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TREE-STRUCTURED SMOOTH TRANSITION REGRESSION MODELS BASED ON CART
ALGORITHM

JOEL CORR̂EA DA ROSA, ALVARO VEIGA, AND MARCELO C. MEDEIROS

ABSTRACT. The goal of this paper is to introduce a tree-based model that combines aspects of CART (Classi-

fication and Regression Trees) and STR (Smooth Transition Regression). The model is called the Smooth Tran-

sition Regression Tree (STR-Tree). The main idea relies on specifying a parametric nonlinear model through a

tree-growing procedure. The resulting model can be analyzed as a smooth transition regression with multiple

regimes. Decisions about splits are entirely based on a sequence of Lagrange Multiplier (LM) tests of hypothe-

ses. An alternative specification strategy based on a 10-fold cross-validation is also discussed and a detailed

Monte Carlo experiment is carried out to evaluate the performance of the proposed methodology in comparison

with standard techniques. The STR-Tree model outperforms CART when the correct selection of the architec-

ture of simulated trees is considered. Furthermore, the LM test seems to be a promising alternative to 10-fold

cross-validation. When put into proof with real datasets, the STR-Tree model has a superior predictive ability

than CART.

KEYWORDS. Regression-trees, CART, smooth transitions, nonlinear models, regression, modelling cycle, pre-

diction.

1. INTRODUCTION

IN RECENT YEARSmuch attention has been devoted to nonlinear modelling. Techniques such as artifi-

cial neural networks, nonparametric regression and recursive partitioning methods are frequently used to

approximate unknown functional forms. In spite of their success in various applications, frequently these

approaches lack interpretability due to the complexity of the final model. Some cases in which the fitted

model can be given a reasonable interpretation, there are no inferential procedures that guarantee the sta-

tistical significance of the parameters. The proposal of the present paper is the construction of a nonlinear

regression model that combines aspects of two well-known methodologies: Classification and Regression

Trees (CART) discussed in Breiman, Friedman, Olshen, and Stone (1984) and the Smooth Transition Re-

gression (STR) presented in Granger and Teräsvirta (1993), by taking advantages of their main capabili-

ties. Our model inherits from CART the simplicity and interpretability of the tree-based models while the

STR framework provides tools for inference-based decisions. The proposed model is called the Smooth

Transition Regression Tree (STR-Tree). The CART methodology represents a unification of all tree-based
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2 J. C. DA ROSA, A. VEIGA, AND M. C. MEDEIROS

classification and prediction methods that have been developed since a first approach presented by Morgan

and Sonquist (1963). It transformed the regression tree models in an important nonparametric alternative to

the classical methods of regression. Since then, the attractiveness of this methodology has motivated many

authors to create hybrid modelling strategies that merge tree techniques with known statistical methods.

See, for example, Segal (1992) in a context of longitudinal data analysis, Ahn (1996) for survival analysis,

and Cooper (1998) for time series analysis. Other approaches can be found in Ciampi (1991), Crowley and

Blanc (1993), and Denison, Mallik, and Smith (1998).

In our proposal, by allowing smooth splits on the tree nodes instead of sharp ones, we associate each

tree architecture with a smooth transition regression model and thus it turns possible to formulate a splitting

criteria that are entirely based on statistical tests of hypotheses. The Lagrange Multiplier (LM) test in

the context presented by Luukkonen, Saikkonen, and Teräsvirta (1988) is adapted for deciding if a node

should be split or not1. Here, the tree growing procedure is used as a tool for specifying a parametric

model that can be analyzed either as STR model or as a fuzzy regression (Jajuga 1986). In the former case,

we can obtain confidence intervals for the parameters estimates in the tree leaves and predicted values.

Decisions based on statistical inference also lessen the importance of post-pruning techniques to reduce the

model complexity. An alternative specification strategy based on a 10-fold cross-validation is considered.

An extension of the basic model to allow for the inclusion of categorical variables is also discussed. A

detailed Monte Carlo experiment is carried out to evaluate the performance of the proposed methodology in

comparison with standard techniques. The STR-Tree model outperforms CART when the correct selection

of the architecture of simulated trees is considered. Furthermore, the LM test seems to be a faster and

promising alternative to 10-fold cross-validation. When put into proof with real datasets, the STR-Tree

model has a superior predictive ability than CART. A Matlab code for carrying out the modelling cycle

exists and can be obtained from the authors.

The paper is divided as follows. In Section 2, we briefly introduce some important regression tree con-

cepts and introduce the main notation. Section 3 brings the proposal of a tree-structured smooth transition

regression. Section 4 discusses the model building strategy and parameter estimation. The use of categori-

cal data is considered in Section 5. A Monte Carlo Experiment to evaluate the estimators properties and the

ability of the sequence of LM-type tests to identify right-sized trees is performed in Section 6. Examples

with five datasets are presented in Section 7. Finally, Section 8 concludes. A technical appendix provides

the proofs of the theorems.

1See Ter̈asvirta (1994), van Dijk, Teräsvirta, and Franses (2002), and the references therein for successful applications of similar
testing procedures.
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2. REGRESSIONTREES

A regression tree is a nonparametric model which looks for the best local prediction, or explanation, of

a continuous response through the recursive partitioning of the space of the predictor variables. The fitted

model is usually displayed in a graph which has the format of a binary decision tree with parent and terminal

nodes (also called leaves), and which grows from the root node to the terminal nodes. For example, Figure

1 displays a tree with three parent nodes and four leaves.

2.1. Mathematical Formulation. Let xt = (x1t, . . . , xmt)
′ ∈ X ⊆ Rm be a vector which containsm

explanatory variables for a continuous univariate responseyt ∈ R. The relationship betweenyt andxt

follows the regression model

yt = f(xt) + εt, (1)

where the functional formf(·) is unknown and there are no assumptions about the distribution of the

random termεt. Following Lewis and Stevens (1991), a regression tree model withK leaves is a recursive

partitioning model that approximatesf(·) by a general nonlinear functionH(xt; ψ) of xt and defined

by the vector of parametersψ ∈ Rr; r is the total number of parameters. UsuallyH(·) is a piecewise

constant function defined byK subregionski(θi), i = 1, . . . , K, of some domainK ⊂ Rm. Each region is

determined by the parameter vectorθi, i = 1, . . . , K, such that

f(xt) ≈ H (xt; ψ) =
K∑

i=1

βiIi(xt; θi), (2)

where

Ii(xt;θi) =





1 if xt ∈ ki(θi);

0 otherwise.

(3)

Note thatψ =
(
β1, . . . , βK , θ′1, . . . , θ

′
K

)′
. Conditionally to the knowledge of the subregions, the rela-

tionship betweenyt andxt in (1) is approximated by a linear regression on a set ofK dummy variables.

Figure 1 illustrates the features of a model provided by a regression tree that explains the relationship

between a response variabley and a set of two explanatory (predictor) variablesx1 andx2. The predicted

values fory are obtained through a chain of logical statements that split the data into four subsets.

The most important reference in regression tree models is the CART approach discussed in Breiman,

Friedman, Olshen, and Stone (1984). In this context, it is usual to define the subregionski, i = 1, . . . ,K,

in (2) by hyperplanes that are orthogonal to the axis of the predictor variables; see Figure 1. For example,

consider the simplest tree structure withK = 2 leaves and depthd = 1 as illustrated in Figure 2.
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FIGURE 1. Graphical Display of a Regression Tree.

FIGURE 2. Simplest tree structure.

The unknown functionf(xt) in (1) may be approximated by a constant model in each leaf, written as

yt = β1I(xt; s0, c0) + β2 [1− I(xt; s0, c0)] + εt, (4)

where

I(xt; s0, c0) =





1 if xs0t ≤ c0;

0 otherwise,

(5)

ands0 ∈ S = {1, 2, . . . , m}.
To mathematically represent more complex tree structures, we adopt a labeling scheme which is similar

to the one used in Denison, Mallik, and Smith (1998). The root node is at position0 and a parent node at

positionj generates the left-child node and right-child node at positions2j + 1 and2j + 2, respectively.

Consider a tree withN parent nodes. The variablesxsj , j = 1, . . . , N are usually calledsplitting variables.

The notation presented in this section will be used thorough the paper.

More complex trees are shown in the following examples.
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FIGURE 3. Regression tree with three terminal nodes representing (6).

FIGURE 4. Regression tree model with four terminal nodes representing (7).

EXAMPLE 1. Consider a regression tree defined by

yt = {β3I(xt; s1, c1) + β4 [1− I(xt; s1, c1)]} I(xt; s0, c0)+

β2 [1− I(xt; s0, c0)] + εt.

(6)

A graphical representation of (6) is illustrated in Figure 1. The tree induced by (6) has two parent nodes,

three terminal nodes (leaves), and the depth is equal to two.

EXAMPLE 2. Consider the following regression tree:

yt = {β3I(xt; s1, c1) + β4 [1− I(xt; s1, c1)]} I(xt; s0, c0)+

{β5I(xt; s2, c2) + β6 [1− I(xt; s2, c2)]} [1− I(xt; s0, c0)] + εt.

(7)

A graphical representation of (7) is illustrated in Figure 2. Model (7) has three parent nodes, four leaves,

and depth 2.
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Details about the tree growing procedure and the CART algorithm is presented in Breiman, Friedman,

Olshen, and Stone (1984).

3. TREE-STRUCTUREDSMOOTH TRANSITION REGRESSION(STR-TREE)

The main idea of the STR-Tree model is to take advantage of much of the CART structure presented

in Section 2, but also to introduce elements which make it feasible to use standard inferential procedures.

We intend to keep the interpretability of the tree-based models but to analyze them as a class of parametric

nonlinear models. The highly discontinuous functional form of the model fitted by the CART and the

strategy to decrease the sum of squared errors by splitting the sample recursively, pose a problem to test

the significance of the model and to make classical inference. The idea here is the same used in Suárez and

Lutsko (1989): the substitution of sharp splits in the CART model by smooth splits. Consider the simplest

tree with two terminal nodes generated as in (4). If we replace the indicator functionI(·) in (4) by a logistic

function defined as

G(xt; s0, γ0, c0) =
1

1 + e−γ0(xs0t−c0)
, (8)

we obtain

yt = β1G(xt; s0, γ0, c0) + β2 [1−G(xt; s0, γ0, c0)] + εt, (9)

where now we have the additional parameterγ0, called theslope parameter, which controls the smoothness

of the logistic function. This change causes an important difference from the CART approach: splitting

the root node will not separate two subsets of observations but it will create two fuzzy sets (Zadeh 1965)

where all observations will belong to, but with a different degree of membership. Note that the CART node

partition is nested in the smooth transition approach as a special case obtained when the slope parameter

approaches infinity. On the other hand, when the slope parameter approaches zero, it leads to the fuzziest

situation in which there is no gain in splitting the data. The parameterc0 is called thelocation parameter.

Assuming that the error term is a random variable with a known probability distribution, from (8) and (9)

it becomes possible, without loosing the flexibility of the CART approach, to interpret the regression tree

approach as a particular case of the STR models discussed in Granger and Teräsvirta (1993) and Teräsvirta

(1998)2.

2The STR-Tree model has also some similarities with the Multiple-Regime Smooth Transition Autoregressive (MRSTAR) model
discussed in van Dijk and Franses (1999).
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4. MODEL BUILDING

The tree growing process of the STR-Tree model is an adaptation of the modelling cycle described in

Ter̈asvirta (1994) and Teräsvirta (1998). As mentioned in the introduction, our goal is to build a coherent

strategy to grow the STR-Tree model using statistical inference. The “architecture” of the model has to be

determined from the data and we call this stagespecificationof the model, which involves two decisions:

the selection of the node to be split and the index of the splitting variable. The specification stage will

be carried out by sequence of Lagrange Multiplier (LM) tests following the ideas originally presented in

Luukkonen, Saikkonen, and Teräsvirta (1988). An alternative approach based on 10-fold cross-validation

is also possible; however the computational burden involved is dramatically high. See Sections 6 and 7

for further details. The specification stage also requiresestimationof the parameters of the model. What

follows thereafter isevaluationof the final estimated model. Tree models are usually evaluated by their

out-of-sample performance (predictive ability). In this paper we follow the literature and evaluate the STR-

Tree model in the same way. The construction of misspecification tests for the STR-Tree model in the same

spirit of Eitrheim and Ter̈asvirta (1996) is also possible, but this topic is beyond the scope of the paper.

Following the “specific-to-general” principle, we start the cycle from the root node (depth0) and the

general steps are:

(1) Specification of the model by selecting in the depthd, using the LM test, a node to be split (if not

in the root node) and a splitting variable.

(2) Estimation of the parameters of the logistic function and the constants within the nodes.

(3) Evaluation of the estimated model by checking if it is necessary to:

(a) Change the node to be split.

(b) Change the splitting variable.

(c) Remove the split.

(4) Use the final tree model for prediction or descriptive purposes.

Figure 5 illustrates the cycle. The modelling cycle begins from the root node (depth 0) by testing the

null hypothesis of a global constant model against the simplest STR-Tree model which contains 2 terminal

nodes.

As the selection of the tree architecture requires estimation of parameters, we now turn to this problem.
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FIGURE 5. Modelling cycle of STR-Tree model.

4.1. Parameter Estimation. Consider a full-grown STR-Tree model with depthd, K = 2d terminal nodes

(leaves), andN =
∑d

i=1 2i parent nodes, defined as

yt = H (xt; ψ) =
K∑

k=1

βK+k−2Bk(xt; θk) + εt, (10)

whereBk(xt;θk), k = 1, . . . , K, is defined by products of the logistic function. The parameter vector

ψ =
(
βK−1, . . . , β2K−2, θ

′
1, . . . , θ

′
K

)′
hasr = K + 2N elements. As an example, for a tree architecture

as in Figure 5, the STR-Tree model has depthd = 2, K = 4, N = 3, and the functionsBk(xt; θk),



TREE-STRUCTURED SMOOTH TRANSITION REGRESSION MODELS BASED ON CART ALGORITHM 9

k = 1, . . . , K, in (10) are written as

B1 (xt; θ1) = G (xt; s0, γ0, c0)G (xt; s1, γ1, c1) ;

B2 (xt; θ2) = G (xt; s0, γ0, c0) [1−G (xt; s1, γ1, c1)] ;

B3 (xt; θ3) = [1−G (xt; s0, γ0, c0)] G (xt; s2, γ2, c2) ; and

B4 (xt; θ4) = [1−G (xt; s0, γ0, c0)] [1−G (xt; s2, γ2, c2)] .

The total number of parameters to be estimated is10 and there are three splitting variables to be selected.

4.2. Main Assumptions and Asymptotic Theory. At this point we have to make the following set of

assumptions.

ASSUMPTION1. The sequence{xt}T
t=1 is formed by independent and identically distributed (IID) random

vectors and have a common joint distributionD on ∆, a measurable Euclidean space, with measurable

Radon-Nikod́ym density.

ASSUMPTION2. The sequence{εt}T
t=1 is formed by independent and normally distributed (NID) random

variables with zero mean and varianceσ2 < ∞, εt ∼ NID
(
0, σ2

)
.

ASSUMPTION3. Ther × 1 true parameter vectorψ∗ is an interior point of the compact parameter space

Ψ which is a subspace ofRr, ther-dimensional Euclidean space.

ASSUMPTION4. The parametersγi > 0, i = 1, . . . , N , whereN is the number of parent nodes. Further-

more, if for two adjacent parent nodes at positions2j+1 and2j+2, xs2j+1t = xs2j+2t, thencs2j+1 < cs2j+2 .

Assumption 1 states that we are working with IID data such as cross-sectional or a set of time-series with

IID observations. Although Assumption 2 may seem, in principle, a little restrictive, model (10) is still very

flexible. Furthermore, Assumption 2 allows us to work in a maximum likelihood framework that will be

equivalent to nonlinear least-squares. In the case of non-Gaussian errors, Assumption 2 may be substituted

by some moment conditions and a quasi-maximum likelihood framework should be used instead. The

main difference will be related to the computation of the covariance matrix of the parameter estimates. In

addition, a robust version of the tests presented latter can be constructed in the same spirit of Medeiros,

Ter̈asvirta, and Rech (2002), using the results developed in Wooldridge (1991). Assumption 3 is standard

and Assumption 4 guarantees that the STR-Tree model is identifiable.

As discussed previously, we estimate the parameters of our STR-Tree model by maximum likelihood

(ML) making use of the assumptions made ofεt. The use of maximum likelihood makes it possible to obtain



10 J. C. DA ROSA, A. VEIGA, AND M. C. MEDEIROS

an idea of the uncertainty in the parameter estimates through (asymptotic) standard deviation estimates. The

STR-Tree model is similar to many linear or nonlinear models in that the information matrix of the log-

likelihood function is block diagonal in such a way that we can concentrate the likelihood and first estimate

the parameters of the conditional mean. Conditional maximum likelihood is thus equivalent to nonlinear

least squares (NLS).

The nonlinear least squares estimator (NLSE) of the parameters equals

ψ̂ = argmin
ψ∈Ψ

QT (ψ) = argmin
ψ∈Ψ

T∑
t=1

qt(ψ), (11)

whereqt(ψ) = [yt −H(xt;ψ)]2.

Next, we discuss the existence, consistency, and asymptotic normality of the NLSE defined in (11).

4.2.1. Existence.The proof of existence of the NLSE is based on Lemma 2 of Jennrich (1969), which

establishes that under certain conditions of continuity and measurability on the mean square error (MSE)

function, the NLSE as in (11) exists. Theorem 1 state the necessary conditions for the existence of the

NLSE.

THEOREM 1. The STR-Tree model satisfies the following conditions and the NLSE exists.

(1) For eachxt ∈ X ⊆ Rm, functionHx (ψ) = H (xt;ψ) is continuous in compact subsetΨ of the

Euclidean space.

(2) For eachψ ∈ Ψ ⊆ Rr, functionHψ (X) = H (xt; ψ) is measurable in spaceX.

(3) εt are errors independent and identically distributed with mean zero and varianceσ2.

4.2.2. Consistency.The consistency of the NLSE was rigorously proved in Jennrich (1969) and Malinvaud

(1970). The former proves strong consistency while the latter weak consistency. Weak consistency is more

common in the literature and is often called by the simpler name of consistency. The main reason why

strong consistency, rather than weak consistency, is proved is that the former implies the latter and is often

easier to prove. We follow the results presented in Amemiya (1983) and state the following theorem that

gives the conditions under which the NLSE defined in (11) is strong consistent.

THEOREM 2. Under the Assumptions 1–5 the NLSEψ̂ is strong consistent forψ∗, i.e.,ψ̂
a.s.→ ψ∗.

4.2.3. Asymptotic Normality.Asymptotically normality of the NLSE was also carefully proved in Jennrich

(1969). We follow his results and the developments in Amemiya (1983) and state the following theorem.
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THEOREM 3. Under the Assumptions 1–5

T 1/2(ψ̂ −ψ∗) d→ N

(
0,− plim

T→∞
A(ψ∗)−1

)
, (12)

whereA(ψ∗) = 1
σ2T

∂2QT (ψ∗)
∂ψ∂ψ′ .

REMARK 1. The extension of the above theorems to the case of non-IID observations and to misspecified

models is relatively straightforward. The results of White (1982), White (1994), and Wooldridge (1994) can

be applied.

4.2.4. Concentrated Least-Squares.Conditional on the knowledge of the parametersθk in (10), k =

1, . . . , K, model (10) is just a linear regression and the vector of parametersβ = (βK−1, . . . , β2K−2)
′

can be estimated by ordinary least-squares (OLS) as

β̂ = [B(θ)′B(θ)]−1 B(θ)′y, (13)

wherey = (y1, . . . , yT )′, θ =
(
θ′1, . . . , θ

′
K

)′
, and

B(θ) =




B1(x1; θ1) · · · BK(x1; θK)
...

.. .
...

B1(xT ;θ1) · · · BK(xT ; θK)




.

The parametersθk, k = 1, . . . , K, are estimated conditionally onβ by applying the Levenberg-Marquadt

algorithm which completes theith iteration. As the NLS algorithm is sensitive to the choice of starting-

values, we suggest the use of a grid of possible starting-values.

4.3. Splitting the Nodes. We have a particular interest in the hypothesis concerning the significance of

splitting the root node. If we re-parameterize the model defined by (8)–(9) as:

yt = φ0 + λ0G(xt; s0, γ0, c0) + εt, (14)

whereφ0 = β2 andλ0 = β1−β2, we obtain a more parsimonious representation of the simplest STR-Tree

model3. In order to test the significance of the first split, a convenient null hypothesis isH0 : γ0 = 0

against the alternativeHa : γ0 > 0. An equivalent null hypothesis isH′0 : λ0 = 0. However, it is clear

in (14) that underH0, the nuisance parametersλ0 andc0 can assume different values without changing

3It becomes easier to note that (14) is a particular case of a neural network model with a single hidden layer (Hornik, Stinchombe, and
White 1989).
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the likelihood function. This poses an identification problem whose solution was first discussed by Davies

(1977). See also Davies (1987).

We adopt as a solution for this problem the one proposed in Luukkonen, Saikkonen, and Teräsvirta

(1988)4, that is to approximate the functionG(·) by a third-order Taylor expansion aroundγ = 0. After

some algebra we get

yt = α0 + α1xs0,t + α2x
2
s0,t + α3x

3
s0,t + et, (15)

whereαi, i = 0, 1, 2, 3, is a parameter that is function ofγ0, c0, φ0, andλ0, et = εt + λ0R(xt; s0, γ0, c0),

andR(xt; s0, γ0, c0) is the remainder.

Thus, the null hypothesis becomes

H0 : αi = 0, i = 1, 2, 3. (16)

Note that underH0, the remainder of the Taylor expansion vanishes andet = εt, so that the properties

of the error process remain unchanged under the null and thus asymptotic inference can be used. Finally, it

may be pointed out that one may also view (15) as resulting from a local approximation to the log-likelihood

function, which for observationt takes the form

lt = −1
2

ln (2π)− 1
2

ln σ2 − 1
2σ2

{
yt − α0 − α1xs0,t − α2x

2
s0,t − α3x

3
s0,t

}2
. (17)

At this point we make the following additional assumption to accompany the previous Assumptions

(2)–(4).

ASSUMPTION5. E|xs0t|δ < ∞, ∀ s0 ∈ S, for someδ > 6.

This enables us to state the following well-known result.

THEOREM 4. UnderH0 : γ0 = 0 and Assumptions (2)–(5), the LM type statistic

LM =
1
σ̂2

T∑
t=1

ε̂tν
′
t





T∑
t=1

νtν
′
t −

T∑
t=1

νth′t

(
T∑

t=1

hth′t

)−1 T∑
t=1

htν
′
t





T∑
t=1

νtε̂t, (18)

whereε̂t = yt − β̂0 is the estimated residuals under the null,σ̂2 = (1/T )
∑T

t=1 ε̂t
2, ht = 1, andνt =

(
xs0t, x

2
s0t, x

3
s0t

)′
, has an asymptoticχ2 distribution with3 degrees of freedom.

REMARK 2. Note that, underH0, β̂0 = 1
T

∑T
t=1 yt

p→ E (yt).

4See also Teräsvirta (1994)
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Until this point, we have just interpreted the simplest tree model as a particular case of the STR model

as in Granger and Teräsvirta (1993) and the testing strategy to split the root node corresponds to a linearity

test in which the linear model in question is a global constant model. However, the key idea is to consider

the basic testing procedure described above in a more complex framework. To give an example of a more

complex model, consider that the null hypothesis (16) was rejected and a STR-Tree model with two leaves

was consistently estimated. A natural way, within the tree framework, of considering a hypothesis of

misspecification is by formulating a new model that splits one between the two created nodes, say the left

child node, leading to the following model

yt =H(xt;ψ) + εt

= {β3G(xt; s1, γ1, c1) + β4 [1−G(xt; s1, γ1, c1)]}G(xt; s0, γ0, c0)+

β2 [1−G(xt; s0, γ0, c0)] + εt.

(19)

Therefore, rewriting (19) as

yt = [φ1 + λ1G(xt; s1, γ1, c1)] G(xt; s0, γ0, c0)+

β2 [1−G(xt; s0, γ0, c0)] + εt,

(20)

whereφ1 = β3 andλ1 = β3 − β4, a convenient null hypothesis isH0 : γ1 = 0.

However, under the null hypothesis, the model (20) can not be consistently estimated because of the nui-

sance parametersλ1 andc1. For solving this identification problem, we proceed as before and approximate

the functionG(·) by its third-order Taylor expansion aroundH0. After some algebra we get

yt =α0 + α1G (xs0t; γ0, c0) + α2G (xs0t; γ0, c0)xs1t+

α3G (xs0t; γ0, c0) x2
s1t + α4G (xs0t; γ0, c0)x3

s1t + et,

(21)

whereet = εt + R (xt; s1, γ1, c1); R (xt; s1, γ1, c1) is the remainder. The decision for splitting the node

corresponds to the rejection of the following null hypothesis

H0 : αi = 0, i = 2, 3, 4. (22)

The test statistic is (18) with

ht =
∂H(xt; ψ)

∂ψ′

∣∣∣∣∣
H0

=

(
1, G (xs0t; γ̂0, ĉ0) ,

∂G (xs0t; γ0, c0)
∂γ0

∣∣∣∣∣
H0

,
∂G (xs0t; γ0, c0)

∂c0

∣∣∣∣∣
H0

)′

(23)
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and

νt =
(
G (xs0t; γ̂0, ĉ0)xs1t, G (xs0t; γ̂0, ĉ0)x2

s1t, G (xs0t; γ̂0, ĉ0) x3
s1t

)′
. (24)

From the assumption of normality of the error term, the information matrix is block diagonal and thus

we can assume that the error variance is fixed. If we use the F-version of the LM-type test, from the score

vector, under the null hypothesis, we can see that the decision statistic may be calculated according to the

following steps:

(1) Estimate the STR-Tree model under the null hypothesisH0 and compute the residualŝεt. Compute

the sum of the squared residualsSSR0 =
∑T

t=1 ε̂2
t .

(2) Regresŝεt on ht andνt. Compute the sum of squared residuals obtained from this regression,

SSR1 =
∑t

t=1 û2
t .

(3) Compute theχ2 statistic

LMχ = T
SSR0 − SSR1

SSR0
, (25)

or theF version of the test

LMF =
(SSR0 − SSR1) /3

SSR1/(T − 7)
, (26)

whereT is the sample size. Under the nullLMχ is asymptotically distributed as aχ2 distribution

with 3 degrees of freedom andLMF has an asymptoticF distribution with3 andT − 7 degrees of

freedom.

Hereafter, the idea is to carry out a sequence of LM-type tests to grow the tree model in the same format as

the one presented above and the general form of the test statistic when testing a model withj nodes against

an alternative withj + 1 nodes is given by:

LM =
(SSR0 − SSR1) /3
SSR1/[T − (p + 3)]

, (27)

wherep is the total number of elements of the vectorht.

The modelling strategy is described in the following sections.

4.3.1. Modelling Cycle from the root node (depth 0).The decision to split the root node is based on the

following steps.

(1) For each explanatory variable, apply the LM-type test described above and select the variablexs0t

that generates the lowestp-value below a specified levelα.
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(2) Conditional to the choice ofs0, estimate the vector of parametersψ = (γ0, c0, β1, β2)
′ by concen-

trated QML.

(3) Evaluate the estimated model by testing the hypothesis (conditional onγ0 andc0)

H01 : β1 = 0

H02 : β2 = 0

H03 : β1 − β2 = 0|β1, β2 6= 0

(28)

against bilateral alternatives. If at least one among the evaluated hypothesis do not reject the null,

the cycle returns to the specification stage and the next splitting variable attached to the ranking of

p-values is selected. In case of all candidates variables do not produce a significant split, the root

node is declared as terminal and the global constant model is selected as the best model. Otherwise,

two children nodes are generated to compose the first depth of the tree.

4.3.2. Modelling Cycle from the 1st depth.After the tree has started to grow from the root node, the first

depth is created and the cycle continues by testing for the adequacy of splitting one between the two children

nodes. The null hypothesis in this test concerns the conditional linear model and the alternative brings the

inclusion of a nonlinear term that is responsible for splitting the node. From now on, besides selecting a

splitting variable, we shall also select which one between the two created nodes shall be split at the first

place.

(1) For each combination of splitting variable index inS = {1, 2, . . . , m} and node number inD1 =

{1, 2}, apply the LM-type test and select the indexesj1 ∈ D1 andsj1 ∈ S that generates the lowest

p-value below a pre-specified significance level.

(2) Estimate the parameters of the model.

(3) We evaluate the model by testing the null hypothesis:

H01 : β2j1+1 = 0

H02 : β2j1+2 = 0

H03 : β2j1+1 − β2j1+2 = 0|β2j1+1, β2j1+2 6= 0

(29)

Without finding significance in all tests above, the model has to be re-specified by choosing a new

combination of a node and splitting variable index. If the split is accepted, then the cycle returns to the1st

step by applying the LM test for testing the model with 3 terminal nodes against the alternative that splits

the nodej2 ∈ D1−{j1}. The2nd depth will be complete whether both nodesj1 andj2 produce significant
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splits. In case ofj1 to be the only node to generate children nodes, the2nd depth will be composed of two

nodes whose numbers are2j1 +1 and2j1 +2. If there is no significant split, the tree growing process stops.

4.3.3. Modelling Cycle from thekth depth.The execution of the algorithm in a general depthk is straight-

forward.

(1) Apply the LM test to all combinations of splitting variables indexes and nodes in the setDk

which contains all numbers of children nodes that compose thekth depth. Note thatDk ⊆
{
2k − 1, 2k, . . . , 2k+1 − 2

}
.

(2) Selectj1 ∈ Dk andsjk
∈ S by the rank of significantp-values obtained through the LM-type test.

(3) Estimate the parameters of the model.

(4) Evaluate the model by checking thet-values of the constants within the generated nodes and the

significance of the difference between them. The cycle in this depth is executed iteratively by

testing, and if necessary, splitting the nodes according to the sequence:

j2 ∈ D1 − {j1}

j3 ∈ D1 − {j1, j2}

j4 ∈ D1 − {j1, j2, j3}

· · ·

Reaching a point in which there is no more significant splits, the algorithm is addressed to work on the

(k + 1)th depth. The whole cycle ends when a determined depth do not produce children nodes.

4.4. Sequential Tests.To achieve the final tree model, we perform a sequence ofn correlated LM-type

tests of hypothesis in whichn is a random variable. During this sequence, the harmful decision to be taken,

according to the principle of tree-complexity as function of the number of terminal nodes, is to decide

erroneously for splitting a node. Due to multiplicity from repeated significance testing, we have to control

the overall type I error under the risk of an overstatement of the significance of the results (more splits are

reported to be significant than it should be). To remedy this situation, we adopt the following procedure.

For thenth test in the sequence, if it is performed in thedth depth the significance level isα(d, n) = α
nd .

In the root node(d = 0) and we apply the first test(n = 1) for splitting the node at a significance

level α, if the null is rejected than we the second(n = 2) test is applied in the1st depth(d = 1) and the

significance level isα/2. Then, if the tree grows by completing all depths, the significance level evolves

like α/3, α/42, α/52, α/63, α/73, α/84, α/94, etc. Figure 6 exhibits a hypothetical example of how could
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FIGURE 6. Significance level while testing for splitting the nodes - hypothetical example.

it be the evolution of the significance level during the tree growing process. The arrows in Figure 6 show

the order in which the nodes are tested for splitting in each depth of the tree. By forcing the test to be

more rigorous in deeper depths, we create a procedure that diminishes the importance of using post-pruning

techniques.

There are several alternatives to control the overall size of the sequence of tests (Hochberg 1988, Ben-

jamini and Hochberg 1995, Benjamini and Hochberg 1997, Benjamini and Yekutieli 2000, Benjamini and

Yekutieli 2001, Benjamini and Liu 1999). However, by our experiments, the simple methodology described

above seems to work quite well and the comparison between different techniques to reduce the nominal size

of each test is beyond the scope of the paper. In practice, different methodologies can be tested and possible

different architectures may be compared by their out-of-sample performance.

5. CATEGORICAL DATA

In principle the developments of the previous sections did not take into account the case where some

of the variables are categorical. However, the extension to include categorical data is straightforward. The

main idea is to replace the constant model in each terminal node by a linear regression on a constant and a

set of dummy variables representing the categorical data.

Letxt = (z′t,w′
t)′, werezt is a vector of categorical variables andwt is a vector of continuous variables.

In addition, letDt(zt) be a vector of dummy variables representing the categorical vectorzt. In that case

model (10) may be rewritten as:

yt = H (xt; ψ) =
K∑

k=1

β′K+i−1Dt(zt)Bk(wt; θk) + εt. (30)
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This is a similar approach as the one used in the STR literature to handle the presence of dummy regres-

sors.

6. MONTE CARLO EXPERIMENT

A Monte Carlo experiment was designed with two objectives. The first one is to study the small sample

properties of the nonlinear least squares estimators for the parameters of the STR-Tree simulated models.

The second is to investigate the performance of three different tree-growing algorithms:

CART:: We use the most traditional CART tree growing strategy. This consists of growing the max-

imum sized tree, using as a stopping rule the minimum of five observations per terminal node, and

then prune the tree using the 1-SE rule with errors estimates obtained by 10-fold cross validation.

STR-Tree/LM:: As described in previous sections, this strategy uses the LM type test to select si-

multaneously the node and splitting variable. This specification strategy does not need pruning and

the control of the overall error is done by the reducing the test size during the tree growing.

STR-Tree/CV:: In a trial to use a strategy similar to CART one, we carry at each node a 10-fold

cross-validation experiment to select the splitting variable that minimizes the overall MSE (Mean

Square of Errors) evaluated out-of-sample. When the MSE plus a standard error is greater than the

one found in the previous split, the node is declared terminal.

We simulated two small tree architectures which are illustrated in Figure 7. By the selection of these

two small tree architectures, which go beyond the smallest one which contains two nodes, we simulated

models for different combinations of the smoothness parameters at the parent nodes. Thus, four models

were simulated for Architecture I which contains three terminal nodes and two models were simulated for

Architecture II which has four terminal nodes. Basically, we considered in Table 1 two types of splits,

smooth(γi = 0.5) and sharp(γi = 5) that were mixed in different splitting sequences during the tree

growing. Model 1.1, for example, is obtained from two consecutive smooth splits and Model 1.4 brings a

smooth split at the root node, followed by a sharp split.

(a) Architecture I (b) Architecture II

FIGURE 7. Small simulated trees architectures
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TABLE 1. Smoothness of the splits in the STR-Tree simulations

Model First Split Second Split Third Split
Architecture I 1.1 γ0 = 0.5 γ2 = 0.5 —
(3 leaves) 1.2 γ0 = 5 γ2 = 5 —

1.3 γ0 = 5 γ2 = 0.5 —
1.4 γ0 = 0.5 γ2 = 5 —

Architecture II 2.1 γ0 = 0.5 γ1 = 0.5 γ2 = 0.5
(4 leaves) 2.2 γ0 = 5 γ1 = 5 γ2 = 5

There were 1000 replications for each model with sample sizesT = 150 andT = 500, in a trial to repre-

sent small and large samples. As the main concern was about the effects of the smoothness parameter, there

was no much variation in the choice of the constants within the nodes. Three uncorrelated and normally

distributed predictor variables were used as candidates to be the splitting variables:x1 ∼ N(10, 2.56);

x2 ∼ N(90, 9); andX3 ∼ N(25, 4). The error term is defined asεt ∼ N(0, 1). Since the smoothness pa-

rameter is not scale-free, we standardized the argument of the logistic function, dividing it by the standard

deviation of the splitting variable. The other parameters were fixed according to Table 2.

TABLE 2. Parameters in the simulated STR-Tree models

Architecture I Architecture II
Constants β1 = 6 β3 = 6; β4 = 3.2

in the nodes β5 = 1.8; β6 = −1.5 β5 = 1.8; β6 = −1.5

Location parameters c0 = 83; c2 = 10 c0 = 90; c1 = 10; c2 = 25

Indexes of splitting variables s0 = 2; s2 = 1 s0 = 2; s1 = 1; s2 = 3

As shown in Table 2, the location parameters were chosen strategically at median points for simulations

under Architecture II. The aim was to provide a minimum amount of information within the created nodes.

The only concern related to the choice of the constants within the nodes was to yield different local models.

From all combinations presented above, there are completely different relationship among the response

variable and the set of explanatory variables.

Unlike CART that fits a multidimensional histogram to data, the STR-Tree model represents a surface

fitting. The difference among models for Architecture I can be seen in in Figure 8 that brings the response

surface for each one of the simulated trees. When all splits are sharp such as in model 1.2, the surface looks

like a bivariate histogram. On the other hand, a sequence of extremely smooth splits (Model 1.1) produces

a relationship between the response and regressors that is almost linear.

6.1. Parameter Estimation. In this Section, we present and discuss the empirical results obtained with

the use of the NLSE in the simulated models. The results are described through descriptive statistics such

as the sample mean and median for verifying the central tendency.
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(b) Model 1.2
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(c) Model 1.3
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(d) Model 1.4

FIGURE 8. Geometric Features of the Simulated Models (Architecture I)

Two measures were chosen to evaluate the variability of the estimates; the sample standard deviation

and, as a more robust alternative, the median absolute deviation around the median (MAD):

MAD(θ̂) = median
(∣∣∣θ −median(θ̂)

∣∣∣
)

. (31)

Estimation of the slope parameterγ results in outliers and extreme values for some simulations, hence

the sample mean of the estimates is strongly affected by them. It is clear in Tables 3 and 4 that the parameter

γ, for some of the replications, is strongly overestimated whenT = 150. In these cases, the median seems

to be a more robust measure of central tendency. Such problem does not occur with the location parameter

whose sample mean and median are closer to the true value. Nevertheless, the variability of the location

parameter estimator increases whenever there is a smooth split. As a consequence of this, the estimates

of the parameters within the nodes are also affected, mainly in small samples. Thus, as it happened with

Model 1.3, the sample mean and median for the local model estimates deviate from the population values.
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TABLE 3. Descriptive Statistics for Estimation in Architecture I

Model 1.1 T = 150 T = 500

Mean Std. Dev. Median MAD Mean Std. Dev. Median MAD
γ̂0 (0.5) 0.518 0.112 0.502 0.066 0.503 0.055 0.498 0.036
ĉ0 (83) 82.988 0.476 83.002 0.313 83.010 0.236 83.015 0.150
γ̂2 (0.5) 25183 207.942 0.570 0.268 0.533 0.178 0.522 0.113
ĉ2 (10) 10.020 2.255 10.036 0.694 10.032 0.812 10.006 0.372
β̂1 (6) 6.016 0.364 6.007 0.229 6.004 0.173 5.996 0.113
β̂5 (1.8) 2.187 1.531 1.734 0.526 1.895 0.567 1.766 0.252
β̂6 (-1.5) -1.915 1.510 -1.452 0.512 -1.623 0.630 -1.472 0.250
Model 1.2 T = 150 T = 500

Mean Std. Dev. Median MAD Mean Std. Dev. Median MAD
γ̂0 (5) 17.059 60.519 5.254 2.297 6.190 9.580 5.154 1.126
ĉ0 (83) 83.035 0.183 83.019 0.097 83.008 0.071 83.002 0.042
γ̂2 (5) 35.672 319.697 5.581 1.642 11.260 153.725 5.158 0.767
ĉ2 (10) 10.002 0.099 10.004 0.066 9.998 0.051 9.997 0.035
β̂1 (6) 6.012 0.189 6.013 0.128 5.996 0.106 5.998 0.072
β̂5 (1.8) 1.789 0.159 1.792 0.105 1.799 0.088 1.801 0.056
β̂6 (-1.5) -1.501 0.161 -1.497 0.102 -1.501 0.087 -1.496 0.058
Model 1.3 T = 150 T = 500

Mean Std. Dev. Median MAD Mean Std. Dev. Median MAD
γ̂0 (5) 10.917 21.949 5.288 1.693 5.852 9.369 5.100 0.870
ĉ0 (83) 83.006 0.146 82.998 0.073 82.999 0.061 82.998 0.040
γ̂2 (0.5) 16.131 126.012 0.542 0.238 0.526 0.171 0.520 0.107
ĉ2 (10) 10.062 2.1281 9.969 0.707 10.003 0.964 10.007 0.368
β̂1 (6) 6.009 0.193 6.007 0.126 5.999 0.102 5.998 0.064
β̂5 (1.8) 2.204 1.420 1.766 0.509 1.953 0.739 1.785 0.243
β̂6 (-1.5) -1.955 1.595 -1.441 0.464 -1.653 0.732 -1.483 0.246
Model 1.4 T = 150 T = 500

Mean Std. Dev. Median MAD Mean Std. Dev. Median MAD
γ̂0 (0.5) 0.527 0.145 0.505 0.0709 0.506 0.066 0.503 0.043
ĉ0 (83) 83.045 0.513 83.023 0.342 83.011 0.277 83.020 0.183
γ̂2 (5) 45.670 386.809 5.402 1.779 9.213 110.411 5.077 0.741
ĉ2 (10) 10.002 0.111 10.005 0.072 9.999 0.051 9.999 0.032
β̂1 (6) 6.004 0.357 5.984 0.223 6.000 0.188 5.994 0.123
β̂5 (1.8) 1.778 0.182 1.789 0.117 1.791 0.096 1.795 0.066
β̂6 (-1.5) -1.511 0.219 -1.505 0.145 -1.503 0.116 -1.500 0.078

In general, the estimates, except for the smoothness parameter, are more precise in trees simulated with

sharp splits. When mixing different types of splits, the results pointed out that a smooth split followed by

a sharp split produces better results. In this situation, there are more observations left to be modeled after

the first split. Finally, an important aspect of the Monte Carlo Experiment was the indication that the NLS

estimates converged, as expected, to the true value of the parameter whenever the sample size increased.

6.2. Tree Architecture Specification by Different Algorithms. We show in Table 5 and Table 6, the

performance of the three proposed algorithms to identify the simulated STR-Tree models. The results are

presented in more detail in Appendix B.

When all partitions involved only sharp splits, the STR-Tree models yielded more than95% of correct

specifications, independently of the simulated architecture and whenT = 150 the sequence of LM tests
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TABLE 4. Descriptive Statistics for Estimation in Architecture II

Model 2.1 T = 150 T = 500

Mean Std. Dev. Median MAD Mean Std. Dev. Median MAD
γ̂0 (0.5) 0.693 3.261 0.510 0.075 0.508 0.068 0.504 0.043
ĉ0 (90) 90.017 0.542 89.998 0.380 89.999 0.305 89.994 0.198
γ̂1 (0.5) 46.594 397.130 0.805 0.531 17.417 253.162 0.557 0.188
ĉ1 (10) 10.104 2.135 10.095 1.028 9.962 1.311 9.942 0.578
γ̂2 (0.5) 11.897 171.624 0.549 0.197 0.535 0.173 0.512 0.100
ĉ2 (25) 24.997 1.953 25.031 0.781 24.990 0.710 24.997 0.358
β̂3 (6) 6.104 1.215 5.730 0.479 6.132 0.762 5.956 0.344
β̂4 (3.2) 3.045 1.261 3.429 0.445 3.102 0.729 3.271 0.323
β̂5 (1.8) 2.061 1.155 1.773 0.372 1.854 0.437 1.797 0.201
β̂6 (-1.5) -1.777 1.091 -1.520 0.423 -1.555 0.451 -1.491 0.205
Model 2.2 T = 150 T = 500

Mean Std. Dev. Median MAD Mean Std. Dev. Median MAD
γ̂0 (5) 70.192 1276.098 5.530 2.998 25.373 238.576 5.080 1.389
ĉ0 (90) 90.009 0.238 90.002 0.130 90.003 0.116 89.997 0.065
γ̂1 (5) 104.765 527.811 6.993 3.932367.216 4863.138 5.471 1.470
ĉ1 (10) 9.997 0.157 9.999 0.094 10.005 0.082 10.006 0.056
γ̂2 (5) 76.126 553.641 6.700 3.596 55.747 323.296 5.207 1.261
ĉ2 (25) 24.995 0.182 24.999 0.103 25.001 0.085 24.999 0.053
β̂3 (6) 6.004 0.218 6.004 0.132 5.990 0.124 5.988 0.084
β̂4 (3.2) 3.210 0.209 3.216 0.139 3.213 0.115 3.216 0.073
β̂5 (1.8) 1.790 0.194 1.782 0.125 1.789 0.099 1.794 0.067
β̂6 (-1.5) -1.494 0.204 -1.487 0.128 -1.492 0.116 -1.493 0.079

TABLE 5. Percentage of Correct Specifications in Trees Simulated for Architecture I

T = 150 T = 500

Smoothness Parameters CART STR-Tree/LM STR-Tree/CVCART STR-Tree/LM STR-Tree/CV
γ0=0.5γ2=0.5 7.7% 34.7% 6.4% 23% 84.2% 15.1%

γ0=5 γ2=5 8.4% 98.4% 89.9% 0% 97.8% 96.3%
γ0=5 γ2=0.5 16.4% 85.4% 42.5% 0.1% 99.1% 80.6%
γ0=0.5γ2=5 37.8% 45.8% 38.4% 3.5% 6.1% 11.4%

TABLE 6. Percentage of Correct Specifications in Trees Simulated for Architecture II

T = 150 T = 500

Smoothness Parameters CART STR-Tree/LM STR-Tree/CVCART STR-Tree/LM STR-Tree/CV
γ0 = 0.5 γ1 = 0.5 γ2 = 0.5 0.8% 4% 0.6% 4.3% 61.1% 1.3%

γ0 = 5 γ1 = 5 γ2 = 5 25.9% 98.3% 76.7% 0% 98% 94.8%

produced significantly better results than 10-fold cross-validation. ForT = 500 the performance of both

are comparable, being the LM test slightly better. On the other hand, all strategies faced more trouble to

specify correctly trees which were grown from smooth splits. A very smooth split followed by a sharp

one increased the number of misspecifications; see Appendix B for details. However the STR-Tree model

specified by the LM test outperforms it competitors in most of the cases.

The decision to generate trees with a highly smooth transition function at the first node, turned the

specification task very difficult for all algorithms, even so the STR-Tree/LM could perform quite good in

large samples. The main problem for this algorithm occurred in the situation involving a very smooth split at



TREE-STRUCTURED SMOOTH TRANSITION REGRESSION MODELS BASED ON CART ALGORITHM 23

the root node followed by a sharp split in the subsequent node. It could specify neither the tree architecture

nor the splitting variables.

Whenever the CART algorithm was submitted to specify smooth trees, it tended to create less nodes than

it was expected, or even to do not produce leaves. In the opposite situation where the splits were sharp, even

the post-pruning procedure was not able to avoid overfitting.

The strategy to use a 10-fold cross-validation experiment during the specification seems to produce re-

sults in the STR-Tree algorithm which are similar to CART ones. Although the overfitting is not so dramatic

as in the CART case, when the splits were sharp, the algorithm tended to create, mainly in small samples,

trees which are larger than expected. With large samples and sharp splits, the specification performance is

comparable to the one done by the sequence of LM-type tests, but the computational burden is considerably

high.

7. REAL EXAMPLES

We present in this section applications of the proposed methodology to some datasets, including famous

benchmarks. A brief description of the data is given below.

• Boston Housing – Housing values in 506 census tracts of Boston. This is the same dataset used

in Breiman, Friedman, Olshen, and Stone (1984) for explaining the principles of CART regression

trees.

• Cpus data – The Cpus data is discussed in Venables and Ripley (2002). The purpose of applying

regression trees methodology to this dataset is to provide a model that explains the performance of

209 different types of CPUs by some hardware characteristics.

• Car sales in USA in 1993 – This data were taken from MASS library in R software and it describes

the prices and other 25 variables of 93 new cars models for the 1993 year in the United States.

• Auto imports – This dataset was taken from Ward’s 1985 Automotive Yearbook and consists of

195 prices of cars followed by some features such as: fuel consumption, length, width, engine size,

among others. The information set is similar to the previous dataset, but there are more continuous

variables to be included in a regression model.

• Abalone data – This is a dataset originated from Biology and the objective of applying regression

analysis is to predict the age of an abalone from a set of physical measurements. There are 4177

cases and 7 continuous predictors for this dataset that is available at the UCI repository.

By choosing the datasets above we considered different situations varying from small samples to large

samples and in some cases the regressors are highly correlated which brings difficulties to the selection
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of splitting variables. In all situations, we selected only the continuous variables to be splitting nodes

candidates. All datasets were submitted to the specification algorithms described in previous sections.

To get a honest picture of the performance reached by the specification algorithms, we conducted an

out-of-sample evaluation by repeating 10 times a leave-10-out experiment. This resulted in a total of 100

out-of-sample squared errors. Table 7 reports the median, the MAD, the maximum, and the minimum of

the squared errors over the 100 observations.

TABLE 7. Out-of-Sample squared error of CART and STR-Tree Models based on 100 observations.

CART
Dataset Median MAD Min. Max.
Boston 19.29 6.00 9.61 59.56
Cpus 4.15× 103 2.16× 103 471.68 4.85× 104

Car Sales 39.33 21.39 8.50 266.50
Auto Imports 7.75 2.53 2.39 19.55

Abalone 5.67 0.43 4.08 7.61

STR-Tree/LM
Dataset Median MAD Min. Max.
Boston 14.51 4.25 7.00 50.43
Cpus 2.38× 103 1.33× 103 257.92 1.92× 104

Car Sales 25.71 13.48 3.45 175.44
Auto Imports 9.17 2.11 4.37 27.07

Abalone 5.32 0.51 3.99 6.81

STR-Tree/CV
Dataset Median MAD Min. Max.
Boston 12.06 2.96 6.49 43.32
Cpus 3.05× 103 1.94× 103 280.00 2.67× 104

Car Sales 26.40 15.68 3.08 169.66
Auto Imports 11.27 3.05 3.94 33.32

Abalone 6.26 0.63 4.21 8.38

With the exception of the Auto Imports dataset, the STR-Tree model behaved better than CART. The

STR-Tree model specified by a sequence of LM tests outperformed the STR-Tree models specified with

cross-validations in four out five datasets.

However, if the number of terminal nodes is to be used for creating a cost-complexity measure, in the

same spirit as proposed by Breiman, Friedman, Olshen, and Stone (1984)), the STR-Tree/LM approach is

more parsimonious than CART in three out five cases as can be seen in Table 8. The STR-Tree/CV approach

generates smaller trees than the STR-Tree/LM in four out five cases. Table 8 reports the median, the MAD,

the minimum, and the maximum of the number of terminal nodes over 100 cases.

Table 9 shows the median, the MAD, the minimum, and the maximum of the computational time (in

seconds) to specify each model, over 100 cases. All the programs were coded in Matlab 6.5.1. In the CART

case, we used a customized function called treefit from the Statistical Toolbox. All the computations were

carried out in a Pentium IV, 2.8 GHz with 1 Gb of RAM. It can be observed by inspection of Table 9 that
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TABLE 8. Number of Terminal Nodes Specified by CART and STR-Tree models based
on 100 observations.

CART
Dataset Median MAD Min. Max.
Boston 7 1 4 15
Cpus 5 1 2 11

Car Sales 3 0 1 4
Auto Imports 9 2 3 16

Abalone 11 1.5 7 16

STR-Tree/LM
Dataset Median MAD Min. Max.
Boston 9 1 4 12
Cpus 7 1 4 10

Car Sales 2 0 2 4
Auto Imports 4 0 4 7

Abalone 8 1 4 12

STR-Tree/CV
Dataset Median MAD Min. Max.
Boston 7 1 4 12
Cpus 3 0 3 9

Car Sales 2 0 2 3
Auto Imports 3 1 2 6

Abalone 2 0 2 10

the computational burden involved in the STR-Tree/CV approach is dramatically high. The STR-Tree/LM

strategy seems to be a very competitive alternative to CART.

TABLE 9. Time (in seconds) spent by CART and STR-Tree models based on 100 observations.

CART
Dataset Median MAD Min. Max.
Boston 29.69 0.94 22.85 40.43
Cpus 7.31 0.22 6.65 11.97

Car Sales 5.44 0.39 4.61 40.81
Auto Imports 11.02 0.58 8.07 12.36

Abalone 61.72 1.27 42.11 68.45

STR-Tree/LM
Dataset Median MAD Min. Max.
Boston 38.73 9.48 6.78 145.61
Cpus 28.80 5.06 17.17 66.56

Car Sales 10.93 2.30 1.23 43.52
Auto Imports 26.63 9.49 7.36 65.95

Abalone 91.06 15.56 64.13 495.61

STR-Tree/CV
Dataset Median MAD Min. Max.
Boston 1.07× 103 161 570.00 1.85× 103

Cpus 197.00 19.9 161.00 604.50
Car Sales 121.00 8.2 92.80 227.10

Auto Imports 393.30 92.2 231.90 824.50
Abalone 645.30 33.9 566.50 3.1202× 103
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8. CONCLUSIONS

In this paper, we proposed a new model combines aspects of CART (Classification and Regression

Trees) and STR (Smooth Transition Regression). The model is called the Smooth Transition Regression

Tree (STR-Tree) and the main idea relies on replacing the indicator function in the usual CART by a logistic

function. The resulting model can be analyzed as a smooth transition regression with multiple regimes. A

detailed analysis of the asymptotic properties of the parameter estimates was presented and a model building

procedure, based on a sequence of Lagrange Multiplier (LM) tests of hypotheses, was developed. An

alternative specification strategy based on a 10-fold cross-validation was also discussed and a Monte Carlo

experiment was carried out to evaluate the performance of the proposed methodology in comparison with

standard techniques. The STR-Tree model outperforms CART when the correct selection of the architecture

of simulated trees is considered. Furthermore, the LM test seems to be a promising alternative to 10-fold

cross-validation. In addition to that, the proposed estimation algorithm seems to work properly in small

samples. When put into proof with real datasets, the STR-Tree model has a superior predictive ability than

CART. Finally, our STR-Tree model can be used in a random forest framework (Breiman 2001).
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Appendix A. PROOFS

Appendix A.1. Proof of Theorem 1. Lemma 2 of Jennrich (1969) shows that the conditions (1)–(3) in Theorem 1 are

enough to guarantee the existence (and measurability) of the LSE (or the MLE in our case). In order to apply this result

to the STR-Tree model we have to check if the above conditions are satisfied.

Condition (3) in Theorem 1 is satisfied by assumption; see Assumption 2. It is easy to prove in our case that

H (xt; ψ) is continuous in the parameter vectorψ. This follows from the fact that, for each value ofxt, Bk (xt; θk) in

(10) depend continuously onθk, k = 1, . . . , K. Similarly, we can see thatH (xt, ψ) is continuous inxt, and therefore

measurable, for each fixed value of the parameter vectorψ. Thus (1) and (2) are satisfied.

Q.E.D

Appendix A.2. Proof of Theorem 2. Following Jennrich (1969) and Amemiya (1983),ψ
a.s.→ ψ∗ if the following

conditions hold:

(1) The parameter spaceΨ is compact.

(2) QT (ψ) is continuous inψ ∈ Ψ for all xt ∈ X and for allyt ∈ R. FurthermoreQT (ψ) is a measurable

function ofxt andyt for all ψ ∈ Ψ.

(3) plim
T→∞

T−1QT (ψ) exists, is non-stochastic, and converges uniformly inψ.

Condition (1) is satisfied by assumption; see Assumption 3.

Using the results of Theorem 2, Condition (2) is trivially satisfied.

In order to check if Condition (3) is satisfied we will follow the steps presented in Amemiya (1983). From (10) and

(11) we get

1

T
QT (ψ) =

1

T

T∑
t=1

ε2
t +

2

T

T∑
t=1

[H(xt; ψ
∗)−H(xt; ψ)] εt +

1

T

T∑
t=1

[H(xt; ψ
∗)−H(xt; ψ)]

2

≡ A1 + A2 + A3.

(A.1)
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It is straightforward to see that plim
T→∞

A1 = σ2 by the Law of Large Numbers. Furthermore, for fixedψ∗ andψ,

plim
T→∞

A2 = 0 follows from the convergence ofA3 by Chebyshev´s inequality:

Pr





[
T−1

T∑
t=1

[H(xt; ψ
∗)−H(xt; ψ)] εt

]2

> δ2



 <

σ2

δ2T 2

T∑
t=1

[H(xt; ψ
∗)−H(xt; ψ)]

2
. (A.2)

Since the uniform convergence ofA2 follows from the uniform convergence of the right-rand side of (A.2), it is

sufficient to show that the following condition is satisfied.

(3’) 1
T

∑T
t=1 H(xt; ψ1)H(xt; ψ2) converges uniformly inψ1, ψ2 ∈ Ψ.

Assumption 1, and the fact thatH(xt; ψ) ≤ β̃, whereβ̃ =
∑K

k=1 |βK+k−1| < ∞, Condition (3’) is satisfied; see

Jennrich (1969).

Finally we have to show the following condition is satisfied.

(3”) lim
T→∞

1
T

∑T
t=1 [H(xt; ψ

∗)−H(xt; ψ)] 6= 0 if ψ 6= ψ∗.

The above condition is satisfied by Assumption 5, which guarantees that the STR-Tree model is globally identified.

Q.E.D

Appendix A.3. Proof of Theorem 3. To prove the asymptotically normality of the NLSE we need the following

conditions in addition to the ones stated in the proof of Theorem 2.

(4) The true parameter vectorψ∗ is interior toΨ.

(5) The score vector satisfies
1√
T

∂QT (ψ∗)
∂ψ′

d→ N(0,C(ψ∗)),

where

C(ψ∗) = lim
T→∞

E

[
1

T

∂QT (ψ∗)
∂ψ

∂QT (ψ∗)
∂ψ′

]
.

(6) The Hessian
1

T

∂2QT (ψ∗)
∂ψ∂ψ′

p→ D(ψ∗),

where

D(ψ∗) = lim
T→∞

E

[
1

T

∂2QT (ψ∗)
∂ψ′∂ψ

]
.

Assumption 3 guarantees that Condition (4) is satisfied.

In order to check if Condition (5) is satisfied we have to analyze the behavior of

1√
T

∂QT (ψ∗)
∂ψ′ =

2√
T

T∑
t=1

εt
∂H(xt; ψ

∗)
∂ψ′ .

As, by Assumption 2,εt ∼ N(0, σ2), we have to show that

lim
T→∞

1

T

T∑
t=1

∂H(xt; ψ
∗)

∂ψ

∂H(xt; ψ
∗)

∂ψ′ ≡ H
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exists and is non-singular; see Amemiya (1983). First, note that

∂H(xt; ψ
∗)

∂ψ
=

(
B1(xt; θ

∗
1), . . . , BK(xt; θ

∗
K), β∗K−1

∂B1(xt; θ
∗
1)

∂θ′1
, . . . , β∗2K−2

∂BK(xt; θ
∗
K)

∂θ′1

)′
.

By the definition of the STR-Tree model,Bk(xt; θ
∗
k) ≤ 1, k = 1, . . . , K. FurthermoreBk(xt; θ

∗
k), k = 1, . . . , K, is

the product of at mostd (depth of the STR-Tree model) logistic functions ofxt, such that

∂Bk(xt; θ
∗
k)

∂θ′k
≤ a(xt; θ

∗
k) +

d∑
j=1

cj(xt; θ
∗
k)

∣∣xsj−1t

∣∣ , k = 1, . . . , K, (A.3)

wherea(xt; θ
∗
k) ≤ M < ∞ andcj(xt; θ

∗
k) ≤ 1, j = 1, . . . , d. Then, Assumption 2, the unique identification ofψ∗

(Assumption 5), and (A.3) guarantee that Condition (5) is satisfied.

To verify Condition (6) we have to show that:

(6’) The sum

1

T

T∑
t=1

∂H(xt; ψ)

∂ψ

∂H(xt; ψ)

∂ψ′

converges uniformly inψ in an open neighborhood ofψ∗.

(6”) The sum

1

T

T∑
t=1

[
∂2H(xt; ψ)

∂ψ∂ψ′

]2

converges uniformly inψ in an open neighborhood ofψ∗.

First, it is clear thatH(xt; ψ
∗) is twice continuously differentiable and following the same reasoning as before

∂2Bk(xt; θ
∗
k)

∂θk∂θ′k
≤ u(xt; θ

∗
k) +

d∑
i=1

d∑
j=1

vij(xt; θ
∗
k)

∣∣xsi−1t

∣∣ ∣∣xsj−1t

∣∣ , k = 1, . . . , K, (A.4)

whereu(xt; θ
∗
k) ≤ M ′ < ∞ andvij(xt; θ

∗
k) ≤ 1, j = 1, . . . , d. Then Condition (6”) is satisfied.

Q.E.D

Appendix A.4. Proof of Theorem 4. This is a standard result in regression analysis and the proof will be thus omitted.

Q.E.D
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Appendix B. ADDITIONAL SIMULATION RESULTS

TABLE 10. Tree architectures identified by the sequence of LM tests for Model 1.1.

Simulated Architecture Model 1.1

γ0 = 0.5 eγ2 = 0.5

T=150 T=500
Identified CART STR-Tree STR-Tree CART STR-Tree STR-Tree

Architectures (LM) (CV) (LM) (CV)

711 531 651 251 11 626

77 347 64 230 842 151

57 121 47 215 137 135

24 1 4 184 9 3

1 0 1 0 0 0

9 0 1 5 0 0

0 0 6 0 0 0

0 0 2 0 1 1

0 0 0 3 0 1

5 0 0 8 0 0

3 0 1 34 0 0

4 0 0 29 0 0
Other Architectures 109 0 223 41 0 83
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TABLE 11. Tree architectures identified by the sequence of LM tests for Model 1.2.

Simulated Architecture Model 1.2

γ0 = 5 eγ2 = 5

T=150 T=500
Identified CART STR-Tree STR-Tree CART STR-Tree STR-Tree

Architectures (LM) (CV) (LM) (CV)

0 0 6 0 0 0

84 984 899 0 978 963

0 0 0 0 0 0

220 13 10 1 17 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 43 0 3 13

0 2 26 0 2 1

1 0 11 0 0 5

7 0 3 0 0 4

39 1 2 3 0 2

198 0 0 49 0 2
Other Architectures 451 0 0 947 0 0
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TABLE 12. Tree architectures identified by the sequence of LM tests for Model 1.3.

Simulated Architecture Model 1.3

γ0 = 5 eγ2 = 0.5

T = 150 T = 500
Identified CART STR-Tree STR-Tree CART STR-Tree STR-Tree

Architectures (LM) (CV) (LM) (CV)

71 131 539 0 0 189

164 854 425 1 991 806

165 5 13 2 0 0

341 9 2 256 9 2

0 0 2 0 0 0

0 0 0 0 0 0

0 1 9 0 0 3

0 0 8 0 0 0

6 0 0 3 0 0

1 0 0 2 0 0

12 0 0 4 0 0

151 0 0 450 0 0
Other Architectures 89 0 2 282 0 0
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TABLE 13. Tree architectures identified by the sequence of LM tests for Model 1.4.

Simulated Architecture Model 1.4

γ0 = 0.5 eγ2 = 5

T=150 T=500
Identified CART STR-Tree STR-Tree CART STR-Tree STR-Tree

Architectures (LM) (CV) (LM) (CV)

139 0 168 0 0 23

378 458 384 35 61 114

15 14 137 0 0 63

265 521 211 241 935 744

0 0 7 0 0 1

0 0 6 0 0 0

0 0 10 0 0 0

0 2 5 0 0 0

3 2 30 5 0 20

24 1 12 23 0 7

34 2 5 119 2 3

38 0 4 128 2 1
Other Architectures 104 0 21 449 0 24
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TABLE 14. Tree architectures identified by the sequence of LM tests for Model 2.1.

Simulated Architecture Model 2.1

γ0 = 0.5 γ0 = 0.5 eγ2 = 0.5

T=150 T=500
Identified CART STR-Tree STR-Tree CART STR-Tree STR-Tree

Architectures (LM) (CV) (LM) (CV)

525 550 586 666 10 816

26 229 26 120 232 52

32 175 38 118 124 61

8 40 6 43 611 13

2 2 0 2 5 0

5 0 0 5 5 4

0 2 0 0 5 2

0 2 2 0 7 2

0 0 0 3 0 0

3 0 0 4 1 0

4 0 0 5 0 0

0 0 0 1 0 0
Other Architectures 395 0 342 33 0 50
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TABLE 15. Tree architectures identified by the sequence of LM tests for Model 2.2.

Simulated Architecture Model 2.2

γ0 = 5 γ0 = 5 eγ2 = 5

T=150 T=500
Identified CART STR-Tree STR-Tree CART STR-Tree STR-Tree

Architectures (LM) (CV) (LM) (CV)

0 0 8 0 0 4

3 0 15 0 0 1

0 0 7 0 0 0

259 983 767 0 980 948

0 0 0 0 0 0

0 0 3 0 0 0

0 0 12 0 0 2

0 0 1 0 0 0

132 3 59 11 6 4

6 2 32 0 4 14

3 2 32 0 2 2

153 10 40 22 8 2
Other Architectures 444 0 24 967 0 23

(J. C. da Rosa)DEPARTMENT OFSTATISTICS, FEDERAL UNIVERSITY OF PARANÁ , CURITIBA , PR, BRAZIL .
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