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1 Introduction

The last two decades have witnessed a vast development of nonlinear time series techniques. Among
the large amount of new methodologies, Feedforward Neural Networks (NN) form an important
class of nonlinear models that has attracted considerable attention in the literature. The use of
these models is mainly motivated by a mathematical result stating that NN models are a universal
approximator to any Borel-measurable function to any given degree of accuracy; see, for example,
Funahashi (1989), Cybenko (1989), Hornik, Stinchombe, and White (1989,1990), White (1990), or
Gallant and White (1992). One central topic in the NN literature is how to select the variables
and the number of hidden units in the model. Usually, this is done by some “rule of thumb”.
A vast number of models with different combinations of variables and number of hidden units are
estimated and the one with the best performance according to some known criterion is chosen as the
final specification. Several alternatives to this “rule of thumb” have appeared in the literature. One
strategy that turned out to be quite successful in a number of applications is Bayesian regularization,
proposed by MacKay (1992a,b). The fundamental idea is to find a balance between the number
of parameters and goodness of fit by penalizing large models. The objective function is modified
in such a way that the estimation algorithm effectively prunes the network by driving irrelevant
parameter estimates to zero during the estimation process.

The goal of this paper is to verify the effects of forecasting linear time series by neural network
models estimated with Bayesian regularization. A simple simulation experiment is designed to
compare the forecasting performance of neural networks and linear autoregressive models.

The plan of the paper is as follows. Section 2 describes Bayesian regularization and Section
3 discusses the issues related to forecasting from neural network models. A simulation study is

carried out in Section 4. Section 5 contains concluding remarks.

2 Bayesian Regularization

Cousider that the target time series {y;} is generated by the following stochastic process

Y = T(x4; ©) + &4, (1)



where T'(x4;®) is an unknown nonlinear function of the vector of variables x; defined by the
parameter vector @, and {e;} is assumed to be a sequence of independent, normally distributed
random variables with zero mean and finite variance, 0. Assume that x; € R? is formed by lagged
values of y;.

The goal of modelling techniques based on neural networks is to approximate (1) by the following

nonlinear specification

h
yo = Glzi9) = Xo + > _ Al (wizg — Bi) + (2)

i=1
where G (z¢; 9) is a nonlinear function of z;, defined by the parameter vector ¢ = [X, w/,...,w},B'],
where X = [Xg, ..., \), wi = [wi4,. .., wpl), and B = [B1,..., 0], The vector of variables z, € RP

is formed by lagged values of y; and its elements are called input variables.

Usually, 1 is estimated by nounlinear least-squares

~

N N
% = argminQy () = argmin » _ (u;)? = argmin » _ (y; — G(z4;9))°, (3)
¥ ¥ = L ——)

and the estimated residuals 4, = yy — G (zt;'{p) is a good approximation to the true error term
¢ in (1). In most applications a simple gradient descent algorithm (backpropagation) is used to
estimate ¥. However, the estimation of 4 is usually not easy (Hush 1999).

Approximating (1) by (2) poses two main problems. First, the true vector of variables x; is
not known in advance and the modeller has to determine which variables should be included in z;.
The second problem is related to the selection of the number of hidden units in (2). Selecting a
small number of hidden units leads to a poor approximation of the true data generating process.
On the other hand, a model with a large number of hidden units may be overfitted, generating bad
forecasts (poor generalization). In most neural network applications, it is customary to select the
variables and the number of hidden units of the neural network approximation using some “rule of
thumb”. A vast number of models with different combinations of variables and number of hidden
units are estimated and the one with the best performance according to some known criterion is

chosen as the final specification. Several alternatives to this “rule of thumb” have appeared in the



literature. The simplest one is the so-called early stopping. The key idea is to split the available
data into three subsets. The first subset is used to estimate the parameters. The second subset is
called the validation set. The error on the validation set is monitored during the estimation process.
When the network begins to overfit the data, the error on the validation set typically begins to rise.
When the validation error increases for a specified number of iterations, the estimation process is
discontinued, and the parameters estimated at the minimum of the validation error serve as final
estimates. The test set is not used for estimation, but it is saved for comparing different models. A
large number of different specifications are estimated and compared by means of the out-of-sample
performance. The model with the best forecasting performance is chosen as the final specification.

Pruning is another popular technique. The objective of pruning is to find the smallest network
that fits the data well and produces good forecasts. The main idea is to start with a large network
and sequentially reducing its size by removing some network connections. For a general survey on
pruning see Reed (1993); see also Siestma and Dow (1988), Siestma and Dow (1991), Kaashoek
and van Dijk (1998), andAnders and Korn (1999).

Another successful methodology, that is the main interest of this paper, is the Bayesian reg-
ularization approach proposed by MacKay (1992a.b). The fundamental idea is to find a balance
between the number of parameters and goodness of fit by penalizing large models. The objective
function is modified in such a way that the estimation algorithm effectively prunes the network by
driving irrelevant parameter estimates to zero during the estimation process. The parameter vector

1) is estimated as

~

P = arg;ninQN(ilf) = arg;nin (nQn (1) + QN (), (4)

where Qn(¢) = Z,{il (ys — G(z4; Q,ZJ))Q, QN (v) is the regularization or penalty term, and 7,y > 0
are objective function or regularization parameters. The usual penalty is the sum of squared

parameters
p P h
Qr(w) =D XN+ B+ > wis (5)

The forecasting ability of the neural network model depends crucially on the values of 1 and
-, especially in small samples. The relative size of the objective function parameters determines

the emphasis for the estimation process. If n << 7, then the estimation algorithm will derive



errors smaller, and the network may still overfit. If 7 >> ~, estimation will emphasize parameter
size reduction at the expense of network errors, thus producing a smoother function of the input
variables. The main problem with implementing regularization is setting the correct values for
the objective function parameters. One approach to determine the optimal objective function
parameters is the Bayesian framework, where the parameters of the network are assumed to be
random variables with well-specified distributions. The objective function parameters are related
to the unknown variances associated with these distributions and is estimated with statistical
techniques. Foresee and Hagan (1997) give a detailed discussion of the use of Bayesian regularization
in combination with the Levenberg-Marquardt optimization algorithm. The main advantage of this
method is that even if the neural network model is over-parametrized, the irrelevant parameter
estimates are likely to be close to zero and the model behaves like a small network.

Let D = (y,Z) represent the data set, where y = [y1,...,yn]) and Z = [z1...zn]. M a
particular neural network model. After the data is taken, the density function for the parameters
is updated according to Bayes’ rule

P (D, n, M) P (3], M)
P (D|n,~, M) ’

P (¢|D,n,~, M) = (6)

where P (1|y, M) is the prior density, which represents our knowledge of the parameters before
any data is collected, P (D|,n, M) is the likelihood function, which is the probability of the data
occurring given the parameters and P (D|n,~y, M) is a normalization factor, which guarantees that
the total probability is 1.

If the distribution of ¢; and the prior distribution for the parameters are both Gaussian, then
P (D|yp,n, M) and P (¢|n, M) are written as

P (D4, , M) = (%) exp(—nQn (%)) 7)

t\:|2

and

Nt~

P (pln, M) = (g) exp(—vQ (1), ®)

where L = (p+2) xh+1 is the total number of parameters in the neural network model. Substituting



(8) in (7), we get

(2) 7 exp [ (1@ () +7Q3 ()] ]
= Z(n,7)exp(=Qn(®)). (9)

P D M) =
(#ID, 7,7, M) Normalization Factor

In this Bayesian framework, the optimal parameters should maximize the posterior probability
P (¥|D,n,v, M), which is equivalent to minimizing the regularized objective function given in (4).
The regularization parameters are optimized by applying Bayes’ rule

P (Din,~, M) P (n,v|M)

P (D[M) (10)

P (n,y|D, M) =

Assuming a uniform prior density P (7, y|M) for the regularization parameters, then maximizing the
posterior is achieved by maximizing the likelihood function P (D], n, M). Since all probabilities

have a Gaussian form, the normalization factor is expressed as

P (Dln,y, M) =

PDly,n, M) P (ply, M) _ <§)_

P (¢|D,n,y, M) U
Since the objective function is quadratic in a small area surrounding a minimum point, we can
expand Qx (%) in a Taylor series around the minimum point of the posterior density, where the

gradient is zero. Solving for the normalizing constant yields

1/2

Z(m,7) = (2m)% [det ()7 exp(~Qu (%), (12)

where H is the Hessian matrix of the objective function. Inserting (11) into (10) we solve for the
optimal values for 7 and ~ at the minimum point. We do this by taking the derivative with respect

to the log of (11) at set them equal to zero. This yields

K

iz "
and

. N —&

= o) (14)



where k = L — 2ytrace(H) ! is called the effective number of parameters.

Following Foresee and Hagan (1997), here are the steps required for Bayesian optimization of

the regularization parameters, with the Gauss-Newton approximation to the Hessian matrix:

1.

Initialize 7, v, and the network parameters by the Nguyen-Widrow rule (Nguyen and Widrow
1990). After the first estimation step, the objective function parameters will recover from the

initial setting.

Take one step of the Levenberg-Marquardt algorithm to minimize the objective function
Qn ().

Compute the effective number of parameters £ = L — 2ytrace(H) ™! making use of the Gauss-
Newton approximation to the Hessian matrix available in the Levenberg-Marquardt opti-
mization algorithm: H = V2Qy () =~ 2vJ'J + 271y, where J is the Jacobian matrix of the

estimation set errors.

. Compute new estimates for the objective function parameters.

Now iterate steps 1 through 3 until convergence.

3 Forecasting with Neural Network Models

Multi-step forecasting with nonlinear models is more challenging than forecasting with linear mod-

els. See, for example, Granger and Terasvirta (1993, Section 8.1) for a general discussion.

Consider the simple nonlinear model defined as

ye = G(yr—139) + e, (15)

where G(-) is a nonlinear function with parameter vector 1. The term wu; is an independent

identically distributed random variable with zero mean and finite variance. The history of the

process up to time t is called Z;.

Due the fact that E(usy1|Z;) = 0, the optimal 1-step-ahead forecast of y;1; is given by

Gr1e = E(yer1|T) = Gy ), (16)
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which is equivalent to the optimal 1-step-ahead forecast when G(-) is linear.
For multi-step forecasts, the problem is much more complicated. For 2-step-ahead the optimal

forecast is given by

Jevope = E(yer2|Te) = E(G(yi1139)|Te)) = / G (Y13 %) f (wr41)dug 1, (17)

where f(uy1) is the density of u;y;. Usually the expression (17) is approximated by numerical
techniques, such as, for example, monte-carlo or bootstrap.
The monte-carlo method is a simple simulation technique for obtaining multi-step forecasts.

For model (15), the k-step-ahead forecast is defined as

M

N 1 NG

Yit+k|t = M Z yﬁgk‘ta (18)
i=1

where M is the number of replications and

@ﬁfﬁk‘t = G(Gprr—1)0); %) + fﬁzku- (19)

{Sﬂk' , 1s a random number drawn from a normal distribution with the same mean and standard

deviation as the in-sample estimated residuals.

4 Monte Carlo Simulation

In this section we report the results of a simulation study designed to find out the behavior of
neural networks estimated with Bayesian regularization when the main concern is multi-step fore-
casting. We simulate 500 replications of several first order autoregressive (AR) models defined by
the following equation

Yt = dyi—1 + e, & ~ NID(0,0.5%), (20)

where ¢ = 0.65,0.75,0.85,0.95. For each replication we discard the first 500 observations to avoid
any initialization effects.

The forecasting experiment can be viewed of consisting of the following steps.



1. For each monte-carlo iteration

(a) Generate a time series by the process defined in (20) with N observations, N = 150, 550.

(b) Split the sample into two subsamples: the estimation set (t = 1,...,%y) and the fore-
casting set (t =tg + 1,...,N), where ¢ty = 100, 500.

(c) Estimate the parameters of a neural network model with 5 hidden units and the first
six lags as input variables and a first order linear autoregressive model with drift using
only the estimation set.

(d) For ¢t = tg,...,N — 4, compute the k-steps-ahead out-of-sample forecasts, k = 1,...,4,
denoted by 9§k, and the associated forecast errors d; ;. Multi-step forecasts for the

neural network models are obtained by monte-carlo simulation with 500 iterations.

(e) For each forecasting horizon, compute the root mean square errors and the mean absolute

errors defined as

N—-4
1
_ ~2
RMSE(k) = N—t0—3t;v“t+klt’ (21)
1 N—4
MAE(k) = ————> |dy sy 22
(k) N—tﬂ—?’;,' t-+kt] (22)

2. Compute the mean and the standard deviation of the performance measures (21) and (22)

for each forecast horizon over the 500 replications.

Tables 1 and 2 show the mean and the standard deviation (between parenthesis) of the RMSE
and MAE over the 500 repetitions. The results in Table 1 concern time series with 100 observations
each and the ones in Table 2 refer to 500 observations. Observing Tables 1 and 2 we can see that
the linear AR(1) model produces forecasts with lower RMSE and MAE than the neural network
model and that the difference increases as ¢ tends to 1. When the sample size is increased the

difference between the forecasts made by the linear and the neural network models is smaller.

5 Conclusions

This paper has addressed the issue of forecasting linear time series with neural networks estimated

with Bayesian regularization. Bayesian regularization is a technique designed to avoid overfitting,



Table 1: Mean and standard deviation (between parenthesis) of the root mean square errors and the
mean absolute errors of multi-step forecasts over 500 replications of model (20) (100 observations).

é = 0.65 b= 0.75

Hori Neural Network Linear model Neural Network Linear model
orzon - TpNISE  MAE RMSE MAE RMSE  MAE RMSE MAE
1 0.5292  0.4252 0.5031 0.4036  0.5372 0.4308 0.5058  0.4056
(0.0694)  (0.0590) (0.0533)  (0.0449) (0.0792)  (0.0647) (0.0558)  (0.0465)

2 0.6275  0.5059 0.6004 0.4822  0.6731 0.5426 0.6352 0.5124
(0.0916)  (0.0762) (0.0750)  (0.0620) (0.1078)  (0.0894) (0.0861)  (0.0717)

3 0.6628  0.5360 0.6378 0.5133  0.7358  0.5942 0.6974 0.5631
(0.1071)  (0.0891) (0.0894)  (0.0732) (0.1260)  (0.1067) (0.1056)  (0.0886)

4 0.6762  0.5478 0.6541 0.5276  0.7662 0.6210 0.7302  0.5915
(0.1171)  (0.0985) (0.0981)  (0.0819) (0.1388)  (0.1180) (0.1197)  (0.1006)

¢ = 0.85 ¢ =0.95

Hori Neural Network Linear model Neural Network Linear model
orzon - TpNISE  MAE RMSE MAE RMSE  MAE RMSE MAE
1 0.5535 0.4437  0.5059 0.4060  0.6362 0.5128 05144 0.4141
(0.0987)  (0.0808) (0.0556)  (0.0480) (0.2570)  (0.2109) (0.0752)  (0.0648)

2 0.7340  0.5925 0.6686 0.5392  0.8979  0.7305 0.7237  0.5841
(0.1531)  (0.1287) (0.0978)  (0.0833) (0.3809)  (0.3208) (0.1409)  (0.1246)

3 0.8366  0.6803 0.7679  0.6222 1.0707  0.8794 0.8741 0.7121
(0.1832)  (0.1569) (0.1322)  (0.1135) (0.4573)  (0.3974) (0.2033)  (0.1833)

4 0.9015 0.7361 0.8318  0.6770 1.1952  0.9886 0.9924 0.8134
(0.2069)  (0.1790) (0.1587)  (0.1376) (0.5120)  (0.4529) (0.2593)  (0.2335)
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Table 2: Mean and standard deviation (between parenthesis) of the root mean square errors and the
mean absolute errors of multi-step forecasts over 500 replications of model (20) (500 observations).

¢ = 0.65 ¢ = 0.75

Hori Neural Network Linear model Neural Network Linear model
OrZon TPNISE  MAE RMSE MAE RMSE MAE RMSE MAE
1 0.5045  0.4047 0.4984  0.3999 0.5092  0.4082 0.5028  0.4030
(0.0554)  (0.0448) (0.0533)  (0.0434) (0.0561)  (0.0467) (0.0519)  (0.0434)

2 0.6028  0.4854 0.5952  0.4792 0.6324  0.5091 0.6237 0.5019
(0.0781)  (0.0661) (0.0745)  (0.0634) (0.0870)  (0.0725) (0.0799)  (0.0667)

3 0.6360  0.5127 0.6282  0.5060 0.6919  0.5585 0.6829 0.5511
(0.0934)  (0.0787) (0.0899)  (0.0759) (0.1084)  (0.0915) (0.1012)  (0.0854)

4 0.6470  0.5211 0.6406 0.5157 0.7217  0.5855 0.7129  0.5775
(0.0998)  (0.0836) (0.0969)  (0.0812) (0.1216)  (0.1046) (0.1148)  (0.0983)

¢ =0.85 ¢ =0.95

Horizo Neural Network Linear model Neural Network Linear model
HZOU - TRMSE  MAE RMSE MAE RMSE MAE RMSE MAE
1 0.5043  0.4049 0.4969  0.3986 0.5117 0.4106 0.5004  0.4009
(0.0574)  (0.0490) (0.0556)  (0.0448) (0.0627)  (0.0533) (0.0506)  (0.0438)

2 0.6602  0.5320 0.6501 0.5233 0.7085  0.5702 0.6897 0.5533
(0.0902)  (0.0775) (0.0818)  (0.0694) (0.1122)  (0.0957) (0.0891)  (0.0766)

3 0.7544  0.6091 0.7428  0.5992 0.8427 0.6822 0.8197 0.6616
(0.1138)  (0.0958) (0.1049)  (0.0875) (0.1556)  (0.1335) (0.1260)  (0.1079)

4 0.8123  0.6574 0.8004 0.6474 0.9467 0.7705 0.9204 0.7467
(0.1333)  (0.1131) (0.1260)  (0.1056) (0.1945)  (0.1678) (0.1606)  (0.1368)

where the fundamental idea is to find a balance between the number of parameters and the goodness
of fit by penalizing large models. The objective function is modified in such a way that the
estimation algorithm effectively prunes the network by driving irrelevant parameter estimates to
zero during the estimation process. The main advantage of this method is that even if the ANN
model is over-parametrized, the irrelevant parameter estimates are likely to be close to zero and
the model behaves like a small network. A simulation study has been carried out to evaluate
the performance of neural networks models in forecasting time series generated by a simple linear
autoregressive model. The results were compared with the ones obtained by a linear autoregressive
model with drift. The main conclusion is that, in small samples, neural networks produces forecasts
with larger RMSE and MAE statistics than the linear models, specially the the data generating
process is close to a unit-root model. When the sample size is increased the difference between

linear and nonlinear forecasts becomes smaller.
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