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LOCAL-GLOBAL NEURAL NETWORKS:
A NEW APPROACH FOR NONLINEAR TIME SERIES MODELLING

MAYTE SUAREZ FARINAS, CARLOS E. PEDREIRA, AND MARCELO C. MEDEIROS

ABSTRACT. In this paper, the Local Global Neural Networks model is proposed within the context of time
series models. This formulation encompasses some already existing nonlinear models and also admits the
Mixture of Experts approach. We place emphasis on the linear expert case and extensively discuss the theoretical
aspects of the model: stationarity conditions, existence, consistency and asymptotic normality of the parameter
estimates, and model identifiability. The proposed model consists of a mixture of stationary or non-stationary
linear models and is able to describe “intermittent” dynamics: the system spends a large fraction of the time
in a bounded region, but, sporadically, it develops an instability that grows exponentially for some time and
then suddenly collapses. Intermittency is a commonly observed behavior in ecology and epidemiology, fluid
dynamics and other natural systems. A model building strategy is also considered and the parameters are
estimated by concentrated maximum likelihood. The whole procedure is illustrated with two real time-series.
KEYwWORDS. Neural networks, nonlinear models, time-series, model identifiability, parameter estimation,

model building, sunspot number.

Forthcoming in thelournal of the American Statistical Association:

Theory and Methods

1. INTRODUCTION

The past few years have witnessed a vast development of nonlinear time series techniques (Tong, 1990;
Granger and Tésvirta, 1993). Among them, nonparametric models that do not make assumptions about
the parametric form of the functional relationship between the variables to be modelled have become widely
applicable due to computational advances. For some references on nonparametric time series models see
Hardle (1990), Hrdle, Liitkepohl, and Chen (1997), Heiler (1999), and Fan and Yao (2003). Another class
of models, the flexible functional forms, offers an alternative that in fact also leaves the functional form
of the relationship partially unspecified. While these models do contain parameters, often a large number
of them, the parameters are not globally identified. Identification, if achieved, is local at best without
imposing restrictions on the parameters. Usually, the parameters are not interpretable either as they often

are in parametric models.
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The artificial neural network (ANN) model is a prominent example of such a flexible functional form. It
has found applications in a number of fields, including economics, finance, energy, epidemiology, etc.
The use of the ANN model in applied work is generally motivated by the mathematical result stating
that under mild regularity conditions, a relatively simple ANN model is capable of approximating any
Borel-measurable function to any given degree of accuracy (Funahashi, 1989; Cybenko, 1989; Hornik,
Stinchombe, and White, 1989, 1990; White, 1990; Gallant and White, 1992).

Another example of a flexible model, derived from ANNSs, is the mixture-of-experts. The idea is to
“divide and conquer” and was proposed by Jacobs, Jordan, Nowlan, and Hinton (1991). The motivation for
the development of this model is twofold: first, the ideas of Nowlan (1990), viewing competitive adaptation
in unsupervised learning as an attempt to fit a mixture of simple probability distributions into a set of data
points; and the ideas developed in Jacobs (1990) using a similar modular architecture but a different cost
function. Jordan and Jacobs (1994) generalized the above ideas by proposing the so-called hierarchical
mixture-of-experts. Both the mixture-of-experts and the hierarchical mixture-of-experts have been applied
with success in different areas. In terms of mixtures-of-experts of time series models, the literature focuses
mainly on mixtures of Gaussian processes. For example, Weigend, Mangeas, and Srivastava (1995) show
an application to financial time series forecasting. Good applications of hierarchical mixtures-of-experts in
time series are given by Huerta, Jiang, and Tanner (2001) and Huerta, Jiang, and Tanner (2003). Carvalho
and Tanner (2002a) and Carvalho and Tanner (2002b) proposed the mixture of generalized linear time series
models and derived several asymptotic results. It would worth mentioning the Mixture Autoregressive
model proposed by Wong and Li (2000) and its generalization developed in Wong and Li (2001).

This paper proposes a new model, based on ANNs and partly inspired by the ideas form the mixture-of-
experts literature, named Local Global Neural Networks (LGNN). The main idea is to locally approximate
the original function by a set of very simple approximation functions. The input-output mapping is ex-
pressed by a piecewise structure. The network output is constituted by a combination of several pairs, each
of those, composed by an approximation function and by an activation-level function. The activation-level
function defines the role of an associated approximation function, for each subset of the domain. Partial
superposition of activation level functions is allowed. In this way, modelling is approached by the special-
ization of neurons in each of the sectors of the domain. In other words, the neurons are formed by pairs of
activation level and approximation functions, which emulate the generator function in different sub-sets of
the domain. The level of specialization in a given sector is proportional to the value of the activation-level
function. This formulation encompasses some already existing nonlinear models and can be interpreted as

a mixture of experts model. We place emphasis on the linear expert case. The model is then called the



LOCAL-GLOBAL NEURAL NETWORKS: A NEW APPROACH FOR NONLINEAR TIME SERIES MODELLING 3

Linear Local Global Neural Network @GNN) model. A geometric interpretation of the model is given
and the conditions under which the proposed model is asymptotically stationary are carefully studied. We
show that the EGNN model consists of a mixture of stationary or non-stationary linear models, being able
to describe “intermittent” dynamics: the system spends a large fraction of the time in a bounded region,
but, sporadically, it develops an instability that grows exponentially for some time and then suddenly col-
lapses. Furthermore, based on Trapletti, Leisch, and Hornik (2000), we extensively discuss the existence,
consistency, and asymptotic normality of the parameter estimates. Conditions under whiciGil L
model is identifiability are also carefully considered. Identification is essential for consistency and asymp-
totic normality of the parameter estimates. A model building strategy is developed and the parameters
are estimated by concentrated maximum likelihood, which reduces dramatically the computational burden.
The whole procedure is illustrated with two real time-series. Similar proposals are the Stochastic Neural
Network (SNN) model developed in Lai and Wong (2001) and the Neuro-Coefficient Smooth Transition
Autoregressive (NCSTAR) model of Medeiros and Veiga (2000a).

The paper proceeds as follows. Section 2 presents the model and Section 3 discuss the geometric inter-
pretation for it. Section 4 presents some probabilistic properties of4B&N model. Parameter estimation
is considered in Section 5. A model building strategy is discussed in Section 6. Section 7 shows examples
with real time-series and finally, Section 8 briefly summarizes our results. A technical appendix provides

the proofs of the main results.

2. MODEL FORMULATION

The Local Global Neural Network (LGNN) model describes a stochastic pragessR through the
following nonlinear model:

yt:G(Xt;d})—’_Etv t:]-v"'vTv (1)

wherex; € R? represents a vector of lagged valuegcéind/or some exogenous variablés,} is sequence
of independently and identically distributed random variables with zero mean and vastarcec. The
function G (x¢; ) is a nonlinear function ok,, with the vector of parameterg belonging to a compact
subspaca& of the Euclidean space, and is defined as:

m

G(x;9) =Y L(x:9,) B (x:%5,) (2

i=1
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FIGURE 1. Example of an activation-level function witk, ~ Unif(—30, 30), v = 1,
d=1,38M = —10,ands® = 10.

wherey = [¢’L,¢;3]’,¢L = [z,b’Ll,...,w’Lm]’,wB = [@bﬁgl,...,w’Bm]',andthefunctionB (x¢;9p,)
R? - RandL (xt; 1/’L7-,) : R? — R are named, respectively, as activation-level and approximation func-

tions. FurthermoreB (x;; %, ) is defined as:

1 1
1+ exp (’Yi (<di,Xt> — ﬁi(l))) - 1+ exp (% ((di,xt> - 552))) ’

B (x%p,) = - (3)

where
/
wBi - |:’Yi,di1""7di¢Z7ﬁi(1)aﬁi(2):| ’

(-,-) denotes the internal product in Euclidean spagec R, d; € R, 651) € R, andﬂi@) € R,

1 =1,...,m. Itis clear that due to the existencenfin the expression (3), the restrictidld;|| = 1 can

be made, without loss of model generality. Figure 1 shows an example of an activation-level function.
In the present paper, the approximation functions are linear, that (xt; 1/:Li) = ajx; + b;, with

a; = [a11,a12,. - ., alq}’ € R7 andb; € R. In that case the model is called the Linear Local-Global Neural

Network (L2GNN) model, where

m

yt:Z(a;Xt—i_bi)B(Xt;'lei) + &, t= 17"'aT7 (4)
=1
Y, = [ai1, - .,aiq,bi]’, ¥ € R?™(2+9) and the stochastic procegs consists of a mixture of linear

processes. In (4), we consider tlatis a random noise normally distributed. The normality assumption

can be relaxed and substituted by some moment conditions.
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FIGUrE 2. Neural network architecture.

This architecture, initially proposed by Pedreira, Pedroza, andi&a@001) for the problem of ap-
proximations ofL2-integrable real functions in the univariate case, can be represented through the diagram
illustrated in Figure 2. Notice that the hidden layer is formednbyairs of neurons. Each pair of neu-
rons is composed of the activation-level unit, represented by funétion; 1/ 5. ), and the approximation
unit related to functionl.(x;;v.), i = 1,...,m. We should however stress the fact that model (4) is, in
principle, neither globally nor locally identified. This issue will be fully addressed in Section 5.2.

As pointed out in the introduction, the?GNN model is closely related to the NCSTAR model of
Medeiros and Veiga (2000a) and the SNN model of Lai and Wong (2001). But though closely related,

there are significant differences. The NCSTAR model can be written as

ye = apx, +bo + Y _(ajx; +bi) F(xi;dy, B) + & (5)
=1

whereF(x;;d, ;) is asinglelogistic function, unlike our equation (3) which is the difference between two

logistic functions, defined as
1

1+ e—(d;xf,+ﬂ7:) ’

ande; is a Gaussian white noise. The SNN model starts from this same equation (see equation (8) in

(Xta zaﬁz) =

Lai and Wong (2001)), and then replaces the logistic functif$ by stochastic Bernoulli variables;,
it = 1,...,m, whose expectation value equdl$x,;d;, 3;) (equations (9a) and (9b) in op. cit.). There
are two main implications of these differences. First, on the contrary of the NCSTAR?&NL models,
the SNN model is a stochastic linear map; since given the choiég tife map is linear, the nonlinearities

do not appear in the maps themselves, but in the probabilities of choosing which particular map is applied
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at a specific timestep. This allows Lai and Wong to use the notion of soft splits proposed by Jordan and
Jacobs (1994), mapping the model to a hierarchical mixture of experts and to use a fast EM (Expectation-
Maximization) estimation algorithm. But though the introduction of the random varidhlésoks minor,

in fact it changes the asymptotics of the model in important ways. First, it should be noted that the one-step-
ahead predictor is the same in the SNN model and in (5), because the expected value of the vgriables
F(x;d;, B;); however, the residuals, and with them tragianceof the predictor, are different, since, for a
given timeset, the variablds;, i = 1, ..., m, can assumg™ distinct values and so introduce a new source

of variability beyond the:;. Therefore, thes—step dynamics of theAGNN, NCSTAR, and SNN models

are quite different, and the estimators differ accordingly. The second difference sets apa@i¢ model

from bothNCSTAR and SNN models, and is to our mind more fundamental. Given a random choice of the
model parameters, if an eigenvalue of the characteristic equation of some of the limiting linear model falls
outside the unit circle, the NCSTAR and SNN models will be asymptotically non-stationary with probability
strictly greater tha®; particular (i.e., measure zero) choices of parameters have to be made to guarantee as-
ymptotic stationarity in this case. On the contrary, tBENN model will remain asymptotically stationary

with probability one by imposing some very weak restrictions on the paramdésere Theorem 1); particu-

lar choices of parameters have to be made to permit the dynamics to diverge. It is thus interesting to notice
that although the NCSTAR and SNN models are in some sense “supersets” ofGINNLmModel, since

each I2GNN map can be written as two maps in (5), an important property which is generic fot@eN

case (asymptotic stationarity) is not generic for the “more general” models. Furthermore, the stationarity
condition presented in Section 3 of Lai and Wong (2001) eliminates the possibility of mixing non-stationary
linear models. Asymptotic stationarity o GNN model is discussed in Section 4. The core of the idea

is that the activation functions of the NCSTAR and SNN models are “large”, being “active” in half the
space, while the activation functions of th&NN model are “small”, since they cover a small fraction of

any sufficiently large sphere. Thus if the NCSTAR or SNN models are non-stationary, the dynamics can
easily escape to infinity; if anAGNN model is non-stationary, the trajectory has to escape along a direction
exactly perpendicular td, and any deviation will cause the trajectory to “fall off” the activation function

and return close to the origin. Both NCSTAR and SNN models could do exactly this by using extra maps;
however, the parameters of these extra maps have to be chosen exactly, and a small random perturbation of
the model parameters would, with probability one, destroy the property. An important type of dynamical
behavior is called “intermittent” dynamics: the system spends a large fraction of the time in a bounded re-
gion, but, sporadically, it develops an instability that grows exponentially for some time and then suddenly

collapses. Intermittency is a commonly observed behavior in ecology and epidemiology (breakouts), fluid



LOCAL-GLOBAL NEURAL NETWORKS: A NEW APPROACH FOR NONLINEAR TIME SERIES MODELLING 7

dynamics (turbulent plumes) and other natural systems. F@NIN model can fit such dynamiesbustly;
meaning small perturbations of the parameters do not change the behavior; NCSTAR and SNN models can

by definition fit that dynamics too, but the fit is sensitive to small perturbations.

3. GEOMETRICINTERPRETATION

In this section we give a geometric interpretation of a layer of hidden neuron-pairs. bgt beX,
whereX is a vector space with internal product denoted(hy). The parameterd, 51 and 5 in (4)

define two parallel hyperplanes X
H, = {xt € RY|(d,x;) = 5<1>} and H, = {xt € RY|(d,x;) = 5<2>}. (6)

The position of each hyperplane is determined by direction vettdihe scalarg) and3(? determine
the distance of the hyperplanes to the origin of coordinates. As a hyperplane has infinite direction vectors,
the restriction|d|| = 1 reduces this multiplicity, without loss of generality. Thus, the hyperplaheand
H, are parallel due to the fact that they have the same direction vector, and Hivide three different

regions:H—, H?, H* defined as:
H™ = {x e R|(d,x,) < gV}
= o R ) 2 90 and {0.x) £ 9] .
Y = {x € R (d,x) > 6}

The regionH" represents the active state of the neuron pair and re@ionandH™* represent the in-
active state. The active or non-active state of the neuron pair is represented by activation-level function
B (x4;v¢5). Parametery determines the slope of the activation-level function, characterizing the smooth-
ness of transition from one state to another. Thus, the extremeycaseco represents an abrupt transition
between states.

Whenm neuron-pairs are considered, there ar@airs of hyperplanes. Therefore, closedHC-type
regions will exist that could intercept one another or not. TE&usiill be divided into polyhedral regions.

If not all hyperplanes are parallel, that is,3f, j,i # j, such thaid; # d; the region formed by the
interception of hyperplaneﬁ-]l?j = HY ﬂ]I—]I‘;, is non-empty region and represents the region where the
neuron-pairg and; are both active.

One case that worth special mention is when the hyperplanes are parallel to each othed,thaids

Vi. In that case we would have parallel regions of th&°-type. Under conditiorﬁ§2> < Bi(}r)l, Vi, the
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intersection of these regions is empty. Th&ANN model can thus be interpreted as a piecewise linear
model with a smooth transition between regimes. For a review on smooth transition time-series models see

van Dijk, Tefasvirta, and Franses (2002).

4. PROBABILISTIC PROPERTIES

Deriving necessary and sufficient conditions for stationarity of nonlinear time-series models is usually
not easy and that is also the case of tH&NN model. One possibility, as the?GNN model can be
interpreted as a functional coefficient autoregressive (FAR) model & [y;—1, ... ,yt,p]/, is to apply
the results derived in Chen and Tsay (1993) and applied in Lai and Wong (2001). However, the resulting
restrictions are extremely restrictive. For examples;as normally distributedy; is geometrically ergodic
if all roots of the characteristic equationl — ¢; \P~! — ... — ¢, = 0 are inside the unit circle, where =
S lail, 5 = 1,...,p. Fortunately, following a similar rationale as in the case of linear autoregressive
(AR) processes, Theorem 1 gives less restrictive sufficient conditions for the asymptotically stationarity of
the L2GNN model. It is easy to check that model (4) has at médimiting linear models of the form

b=l Py bt P e whereN = X, (),

THEOREM1. The 2GNN model is asymptotically stationary if one of the following restrictions is satisfied:

(1) The roots of\» — cgk))\”—l - = cf,,k) =0,k=1,...,N, are inside the unit circle.
(2) Thereisak € {1,2,..., N} such that at least one root of — cgk))\"—l —e= c]()k) = 0 is outside

the unitcircle andd;; #0,i=1,...,m,j=1,...,p.
(3) Thereis ak € {1,2,..., N} such that at least one root of — cgk))\P‘l — = c}f“) =0is
equal to one, the others are inside the unit circle, ahdi: = 1,...,m is not orthogonal to the

eigenvectors of the transition matrix

[ (k k k k k)|
CNC SRC TR
1 0 0 0 0
0 1 0 0 0
AR — . 8)
0 0 1 0 0
0 0 0 1 0

The proof of the theorem is given in the Appendix and is based on the results for linear autoregres-
sive models. The intuition behind the above result is that whegrows in absolute value, the functions

B (xt; ¢B7:) — 0,4 =1,...,m, and thugy is driven back to zero. Condition 1 is trivial and implies that
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all the limiting AR models are asymptotically stationary. Condition 2 considers the case where there are

explosive regimes. Finally, Condition 3 is related to the unit-root case.

REMARK 1. Whenp = 1, the 2GNN model is asymptotically stationary independent of the conditions on

the autoregressive parameters.

The following examples show the behavior of some simulatg@NIN models. Examples 1 and 2 show
two stationary BEGNN models that are combinations of explosive linear autoregressive models. To illustrate
the dependency on the elements of veatgri = 1,..., m, Example 3 shows a model whadg = [1,0]'.

Example 4 considers the case with unit-roots.

EXAMPLE 1. 1000 observations of the following GNN model:

1 1
yr =(=0.5 = 1.5y, 1) x {1 +exp (10 (ye—1 +6)) 1+ exp (10 (ye—1 — 1))} " 9)
1 1

(=0.5 = 1.2y;1) x {1 +exp (10 (y—1 +2)) 1+ exp (10 (yi—1 — 2))

} + &t

wheree; ~ NID(0,1). Figure 3 shows the generated time-series, the activation-level functions, the auto-
correlogram of series, and the histogram of the data. Model (9) is a mixture of two explosive autoregressive
processes. Either when only one of the activation-level functions are active or when both of them equal
one, the autoregressive model driving the series is explosive. However, as can be observed, the series is
stationary. The distribution of the data is highly asymmetrical and there is also some evidence of bimodal-

ity. When iterating the skeleton of model (9) and making oo the process has, in the limit, three stable

points: 0.0052, 1.0140, and 2.6567.

EXAMPLE 2. 3000 observations of the following GNN model:

1
1+ exp (0.7y;—1 — 0.7y;—2 + 10)

yr =(—=0.5— 2.2y 1 + 2.5y _2) X

1
+
14+ exp(0.7ys—1 — 0.7Ty—2 — 10)]
(10)
1

0.5 — 1.9y,-1 — 1.2¢s_0) X
( Ve = L 22) X 0 — 07 7 2)

1
1+ exp(1.5(0.7y;—1 — 0.7y;—o — 40))

+ &¢,
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FIGURE 3. Example 1. Panel (a): generated time-series. Panel (b): Scatter plot of the
activation-level functions againgt_;. Panel (c): Autocorrelogram of the series. Panel

(d): Histogram of the series.

wheree; ~ NID(0,1). Figure 4 shows the generated time-series, the activation-level functions, the auto-

correlogram of series, and the histogram of the data. As can be observed , even with explosive regimes, the

series is stationary. However, it is strongly not normal and bimodal.

EXAMPLE 3. 30000 observations of the followingGNN model:

1
= (0.5 — 2.2y, 1 + 2.5y;_2) ¥ a
Yt ( Yt—1 Yt 2) 1+ exp (O.7yt_1 — 0-7yt—2 + 10)
1 +
1+ exp (0.7y4—1 — 0.7y, — 10)
(11)
1
0.5 —1.9y_1 — 1.2y;_») X B
( Y L) X e o2 7))
1 te
1+ exp (1.5 (ys—1 + dyi—o — 40)) v
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FIGURE 4. Example 2. Panel (a): generated time-series. Panel (b): Scatter plot of the
activation-level functions againgt_; — y;_2. Panel (c): Autocorrelogram of the series.
Panel (d): Histogram of the series.

wheree; ~ NID(0,1) andé = 0,1071%. Figure 5 shows the generated time-series. As can be observed,

the process is explosive whén= 0 but is asymptotically stationary wheén= 1010,

EXAMPLE 4. 30000 observations of the followingGNN model:

1
1+ exp(0.7y;—1 — 0.70y;—2 + 10)

Y = (0.5 +2y,—1 — ys—2) X

1
1+ exp(0.7y;—1 — 0.76y;_2 — 10) +
(12)
1
0.5 —0.5y;—1 + 0.5y;_2) X —
( Yi-1 Vi-2) 1+exp(0.7y;—1 — 0.70y;—o — 5)
1 +e
1+ exp (0.7y,—1 — 0.701y;_ — 15) b
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wheree; ~ NID(0,1) and§ = —1, 1. It can be seen that model (12) has three limiting AR regimes. The

associated transition matrixes — see Equation (8) — are:

A 2 -1 AQ) 1.5 —-0.5 A®) _ -0.5 0.5

) - 7 )

1 0 1 0 1 0

with the respective eigenvalues pairfg, 1), (1,0.5), and (—1,0.5). Figure 6 shows the generated time-
series. As can be observed, the process is not stationary &vkeh but is asymptotically stationary when

0=-—1

5. PARAMETER ESTIMATION

A large number of algorithms for estimating the parameters of models based on neural networks are

available in the literature. In this paper we estimate the parameters of?@NN model by maximum
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likelihood making use of the assumptions made:pfn Section 2. The use of maximum likelihood or
guasi maximum likelihood makes it possible to obtain an idea of the uncertainty in the parameter estimates
through (asymptotic) standard deviation estimates. However, it may be argued that maximum likelihood
estimation of neural network models is most likely to lead to convergence problems, and that penalizing the
log-likelihood function one way or the other is a necessary precondition for satisfactory results. Two things
can be said in favour of maximum likelihood here. First, we suggest a model building strategy that proceeds
from small to large models, so that estimation of unidentified or nearly unidentified models, a major reason
for the need to penalize the log-likelihood, is partially avoided. Second, the starting-values of the parameter
estimates are chosen carefully, and we discuss the details of this later in this section.

The L2GNN model is similar to many linear or nonlinear time series models in that the information
matrix of the logarithmic likelihood function is block diagonal in such a way that we can concentrate the
likelihood and first estimate the parameters of the conditional mean. Thus conditional maximum likelihood
is equivalent to nonlinear least squares. Hence the parameter yeofdhe L2GNN model defined by (4)
is estimated as .

= argminy (1) = = - € ) (13)

t=1
The least squares estimator (LSE) defined by (13) belongs to the class of M-estimators considered by

Potscher and Prucha (1986). We next discuss the conditions that guarantee the existence, consistency, and
asymptotic normality of the LSE. We also state sufficient conditions under which%G&IN model is

identifiable.

5.1. Existence of the Estimator. The proof of existence is based on Lemma 2 of Jennrich (1969), which
establishes that under certain conditions of continuity and measurability on the mean square error (MSE)
function, the least squares estimator exists. Theorem 2 state the necessary conditions for the existence of

the LSE.

THEOREM2. The I2NGG model satisfies the following conditions and the LSE exists.

(1) Foreachx; € X, functionGx (1) = G (x¢; %) is continuous in compact subskf the Euclidean
space.
(2) Foreachy € ¥, functionGy, (X) = G (x4;¢) is measurable in space.

(3) &, are errors independent and identically distributed with mean zero and variafice

REMARK 2. In order to extend the set of approximation functions beyond linear functions, we need to

check that conditions (1) and (2) of Theorem 2. Thus, the class of fundli(mg ‘/’Li)’ i=1,...,m,to
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be considered must be a subset of the continuous functions on compdictiedtare also measurable in

X.

REMARK 3. The hypothesis of compactness of the parameter space may seem a little too restrictive. It is
presented in Huber (1967) results that only require locally compact spaces, and an extension of this can be
applied to obtain similar results in the present case. However, the compactness assumption is convenient
for theoretical reasons and is still general enough to be applied whenever the optimization procedure is

carried out by a computer.

5.2. ldentifiability of the Model. A fundamental problem for statistical inference with nonlinear time
series models is the unidentifiability of the model parameters. To guarantee unique identifiability of the
mean square error (MSE) function, the sources of uniqueness of the model must be studied. These questions
are studied in Sussman (1992), Kurlaeand Kainen (1994), Hwang and Ding (1997), Trapletti, Leisch, and
Hornik (2000), and Medeiros, Tasvirta, and Rech (2002) in the case of a feedforward neural network
model. Here, the main concepts and results will be briefly discussed. In particular, the conditions that
guarantee that the proposed model is identifiable and minimal will be established and proven. Before
tackling the problem of the identifiability of the model, two related concepts will be discussed: the concept

of minimality of the model, established in Sussman (1992) and which Hwang and Ding (1997) called “non-

redundancy”; and the concept of reducibility of the model.

DEFINITION 1. The I2GNN model is minimal (or non-redundant), if its input-output map cannot be ob-

tained from another model with fewer neuron-pairs.

One source of unidentifiability comes from the fact that a model may contain irrelevant neuron-pairs.
This means that there are cases where the model can then be reduced, eliminating some neuron-pairs without

changing the input-output map. Thus, the minimality condition can only hold for irreducible models.

DEFINITION 2. Define8;, = [%,d;,ﬁf’z)}/ and lety (x¢;0:0) = v ((di,xt> - ﬁ,fe)),i =1,...,m,and
¢ =1,2. The 2GNN model defined in (4) is reducible if one of the following three conditions holds:
(1) One of the pairda;, b;) vanishes jointly for some=1,...,m.
(2) v; =0forsomei =1,...,m.
(3) There is at least one paifi,j), ¢ # j, ¢ = 1,...,m, j = 1,...,m, such thatp (x;; 0;,) and

¢ (x¢;0¢) are sign-equivalent. That igp (x¢;0i¢)| = |¢ (%45 050)], Vx: € R%, t =1,...,T.

DEFINITION 3. The L2GNN model is identifiable if there are no two sets of parameters such that the

corresponding distributions of the population variallare identical.
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Four properties of theAGNN model cause unidentifiability of the models:

(P.1) The property of interchangeability of the hidden neuron-pairs. The value of the likelihood function

of the model does not change if the neuron-pairs in the hidden layer are permuted. This results

in m! different models that are indistinct among themselves (related to the input-output map).

As a consequence, in the estimation of parameters, we will hdwequal local maxima for the
loglikelihood function.
(P.2) The symmetry of the functio (xt; ¢Bi): 1 = 1,...,m. The fact that activation-level function

satisfies that

B (Xt§7adi76§1)75£2)) =-B (xt;%di,ﬁf2),5fl)) ;

establishes another indetermination in the model, as we may2liagquivalent parameterizations.
(P.3) The fact thatF(—z) = 1— F(z), whereF(z) = [1 + exp(—z)] ' which implies that the activation
level function satisfies that

B (xt;’%diaﬁgl)»@@) =B (xt§—% diyﬂz‘(2)7ﬁi(l)) ’

or

B (xii7.di, 47, 07 ) = =B (xii7, i, =67, —5V).

(P.4) The presence of irrelevant hidden neuron-pairs. Conditions (1) — (2) in the definition of reducibility

give information about the presence of pairs of irrelevant units, which translate into identifiability

sources. If the model contains some pair such #hat 0 andb; = 0, parametersl;, ﬁfl), and
652) remain unidentified. On the other handyjf= 0, then parameters; andb; may take on any
value without affecting the value of the loglikelihood function. Furthermorﬁfif = ﬁf”, then

~i,» @; andb; remain unidentified.

Properties (P.2)—(P.3) are related to the concept of reducibility. In the same spirit of the results stated in

Sussman (1992) and Hwang and Ding (1997) we show that, if the model is irreducible, property (P.1) is

is the only form of modifying the parameters without affecting the distributiop. dflence, establishing

restrictions on the parameters of (4) that simultaneously avoid reducibility and any permutation of hidden

units, we guarantee the identifiability of the model.

The problem of interchangeability (property (P.1)) can be prevented with the following restriction

(R.1) B < s ands® < 52 i=1,...,m.
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Now the consequences due to the symmetry of the activation-level function (property (P.2)) can be resolved
if we consider:

R.2) M <P i=1,....m.

To remove the lack of identification caused by property (P.3) we have to impose two additional restric-
tions.

(R3) v, >0,i=1,...,m.

(R4) dy; >0,i=1,...,m.

The first one prevents that a simple change of sign in paramédéads to problems in the identification
of the model. As previously discussed, we saw that conditidjh = 1 restricts this multiplicity in the
direction vector of the hyperplane. However, there is still some ambivalence arising from the fact that both
d, and—d have the same norm and are orthogonal to the hyperplane. Restriction (R.4) avoids that problem.

Sinced; is a unit vector, then:

The presence of irrelevant hidden neuron-pairs, property (P.4), can be circumvented by applying a
“specific-to-general” model building strategy as suggested in Section 6.

Corollaries 2.1 in Sussman (1992) and 2.4 in Hwang and Ding (1997) guarantee that an irreducible
model is minimal. The fact that irreducibility and minimality are equivalent implies that there are no mech-
anisms, other than the ones listed in the definition of irreducibility, that can be used to reduce the number of
units without changing the functional input-output relation. Then, restrictions (R.1)—(R.4) guarantee that if
irrelevant units do not exist the model is identifiable and minimal.

Before stating the theorem that gives sufficient conditions under whichG&IN model is globally

identifiable we should make the following assumption.

AsSsSUMPTION 1. The parameters; and b; do not vanish jointly for somé = 1,...,m. Furthermore

v >0,viands" # g2 vi.

ASSUMPTION2. The covariate vectok,; has an invariant distribution which has a density everywhere

positive in an open ball.

Assumption 1 guarantees that there are no irrelevant hidden neuron-pairs as described in property (P.4)

above and Assumption 2 avoids problems related to multicollinearity.

THEOREM 3. Under the restrictions:
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R1) Y < g ands® < 82 i=1,...,m;
R2) Y <P i=1,... m
(R3) v >0,i=1,....m;

(R.4) di1=m>0,i:1,...,m;

and Assumptions 1 and 2 thé&NN model is globally identifiable.

5.3. Strong Consistency of Estimators.In White (1981) and White and Domowitz (1984) the conditions

that guarantee the strong convergence of the LSE are established. In the context of stationary time series
models, the conditions that assure the (almost certain) convergence are established in White (1994) and
Wooldridge (1994). In what follows we state and prove the theorem of consistency of the estimators of the

L2GNN model.

AssuMPTION3. The data generation process (DGP) for the sequence of scalar real valued observations
{yt}thl is a stationary and ergodicAGNN process with the true parameter vecgst € ¥. The parameter

spaceV is a compact subset &", wherer = 2m(2 + q).

THEOREMA4. Under Restrictions (R.1)—(R.4) and Assumptions 1 and 3 the least squares estimator is almost

surely consistent.

5.4. Asymptotic Normality. The following two conditions are required for the asymptotic normality of

the LSE.
AsSSUMPTION4. The true parameter vectap™ is interior to 0.
AssuMPTIONS. The family of functions
{e UAB @s v ) HUAVB (ws ) HU{B (9 5)} ({2 VB (2595)}

z; € R andVt, is linearly independent, as long as the functimﬁ@ (24;050),i=1,...,m,£=1,2, are

not equivalent in sign.
THEOREMS. Under restrictions (R.1)—(R.4) and Assumptions 1-5
1 L —1/2 . d
S5V VT (d-97) SN,
20

whereV2Q,(¢*) = E[V2Qr (v")], V2Qn (1) is the Hessian matrix a7 () at 4", ando? is the

variance ofz;.
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5.5. Concentrated Likelihood. In order to reduce the computational burden we can apply concentrated
maximum likelihood to estimate as follows. Consider thé" iteration of the optimization algorithm and

rewrite model (1)—(3) as

y=Z(p)p, +e, (14)
wherey’ = [y1,¥2,...,y7), € = [¢1,¢€2,...,¢7], and
7y B(xuvp,)zy, ... B(xiyp )zl
Z(¢p)=| : : : ;
z'n B(XT;le)z’T B(XT;¢Lm)z’T

with z, = [1,x}]). Assumingy  fixed, the parameter vectgr, can be estimated analytically by

b= (Z(p) Z (W) Z(¥B)y. (15)

The remaining parameters are estimated conditionallyerby applying the Levenberg-Marquadt algo-
rithm which completes thé" iteration. This form of concentrated maximum likelihood was proposed by
Leybourne, Newbold, and Vougas (1998). It reduces the dimensionality of the iterative estimation problem

considerably.

5.6. Starting-values. Many iterative optimization algorithms are sensitive to the choice of starting-values,
and this is certainly so in the estimation Gf&NN models. Assume now that we have estimated?BNN

model model withn — 1 hidden neuron-pairs and want to estimate one witheuron-pairs. Our specific-
to-general specification strategy has the consequence that this situation frequently occurs in practice. A
natural choice of initial values for the estimation of parameters in the modelwitkeuron-pairs is to use

the final estimates for the parameters in the fiist 1 ones. The starting-values for the parameters in the
mth hidden neuron-pair are obtained in steps as follbws

1) Fork=1,...,K:

!
(a) Construct a vectoy 't = [v(k) ...,véﬁz such thatuﬁ’f,?b € (0,1] andvj(’f,z e-1,1,j5 =

Im>

2,...,q. The values fon'*) are drawn from a unifornf0, 1] distribution and the ones for

1m
*) j=2 ... ¢ froma uniform[—1, 1] distribution.

gm?

(b) Defined™ = v{P|viP|-1.

v

(c) Compute the projectiorlsg,’f) = <d£,’f),x>, wherex = [x1,...,X7].

1A similar procedure was proposed in Medeiros and Veiga (2000b) and Medeirésyifer, and Rech (2002).
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(d) Let c@ =Ziy3 (p%?)) andcgf,)l = Zy3 (pE,@), whereZ, is thea-percentile of the empiri-
cal distribution ofp'®.
(2) Define a grid ofN' positive valuesy'™), n = 1,..., N, for the slope parameter and estimate
using equation (15).
(3) Fork = 1,...,K andn = 1,..., N, compute the value of)r (y) for each combination of
starting-values. Choose the values of the parameters that maximize the concentrated log-likelihood

function as starting values.

After selecting the starting-values we have to reorder the units if necessary in order to ensure that the
identifying restrictions are satisfied.

Typically, K = 1000 and N = 20 will ensure good estimates of the parameters. We should stress,
however, that{ is a nondecreasing function of the number of input variables. If the latter is large we have

to select a largds as well.

6. MODEL BUILDING

In this section, a specific-to-general specification strategy is developed. From equation (4) two specifica-
tion problems require special care. The firstis variable selection, that is, the correct selection of etgments
The problem of selecting the right subset of variables is very important because selecting a too small subset
leads to misspecification, whereas choosing too many variables aggravates the “curse of dimensionality.”
The second problem is the selection of the correct number of neuron-pairs. The specification procedure as

a whole may be viewed as a sequence consisting of the following steps:

(1) Selecting the elements &f.
(2) Determining the number of neuron-pairs.

(3) Evaluation of the estimated model.

The first two steps of the modelling cycle will be discussed in detail. The evaluation is step is beyond the
scope of the present paper. However, the results in Medeiros and Veiga (2002), and Medeissttaer

and Rech (2002) can be easily generalized to the casé@RiN models.

6.1. Variable Selection. The first step in our model specification is to choose the variables for the model

from a set of potential variables. Several nonparametric variable selection techniques exist (Tcherning
and Yang, 2000; Vieu, 1995; Tjgstheim and Auestad, 1994; Yao and Tong, 1994; Auestad and Tjgstheim,
1990), but they are computationally very demanding, in particular when the number of observations is not

small. In this paper variable selection is carried out by linearizing the model and applying well-known
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techniques of linear variable selection to this approximation. This keeps computational cost to a minimum.
For this purpose we adopt the simple procedure proposed in Reésyvirgs, and Tschernig (2001). Their
idea is to approximate the stationary nonlinear model by a polynomial of sufficiently high order. Adapted
to the present situation, the first step is to approximate funeii¢xy; <) in (4) by a generak-th order
polynomial. By the Stone-Weierstrass theorem, the approximation can be made arbitrarily accurate if some
mild conditions, such as the parameter spgclkeing compact, are imposed on functi@iix;; ¢»). Thus
the L2GNN is approximated by another function. This yields
q q
G(xy; 1) = 7'% + Z Z 0155y 1Tt
pte (16)
Fo D D O T+ B ),

=1 jk=jr—1
wherex; = [1,x}]" and R(x;; %) is the approximation error that can be made negligible by chodsing
sufficiently high. Thed’'s are parameters, and € R*! is a vector of parameters. The linear form of the
approximation is independent of the number of neuron-pairs in (4).

In equation (16), every product of variables involving at least one redundant variable has the coefficient
zero. The idea is to sort out the redundant variables by using this property of (16). In order to do that, we
first regressgy, on all variables on the right-hand side of equation (16) assuizg; 1) = 0 and compute
the value of a model selection criterion (MSC), AIC (Akaike, 1974) or SBIC (Schwarz, 1978) for example.
After doing that, we remove one variable from the original model and regfassall the remaining terms
in the corresponding polynomial and again compute the value of the MSC. This procedure is repeated by
omitting each variable in turn. We continue by simultaneously omitting two regressors of the original model
and proceed in that way until the polynomial is of a function of a single regressor and, finally, just a constant.
Having done that, we choose the combination of variables that yields the lowest value of the MSC. This
amounts to estimatiny_;_, (‘j) + 1 linear models by ordinary least squares (OLS). Note that by following
this procedure, the variables for the wholEGNN model are selected at the same time. Rectisharnta,
and Tschernig (2001) showed that the procedure works well already in small samples when compared to
well-known nonparametric techniques. Furthermore, it can be successfully applied even in large samples

when nonparametric model selection becomes computationally infeasible.

6.2. Determining the number of neuron-pairs. In real applications, the number of neuron-pairs is not
known and should be estimated from the data. In the neural network literature, a popular method for

selecting the number of neuron is pruning, in which a model with a large number of neurons is estimated
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first, and the size of the model is subsequently reduced by applying an appropriate technique such as cross-
validation. Another technique used in this connection is regularization, which may be characterized as
penalized maximum likelihood or least squares applied to the estimation of neural network models. For
discussion see, for example, Fine (1999,pp. 215-221). Bayesian regularization may serve as an example
(MacKay, 1992a; MacKay, 1992b).

Another possibility is to use a MSC to determine the number of hidden neuron-pairs. Swanson and White
(1995), Swanson and White (1997a), and Swanson and White (1997b) apply the SBIC model selection
criterion as follows. They start with a linear model, adding potential variables to it until SBIC indicates that
the model cannot be further improved. Then they estimate models with a single hidden neuron and select
regressors sequentially to it one by one unless SBIC shows no further improvement. Next, the authors
add another hidden unit and proceed by adding variables to it. The selection process is terminated when
SBIC indicates that no more hidden units or variables should be added or when a predetermined maximum
number of hidden units has been reached. This modelling strategy can be termed fully sequential.

In this paper we adopt a similar strategy as described above. After the variables have been selected with
the procedure described before, we start with a model with a single neuron-pair and compute the value of
the SBIC. We continue adding neuron-pairs until the SBIC indicates no further improvement. The SBIC is

defined as
In(T)

SBIC(h) = In(5?) + T

x [2m(2+q)]. (7)

wherea? is the estimated residual variance. This means that to choose a modeh witiron-pairs, we
need to estimate: + 1 models.

Another way of determining the number of neuron-pairs is to follow Medeiros and Veiga (2000b) and
Medeiros, Tedisvirta, and Rech (2002) and use a sequence of Lagrange Multiplier tests. However, this is

beyond the scope of this paper.

7. NUMERICAL EXAMPLES

In this section we present numerical results for tiGNN model with real time series data. The first
example considers only in-sample fitting and the second shows one-step ahead forecasts. The modelling

cycle strategy described before was used to select the models.

7.1. The Canadian Lynx series. The first data set analyzed is the classic 10-based logarithm of the number
of Canadian Lynx trapped in the Mackenzie River district of North-west Canada over the period 1821—

1934. For further details and a background history see Tong (1990,Chapter 7). Some previous analysis
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of this series can be found in Ozaki (1982), Tsay (1989)aderta (1994), and Xia and Li (1999). We
start selecting the variables of the model among the first seven lags of the time series. With the procedure
describe in Section 6.1 and using the SBIC, we identified lags 1 and 2 and with the AIC, lags 1,2,3,5,6,
and 7. We continue building a2GNN model with only lags 1 and 2, which is more parsimonious. The
final estimated mode has 2 neuron-pairs £ 2), and when compared to a linear AR(2) model, the ratio
between the standard deviation of the residuals from the nonlinear model and Iineag’?ne %876.

The estimated residual standard deviation=f 0.204) is smaller than in other models that use only
the first two lags as variables. For example, the nonlinear model proposed by (Tong, 1990,p. 410), has
a residual standard deviation of 0.222, and the Exponential AutoRegressive (EXPAR) model proposed by
(Ozaki, 1982) hag. = 0.208.

7.2. The Sunspot Series.In this example we consider the annual sunspot numbers over the period 1700—
1998. The observations for the period 1700-1979 were used to estimate the model and the remain-
ing were used to forecast evaluation. We adopted the same transformation as in Tong {1990),

2 [ (14+Ny) — 1}, where N, is the sunspot number. The series was obtained from the National Geo-
physical Data Center web pageThe sunspot numbers are a heavily modelled nonlinear time series: for a
neural network example see Weigend, Huberman, and Rumelhart (1992).

We begin the EGNN modelling of the series by selecting the relevant lags using the variable selection
procedure described in Section 6.1. We use a third-order polynomial approximation to the true model.
Applying SBIC, lags 1,2, and 7 are selected whereas AIC yields the lags 1,2,4,5,6,7,8,9, and 10. As in the
previous example, we proceed with the lags selected by the SBIC. However, the residuals of the estimated
model are strongly autocorrelated. The serial correlation is removed by also inclyding the set of
selected variables. When building th@GNN model we select the number of hidden neuron-pairs using
the SBIC as described in Section 6.2.

After estimating a model with 3 neuron-pairs, we continue considering the out-of-sample performance
of the estimated model. In order to assess the out-of-sample performance 6&N&Imodel we compare
our one-step-ahead forecasting results with the ones obtained from the two SETAR models, the one reported
in Tong (1990,p. 420) and the other in Chen (1995), an artificial neural network (ANN) model with 10
hidden neurons and the first 9 lags as input variables, estimated with Bayesian regularization (MacKay,
1992a; MacKay, 1992b), the Stochastic Neural Network (SNN) model estimated in Lai and Wong (2001),
the Neuro-Coefficient STAR (NCSTAR) model of Medeiros and Veiga (2000a), and a linear autoregressive

2http://www.ngdc.noaa.gov/stp/SOLAR/SSN/ssn.html
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model with lags selected using SBIC. The SETAR model estimated by Chen (1995) is one in which the
threshold variable is a nonlinear function of lagged values of the time series whereas it is a single lag in
Tong’s model. The estimated SNN model of Lai and Wong (2001) can be viewed as a form of smooth
transition autoregression with multivariate transition variables in the same spirit of the NCSTAR model of
Medeiros and Veiga (2000a).

Table 1 shows the results of the one-step-ahead forecasting for the period 1980-1998, with the respective
root mean squared error (RMSE) and mean absolute error (MAE). As shown in Table ¥GN&llmodel
has the smallest RMSE and MAE among the alternatives considered in this paper. Over 19 forecasts, the
L2GNN model outperforms the ANN and Tong’s SETAR models in 12 cases, the SETAR model of Chen

(1995) in 15 cases, the AR specification in 11 cases, and the SNN and NCSTAR models in 10 cases.

8. CONCLUSIONS

In this paper we have proposed a new nonlinear time-series model based on neural networks. The model
is called the Local Global Neural Network and can be interpreted as a mixture of experts model. The
case of linear experts is analyzed in detail and its probabilistic and statistical properties were discussed.
The proposed model consist of a mixture of stationary or non-stationary linear models and is able to de-
scribe “intermittent” dynamics: the system spends a large fraction of the time in a bounded region, but,
sporadically, it develops an instability that grows exponentially for some time and then suddenly collapses.
Intermittency is a commonly observed behavior in ecology and epidemiology, fluid dynamics and other
natural systems. A specific-to-general model building strategy, based on the SBIC, has been suggested to
determine the variables and the number of hidden neuron-pairs. When put into test in a real experiment con-
cerning one-step-ahead forecasting, the proposed model outperforms the linear model and other nonlinear
specifications considered in this paper, suggesting that the theory developed here is useful and the proposed

model thus seems to be a useful tool for practicing time series analysts.



M. S. FARNAS, C. E. PEDREIRA, AND M. C. MEDEIROS

zotT TOT veT oYt TET 1T 98 avn
vel €€T §9T 69T L81 8'€T LTT ISNY
9z 699 T8 295 81T §2S 8'G 585 9T L9y €€ 929 70 6'€9 €79 866T
z8 €€T LT e §'S 09T L6 81T 6 o4 z0 €71e 584 LT ST1Z 166T
€0 €8 TE L'TT TL L'ST o€ 91T 56 18T 9T~ zotT 9 8T 98 966T
9T~ T6T ze eyl 10 9T 4% 68T 6°0- 78T LT z6T S€ oYt ST S66T
! 67 052 44 Lle 10 6'6C 8'G L'SE 6¢C 0Lz o€ 62€ T0 8'62 6'6C 766T
67TT- 599 9 809 €€ 6.5 9vT- 269 €ET- 6,9 ¥'9T- 0TL LyT- €69 9vS €66T
0°TT- €601 8'GT- TOTT 9ve- 6'8TT LTe- 6'GTT 9T~ S0TT 0°0z- €VIT S 8'10T €76 266T
98T T2t T2 9'8TT 9'92 T6TT 0ze L€t ¥'ZS €€6 Sz z1eT §le T8TT L'SYT 166T
LT 5844 092 9'89T 62€- §'GLT 6'6- 52T 8'€T- ¥'9ST L' €LYT €€ 6'GPT 92ZrT 066T
zstT 'ZrT 8'6- ¥'L9T 97T~ 2'6ST 8'Ge 812t 81 8'GST 9Y 62ST Te L°09T 9°.8T 686T
09T €8 T2E 189 6'8¢ 219 8'€e ¥'99 LSy SvS v'ee 8'9. €8¢ 6'TL 2007 886T
902 88 9T 8'92 ¥'9 0€e 62T 59T €6 102 44 (414 00T 76T ¥'62 /86T
80 92T 9Y 88 Yird L0T 9€ 86 12 L0T 6€ 56 v'e 00T ¥ET 986T
9'9- R4 9'G- g€ vIT- €62 6TT- 8'6C 7'9- €ve 97T~ 562 S v'ze 6LT S86T
€T 9'€e 76 5'9€ 0eT 6°€E L'y g zoT L'GE 10 8'Gh ze Ly 66 86T
60T- S/L L°0T- €L €CT- 6'8L ¥'8T- 058 56 T9L 0ce- 9'88 9vT- z18 9'99 €86T
012 676 96 €901 €97 9'66 99T €66 LT 286 8yl TT0T TYT 8'10T 6'GTT z86T
¥'9 0vET 66 G'0€T T.T R4 06T ¥'S2T Ly L'SET 66 G'0ET €6 TTIET 'ovT 186T
o€z 02ET 62 §'ST TG 8'65T €02 EVET 7'9- 019t LT 6'9€T S'S T6vT 9'¥ST 086T
Jou3 1Ssedalo4 103 1Sedalo4 Jol3 1Sedalo4 Jou3 1Sedal04 Jo3 1SedaloH Jou3z 1Sedalo4 lou3z 1Sedalo4 uoneAlssqoO JesA

YVLSON NNS |apow ¥y (G66T ‘Uay0) (066T ‘Buol) |apow NNV 99Ng1

[9PoW ¥V13S |9pPoW ¥V13S

"866T-086T POLad 8y} 10} ‘S|opOW SaLISS BwW
1619S B WoJj s10dsuns Jo Jaquinu [enuue ay) o} S10419 SINjOSge UBaW pue ‘siolld afenbs ueaw 1001 JIay) ‘sisedalo) peaye dais-auQ T 318v)L



LOCAL-GLOBAL NEURAL NETWORKS: A NEW APPROACH FOR NONLINEAR TIME SERIES MODELLING 25

ACKNOWLEDGMENTS

This work is partly based on the first author’s Ph.D. Thesis at the Department of Electrical Engineering
at the Pontifical Catholic University of Rio de Janeiro. The authors would like to thank Marcelo O. Mag-
nasco, Maurcio Romero Sicre, Juan Pablo Torres-Magtz, and Alvaro Veiga for valuable discussions, two
anonymous referees and an associate editor for helpful comments, and the CNPq for the partial financial

support.

APPENDIXA: PROOFS

8.1. Lemmas.

LEMMA 1. If the functionsp® (z) = ha —v6©), £ = 1,2,z € R, h > 0, 1) < 3(?) are not equivalent
in sign, the class of functionsB (z; ¢ 5)} U {zB (x;¢5)}, where

plam =~ {1 e (0)] - [tron (621)] "}

is linearly independent.

LEMMA 2. Let{d;} be a family of vectors ifR? such thatd;; > 0 for everyi. Letv be the unitary vector

that, according to Hwang and Ding (1997), exists and satisfies:

(1) (d;,v) > 0and
(2) if d; 7é dj then<di,V> # <dj,V>.

Thus it follows that there exists a vector base. . ., v, that satisfies the same conditions.

8.2. Proofs of Theorems.

8.2.1. Proof of Theorem 1Write model (4) as

Yi=a; 1 +A: 1Y 1 +ey, (18)
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where
Yt Yt—1 €t Z?ll b;B (thl)
Yt—1 Yt—2 0 0
Yt = ) Yt—l = . , € = . , Ap—1 =
Yt—p+1 Yi—p 0 0
YoimyanBi(Yio1) Yt anBi(Yea) - Y% aipaBi (Y1) 0% aipBi(Yio1)
1 0 .. 0 0
A= 0 1 e 0 0
0 0 e 1 0

and B; (thl) =B (thl;"thi) .

After recursive substitutions, model (18) can be written as

t—2 t—1 t—1 t—1 |t—1
Yt = at—1 +Z H Aj a; + HAJ Y0+Z HA] e;, + €. (19)
i=0 | j=i+1 7=0 i=1 | j=1

Model (19) will be asymptotically stationary JfA; — 0 ast — oo. This will be of course the case if
t

Condition 1 in Theorem 1 is satisfied. As

B; (Y,) = — { {1 + exp (%‘ (<diaYt> - 51-(1)))}71 - [1 T exp (% (<di’Yt> B ﬁgz)))}l} ’

rt[At — 0if B;(Y:) — 0,7 = 1,...,m. This will be true if |(d;, Y:)| — M, whereM >>

max (651),@2)). If at least one limiting AR regime is explosive thefal;, Y;)| — oo as far asl;; # 0
(Condition 2 in Theorem 1). When a given limiting AR regime has unit-roots in order to guarantee that
l{(d;, Y:)| — M, the vectorsd; must not be orthogonal to the eigenvectors of the respective transition

matrix (Condition 3 in Theorem 1).

Q.E.D

8.2.2. Proof of Theorem 2Lemma 2 of Jennrich (1969) shows that the conditions (1)—(3) in Theorem 2
are enough to guarantee the existence (and measurability) of the LSE. In order to apply this result to the
L2GNN model we have to check if the above conditions are satisfied by the model.

Condition (3) in Theorem 2 was already assumed when defining the model. It is easy to prove in our

case thati (x;; 1) is continuous in the parameter vectpr This follows from the fact thaB (x;; 1)
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andL;(x¢; %), i = 1,...,m, depend continuously oth ; and1); for each value ok;. Similarly, we
can see thaf’ (x¢, 1) is continuous ink;, and therefore measurable, for each fixed value of the parameter

vectorey. Thus (1) and (2) are satisfied.

Q.E.D

~ ~ ~ !
8.2.3. Proof of Theorem 3Suppose that) = {@D/L, v,b;g} is another vector of parameters such that

m m

Z (ajx; + b;) B (x¢;%p,) Z (a;xt —|—E) B (xt;{bBJ . (20)

=1 =1
In order to show global identifiability of the3GNN model, we need to prove that, under Assumption 1
and restrictions (R.1)—(R.4), (20) is satisfied if, and onlyjf= a;, b; = b, andy g = @B,i =1,...,m,
Vx; € RY,
Equation (20) can be rewritten as
2m

Z(c’xt—l—ej)B (xt,ﬂ;B]) =0, (21)

whereB (xt,{pBJ) =B (xt,'(/)B ) forj=1,...,m B (Xn{ij) =B (xt,prHn), forj = m+
1,....2m,c; =aj,forj=1,....,m,¢c; = —a_p, forj=m+1,...,2m,e; =b;, forj =1,...,m,
ande; = —b;_,, forj=m+1,...,2m.

To relate this problem to Lemma 1, we reduce the dimensiog ¢ one. Following Hwang and Ding
(1997), letv be the unit vector such that for distintts, the projections over are likewise different. Since
the set{d,,...,d,,} has a finite number of points; > 0 (restriction (R.3)), andl;; > 0 (restriction

(R4),: = 1,...,m, it is possible to construct a vecter such that the projectioh; = ~; (d;,v) is

positive. Replacing; in (21) byz;v, x; € R, leads to
Z Tzt +e5) (xtv, 12),3],) =0, (22)

wherec; = (c;, V).

For simplicity of notation |etp§-€) = p(x;0¢), 7 = 1,...,2m. Lemma 1 imply that if<p§f) and
@5‘;) are not sign-equivaleny, € {1,...,2m}, jo € {1,...,2m}, (22) holds if, and only if¢; ande;
vanish jointly for everyj € {1,...,2m}. However, the conditios;, j = 1,...,2m, does not imply
thatc; = 0. Lemma 2 shows in fact that vecteris not unique and that there exists vecteors. .., v
that satisfy the same conditions asand form a basis oR?. Then the inner produdic;,v;) = 0, Vj,

implying thatc; = 0. However, Assumption 1 precludes that possibility. Hemééi), andap%) must be
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sign-equivalent. But restrictions (R.2)—(R.4) avoid that two functipﬁ% andgp%) coming from the same

model being sign-equivalent. Consequendly; € {1,...,m} andj, € {m+1,...,2m} such thatplgf)

andga%), ¢ = 1,2 are sign-equivalent. Under restrictions (R.2)—(R.4) the only possibility is that the hidden
neuron-pairs are permuted. Restriction (R.1) excludes that possibility. Hence, the only case where (20)
holds is whera; = &;, b; = b;, andyp g = 5,0 = 1,...,m, Vx; € RY.

Q.ED

8.2.4. Proof of Theorem 4For the proof of this theorem we use Theorem 3.5 of White (1994), showing
that the assumptions stated therein are fulfilled.

Assumptions 2.1 and 2.3, related to the probability space and to the density functions, are trivial.

Let g (x¢;%) = [y — G (x4;9)]°. Assumption 3.1a states that for eaghe ¥, —E (¢ (x;;)) exists
and is finitet = 1,...,T. Under the conditions of Theorem 3 and the fact thas a zero mean normally
distributed random variable with finite variance, hekeategrable, Assumption 3.1a follows.

Assumption 3.1b states thatE (¢ (x¢;4))) is continuous in¥, ¢t = 1,...,T. Letyp — ", since for
anyt, G (x¢; ) is continuous on?, theng (x¢; %) — q(x4; "), V¢ (pointwise convergence). From the
continuity of G (x¢, 1) on the compact sek, we have uniform continuity and we obtain thatx:; ) is
dominated by an integrable functiet¥. Then, by Lebesgue’s Dominated Convergence Theorem, we get
Ja(x;;9)dF — [ q(x4;9")dF, and E(q (x4; %)) is continuous.

Assumption 3.1c states thatE (¢ (x¢;1))) obeys the strong (weak) Uniform Law of Large Numbers
(ULLN). Lemma A2 of Rdtscher and Prucha (1986) guarantees that(k;; 1)) obeys the strong law of
large numbers. The set of hypothesis (b) of this lemma is satisfied:

(1) we are working with a strictly stationary and ergodic process;
(2) from the continuity of Eq (x;; ¢)) and from the compactness®fwe have thatnf E (¢ (x¢; ¥)) =
E (q (x¢;9™)) for p™ € ¥, and with Assumption 3.1a we may guarantee th@f &;; v")) exists
and is finite, getting thaif E (q (x¢; 1)) > —oo.
Assumption 3.2 is related to the unigue identifiabilityysf. In Theorem 3, we have showed that under

Assumption 1 and with the restrictions (R.1)—(R.4) imposed, fH@NN is globally identifiable.

Q.E.D

8.2.5. Proof of Theorem 5We use Theorem 6.4 of White (1994) and check its assumptions.
Assumptions 2.1, 2.3, and 3.1 follow from the proof of Theorem 4 (consistency).
Assumptions 3.2 and 3.6 follow from the fact th@lt(x;; 1) is continuously differentiable of order 2 on

1) in the compact spacé.
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In order to check Assumptions 3.7a and 3.8a we have to prove fRafE (¢)) < co and E(V?Q,(¢)) <

oo, Vn. The expected gradient and the expected Hessigh,¢f>) are given by

E(VQn(¢)) = —2E(VG (x4;9) (yr — G (x459)))

and
E(V2Qn(v)) =2E (VG (x59) VG (x459) — VG (x4;9) (y: — G (x43%)))

respectively.

Assumptions 3.7a and 3.8a follow considering the normality condition} othe properties of the func-
tion G (x;;¢), and the fact thaV G (x;;4) and V2G (x4; 1) contains at most terms of order ;z; ¢,
i1=1,...,q,%i=1,...,q. Following the same reasoning used in the proof of Assumptions 3.1a in Theo-
rem 4, Assumptions 3.7a and 3.8a hold.

Assumption 3.8b: Under Assumption 4, the fact that the funetigw,; 1) is continuous, and dominated
convergence, Assumption 3.8b follows.

Assumption 3.8c: The proof of Theorem 4 and the ULLN froidideher and Prucha (1986) yields the
result.

Assumption 3.9: White'sl’ = E (VZQ(v*)) = 2E(VG (x¢;9™) V'G (x4;9%)) is O(1) in our setup.
Assumption 5, the properties of functi@i (x;; 1), and the unique identification ap imply the non-
singularity of E(VG (x4; ™) V'G (x¢;9%)).

Assumption 6.1: Using Theorem 2.4 from White and Domowitz (1984) we can show that the sequence
2¢'VG (x4;1") e; obeys the Central Limit Theorem (CLT) for sorfiex 1) vectorg, such thag’¢ = 1.
Assumptions A(i) and A(iii) of White and Domowitz (1984) hold becausés NID. Assumption A(ii)
holds withV = 402¢'E (VG (x4;9™) V'G (x4;1*)). Furthermore, since any measurable transformation
of mixing processes is itself mixing (see Lemma 2.1 in White and Domowitz (198&W,G (x;;v™) &
is a strong mixing sequence and obeys the CLT. By using the &r&lviold deviceVQ (x;; 1) also obeys
the CLT with covariance matriB; = 402E (VG (x4;9*) V'G (x4;¢™)) = 202 A% which isO(1) and

non-singular.

Q.E.D
8.3. Proofs of Lemmas.

8.3.1. Proof of Lemma 1.In order to make the proof clearer I@E‘f) (x) = (hix - %-ﬁi(g)), whereh; =

~i (d;, v), and write B (x5 ) as B (gogl)(x), go§2)(x)). Let » be a positive integer. We should prove
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7

that if there are scalars;, w;, 7; > 0, h; > 0, andﬁi(l) < 62.(2), 1 =1,...,n, with (hi,%,ﬁfl),ﬁ@)) #+

(hjmj, B, ﬁj@) for i # j (due to their not being equivalent in sign) such titate R we have:

Z (N +w;x) B <g0(1)(m), g0(2)(:1c)) =0, (23)

i=1
then\; =w; =0,i=1,...,n
Considering thaB ( (1)( ), gp§2)(x)) =F (—@El)(x)> - F (—<p£2) (x)), whereF'(+) is the logistic
function, (23) is equivalent to:

5 O+ wi) [P (~e0 @) = F (~2@)] = 0. (24)

i=1
Developing the Taylor series @f (—gpy) (x)), {=1,2, we have:

i k —k'yl M) khz (25)

k=1

50
The series converges absolutely wherti%” < 1, that is forz < <”f) Therefore, there exist
M small enough such that (25) converges for every (—oo, M). Substituting (25) in (24) and writing

CZ.“) = %ﬂf@) we obtain:

Z{ (A + wiz) i [ —o _ Ci”k} ekhﬂ} —0. (26)

=1 k=1

Notice that due to the fact that is positive, therC) < ¢?. Denotingi = —e=¢." 1 = 1,2,

we have thatv’'") < W and substituting in (26):
n o0 k
Z + Wi T Z |: W(l - Wl(Q) :| ekh7'x} =0.
3o 0t () - )
This series can be written (as it is absolutely convergent) as:

o0
E agel® 4 o el =0, (27)
k=1

whereh} < h3 < --- < h%_, and eacth; is an integer multiple of somk;. However, we can prove that
ay, = ai* =0.
Dividing (27) byze"i*, we obtain

® o z(hj—h})
{Ozz,em(hkhl) + az*ell} =0 (28)

k=1
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assuming the limit in (28) a8 — oo and considering that; — h} > 0, for & # 1, we conclude that

o = 0. Considering the expression (27) wiiti = 0 and dividing bye”1 we obtain
af + Y (af +mapt) e i) = 0.
k=2

Now, taking the limit when: — —oo, the terms in the sum go to zero and we obt@ji = 0. Repeating
this procedure we will thus obtain thaf = o}* = 0.

There is still left to prove that starting frons; = «;* = 0 it follows that\; = w; = 0. The expressions
for A; andw; in terms ofa;; anda;* are similar, so we will present only the proof fef.

LetJ = {j € {1,...,m} : hj; = hy}. We should prove that; = w; = 0, Vj € J. For eachs € N,
there existis, such thati; = sh;. Also there exists an integé¥ > 0 such that for every andi > 2,
(1 + N{¢)h; is not an integer multiple of;. Denoted; = % As0O < hy < h;, 0; is a non-integer
number less than 1. So, we have to prove that there are a segldgrsxech as for alf > 2, K,,0; is not
an integer. Let/; = {j € J|3r integer, such that; € Z}. Selectk = [],.,, r;. Then, the sequence

K, = (1+nK) satisfies the desired statementi § Jz, thenK,0; = 0; + n]] (rj) r:i6;, where

JEJTz,j#i
r:i0; Hj r; andn are all integer numbers arfj is a non-integer, sé,6; cannot be an integer number.
Otherwise, ifi ¢ Jz, then there are no integer number such a&'a8; would be an integer. A%, is an
integer number, thek,,0; is not an integer.

For eachi; it is satisfied thaty; = 0, in particular fors = (1 + N¢) we have:

=3 () - ()] =0
that is
j;/\j (Wj(l)) = j;])\j (Wj@)) . (29)

If € Jthenh; = h;, and due to the definition of thi;’s this can only happen ifj € J, d; = d;,,
then it follows thatd; = d;, and~y; = ~;,. Considering tha hi,%,ﬁfl),ﬂf2)) # (hj,yj,ﬂ;”,ﬂ]@)) it
follows thatﬁi(l) + ﬁ](l), ,6’2.(2) + [3;2) we have then that obtaining thaj, ;' € J, j # j": Wj(é) #* Wj(/é);

and considering thaj§1) < ﬁ]@), it follows thath(l) < Wj@), Vi e J.

1)

Let n; be the cardinal off and¢ : {1,...,n;} — J areordering ofJ such thatW(a) < Wa(b(2) <

®
(1) (2 2 ©) T 2) , -
e < W¢(m) andW¢(1) < W(W) << W¢( ) Dividing (29) byW¢(m) and passing to the limit as

ny
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k — oo we have

k

n (1) ny—1 (2)
J W g J W g
. #(4) : #(4)
dm | > W(2>J = o) + Jim | D W(2>]
Jj=1 P(ny) Jj=1 o(ny)
and from this we obtaim,,,) = 0. Repeating this procedure, we obtaig,,,_1) = --- = agn) = 0.

Considering = 2, ..., m and with the corresponding sétthat defines groug and following an identical
line of reasoning, we arrive at the conclusion that= 0,¢ = 1,...,m. Similarly , we obtainv; = 0,

1=1,...,m.

Q.ED

8.3.2. Proof of Lemma 2Let vy be a unitary vector such that for differedts, the projections owg,
b, = (d;, vo) are also different and positive. We should find a vector base. ., v, such that these

vectors satisfy the same conditionsvas Let v be given, let us define the;s as:
Vi = Vp, Vg = Vo — 02€3, V3 = Vo — 03€3,...,Vy = Vo — 04€q, (30)

wheree; is the canonical vector with 1 in positignand zero otherwise and is small enough. We should
prove (1) that they satisfy the conditions of Lemma 2 and (2) that they form a vector base of the space.
For everyj, the projection of thel;s onv; is b, = (d;,v;) = (d;, vo) + 6;d;;, where the first terms in
the sums are always positive and different whendfeare different. Therefore, we can chodsesmall
enough such thdt, = (d;, v;) remains positive and different for differedts. To show that the vectors
already defined form a vector base it is enough to show that they are linearly independent. Let us consider
an arbitrary linear combination of these vectors equal to zero:
q q q q

Zajvj =0= a1vp+ Zaj (vo—dje;) =0=vq Zaj - Zajéjej =0. (31)

j=1 j=2 Jj=1 Jj=2
From this it follows that:

q q
V()Zaj = Zaj5jej. (32)
j=1 j=2

Writing the previous equality for the first component of each vector and taking in to consideration that

the left member contains sums of the canonical vectors fréon, we have that:

q q
VOZOKJ‘ = Zajéjej =0, (33)
j=1 j=2

1 1
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sincevp; Z?:l a; = 0 andwg; # 0. Writing (33) for the componern, k = 2,3, ..., ¢, we have that:

q
0={> ajde; | =ax+oh=>m=0k=2..¢ (34)
j=2 x

Considering thap~i_, a — j = 0, it follows thata; = 0. Therefore, all the;s are zero and thev; } are

linearly independent, forming a baselRf.

Q.ED
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