to Bacon and Watts (1971) and Chan and Tong
(1986); see also Teräsvirta (1994) and van Dijk and Franses (1999).
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The nonlinear GARCH model proposed in Lanne and Saikkonen (2005) is a special case of

the FCGARCH model ifβi = 0, i = 1, . . . , H, or if st = ht−1. The FCGARCH model is a

special case of the general GARCH specification presented in He and Teräsvirta (1999), Ling and

McAleer (2002), and Carrasco and Chen (2002) ifst = εt−1.

3. MAIN ASSUMPTIONS ANDPROBABILISTIC PROPERTIES OF THEFCGARCH MODEL

We need to make the following set of assumptions:

ASSUMPTION1. The true parameter vectorψ0 ∈ Ψ ⊆ R3+5H is in the interior ofΨ, a compact

and convex parameter space.

ASSUMPTION 2. The sequence{εt} of IID(0, 1) random variables is drawn from a continuous

(with respect to Lebesgue measure on the real line), symmetric, unimodal, positive everywhere

density, and bounded in a neighborhood of 0.

ASSUMPTION3. The parametersci andγi, i = 1, . . . , H, satisfy the conditions:

(R.1) −∞ < M < c1 < . . . < cH < M < ∞;

(R.2) γi > 0.

ASSUMPTION 4. The parametersγi and ci, i = 1, . . . , H, are such that the logistic functions

satisfy the following restrictions:f (st; γ1, c1) ≥ f (st; γ2, c2) ≥ . . . ≥ f (st; γH , cH), ∀ t ∈
[0, T ].

ASSUMPTION5. The parametersαj , βj , andλj , j = 0, . . . , H, satisfy the following restrictions:

(R.3)
∑K

j=0 αj > 0, ∀K = 0, . . . , H;

(R.3)
∑K

j=0 βj ≥ 0, and
∑K

j=0 λj ≥ 0, ∀K = 0, . . . ,H.

Assumption 1 is standard. Assumption 2 is important for the mathematical derivations in this

section and in Section 5. Assumption 3 guarantees the identifiability of the model (see Section

4.2 for details). The restrictions stated in Assumptions 4 and 5 ensure strictly positive conditional

variances. Specifically, Assumption 4 ensures that the conditions in Assumption 5 are sufficient

for the strict positivity of the conditional variance.

Definingst = yt−1, model (1) may be written as

yt = h
1/2
t εt,

ht = gt−1 + ct−1ht−1,
(3)

where

gt−1 ≡ g(yt−1, εt−1) = α0 +
H∑

i=1

αifi,t−1,

ct−1 ≡ c(yt−1, εt−1) =

[(
β0 +

H∑

i=1

βifi,t−1

)
+

(
λ0 +

H∑

i=1

λifi,t−1

)
ε2
t−1

]
,
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with fi,t−1 ≡ f (yt−1; γi, ci).
Following Nelson (1990), the next theorem states a necessary and sufficient log-moment con-

dition for the strict stationarity and ergodicity of the FCGARCH(m,1,1) model.

THEOREM 1. Suppose thatyt ∈ R follows an FCGARCH(m,1,1) process as in (1), withst =
yt−1. Under Assumptions 2–5, the processut = (yt, ht)′ is strictly stationary and ergodic if, and

only if,

(4) E

{
log

[(
β0 +

H∑

i=1

βifi,t−1

)
+

(
λ0 +

H∑

i=1

λifi,t−1

)
ε2
t−1

]}
< 0, ∀ t.

Furthermore, there is a second-order stationary solution to (3) that has the following causal ex-

pansion:

yt = h
1/2
t εt,

ht = gt−1 +
∞∑

k=0

k∏

j=0

gt−1−kct−1−j ,
(5)

where the infinite sum converges almost surely (a.s.).

The log-moment condition is important as the condition in Theorem 1 can be satisfied even in

the absence of finite second-moments ofyt; see McAleer (2005) for a comprehensive discussion

of log-moment conditions for volatility models.

COROLLARY 1. Under the assumptions of Theorem 1, a sufficient condition for strict stationary

and ergodicity ofut = (yt, ht)′ in terms of the parameters is

1
2

(β0 + λ0) +
1
2

H∑

i=0

(βi + λi) ≤ 1.

Deriving a general sufficient condition for the existence of the moments ofyt is rather com-

plicated. However, the moment condition stated in the following theorem can be used to find a

necessary and sufficient condition for the existence of low-order moments ofyt. As mentioned in

the previous section, the model families of He and Teräsvirta (1999), Ling and McAleer (2002),

Lanne and Saikkonen (2005), and Carrasco and Chen (2002) do not nest the FCGARCH model

without additional restrictions. Hence, the direct application of the results of these authors is not

straightforward. In the subsequent corollary, we derive sufficient conditions for the existence of

the second- and forth-order moments ofyt.

THEOREM2. Suppose thatyt ∈ R follows an FCGARCH(m,1,1) process as in (1), withst = yt−1

and E
[
ε2k
t

]
= µ2k < ∞, for k = 1, 2, 3, . . .. Under Assumptions 2–5, and assuming that the
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moments of order up ton = k − 1 exist,E
[
y2n

t

]
< ∞, the2kth-order moment ofyt exists if

(6) E





[
β0 + λ0ε

2
t−1 +

H∑

i=1

(
βi + λiε

2
t−1

)
fi,t−1

]k


 < 1.

COROLLARY 2. Suppose thatyt ∈ R follows an FCGARCH(m,1,1) process as in (1), withst =
yt−1. A sufficient condition for the existence of the second-order moment ofyt is

(7)
1
2

(β0 + λ0) +
1
2

H∑

i=0

(βi + λi) < 1.

Furthermore, defineβU ≡
∑H

i=1 βi andλU ≡
∑H

i=1 λi. Under Assumptions 2–5, the fourth-order

moment ofyt exists ifE
[
ε4
t

]
= µ4 < ∞, (7) holds, and

(8) β2
0 + β0βU +

β2
U

2
+ µ4

[
λ0 + λ0λU +

λ2
U

2

]
+ 2λ0β0 + β0λU + λ0βU + λUβU < 1.

REMARK 1. WhenH = 0, conditions (7) and (8) are the usual conditions for the existence of

the second- and fourth-order moments of GARCH models. WhenH = 1, γ1 → ∞, α1 = 0, and

β1 = 0, conditions (7) and (8) become the usual ones for the GJR model.

It is important to notice that, even with explosive regimes the FCGARCH(m, 1, 1) may still

be strictly stationary, ergodic, and with finite fourth-order moment. Furthermore, some of the

parameters of the limiting GARCH models may exceed one. This flexibility generates models

with higher kurtosis than the standard GARCH(1,1), even with Gaussian errors.

REMARK 2. The IGARCH model with Gaussian errors is also capable of generating data with

high kurtosis. However, contrary to the FCGARCH model, it does not have finite second- and

fourth-order moments.

The following examples illustrate some interesting situations.

Consider 3000 replications of the following FCGARCH(3, 1, 1) models with Gaussian errors,

each of which has 5000 observations.

(1) Example 1:

yt = h
1/2
t εt, εt ∼ NID(0, 1)

ht = 1× 10−4 + 0.96ht−1 + 0.18y2
t−1+(−0.9× 10−4 − 0.60ht−1 − 0.10y2

t−1

)
f (5000 (yt−1 + 0.005))+

(
1× 10−4 + 0.10ht−1 + 0.05y2

t−1

)
f (5000 (yt−1 − 0.02)) .
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(2) Example 2:

yt = h
1/2
t εt, εt ∼ NID(0, 1)

ht = 6× 10−5 + 1.10ht−1 + 0.10y2
t−1+(−5× 10−5 − 0.65ht−1 − 0.09y2

t−1

)
f (3000 (yt−1 + 0.005))+

(
1× 10−5 + 0.10ht−1 + 0.04y2

t−1

)
f (3000 (yt−1 − 0.005)) .

(3) Example 3:

yt = h
1/2
t εt, εt ∼ NID(0, 1)

ht = 6× 10−5 + 1.20ht−1 + 0.10y2
t−1+(−5.5× 10−5 − 1.20ht−1 − 0.10y2

t−1

)
f (2000 (yt−1 + 0.001))+

5× 10−5f (2000 (yt−1 − 0.01)) .

The models in Examples 1–3 have three extreme regimes, each with the first regime being

explosive asβ0 + λ0 > 1. However, even with an explosive regime, the generated time series are

still stationary provided that12 (β0 + λ0) + 1
2

∑2
i=0 (βi + λi) < 1. Furthermore, the fourth-order

moment exists, provided that condition (8) is also satisfied. Note also thatβ0 > 1 in Examples 2

and 3. The model in Example 3 has the interesting property that the GARCH effect is only present

in the extreme regimes. The regime associated with tranquil periods is homoskedastic.

Figure 1 shows the scatter plot of the estimated kurtosis and first-order autocorrelation of the

squared observations. The dots indicates the cases where the first-order autocorrelation of|yt| is

greater than the first-order autocorrelation of|yt|2. The crosses indicate the opposite effect. The

simulated FCGARCH models seem to reproduce some of the stylized facts observed in financial

time series. Table 1 summarizes some statistics about the estimated kurtosis and autocorrelations.

As can be seen, the minimum value of the estimated kurtosis is over 3. In addition the mean

values of the estimated first-order autocorrelations are in accordance with the typical numbers that

are found in practical applications.

TABLE 1. SIMULATED MODELS : DESCRIPTIVE STATISTICS.

The table shows descriptive statistics for the estimated kurtosis and first-order autocorrelation
of the squared observations over 3000 replications of Models (1)–(3).

Kurtosis Autocorrelation
Example Min. Max. Mean Std. Dev. Min. Max. Mean Std. Dev.

1 7.18 184.51 13.42 7.72 0.10 0.69 0.37 0.07

2 5.37 151.50 8.81 4.75 0.09 0.65 0.29 0.06

3 7.75 434.12 15.88 14.99 0.02 0.72 0.22 0.08
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FIGURE 1. Scatter plot of the estimated kurtosis and first-order autocorrelation of
the squared observations. The dots indicates the cases where the “Taylor effect” is
satisfied and the crosses indicate the opposite effect. Panel (a) concerns Example
1. Panel (b) concerns Example 2. Panel (c) concerns Example 3.

4. PARAMETER ESTIMATION

As the distribution ofεt is unknown, the parameters of the FCGARCH model are estimated

by quasi-maximum likelihood (QML). For GARCH(1,1) models, Lee and Hansen (1994) proved

that the local QMLE is consistent and asymptotically normal if all the conditional expectations

of ε2+κ
t < ∞ uniformly with κ > 0. Lumsdaine (1996) required thatE

[
ε32
t

]
< ∞. Jeantheau

(1998) discussed consistency of the QMLE under weaker conditions. More recently, Ling and

McAleer (2003) proved the consistency of the global QMLE for a VARMA-GARCH model under

only the second-order moment condition. The authors also proved the asymptotic normality of the

global (local) QMLE under the sixth-order (forth-order) moment condition. Comte and Lieberman

(2003) and Berkes, Horváth, and Kokoszka (2003) proved consistency and asymptotic normality

of the QMLE of the parameters of the GARCH(p,q) model under the second- and fourth-order

moment conditions, respectively.

As in Boussama (2000), McAleer, Chan, and Marinova (forthcoming), and Francq and Zakoı̈an

(2004), we prove consistency and asymptotic normality of the QMLE of the FCGARCH(m, 1, 1)
under the log-moment condition in Theorem 1; see also Li, Ling, and McAleer (2002) and McAleer
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(2005). Extending the results in Jensen and Rahbek (2004) for non-stationary ARCH models to

the case of the FCGARCH model is not straightforward, and is beyond the scope of this paper.

However, this is an interesting topic for future research.

The quasi-log-likelihood function of the FCGARCH model is given by

(9) LT (ψ) =
1
T

T∑

t=1

lt(ψ),

wherelt(ψ) = −1
2 ln(2π) − 1

2 ln(ht) − y2
t

2ht
. Note that the processesyt andht, t ≤ 0, are un-

observed, and hence they are arbitrary constants. Thus,LT (ψ) is a quasi-log-likelihood function

that is not conditional on the true(y0, h0) making it suitable for practical applications.

However, to prove the asymptotic properties of the QMLE is more convenient to work with the

unobserved process{(yu,t, hu,t) : t = 0,±1,±2, . . .}, which satisfies

(10) hu,t = α0 + β0hu,t−1 + λ0y
2
u,t−1 +

H∑

i=1

[
αi + βihu,t−1 + λiy

2
u,t−1

]
f (yu,t−1; γi, ci) .

The unobserved quasi-log-likelihood function conditional onF0 = (y0, y−1, y−2, . . .) is

(11) Lu,T (ψ) =
1
T

T∑

t=1

lu,t(ψ),

with lu,t(ψ) = −1
2 ln(2π) − 1

2 ln(hu,t) − y2
u,t

2hu,t
. The primary difference betweenLT (ψ) and

Lu,T (ψ) is that the former is conditional on any initial values, whereas the latter is conditional on

an infinite series of past observations. In practical situations, the use of (11) is not possible.

Let

ψ̂T = argmax
ψ∈Ψ

LT (ψ) = argmax
ψ∈Ψ

(
1
T

T∑

t=1

lt(ψ)

)
,

and

ψ̂u,T = argmax
ψ∈Ψ

Lu,T (ψ) = argmax
ψ∈Ψ

(
1
T

T∑

t=1

lu,t(ψ)

)
.

DefineL(ψ) = E [lu,t(ψ)]. In the following two subsections, we discuss the existence ofL(ψ)
and the identifiability of the FCGARCH model. Then, in Subsection 4.3, we prove the consistency

of ψ̂T andψ̂u,T . We first prove the consistency ofψ̂u,T . Using Lemma 3 in Appendix B, we show

that sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| p→ 0, and the consistency of̂ψT follows. The asymptotic normality

of both estimators is considered in Subsection 4.4. We start proving asymptotic normality ofψ̂u,T .

Then, using the results of Lemma 5, the proof forψ̂T is straightforward.

4.1. Existence of the QMLE. The following theorem proves the existence ofL(ψ). It is based

on Theorem 2.12 in White (1994), which establishes that, under certain conditions of continuity

and measurability on quasi-log-likelihood function,L(ψ) exists.



12 M. C. MEDEIROS AND A. VEIGA

THEOREM 3. If (4) is satisfied, under Assumptions 2–5,L(ψ) exists and is finite.

4.2. Identifiability of the Model. A fundamental problem for statistical inference with nonlinear

time series models is the unidentifiability of the parameters. In order to guarantee unique iden-

tifiability of the quasi-log-likelihood function, the sources of uniqueness of the model must be

examined. Here, the main concepts and results will be discussed briefly. In particular, the condi-

tions that guarantee that the FCGARCH model is identifiable and minimal will be established and

proved. First, two related concepts will be discussed: The concept of minimality of the model,

established in Sussman (1992), also called “non-redundancy” in Hwang and Ding (1997); and the

concept of reducibility of the model.

DEFINITION 2. The FCGARCH(m, 1, 1) model is minimal (or non-redundant) if its input-output

map cannot be obtained from an FCGARCH(n, 1, 1) model, wheren < m.

One source of unidentifiability comes from the fact that a model may contain irrelevant “limiting

regimes”. A limiting regime is represented by the functions

µi =
[
αi + βiht−1 + λiy

2
t−1

]
f (yt−1; γi, ci) , i = 1, . . . , H.

This means that there are cases where the model can be reduced without changing the input-output

map. Thus, the minimality condition can only hold for irreducible models.

DEFINITION 3. Defineθi = [γi, ci]
′ and letϕ (yt−1;θi) = γi (yt−1 − ci), i = 1, . . . , H. The

FCGARCH model defined in (1) is reducible if one of the following three conditions holds:

(1) One of the triples(αi, βi, λi) vanishes jointly for somei ∈ [1, H];
(2) γi = 0 for somei ∈ [1,H];
(3) There is at least one pair(i, j), i 6= j, i = 1, . . . , H, j = 1, . . . ,H, such that|ϕ (yt−1;θi)|=

|ϕ (yt−1;θj)|, ∀yt−1 ∈ R, t = 1, . . . , T (sign-equivalence).

DEFINITION 4. The FCGARCH model is identifiable if there are no two sets of parameters such

that the corresponding distributions of the population variabley are identical.

Three properties of the FCGARCH model cause unidentifiability of the models:

(P.1) The property of interchangeability of the regimes. The value of the likelihood function

of the model does not change if the regimes are permuted. This results inH! different

models that are indistinct among themselves. As a consequence, in the estimation of the

parameters, we will haveH! equal local maxima for the quasi-log-likelihood function.

(P.2) The fact thatf(yt−1; γi, ci) = 1− f(yt−1;−γi, ci).
(P.3) Conditions (1) – (2) in the definition of reducibility provide information about the presence

of irrelevant regimes, which translate into identifiability sources. If the model contains a

regime such thatαi = 0, βi = 0, andλi = 0, then the parametersγi and ci remain

unidentified, for somei ∈ [1,H]. On the other hand, ifγi = 0, then the parametersαi, βi,

λi, andci may take on any value without changing the quasi-log-likelihood function.
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Property (P.3) is related to the concept of reducibility. In the same spirit of the results stated in

Sussman (1992) and Hwang and Ding (1997), we show that, if the model is irreducible, properties

(P.1) and (P.2) are the only forms of modifying the parameters without affecting the log-likelihood.

Hence, by establishing the restrictions on the parameters of (1) that simultaneously avoid model

reducibility, any permutation of regimes, and symmetries in the logistic function, we guarantee

the identifiability of the model.

The problem of interchangeability, (P.1), can be prevented by imposing the Restrictions (R.1) in

Assumption 3. The consequences due to the symmetry of the logistic function (P.2) can be resolved

if we consider Restrictions (R.2) in Assumption 3. The presence of irrelevant regimes, (P.3), can

be circumvented by applying a “specific-to-general” modeling strategy as will be suggested in

Section 5.

Corollary 2.1 in Sussman (1992) and Corollary 2.4 in Hwang and Ding (1997) guarantee that

an irreducible model is minimal. The fact that irreducibility and minimality are equivalent implies

that there are no mechanisms, other than those listed in the definition of irreducibility, that can be

used to reduce the complexity of the model without changing the functional input-output relation.

Then, the restrictions in Assumption 3 guarantee that, if irrelevant regimes do not exist the model

is identifiable and minimal.

We need an additional assumption before establishing the sufficient conditions under which the

FCGARCH model is globally identifiable.

ASSUMPTION6. The parametersαi, βi, andλi do not vanish jointly for somei ∈ [1, H].

Assumption 6 guarantees that there are no irrelevant regimes.

THEOREM4. Under Assumptions 3 and 6, the FCGARCH(m, 1, 1) model is globally identifiable.

Furthermore,L(ψ) is uniquely maximized atψ0.

4.3. Consistency.The proof of consistency of the QMLE for the FCGARCH model follows the

same reasoning given in Ling and McAleer (2003). The following theorem states and proves the

main consistency result.

THEOREM 5. If (4) is satisfied, under Assumptions 1–5,ψ̂u,T
p→ ψ0 andψ̂T

p→ ψ0.

4.4. Asymptotic Normality. In order to prove asymptotic normality, we define:

A(ψ0) = E


−∂2lu,t(ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ0


 and

B(ψ0) = E


T

∂Lu,T (ψ)
∂ψ

∣∣∣∣∣
ψ0

∂Lu,T (ψ)
∂ψ′

∣∣∣∣∣
ψ0


 ≡ 1

T

T∑

t=1

E


∂lu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

∂lu,t(ψ)
∂ψ′

∣∣∣∣∣
ψ0


 .
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Consider the additional matrices:

AT (ψ) =
1
T

T∑

t=1

{
1

2h2
t

∂ht

∂ψ

∂ht

∂ψ′

(
y2

t

ht

)
−

(
y2

t

ht
− 1

)
∂

∂ψ′

(
1

2ht

∂ht

∂ψ

)}
, and

BT (ψ) =
1
T

T∑

t=1

∂lt(ψ)
∂ψ

∂lt(ψ)
∂ψ′ =

1
4T

T∑

t=1

1
h2

t

(
y2

t

ht
− 1

)2
∂ht

∂ψ

∂ht

∂ψ′ .

(12)

The following theorem states the asymptotic normality result.

THEOREM 6. If (4) is satisfied andE
[
ε4
t

]
= µ4 < ∞, under Assumptions 1–5,

(13) T 1/2(ψ̂T −ψ0)
D→ N

(
0,A(ψ0)

−1B(ψ0)A(ψ0)
−1

)
,

whereA(ψ0) andB(ψ0) are consistently estimated byAT (ψ̂) andBT (ψ̂), respectively.

REMARK 3. Under Assumption 2, it is clear thatB(ψ0) = 1
2

(
E

[
ε4
t

]− 1
)
A(ψ0), which reduces

to the information matrix equality whenE
[
ε4
t

]
= 3.

5. DETERMINING THE NUMBER OF REGIMES

The number of regimes in the FCGARCH model, as represented by the number of transition

functions in (1), is not known in advance and should be determined from the data. One possibility

is to begin with a small model (such as GARCH(1,1) or white noise) and add regimes sequentially.

The decision to add another regime may be based on the use of model selection criteria (MSC) or

cross-validation. For example, Audrino and Bühlmann (2001) used Akaike’s Information Crite-

rion (AIC) to select the number of regimes in their Tree-Structured GARCH model. However, this

has the following drawback. Suppose the data have been generated by an FCGARCH model with

m regimes (m− 1 transition functions). Applying MSC to decide whether or not another regime

should be added to the model requires estimation of a model withm logistic functions. In this

situation, the larger model is not identified and its parameters cannot be estimated consistently3.

This is likely to cause numerical problems in quasi-maximum likelihood estimation. Even when

convergence is achieved, lack of identification causes a severe problem in interpreting the MSC.

The FCGARCH model withm regimes is nested in the model withm + 1 regimes.

A typical MSC comparison of the two models is then equivalent to a likelihood ratio test ofm

againstm + 1 regimes; see Teräsvirta and Mellin (1986) for a discussion. The choice of MSC

determines the (asymptotic) significance level of the test. When the larger model is not identified

under the null hypothesis, the likelihood ratio statistic does not have an asymptoticχ2 distribution

under the null.

3In the case of the tree-structured GARCH model of Audrino and Bühlmann (2001), the identification issue is related
to the location of the threshold. When an irrelevant regime is added, the location of the split cannot be estimated
consistently; see Hansen (1996) for a discussion.
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In this paper we tackle the problem of determining the number of regimes of the FCGARCH

model with a “specific-to-general” modeling strategy, but we circumvent the problem of identifi-

cation in a way that enables us to control the significance level of the tests in the sequence, and

compute an upper bound to the overall significance level4.

The following is based on the assumption that the errorsεt are Gaussian, but the results will be

made robust to nonnormal errors.

Consider an FCGARCH withH limiting regimes, defined as

yt = h
1/2
t εt,

ht =α0 + β0ht−1 + λ0y
2
t−1 +

H−1∑

i=1

[
αi + βiht−1 + λiy

2
t−1

]
f (yt−1; γi, ci) .

(14)

The idea is to test the presence of an additional regime, as represented by an extra term in (14) of

the form

(15)
[
αH + βHht−1 + λHy2

t−1

]
f (yt−1; γH , cH)

A convenient null hypothesis is

(16) H0 : γH = 0,

against the alternativeHa : γH > 0. Note that model (14) is not identified under the null hypoth-

esis. In order to remedy this problem, we follow Lundbergh and Teräsvirta (2002) and expand the

logistic functionf (yt−1; γH , cH) into a first-order Taylor expansion around the null hypothesis

γH = 0 5. After merging terms, the resulting model forht is

ht =α̃0 + β̃0ht−1 + λ̃0y
2
t−1 +

H−1∑

i=1

[
αi + βiht−1 + λiy

2
t−1

]
f (yt−1; γi, ci)+

πyt−1 + δht−1yt−1 + ρy3
t−1 + R,

(17)

whereR is the remainder,̃α0 = α0− αHγHcH
4 , β̃0 = β0− βHγHcH

4 , λ̃0 = λ0− λHγHcH
4 , π = γH

4 ,

δ = βHγH
4 , andρ = λHγH

4 .

Definefi,t−1 ≡ f(yt−1; γi, ci), i = 1, . . . , H. UnderH0, R = 0 and the quasi-maximum

likelihood approach enables us to state the following result:

THEOREM 7. If the stationarity condition in Theorem 1 is satisfied, under Assumptions 2–5 and

the additional assumption thatE
[∣∣y6

t

∣∣] < ∞ under the null, the LM statistic given by

(18) LM =
T

2

{
T∑

t=1

(
y2

t

ĥ0,t

− 1

)
d̂t

}[
T∑

t=1

d̂td̂′t

]−1 {
T∑

t=1

(
y2

t

ĥ0,t

− 1

)
d̂t

}
,

4An equivalent procedure has been adopted in Medeiros and Veiga (2005) and Medeiros, Teräsvirta, and Rech (in
press).
5The idea of circumventing the identification problem by approximating the nonlinear contribution by a low-order
Taylor expansion under the null was originally proposed by Luukkonen, Saikkonen, and Teräsvirta (1988).
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whereĥ0,t is the estimated conditional variance of the process under the null,d̂t = [ẑ′t, û′t]
′,

ẑt =
1

ĥ0,t

∂ht

∂ψ′

∣∣∣∣∣
H0

=
1

ĥ0,t



x̂t +

t−1∑

k=1




t∏

j=k+1

(
β̂0 +

H−1∑

i=1

β̂ifi,j−1

)
 x̂k



 ,

ût =
1

ĥ0,t

∂ht

∂θ′

∣∣∣∣∣
H0

=
1

ĥ0,t



v̂t +

t−1∑

k=1




t∏

j=k+1

(
β̂0 +

H−1∑

i=1

β̂ifi,j−1

)
 v̂k



 ,

x̂t =

[
1, ĥ0,t−1, y

2
t−1, f1,t−1, . . . , fH−1,t−1,

f1,t−1ĥ0,t−1, . . . , fH−1,t−1ĥ0,t−1, f1,t−1y
2
t−1, . . . , fH−1,t−1y

2
t−1,

(α̂1+ β̂1h0,t−1+ λ̂1y
2
t−1)

∂f1,t−1

∂γ1
, . . . ,(α̂H−1+ β̂H−1ĥ0,t−1+ λ̂H−1y

2
t−1)

∂fH−1,t−1

∂γH−1
,

(α̂1+ β̂1h0,t−1+ λ̂1y
2
t−1)

∂f1,t−1

∂c1
, . . . ,(α̂H−1+ β̂H−1h0,t−1+ λ̂H−1y

2
t−1)

fH−1,t−1

∂cH−1

]′
,

v̂t =
[
yt−1, ĥ0,t−1yt−1, y

3
t−1

]′
,

and

∂fi,t−1

∂γi
= fi,t−1 (1− fi,t−1) (yt−1 − ci), i = 1, . . . , H,

∂fi,t−1

∂ci
= −fi,t−1 (1− fi,t−1) γi, i = 1, . . . ,H,

has aχ2 distribution with3 degrees of freedom under the null hypothesis.

REMARK 4. The sixth-order moment condition is necessary for the existence ofE [vtv′t].

Under the normality assumption, the test can be performed in stages, as follows.

(1) Estimate model (1) under the null, call the estimated varianceĥ0,t, and computeSSR0 =
∑T

t=1

(
y2

t /ĥ0,t − 1
)2

.

(2) Regress
(
y2

t /ĥ0,t − 1
)

on ẑt andût and compute the sum of the squared residuals,SSR1.

(3) Compute the LM statistic

(19) LM = T
SSR0 − SSR1

SSR0
,

or the F statistic

(20) F =
(SSR0 − SSR1)/3

SSR1/(T − 5H + 2)
.

UnderH0, LM is approximately distributed asχ2 with p degrees of freedom andF has an F

distribution with3 andT − 5H + 2 degrees of freedom.
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Although the test statistic is constructed under the assumption of normality, we can follow

Lundbergh and Teräsvirta (2002) and consider a robust version of the LM test against nonnormal

errors. The robust version of the test can be constructed following the Procedure 4.1 of Wooldridge

(1990). The test is performed as follows:

(1) As above.

(2) Regresŝut on ẑt and compute the residual vectors,r̂t, t = 1, . . . , T .

(3) Regress 1 on
(

y2
t

bh0,t
− 1

)
r̂t, and compute the residual sum of squares, SSR. The test statis-

tic given by

(21) LMR = T − SSR

has an asymptoticχ2 distribution with3 degrees of freedom under the null hypothesis.

As observed in Lundbergh and Teräsvirta (2002), the robust version of the LM test should

always be preferred to the nonrobust tests. At relevant sample sizes when the errors are normal,

they are about as powerful as the normality-based LM tests.

Finally, it is important to stress that the results of the sequence of LM tests may be affected by

possible outliers in the data. Nevertheless, an outlier-robust version of the LM test can be easily

developed, following van Dijk, Franses, and Lucas (1999a,1999b).

6. MODELING CYCLE

We are now ready to combine the above statistical ingredients into a practical modeling strat-

egy. We begin by testing linearity against an ARCH(q) model at significance levelδ 6. The

model under the null hypothesis is an homoskedastic model. If the null hypothesis is not rejected,

the homoskedastic model is considered as the data generating process. In case of rejection, a

GARCH(1,1) model is estimated and tested against an FCGARCH(1,1,1) model with two regimes

at the significance levelδ%, 0 < % < 1. Another rejection leads to estimating a model with two

regimes and testing it against a model with three, at the significance levelδ%2. The sequence is

terminated at the first non-rejection of the corresponding null hypothesis. The significance level

is reduced at each step of the sequence and converges to zero, thereby avoiding excessively large

models and controling the overall significance level. An upper bound for the overall significance

level may be obtained using the Bonferroni bound (Gourieroux and Monfort 1995, p. 203). The

selection of the parameter% is ad hoc. In order to avoid selecting small models (few regimes), it

is good practice to carry the modeling cycle with different values of%. In the empirical examples

discussed in Section 8, we consider% = 1/2 and% = 1/3. The results are the same in both cases.

Evaluation following the estimation of the final model is performed by subjecting the model to

the misspecification tests, as discussed in Lundbergh and Teräsvirta (2002).

6Bollerslev (1986) observed that under the null of homoskedasticity, there is no general Lagrange Multiplier test for
GARCH(p,q). This is due to the fact that the Hessian is singular if bothp > 0 andq > 0.
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7. MONTE-CARLO EXPERIMENT

The purpose of this section is to check the performance of the test described in Section 5. We

use the following four data generating processes (DGPs):

(1) Model A:

GARCH(1,1):α = 1.0× 10−5, β = 0.85, λ = 0.05.

(2) Model B:

GARCH(1,1):α = 1.0× 10−5, β = 0.90, λ = 0.088.

(3) Model C:

FCGARCH(3, 1, 1): α0 = 1 × 10−4, β0 = 0.96, λ0 = 0.18, α1 = −0.9 × 10−4,

β1 = −0.60, λ1 = −0.10, α2 = 1×10−4, β2 = 0.10, λ2 = 0.05, γ1 = 5000, γ2 = 5000,

c1 = −0.005, andc2 = 0.02.

(4) Model D:

FCGARCH(3, 1, 1): α0 = 6 × 10−5, β0 = 1.10, λ0 = 0.10, α1 = −5 × 10−5, β1 =
−0.65, λ1 = −0.09, α2 = 1 × 10−5, β2 = 0.10, λ2 = 0.04, γ1 = 3000, γ2 = 3000,

c1 = −0.005, andc2 = 0.005.

In all DGPs the error term has a probability function either Gaussian or a standardizedt with 10

degrees of freedom. Model A has theoretical kurtosis 3.08 when the error distribution is Gaussian

and 4.16 when the errors aret-distributed. Model B has a higher kurtosis: 8.55 with normality of

the errors and 152.9 when the distribution of the errors is at. Furthermore, model A has a well

defined sixth-order moment even witht-distributed errors, while model B does not. We include

model B in our simulation in order to evaluate the effect of the violation of the sixth-order mo-

ment assumption in the behavior of the test. Models C and D are different specifications of an

FCGARCH(3, 1, 1) model and were previously analyzed in the examples in Section 3. Using the

result of Theorem 2, it can be shown that Models C and D satisfy the sixth-order moment condi-

tion. All the simulations are based on series with 1000 observations and the first 500 observations

of each generated series are always discarded to avoid any initialization effect; see Lundbergh and

Ter̈asvirta (2002). For each experiment, a total of 1000 replications have been generated. Only the

results concerning the robust version of the tests are shown in order to save space.

Results from simulating the modeling strategy can be found in Table 2. The table also contains

results on choosing the number of regimes using two information criteria: AIC and SBIC. The

sequence of LM tests is carried out with three different initial significance levelsα. The value

of the hyper-parameter% is 1/2, meaning that at each step the significance level of the additional

regime test is halved.

As can be seen from the table, both the AIC and the SBIC are very conservative, strongly

underestimating the number of regimes in most of the cases. On the other hand, although still

conservative, the sequence of LM tests selects the correct specification more often, specially in

comparison with the former two information criteria. Another important fact is related to the
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risk of specifying an overfitted model. It is clear from the table that, even with a large initial

significance level (10%), overfitting occurs very rarely (less than 1% of the cases).

TABLE 2. SIMULATION : MODELING STRATEGY RESULTS.

The table reports the frequency that a model with a given number of limiting regimes is selected over 1000 simulations.

1000 observations of each model is simulated at each replication. In all the simulations the parameter% equals 2.δ is

the initial significance level of sequence of LM tests.

Model
Error Number of

AIC SBIC
LM test LM test LM test

Distribution Regimes (δ = 0.01) (δ = 0.05) (δ = 0.10)

A

Gaussian

1 1 1 1 0.960 0.904
2 0 0 0 0.036 0.088
3 0 0 0 0 0.004
≥ 4 0 0 0 0.004 0.004

t with 10 d.f.

1 0.996 1 0.996 0.976 0.940
2 0.004 0 0.004 0.020 0.052
3 0 0 0 0 0.004
≥ 4 0 0 0 0.004 0.004

B

Gaussian

1 1 1 0.992 0.956 0.908
2 0 0 0.008 0.040 0.080
3 0 0 0 0.004 0.004
≥ 4 0 0 0 0 0.008

t with 10 d.f.

1 0.996 1 0.996 0.952 0.896
2 0.004 0 0.004 0.044 0.088
3 0 0 0 0.004 0.012
≥ 4 0 0 0 0 0.004

C

Gaussian

1 0.016 0.016 0 0 0
2 0.952 0.984 0.956 0.904 0.828
3 0.032 0 0.036 0.092 0.164
≥ 4 0 0 0.008 0.004 0.008

t with 10 d.f.

1 0.012 0.012 0.020 0.004 0
2 0.664 0.664 0.932 0.904 0.876
3 0.300 0.300 0.040 0.086 0.118
≥ 4 0.024 0.024 0.008 0.006 0.006

D

Gaussian

1 0 0 0.012 0 0
2 0.964 0.976 0.880 0.760 0.652
3 0.032 0.024 0.098 0.236 0.346
≥ 4 0.004 0 0.010 0.004 0.002

t with 10 d.f.

1 0.004 0.004 0.060 0.008 0.008
2 0.972 0.972 0.744 0.724 0.652
3 0.016 0.016 0.188 0.258 0.338
≥ 4 0.008 0.008 0.008 0.010 0.002
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8. EMPIRICAL EXAMPLES

We consider seven indexes: Amsterdam (EOE), Frankfurt (DAX), Hong Kong (Hang Seng),

London (FTSE100), New York, (S&P 500), Paris (CAC40), and Tokyo (Nikkei). These indexes

are chosen in order to represent some important financial markets. We split the sample into two

parts. The first one is for in-sample analysis and the second one is used to test the forecasting

performance of the models. For all series, except for the CAC40 index, the first sub-sample begins

in January, 7 1986 and ends in December, 31 1997 (3128 observations). The CAC40 index begins

in July, 9 1987 and ends in December, 31 1997, a total of 2736 observations. The second sub-

sample begins in January, 5 1998 and ends in November, 11 2005 (2050 observations).

In order to correctly specify the conditional mean, we follow Engle and Ng (1993). The proce-

dure involves a day-of-the-week effect adjustment and an autoregression which removes the linear

predictable part of the daily returns. Letyt be the daily return at dayt. We start regressingyt on

a constant and four variables: Mont, Tuet, Wedt, and Thut, which are dummy variables for Mon-

day, Tuesdays, Wednesdays, and Thursdays, respectively. The residual from the regression,ut, is

therefore regressed on a constant and onut−1, . . . , ut−7. We choose seven lags in order to remove

any remaining day-of-the-week effect not captured by the dummy variables. The residual from

the autoregression,rt, is the unpredictable return. An alternative, frequently used in the literature,

is to specify just a linear first-order linear autoregressive model for the returns. However, for the

series considered in this paper this approach fails in removing the all the serial correlation in the

returns, leading to a misspecified model for the conditional mean, which in turn, may lead to a

misspecification of the conditional variance; see McAleer (2005, p. 247) for a nice discussion.

Table 3 shows the adjustment results. Table 4 shows descriptive statistics and diagnostics,

whereσ is the standard deviation,SK is the skewness,K is the kurtosis, andQ(10) andQS(10)
are, respectively, thep-values of the Ljung-Box statistic for tenth-order serial correlation in the

unpredictable returns and squared returns.Sb, Nsb, Psb, andJsb are, respectively, thep-values

of the sign bias, negative sign bias, positive sign bias, and joint tests for asymmetry proposed by

Engle and Ng (1993).ARCH(4) is thep-value of the fourth-order ARCH LM test described in

Engle (1982). From the Ljung-Box test statistic at the 1% significance level we find no significant

serial correlation left in the series after our adjustment procedure. The coefficients of skewness

and kurtosis both indicate that the series have a distribution that is fat-tailed and skewed to the left.

Furthermore, the Ljung-Box statistic in the squares and the ARCH LM test strongly suggest the

presence of time-varying volatility. Moreover, there are evidence of asymmetries in the conditional

variance of all the series. The negative sign bias and joint tests reject the null hypothesis of no

asymmetric effect for all the eight indexes. The positive sign bias test strongly rejects the null

hypothesis for the EOE, FTSE100, and CAC40 indexes. The sign bias test rejects the null for the

DAX, Hang Seng, and Nikkei indexes. The overall evidence is that the size of negative past returns

strongly affects the current volatility: Large negative unpredictable returns cause more volatility

than small ones.
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TABLE 4. DAILY UNPREDICTABLE RETURNS: DESCRIPTIVE STATISTICS AND DIAGNOSTICS.

The table shows descriptive statistics and diagnostics for the unpredictable daily returns.σ is the standard deviations,

SK is the skewness,K is the kurtosis,Q(10) is thep-value of the Ljung-Box statistic for tenth-order serial correlation

in the unpredictable returns,QS(10) is thep-value of the Ljung-Box statistic for tenth-order serial correlation in the

unpredictable squared returns, andSb, Nsb, Psb, andJsb are, respectively, thep-values of the sign bias, negative sign

bias, positive sign bias, and joint tests for asymmetry proposed by Engle and Ng (1993).ARCH(4) is thep-value of

the fourth-order ARCH LM test described in Engle (1982).

Series σ SK K Q(10) QS(10) Sb Nsb Psb Jsb ARCH(4)
EOE 0.011 -0.75 19.31 0.02 0.00 0.10 0.00 0.00 0.00 0.00

DAX 0.012 -0.99 14.93 0.99 0.00 0.01 0.00 0.12 0.00 0.00

Hang Seng 0.016 -4.84 115.71 0.43 0.00 0.03 0.00 0.65 0.00 0.02

FTSE100 0.009 -1.34 25.23 0.45 0.00 0.74 0.00 0.00 0.00 0.00

S&P 500 0.010 -4.44 100.71 0.99 0.00 0.16 0.00 0.43 0.00 0.00

CAC40 0.012 -0.46 10.17 0.62 0.00 0.52 0.00 0.01 0.00 0.00

Nikkei 0.014 -0.25 14.77 0.18 0.00 0.01 0.00 0.42 0.00 0.00

Using the unpredictable return series, we estimate the standard GARCH(1,1) model, as well as

the GJR-GARCH(1,1) specification. The estimation is performed using the Bollerslev-Wooldridge

quasi-maximum likelihood approach and the Marquardt algorithm. The adequacy of these models

is then checked using the sign bias, negative sign bias and positive sign bias tests. Table 5 reports

the estimation and diagnostic test results of GARCH(1,1) and GJR-GARCH(1,1) models for the

daily unpredictable returns. The number in parentheses below the estimates are the Bollerslev-

Wooldridge robust standard errors.Pc, Pi, andPcc are thep-values of the tests of unconditional

coverage, independence, and conditional coverage proposed by Christoffersen (1998) to evaluate

interval estimation. In the present case a 95% confidence interval is considered.

By inspection of Table 5 it is clear that, with the exception of the CAC40 index, the normalized

residuals from GJR-GARCH(1,1) have lower kurtosis than the ones from the GARCH(1,1) alter-

native. The skewness coefficients are also lower for the GJR-GARCH(1,1) model. Several other

interesting facts emerge from the table. First, the sum of the estimatedβ0 andλ0 coefficients in

the GARCH(1,1) models is over 0.94 for all series, indicating a high persistence in the dynamics

of the estimated volatility. For all the series, the coefficients are statistically significant at the 5%

level. Concerning the results of the sign-bias, negative sing-bias, positive sign-bias, and joint tests

it is clear from the analysis of the results in Table 5 that there are still asymmetric effects in the

normalized residuals from the GARCH(1,1) models. The only case where the test statistics is not

significant are the FTSE100. The analysis of the coverage tests indicates that the GARCH(1,1)

fails to produce correct confidence intervals for three of the series considered: DAX, Hang Seng,

and FTSE100.

When the GJR-GARCH(1,1) model is considered, it is important to mention that a negative

shock induces an explosive regime, as the sum of the estimatedβ0, λ0, andλ1 parameters is greater

than one for all series, with the only exception of the CAC40 index; See Table 7. The parameter

λ1 is significant for all series except from the FTSE100 and S&P500. Concerning the results of
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the sign bias, negative sign bias, positive sign bias, and joint tests it seems that there are still some

asymmetric effects in three out of the eight series considered here, namely: S&P500, CAC40, and

Nikkei indexes. Finally, the results of the coverage tests indicate that the GJR-GARCH(1,1) model

does not provide correct interval estimation for the DAX, and FTSE100 series. One may argue

that if a t-distribution is considered instead of the Gaussian one, the coverage probability of the

GARCH and GJR-GARCH may be improved. However, as pointed out in Andersen, Bollerslev,

Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys (2001a, 2001b, 2003)

the distribution of the standardized returns are nearly Gaussian. For that reason, we decided to

keep the normality assumption in order to check if the presence of more than two regimes in the

dynamics of the conditional variance is one of the causes of the remaining excess of kurtosis and

poor coverage probabilities.

We proceed specifying an FCGARCH model having the GARCH(1,1) specification as our basis

model. Applying the robust version of the LM test developed in Section 5 the null hypothesis is

rejected for all series with the only exception of the FTSE100 index. At each step of the testing

sequence we halve the significance level of the test (% = 1/2). We also carry the test sequence

with other values for% and the results do not change. The initial significance level for the sequence

of LM tests is 5%. Table 6 shows the estimation results and diagnostic statistics. The estimation is

performed by the quasi maximum likelihood method using the Sequential Quadratic Programming

numerical optimization algorithm. To avoid convergence problems, we divide the transition vari-

able,rt−1, by its unconditional standard deviation. The number in parentheses below the estimates

are the standard errors.

The sequence of robust LM tests shows evidence of two limiting regimes for three series: EOE,

Hang Seng, and Nikkei indexes. It is important to mention that for the EOE and Nikkei series

the parameterc1 is positive and statistically different from zero which contradicts the usual zero

threshold considered in the literature. For the Hang Seng the result is opposed: the parameterc1

is not statistically different from zero, corroborating previous results. It is important to mention

that comparing the AIC from the FCGARCH model with the one from the GARCH and GJR-

GARCH specifications, the FCGARCH outperforms the other two alternatives, indicating that the

final model is not overparametrized.

For the DAX, S&P500, and CAC40 three limiting regimes are found. It is clear that for all the

three series the first limiting (extreme) regime is associated with very negative shocks, representing

great losses. The middle regime is related to tranquil periods and the third and extreme regime

represents large positive shocks.

Observing the results in Table 6 it is clear that the estimated standardized residuals from FC-

GARCH model have kurtosis coefficients lower than both the GARCH(1,1) and GJR-GARCH(1,1)

models. For example, for the DAX index, the reduction in the estimated kurtosis is about 50%

when compared to the GJR-GARCH alternative. In addition, the standardized residuals from the

FCGARCH model are less skewed than the ones from the GARCH and GJR-GARCH models.
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The only exception is the Nikkei index, for which the GJR-GARCH specification has least skewed

normalized residuals. As in the GJR-GARCH(1,1) case, the FCGARCH model seems to de-

scribe adequately the asymmetric relation between returns and volatility, with the exception of the

S&P500, CAC40, and Nikkei series. For those series, a higher order model may be more adequate.

However, this investigation is beyond the scope of the paper. We do not report the standard errors

for the slope parameters because they are not very accurate as the magnitude of the estimatedγs

are very high, indicating a sharp transition among regimes. Moreover, as pointed out in Section

5, thet-statistic does not have its customary distribution under the null hypothesis thatγ = 0. In

addition, when the coverage tests are considered, the FCGARCH model seems to outperform the

concurrent models considered in the paper and produces correct confidence intervals for all the

series.

One very interesting fact is the large value of the estimatedβ0s, which indicates a very persis-

tent regime associated with negative returns. Table 7 shows the persistence associated with each

limiting regime in both the GJR-GARCH and FCGARCH models. Considering the GJR-GARCH

model, the sumβ0 +λ0 +λ1 is the persistence associated with negative past returns (“bad news”),

whereas theβ0 + λ0 represents the persistence when the past return is positive (“good news”).

On the other hand, in the FCGARCH specification, the sumβ0 + λ0 is the persistence in the first

extreme regime that can be associated with “bad” or “very bad” news depending if the estimated

model has two or three limiting regimes. The sumβ0 + β1 + λ0 + λ1 is the persistence either in

the “tranquil period” or in “very good news regime”. Finally the last column in the table shows

the persistence of last limiting regime in the FCGARCH model and is associated with “good”

or “very good” news depending if the estimated model has two or three regimes. Some interest-

ing facts emerge from the table. First, the regime associated with negative returns is much more

persistent in the FCGARCH model than in the GJR-GARCH specification. Second, the GARCH

effect seems to be dissipated when the returns become more positive, specially when there are

three regimes and not only two. Finally, even with a very high persistent regime, all the models

are stationary, as restriction (7) is met for all cases.

Finally, we test the forecasting performance of the estimated FCGARCH models. We use the

mean absolute errors as a performance measure. The squared returns are used as a proxy to the

volatility. The results are shown in Table 8. Analyzing the results, we can observe that apart from

the S&P 500 case, the FCGARCH model performs slightly better than the other two specifications.
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TABLE 7. GJR-GARCHAND FCGARCHMODELS: PERSISTENCE IN EACH REGIME.

The table shows the persistence associated with each limiting regime in both the GJR-GARCH and
FCGARCH models. The sumβ0 + λ0 + λ1 is the persistence associated with negative past returns
in the GJR-GARCH model (“bad news”), whereas theβ0 + λ0 represents the persistence when the
past return is positive (“good news”). On the other hand, in the FCGARCH model, the sumβ0 + λ0

is the persistence in the first extreme regime that can be associated with “bad” or “very bad” news
depending if the estimated model has two or three limiting regimes. The sumβ0+β1+λ0+λ1 is the
persistence either in the “tranquil period” or in the “very good news regime”. Finally, the last column
in the table shows the persistence of last limiting regime in the FCGARCH model and is associated
with “good” or “very good” news depending if the estimated model has two or three regimes.

GJR-GARCH(1,1) model FCGARCH(1,1) model
“Bad news” “Good news” β0 + λ0 β0 + β1 β0 + β1 + β2

Series β0 + λ0 + λ1 β0 + λ0 +λ0 + λ1 +λ0 + λ1 + λ2

EOE 1.01 0.76 1.10 0.75 –

DAX 1.02 0.86 1.30 0.87 0.46

Hang Seng 1.07 0.83 1.25 0.62 –

S&P 500 1.02 0.93 1.68 1.00 0.31

CAC40 0.99 0.87 1.27 0.95 0.48

Nikkei 1.10 0.90 1.17 0.77 –

TABLE 8. FORECASTINGPERFORMANCE: MEAN ABSOLUTE ERRORS.

The table shows the mean absolute errors for the one-step-ahead forecasts computed
with different models. All the figures should be multiplied by10−4. The “actual”
volatility proxy is the squared returns. The forecasting period is from January, 5
1998 to November, 11 2005 (2050 observations).

Series GARCH(1,1) GJR-GARCH(1,1) FC-GARCH(m,1,1)
EOE 2.35 2.30 2.25
DAX 2.70 2.63 2.55

Hang Seng 2.99 2.89 2.88
S&P 500 1.45 1.40 1.41
CAC40 2.16 2.11 2.08
Nikkei 2.32 2.32 2.31

9. CONCLUSIONS

In this paper we put forward a new nonlinear GARCH(1,1) model to describe the asymmetric

behavior observed in financial time series, as well as intermittent dynamics and excess of kurtosis.

The model is called the Flexible Coefficient Smooth Transition GARCH (FCGARCH) and is a

straightforward generalization of the Logistic Smooth Transition GARCH (LST-GARCH) model,

being capable of modeling multiple regimes in the conditional variance of the series. The proposed

model describes some of the stylized facts of financial time-series that existing techniques fail to

model satisfactorily. Conditions for strict stationarity and ergodicity of the proposed model was

established and the existence of the second- and fourth-order moments was carefully discussed.
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It was shown that the model may have explosive regimes and still be strictly stationary and er-

godic. Furthermore, estimation of the parameters was addressed and the asymptotic properties

of the quasi-maximum likelihood estimator was derived under second- and fourth-order moment

conditions. A modeling cycle based on a sequence of simple and easily implemented Lagrange

multiplier tests is discussed in order to avoid the estimation of unidentified models. A Monte-Carlo

experiment is designed to evaluate the methodology and it was shown that the modeling strategy

works well in moderate samples.

An empirical example with seven stock indexes showed that the FCGARCH model was able

to produce normalized residuals with lower kurtosis than the GARCH and GJR-GARCH models.

Moreover, the results showed evidence of two limiting regimes for three series and three limiting

regimes for other three. Only for one stock index there was no evidence of more than one regime.

In addition, for all the series with three limiting regimes, the first limiting (extreme) regime was

associated with very negative shocks, representing great losses. The middle regime was related

to tranquil periods and the third and extreme regime represented large positive shocks. Thus we

found strong evidence of both size and sign asymmetries. The first limiting regime for seven of the

series was extremely explosive indicating that bad news may induce very high volatility. When

a forecasting exercise was considered, the FCGARCH slightly outperformed the GARCH and

GJR-GARCH alternatives.
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APPENDIX A. PROOFS OFTHEOREMS ANDCOROLLARIES

A.1. Proof of Theorem 1. The conditional varianceht in (1) can be written as

(A.1) ht = gt−1 +
t−1∑

k=1

k−1∏

j=0

ct−1−jgt−k−1 +
t−1∏

j=0

ct−1−jh0.
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Under Assumptions 4 and 5,h0 > 0 with probability one. Furthermore, it is clear that there is a positive

and finite constantM , such thatgt ≥ M with probability one. Then,

(A.2) ht ≥ M


 sup

1≤k≤t−1

k−1∏

j=0

ct−1−j


 .

As the functionsfi,t, i = 1, . . . ,H, are bounded andεt ∼ IID(0, 1), it is easy to show that the sequence

{ct} is strongly stationary and ergodic withE
[|ct|1+δ

]
< ∞, ∀ t and for anyδ arbitrarily close to zero.

In addition, following the same arguments as in Corollary 1 in Trapletti, Leisch, and Hornik (2000), it is

straightforward to show that{ct} is alsoα-mixing with size−a, for anya ∈ R, such that the law of large

numbers for dependent and heterogeneously distributed observations applies (White 2001, Corollary 3.48,

p.49). Hence, the remaining of the proof is identical of the one of Theorem 2 in Nelson (1990). This

completes the proof.

Q.E.D

A.2. Proof of Corollary 1. Consider a positive constantN < ∞ and an indicator function defined as

(A.3) Iht−1≥N =





1 if ht−1 ≥ N

0 otherwise.

SetIht−1<N = 1− Iht−1≥N .

Note that, since

lim
yt−1→∞

[
H∑

i=1

λifi,t−1

]
=

H∑

i=1

λi ≡ λU , lim
yt−1→−∞

[
H∑

i=1

λifi,t−1

]
= 0,

lim
yt−1→∞

[
H∑

i=1

βifi,t−1

]
=

H∑

i=1

βi ≡ βU and lim
yt−1→−∞

[
H∑

i=1

βifi,t−1

]
= 0,

there will always exist a finite constantM > 0 and small numbersδλ > 0 and δβ > 0 such that∣∣∣
(∑H

i=1λifi,t−1

)
− λU

∣∣∣ ≤ δλ and
∣∣∣
(∑H

i=1 βifi,t−1

)
− βU

∣∣∣ ≤ δβ , if yt−1≥M and
∣∣∣∑H

i=1λifi,t−1

∣∣∣ ≤ δλ

and
∣∣∣∑H

i=1 βifi,t−1

∣∣∣ ≤ δβ , if yt−1 < −M .

Take a large value for the constantsM andN and write the following expected value.

E [log(ct−1)] = E

[
log(ct−1)

∣∣∣∣ I|εt−1|< M

h
−1/2
t−1

]
Pr

[
I|εt−1|< M

h
−1/2
t−1

]

+ E

[
log(ct−1)

∣∣∣∣ I|εt−1|≥ M

h
−1/2
t−1

]
Pr

[
I|εt−1|≥ M

h
−1/2
t−1

]

= E

[
log(ct−1)

∣∣∣∣ I|εt−1|< M

h
−1/2
t−1

]
p + E

[
log(ct−1)

∣∣∣∣ I|εt−1|≥ M

h
−1/2
t−1

]
(1− p).

An upper bound forp can be made arbitrarily small by increasingN . As a consequence, for any small

numberδ > 0 and largeM , there is a constantN such that

E [log(ct−1)] ≤ δ + E

[
log(ct−1)

∣∣∣∣ I|εt−1|≥ M

h
−1/2
t−1

]
(1− p).
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The log-moment condition can be expressed as

E

[
log(ct−1)

∣∣∣∣ I|εt−1|≥ M

h
−1/2
t−1

]
< 0.

However,

E

[
log(ct−1)

∣∣∣∣ I|εt−1|≥ M

h
−1/2
t−1

]
< log

{
E

[
(ct−1)

∣∣∣∣ I|εt−1|≥ M

h
−1/2
t−1

]}
.

Then, to satisfy the log-moment condition is sufficient that

E

[
(ct−1)

∣∣∣∣ I|εt−1|≥ M

h
−1/2
t−1

]
≤ 1.

Then, asδλ andδβ can be made arbitrarily small,

E

[
(ct−1)

∣∣∣∣ I|εt−1|≥M
h

]
=

E

[
βU + ε2

t−1λU |I|εt−1|≥ M

h
−1/2
t−1

]
+ E

[
β0 + ε2

t−1λ0

∣∣∣∣ I|εt−1|< M

h
−1/2
t−1

]

2

≤ βU + λU + β0 + λ0

2
Then, if

1
2

(β0 + λ0) +
1
2

H∑

i=0

(βi + λi) ≤ 1

is sufficient to guarantee the log-moment condition.

Q.E.D

A.3. Proof of Theorem 2. First sety2k
t = hk

t ε2k
t . Then, asE

[
ε2k

t

]
< ∞ by assumption,E

[
y2k

t

]
< ∞ if,

and only if,E
[
hk

t

]
< ∞. The binomial formula yields

hk
t =

k∑
p=0

(
k

p

) (
α0 +

H∑

i=1

αifi,t−1

)p [
β0 + λ0ε

2
t−1 +

H∑

i=1

(
βi + λiε

2
t−1

)
fi,t−1

]k−p

hk−p
t−1 .

Let ut =
[
hk

t , hk−1
t , . . . , ht

]′
. Then,

(A.4) ut = ct−1 + Ct−1ut−1,

wherect−1 ∈ Rk is a vector with typical element given byct−1,j =
(
α0 +

∑H
i=1 αifi,t−1

)j

, j = 0, . . . , k,

andCt−1 is ak × k upper triangular matrix with diagonal elements given by

Ct−1,jj =

[
β0 + λ0ε

2
t−1 +

H∑

i=1

(
βi + λiε

2
t−1

)
fi,t−1

]j

,

j = 0, . . . , k. Therefore,

(A.5) E [ut|Ft−2] ≤ const. + E [Ct−1|Ft−2]ut−1,

sincect−1,j ≤
(
α0 +

∑H
i=1 |αi|

)j

< ∞. Ft−2 is the filtration given by all information up to timet − 2.

BecauseCt−1 is upper triangular, the eigenvalues are equal to the diagonal elements. Thus, the condition
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for the existence of the2kth-order moment ofyt is

(A.6) E [Ct−1,kk] = E {E [Ct−1,kk|Ft−2]} = E





[
β0 + λ0ε

2
t−1 +

H∑

i=1

(
βi + λiε

2
t−1

)
fi,t−1

]k


 < 1.

Q.E.D

A.4. Proof of Corollary 2. According to results in Theorem 2, the second-order moment condition is

E

[
β0 + λ0ε

2
t−1 +

H∑

i=1

(
βi + λiε

2
t−1

)
fi,t−1

]
< 1.(A.7)

Defining two constantsM andN and following the same rationale as in the proof of Corollary 1, the result

is straightforward. The proof of the fourth-order moment condition follows the same lines and is omitted in

order to save space.

This completes the proof.

Q.E.D

A.5. Proof of Theorem 3. It is easy to see thatG (wt; ψ) in (1) is continuous in the parameter vectorψ.

This follows from the fact that, for each value ofwt, f (yt−1; γi, ci), i = 1, . . . , H, in (1) depend continu-

ously onγi andci. Similarly, we can see thatG (wt, ψ) is continuous inwt, and therefore measurable, for

each fixed value of the parameter vectorψ.

Furthermore, under the restrictions in Assumption 5 and if the stationarity condition of Theorem 1 is

satisfied, thenE

[
sup
ψ∈Ψ

|hu,t|
]

< ∞. By Jensen´s inequalityE

[
sup
ψ∈Ψ

|ln |hu,t||
]

< ∞. ThusE [|lu,t(ψ)|] <

∞, ∀ψ ∈ Ψ. This completes the proof.

Q.E.D

A.6. Proof of Theorem 4. Definezt =
[
1, ht−1, y

2
t−1

]′
andφj = [αj , βj , λj ]′, j = 0, . . . , H. Remember

also the definition ofθi andϕ(yt−1; θi), i = 1, . . . , H. The parameter vectorψ can be written asψ =[
φ′0, . . . , φ

′
H , θ′1, . . . , θ

′
H

]′
. Suppose that̃ψ is another vector of parameters such that

(A.8) φ′0zt +
H∑

i=1

φ′iztf(yt−1; θi) = φ̃
′
0zt +

H∑

i=1

φ̃
′
iztf(yt−1; θ̃i).

In order to show global identifiability of the FCGARCH model, we need to prove that, under Restrictions

(R.1) and (R.2) in Assumptions 3 and 6, (A.8) is satisfied if, and only if,ψ = ψ̃.

Equation (A.8) can be rewritten as

(A.9) φ′0zt − φ̃
′
0zt −

2H∑

j=1

φ
′
jztf

(
yt−1; θj

)
= 0,

whereθj = θj for j = 1, . . . ,H, θj = θ̃j−H for j = H + 1, . . . , 2H, φj = φj for j = 1, . . . ,H, and

φj = φj−H for j = H + 1, . . . , 2H.

For simplicity of notation letϕj = ϕ (yt−1; θj), j = 1, . . . , 2H. Lemma 2.7 in Hwang and Ding (1997)

implies that ifϕj1 andϕj2 are not sign-equivalent,j1 ∈ {1,. . . ,2H} , j2 ∈ {1,. . . ,2H}, (A.9) holds if,

and only if,φ0, φ̃0, andφj vanish jointly for everyj ∈ {1,. . . ,2H}. However, Assumption 6 precludes
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that possibility. Hence,ϕj1 andϕj2 must be sign-equivalent. But restriction (R.2) in Assumption 4 avoid

that two functionsϕj1 andϕj2 coming from the same model being sign-equivalent. Consequently,∃ j1 ∈
{0, . . . , H} andj2 ∈{H+1,. . . ,2H+1} such thatϕj1 andϕj2 are sign-equivalent. Under restriction (R.2)

the only possibility is that the regimes are permuted. Restriction (R.1) excludes that possibility. Hence, the

only case where (A.8) holds is whenφi = φ̃i, andθi = θ̃i, i = 1, . . . , H.

Let h
(0)
t be the true conditional variance. To show thatL(ψ) is uniquely maximized atψ0, rewrite the

maximization problem as

max
ψ∈Ψ

[L(ψ)− L(ψ0)] = max
ψ∈Ψ

{
−E

[
− ln

(
h

(0)
t

hu,t

)
+

h
(0)
t

hu,t
+ 1

]}
.

In addition, for anyx > 0,−m(x) = − ln(x) + x ≥ 0, so that

−E

[
− ln

(
h

(0)
t

hu,t

)
+

h
(0)
t

hu,t

]
≤ 0.

Furthermore,m(x) is maximized atx = 1. If x 6= 1, m(x) < m(1), implying thatE[m(x)] ≤ E[m(1)]

with equality only ifx = 1 with probability one. However, this will occur only if− ln
(

h
(0)
t

hu,t

)
= 0 with

probability one. By the mean value theorem, this is equivalent to showing that

(ψ −ψ0)
∂hu,t

∂ψ

1
hu,t

= 0

with probability one. By Lemma 1 this occurs if and only ifψ = ψ0. This completes the proof.

Q.E.D

A.7. Proof of Theorem 5. Following Newey and McFadden (1994),7 ψ̂u,T
p→ ψ0 if the following condi-

tions hold:

(1) The parameter spaceΨ is compact.

(2) Lu,T (ψ) is continuous inψ ∈ Ψ. FurthermoreLu,T (ψ) is a measurable function ofyt, t =
1, . . . , T , for all ψ ∈ Ψ.

(3) L(ψ) has a unique maximum atψ0.

(4) Lu,T (ψ)
p→ L(ψ).

Condition (1) is met by assumption. Theorem 3 shows that Condition (2) is trivially satisfied. Theorem

4 proves that Condition (3) is fulfilled and, by Lemma 2, Condition (4) is also satisfied. Thus,ψ̂u,T
p→ ψ0.

Lemma 3 shows that

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| p→ 0,

implying thatψ̂T
p→ ψ0. This completes the proof.

Q.E.D

A.8. Proof of Theorem 6. We start proving asymptotically normality of the QMLE using the unobserved

log-likelihood. Once this is shown, the proof using the observed log-likelihood is immediate by Lemmas 3

and 5. To prove the asymptotically normality of the QMLE we need the following conditions in addition to

the ones stated in the proof of Theorem 5.

7See also White (1994) and Wooldridge (1994).
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(5) The true parameter vectorψ0 is interior toΨ.

(6) The matrix

AT (ψ) =
1
T

T∑
t=1

(
∂2lt(ψ)
∂ψ∂ψ′

)

exists and is continuous inΨ.

(7) The matrixAT (ψ)
p→ A(ψ0), for any sequenceψT such thatψT

p→ ψ0.

(8) The score vector satisfies

1
T

T∑
t=1

(
∂lt(ψ)

∂ψ

)
D→ N(0,B(ψ0)).

Condition (5) is satisfied by assumption. Condition (6) follows from the fact thatlt(ψ) is differentiable

of order two onψ ∈ Ψ and the stationarity of the FCGARCH model. Lemma 5 imply that Condition

(7) is satisfied. Furthermore, non-singularity ofA(ψ0) follows immediately from identification of the

FCGARCH model and the non-singularity ofB(ψ0); see Hwang and Ding (1997). In Lemma 4 we prove

that condition (8) is also met. This completes the proof.

Q.E.D

A.9. Proof of Theorem 7. The local approximation to the instantaneous quasi-log-likelihood function in

a neighborhood ofH0 is

(A.10) lt = −1
2

ln 2π − 1
2

ln (ht)− y2
t

2ht
,

with ht given by (17). Letψ =
[
ψ′

1, ψ
′
2

]′
with

ψ1 =
[
α̃0, β̃0, λ̃0, α1, . . . , αH−1, β1, . . . , βH−1, λ1, . . . , λH−1, γ1, . . . , γH−1, c1, . . . , cH−1

]′

andψ2 = [π, δ, ρ]′.
Furthermore, it can be shown that the score vector is given by

(A.11) q(ψ) = [q(ψ1)
′,q(ψ2)

′]′ =
T∑

t=1

[
∂lt
∂ψ1
∂lt
∂ψ2

]
=

T∑
t=1

1
2

(
y2

t

ht
− 1

) [
zt

ut

]

wherezt = 1
ht

∂ht

∂ψ1
andut = 1

ht

∂ht

∂ψ2
.

The information matrix is given by

A(ψ) = E

[
−∂2lt(ψ)

∂ψ∂ψ′

]
= E

[
1

2h2
t

∂ht

∂ψ

∂ht

∂ψ′

(
y2

t

ht

)
−

(
y2

t

ht
− 1

)
∂

∂ψ′

(
1

2ht

∂ht

∂ψ

)]

= E

[
1

2h2
t

∂ht

∂ψ

∂ht

∂ψ′

]
=

1
2
E

[
ztz′t ztu′t
utz′t utu′t

]
.

A consistent estimator forA(ψ) is

(A.12) AT (ψ) =
1

2T

T∑
t=1

[
ztz′t ztu′t
utz′t utu′t

]
;

see Engle (1982).
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Definingdt = [z′t,u′t] and following Godfrey (1988, p. 16), theLM statistic is given by

LM = q(ψ)|H0 [AT (ψ)|H0 ]
−1 q(ψ)|H0

=
T

2

T∑
t=1

(
y2

t

ht
− 1

)
dt

[
T∑

t=1

dtd′t

]−1 T∑
t=1

(
y2

t

ht
− 1

)
dt.

(A.13)

Then, Lemmas 4 and 5 yield the result. This completes the proof.

Q.E.D

APPENDIX B. LEMMAS

LEMMA 1. Suppose thatyt is generated by (1), satisfying Assumptions 3–5. Letd be a constant vector

with the same dimension asψ. Then

d′
(

∂hu,t

∂ψ

)
= 0 a.s. iffd = 0.

PROOF. The proof follows the same reasoning as the one from Lemma 5 in Lumsdaine (1996). Define

ξt = ∂ht

∂ψ andfi,t ≡ f(yt; γi, ci). It is straightforward to show that

ξt = β(yt−1)ξt−1 + κt−1,

where

κt−1 =

[
1, ht−1, y2

t−1, f1,t−1, . . . , fH,t−1,

f1,t−1ht−1, . . . , fH,t−1ht−1, f1,t−1y
2
t−1, . . . , fH,t−1y

2
t−1,

(
α1 + β1ht−1 + λ1y

2
t−1

) ∂f1,t−1

∂γ1
, . . . ,

(
αH + βHht−1 + λHy2

t−1

) ∂fH,t−1

∂γH
,

(
α1 + β1ht−1 + λ1y

2
t−1

) ∂f1,t−1

∂c1
, . . . ,

(
αH + βHht−1 + λHy2

t−1

) ∂fH,t−1

∂cH

]′
,

andβ(yt) = β0 +
∑H

i=1 βifi,t. Then,d′ξt = d′β(yt−1)ξt−1 + d′κt−1. Since by assumptiond′ξt = 0
andd′ξt−1 = 0 with probability one, this implies thatd′κt−1 = 0 with probability one. Sinceκt is

nondegenarate,d′ξt = 0 with probability one if and only ifd = 0. This completes the proof.

Q.E.D

LEMMA 2. Under assumptions of Lemma 1,

sup
ψ∈Ψ

|Lu,T (ψ)− L(ψ)| p→ 0.

PROOF. The proof of this lemma follows closely the proof of Lemma 4.3 in Ling and McAleer (2003). Set

g(Yt,ψ) = lu,t(ψ)−E [lu,t(ψ)], whereYt = [yt, yt−1, yt−2, . . .]
′. Theorem 3 implies thatE

[
sup
ψ∈Ψ

|g(Yt, ψ)|
]

<

∞. In addition, becauseg(Yt, ψ) is stationary withE [g(Yt, ψ)] = 0, by Theorem 3.1 in Ling and McAleer

(2003) sup
ψ∈Ψ

∣∣∣T−1
∑T

t=1 g(Yt,ψ)
∣∣∣ = op(1). This completes the proof.

Q.E.D
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LEMMA 3. Under assumptions of Lemma 1

sup
ψ∈Ψ

|Lu,T (ψ)− LT (ψ)| p→ 0.

PROOF. The proof of this lemma is adapted from the proof of item (i) of Lemma 6 in Lumsdaine (1996).

Write

hu,0 =
∞∑

k=1

φ−k(ψ) +
∞∑

k=1

φ̃−k(ψ)y2
−k.

It is clear that under the condition of Theorem 1,

Pr

[
sup
ψ∈Ψ

(hu,0) > K

]
→ 0 as K →∞

andhu,0 is well defined.

Setβ(yt) = β0 +
∑H

i=1 βif(yt; γi, ci). Combining (9) and (11) we get

hu,t −ht =




t∏

j=1

β(yj)


(hu,0 − h0) or hu,t+




t∏

j=1

β(yj)


h0 =ht −




t∏

j=1

β(yj)


hu,0.

Therefore, dividing the left-hand-side of the above expression byht, we have:

∣∣∣∣ln
(

hu,t

ht

)∣∣∣∣ <

∣∣∣∣∣∣
ln


1 +




t∏

j=1

β(yj)


 h0

ht




∣∣∣∣∣∣
<




t∏

j=1

β(yj)


 hu,0

ht
.

Define two finite positive constantsδ andδ. From the fact thatht > δ andβ(yt) ≤ δ

0≤
∣∣∣∣∣T
−1/2

T∑
t=1

ln
(

hu,t

ht

)∣∣∣∣∣

p

≤
[
T−1/2

T∑
t=1

∣∣∣∣ln
(

hu,t

ht

)∣∣∣∣
]p

≤

T−1/2

T∑
t=1




t∏

j=1

β(yj)


 hu,0

ht




p

≤ T−p/2
hp

u,0

δp




T∑
t=1




t∏

j=1

β(yj)







p

.

Then, by Theorem 1 and Slutsky´s Theorem, the upper bound of the final expression converges in prob-

ability uniformly to zero, so that

Pr

[
sup
ψ∈Ψ

T∑
t=1

|ln (hu,t)− ln (ht)| > K

]
→ 0 as T →∞, ∀K > 0.

Now we have to prove that

sup
ψ∈Ψ

∣∣∣∣∣T
−1/2

T∑
t=1

(
y2

t

hu,t
− y2

t

ht

)∣∣∣∣∣
p→ 0.

It is clear that
[
T−1/2

T∑
t=1

∣∣∣∣y2
t

(
ht − hu,t

hu,tht

)∣∣∣∣
]p

≤ 1
T p/2δ2p

[
T∑

t=1

∣∣y2
t (ht − hu,t)

∣∣
]p

=
1

T p/2δ2p




T∑
t=1

y2
t

∣∣∣∣∣∣




t∏

j=1

β(yj)


 (h0 − hu,0)

∣∣∣∣∣∣




p

.
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DefineXt ≡ y2
t andξt ≡

∣∣∣
(∏t

j=1 β(yj)
)

(h0 − hu,0)
∣∣∣. Under the condition of Theorem 1Xt is a

strictly stationary and ergodic time series, withE [|Xt|] < ∞. Furthermore, it is clear by Theorem 1 that

sup
t
|ξt| ≤ C, whereC is a finite constant andT−1

∑T
t=1 |ξt| = op(1). Then, by Lemma 4.5 in Ling and

McAleer (2003)T−1
∑T

t=1 Xtξt = op(1). Hence,

1
T p/2δ2p




T∑
t=1

y2
t

∣∣∣∣∣∣




t∏

j=1

β(yj)


 (h0 − hu,0)

∣∣∣∣∣∣




p

p→ 0.

This completes the proof.

Q.E.D

LEMMA 4. Under the conditions of Theorem 6, thenE

[
∂lt(ψ)

∂ψ

∣∣∣∣
ψ=ψ0

]
exists and is finite. Furthermore,

B(ψ0) is finite, positive definite, and

1√
T

T∑
t=1

∂lt(ψ)
∂ψ

∣∣∣∣∣
ψ=ψ0

D→ N(0,B(ψ0)).

PROOF. First, it is straightforward to show that, if the condition of Theorem 1 is satisfied, thenE

[
∂lt(ψ)

∂ψ

∣∣∣∣
ψ=ψ0

]

exists and is finite. Now, set

(B.14) ∇0lu,t ≡ ∂lu,t(ψ)
∂ψ

∣∣∣∣∣
ψ=ψ0

and ∇0hu,t ≡ ∂hu,t

∂ψ

∣∣∣∣∣
ψ=ψ0

.

Then,

(B.15) ∇0lu,t∇0l
′
u,t =

1
4

(
ε4

t − 2ε2
t + 1

) 1
h2

u,t

∇0hu,t∇0h
′
u,t.

Let δ < ∞ be a positive constant such thathu,t > δ. If the log-moment condition of Theorem 1 is met,

then, using the same arguments as in the proof of Lemma 1 in Boussama (2000),

E

[
1

h2
u,t

∇0hu,t∇0h
′
u,t

]
< M,

whereM is a constant vector with finite elements, and

(B.16) E
[∇0lu,t∇0l

′
u,t

] ≤ 1
4
ME

[(
ε4

t − 2ε2
t + 1

)]
=

1
4
M (µ4 − 1) ,

whereµ4 = E
[
ε4
t

]
< ∞. Hence,E

[∇0lu,t∇0l
′
u,t

] ≤ ∞ andB(ψ0) < ∞. Under conditions of Theorems

1 and 4,B(ψ0) is positive definite.

Now, let ST =
∑T

t=1 c′∇0lu,t, wherec is a constant vector. ThenST is a martingale with respect to

Ft, the filtration generated by all past observations ofyt. By the given assumptionsE [ST ] > 0. Using the

central limit theorem of Stout (1974)

T−1/2ST
D→ N (0, c′B(ψ0)c) .
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Finally, by the Craḿer-Wold device,

T−1/2
T∑

t=1

∂lu,t(ψ)
∂ψ

∣∣∣∣∣
ψ=ψ0

D→ N (0,B(ψ0)) .

In a similar manner to the proof of Lemma 3, we can show that

T−1/2
T∑

t=1

∥∥∥∥∥∥
∂lu,t(ψ)

∂ψ

∣∣∣∣∣
ψ=ψ0

− ∂lt(ψ)
∂ψ

∣∣∣∣∣
ψ=ψ0

∥∥∥∥∥∥
p→ 0.

Thus

T−1/2
T∑

t=1

∂lt(ψ)
∂ψ

∣∣∣∣∣
ψ=ψ0

D→ N(0, B0).

This completes the proof.

Q.E.D

LEMMA 5. Under the conditions of Theorem 6

(a) sup
ψ∈Ψ

∥∥∥∥∥
1
T

T∑
t=1

∂2lu,t(ψ)
∂ψ∂ψ′ − E

[
∂2lu,t(ψ)
∂ψ∂ψ′

]∥∥∥∥∥
p→ 0, and

(b) sup
ψ∈Ψ

∥∥∥∥∥
1
T

T∑
t=1

[
∂2lu,t(ψ)
∂ψ∂ψ′ − ∂2lt(ψ)

∂ψ∂ψ′

]∥∥∥∥∥
p→ 0.

PROOF. First set

(B.17) ∇2
0lu,t ≡ ∂2lu,t(ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ=ψ0

, and ∇2
0hu,t ≡ ∂2hu,t

∂ψ∂ψ′

∣∣∣∣∣
ψ=ψ0

.

Then,

(B.18) ∇2
0lu,t =

(
y2

t

hu,t
− 1

)
1

2hu,t
∇2

0hu,t − 1
2h2

u,t

(
y2

t

hu,t

)
∇0hu,t∇0h

′
u,t

Under the condition of Theorem 1 it can be shown, as∇2
0hu,t has only second-order terms, thatE

[∇2
0hu,t

] ≤
M2 < ∞, whereM2 is a constant matrix. Then,

(B.19) ∇2
0lu,t ≤

(
ε2
t − 1

) 1
δ
M2 − 1

2δ2 ε2
tM

andE
[∇2

0lu,t

] ≤ ∞. By Theorem 3.1 in Ling and McAleer (2003), (a) holds. The proof of (b) follows

closely the one of Lemma 3 and the details are omitted.

This completes the proof.

Q.E.D
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LUUKKONEN, R., P. SAIKKONEN , AND T. TERÄSVIRTA (1988): “Testing Linearity Against Smooth Transition Au-

toregressive Models,”Biometrika, 75, 491–499.
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TERÄSVIRTA , T., AND I. M ELLIN (1986): “Model Selection Criteria and Model Selection Tests in Regression Mod-

els,” Scandinavian Journal of Statistics, 13, 159–171.

TRAPLETTI, A., F. LEISCH, AND K. HORNIK (2000): “Stationary and Integrated Autoregressive Neural Network

Processes,”Neural Computation, 12, 2427–2450.

VAN DIJK, D., P. FRANSES, AND A. L UCAS (1999a): “Testing for ARCH in the presence of additive outliers,”Journal

of Business and Economic Statistics, 17, 217–235.

(1999b): “Testing for smooth transition nonlinearity in the presence of outliers,”Journal of Applied Econo-

metrics, 14, 539–562.

VAN DIJK, D., AND P. H. FRANSES(1999): “Modelling Multiple Regimes in the Business Cycle,”Macroeconomic

Dynamics, 3(3), 311–340.

WHITE, H. (1994):Estimation, Inference and Specification Analysis. Cambridge University Press, New York, NY.

(2001):Asymptotic Theory for Econometricians. Academic Press, San Diego.

WOOLDRIDGE, J. M.(1990): “A unified approach to robust, regression-based specification tests,”Econometric Theory,

6, 17–43.

(1994): “Estimation and Inference for Dependent Process,” inHandbook of Econometrics, ed. by R. F. Engle,

andD. L. McFadden, vol. 4, pp. 2639–2738. Elsevier Science.

ZAKOIAN , J. M. (1994): “Threshold Heteroskedastic Models,”Journal of Economic Dynamics and Control, 18, 931–

955.

(M. C. Medeiros)DEPARTMENT OF ECONOMICS, PONTIFICAL CATHOLIC UNIVERSITY OF RIO DE JANEIRO,

RIO DE JANEIRO, RJ, BRAZIL .

E-mail address: mcm@econ.puc-rio.br

(A. Veiga) DEPARTMENT OF ELECTRICAL ENGINEERING, PONTIFICAL CATHOLIC UNIVERSITY OF RIO DE

JANEIRO, RIO DE JANEIRO, RJ, BRAZIL .

E-mail address: alvf@ele.puc-rio.br



 

 
Departamento de Economia    PUC-Rio 

Pontifícia Universidade Católica do Rio de Janeiro 
Rua Marques de Sâo Vicente 225  - Rio de Janeiro 22453-900, RJ 

    Tel.(21) 35271078     Fax (21) 35271084 
www.econ.puc-rio.br 
flavia@econ.puc-rio.br 


