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Abstract

We establish a general Lagrangian for the moral hazard problem which generalizes the
well known first order approach (FOA). It requires that besides the multiplier of the first order
condition, there exist multipliers for the second order condition and for the binding actions of
the incentive compatibility constraint. Some examples show that our approach can be useful to
treat the finite and infinite state space cases. One of the examples is solved by the second order

approach. We also compare our Lagrangian with Mirrlees’.
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1. Introduction

The main tool in the literature to treat the moral hazard problem!® is the
first order approach (FOA) technique. Several authors have contributed in this
direction, in which J.A. Mirrlees was the pioneer (see Mirrlees (1975) and (1986)
and Rogerson (1985)). However, Mirrlees showed that in some cases this technique
can not be applied and Rogerson gave some sufficient conditions for it: the den-
sity of the output resulting from the agents’ action to have monotone likelihood
ratio property (MLRP) and the convexity of the distribution function property
(CDFP). The first condition has the fairly natural interpretation of more effort,
more output, and also serves to imply (when the FOA is valid) that the agents
payment is increasing in the observed output (see Milgrom (1981)). However, the
second condition is by no means as easy to accept: most of the distributions com-
monly occurring in statistics (and economics) do not have the CDFP. Jewitt (1988)
provides conditions which justify the FOA in the multi-statistic case and where
the CDFP is replaced by conditions that are valid for problems with more than
one variable (see also Sinclair-Desgagné (1994)). In these cases, the agent’s utility
function in the optimal contract is concave on the action variable and consequently
the FOA follows.

In this paper, we obtain the general Lagrange multipliers for this problem
which includes the FOA as a particular case. The Lagrangian can be described as
follows: besides the multipliers relative to the individual rationality (IR) constraint
and the first order condition of the incentive compatibility (IC) constraint, there
exist a multiplier for the second order condition and a multiplier for the action
variables where the IC constraint is binding. Moreover, there is a multiplier for the
derivative of the agent’s utility function with respect to action in the boundary.

Mirrlees (1975) and (1986) present a Lagrangian that is different from ours:
he considers a finite dimensional state space and multi-dimensional action set; he
does not consider the second order condition of the IC constraint; the boundary
conditions do not appear in his Lagrangian (he works with an open action set); and
finally, besides the multipliers of the binding actions of the IC constraint, there
exist Lagrange multipliers for their first order conditions. This implies that the
number of the variables (multipliers, state variables and action) is greater than
the number of equations (the first order conditions of the Lagrangian and the
complementary slackness Kuhn and Tucker’s conditions) in a finite dimensional
state space problem; in our case, these numbers are the same. As Mirrlees has
himself pointed out, to follow his approach one has to know in advance the critical
manifold. This is not the case in our paper: we determine the critical point jointly
with the Lagrange multipliers. The reason is because Mirrlees uses a local Kuhn
and Tucker Theorem in a finite dimensional state space.?

L For a survey in this topic see Dutta and Radner (1994) and Rees (1987).
2 He needs to put the binding equations of the IC constraints and their first order conditions as the

constraints that replace the IC constraints in order to satisfy the regularity conditions of the Kuhn and



Grossman and Hart (1983) established a Lagrangian for finite state space and
finite number of action and used it to approximate the solution when there are an
infinite number of actions. For each action, we consider (as Grossman and Hart
(1983)) the incentive scheme which minimizes the (expected) cost of inducing the
agent to choose that action. Under the assumption that the agent’s preferences
over income lotteries are independent of the action he takes, we have that this cost
minimization problem is a fairly straightforward convex programming problem.
The assumption that the agent’s preferences over income lotteries are independent
of the action is a strong one. Yet it has been used in most of the applications of
moral hazard problems. Special cases of this assumption occur when the agent’s
utility function is additively or multiplicatively separable in action and reward.
However, we also obtain a local Kuhn and Tucker Theorem including the action
variable without assuming this special type of agent’s utility function (in this case
we do not have necessarily a concave programming problem).

We provide four examples where the FOA is not valid: In the first one we
use the global Kuhn and Tucker Theorem for a given action to solve the cost
minimization problem in the state variable and we conclude that in this case the
information of the second order condition (besides the first order one) is sufficient
to characterize the optimal solution. This is an infinite dimensional example in the
state variables, where the Lagrangian approach of Mirrlees (1975) and (1986) is not
applicable. The expected utility function is constant in the action variable at the
optimal contract, i.e., the agent is indifferent to all feasible actions at the optimal
contract and the second order approach works. This example demonstrates the
possibility raised by Mirrlees (1986) (see the last paragraph of page 1208). He
said that, if there exist infinite states of nature, it is possible to have an optimal
contract such that the agents expected utility function is constant on part of the
set of feasible actions. The second example follows the same idea, but the number
of states is finite and the optimal solution is such that the agent’s expected utility
presents two maximal points as a function of the action. This example shows the
importance of the Lagrange multipliers of the binding actions of the IC constraint.

In the third example, we run the first order conditions derived from the local
Kuhn and Tucker Theorem in the two variables (the action and the state vari-
ables) in a Mathematica program® and we see that the information of multiple
maximal actions is important for the characterization of the optimal solution, i.e.,
the Lagrange multipliers have a non trivial component in a binding action of the
IC constraint. This example is standard: there exist two states (the low and high
output states), a convex cost function of action (the disutility of the action for the
agent) and an additively separable form of the agent’s utility function; the princi-

Tucker Theorem. In our case, we use the Kuhn and Tucker Theorem for infinite dimensional spaces
and our regularity conditions are quite different from Mirrlees’.

3 ‘We establish the first order equations and the Kuhn and Tucker’s conditions of the Lagrangian of the
problem and implement these as a system of nonlinear equations with the equal number of variables

and equations and use an algorithm in Mathematica to solve the problem.



pal is risk neutral and the agent is risk averse. The optimal contract is monotone
in output. However, the agent’s expected utility function is not a concave function
of the action variable and there exist two optimal feasible actions for the princi-
pal: the lower and the higher one; the optimal action from the viewpoint of the
principal is the higher one.

The Mirrlees’ counter example is reexamined under our approach: we can pro-
vide Lagrange multiplier for the optimal solution of that example. Some classical
results in the literature valid under the FOA can be extended in our framework.

The paper is organized as follows. In section 2, we present a motivating
example for the study of a general Lagrangian approach to the principal-agent
problem. In section 3, we present the moral hazard model and the results. Section
4 gives the final conclusions and extensions. Finally, the appendix provides the
proofs of the theorems.

2. An example

Suppose that the action set is A = [0,0.9]. There are two states of nature:
1 (the low return state) and 2 (the high return state) with the following returns
to the principal: m; = 1 and w2 = 5. The cost of the action for the agent is
c(a) = a?, a € A. The subjective beliefs of the principal and the agent about the
state of nature are represented by a probability distribution conditioning in the
action: p1(a) = 1—a? and pa(a) = a3, for all a € A. The principal and the agent’s
preferences with respect to the monetary return are represented by u(z) = z and
v(x) = /x, respectively.

The principal offers a contract, i.e., a payment schedule given the return (or
the state of nature): a monetary transfer z; is paid for the agent if m; occurs
(i=1,2).

The expected utilities for the principal and the agent are:

U(z,a) = pi(a)u(m — x1) + p2(a)u(my — x2)

and
V(z,a) = p1(a)v(z1) + p2(a)v(x2) — c(a)

respectively, where x = (21, z2).

Assume that the reservation utility of the agent is zero. If the principal
observes the action, he can enforce the action as a part of the contract (“the first
best problem”). However, we assume that the principal can not observe the agent’s
action, therefore he should induce the agent to take the action he would relatively
prefer (“the second best problem”).

Hence, the principal-agent problem is

max U (z, a)
nea
(D st. V(z,a) >V(zx,a),Vae A

V(z,a) >0
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The FOA is the substitution (when it is valid) of the IC constraint by its
first order condition (the derivative of V with respect to the action equals to
zero). This is not possible in general because when the expected utility is not a
concave function of the action (calculated at the optimal contract), the first order
condition is not sufficient to characterize the optimal action in the IC constraint.
We need more information: the second order condition, the multiple maxima and
the behavior of V(z, -) in the boundary of the action set. Our Lagrangian captures
all these aspects.

This example illustrates this case. We claim that the optimal contract is x* =
(0,1.23457) and the optimal action is a* = 0.9. If this is true, the expected utility
of the agent at z*, V(z*,-) admits exactly two maximal actions: the boundary
actions 0 and 0.9 where V(z*,-) is null. We also claim that these properties are
sufficient to characterize the optimum. If this is the case, the problem becomes:

max U (z, a)
zel
acA

(1) st. V(z,a) > V(x,0)

Thus, the Lagrangian can be written as
L(z,a) =U(z,a) + MV (z,a) + 1 (V(z,a) — V(x,0))
The first order conditions of the Lagrangian are

’LL/(T('Z‘ — ZCZ)

v’ (z;)

(0
=>\1+M1(1—p()

> (ulms — i) + (1 + pa)o(@:))pi(a) — (M + pa)e!(a) = 0

=1

The first order conditions are satisfied if and only if x7 = 0, 5 = 1.23457, a* =
0.9, A\ = 1.62 and pq = 0.602222. Moreover, x7, 5 and a* are the unique critical
points of the Lagrangian for the given values of \; and p; and the Lagrangian
tends to —oo uniformly in @ when the norm of (x1,x5) tends to oo. Therefore,
given a pair of feasible contract and action (z,a) for the problem (I), it is also
feasible for the problem (II) and we have

U(z",a") = L(z*,a") > L(xz,a) > U(x,a)

Hence, (x*,a*) is the solution of the principal-agent problem. Observe that
we only use the multiple maxima information (the FOA is not valid here).



The principal welfare is 3.016 and the graphic of the agent’s utility function
at the optimal contract as a function of action is:

Figure 1

In the next section, we present a general Lagrangian for the moral hazard
model, even when there exist an infinite number of states of nature.

3. The main result
3.1 The Model

Let A be a non-degenerated compact interval in J representing all the possible
available actions to the agent. The space of states of nature will be represented by
a non-empty set €2 and A will be a o-algebra of events on 2. Let u: R — R be the
principal’s utility function defined over the monetary outcomes which is concave
and differentiable, v: I x A — R is the agent’s utility function defined over the
monetary payoffs and actions, where I is an open interval in R.

First, we will assume that v(z,a) = S(a) + M (a)v(zx), for all (x,a) € I x A,
where S, M: A — R are functions in C?(A) and 7: I — R is a concave, increasing
and differentiable function, i.e., the agents utility function is a von Newmann-
Morgenstern utility function separable in actions and outcomes. This type of
agents utility function was used by Grossman and Hart (1983).

The subjective beliefs of the principal and the agent about the state of nature
subject to the agent’s action are the function p: A x A — [0, 1] such that p(- | a)
is a probability measure on (£, A), for each a € A.4

We shall assume that the set of all possible contracts is a convex set? C of
a linear subspace L of the real vector space of all real measurable functions on
(Q,A). Let w € L be the principal’s monetary outcome which is observed by both
the principal and the agent.

For each action a € A and contract € C, the principal and the agent
expected utilities are

Uz, a) = / u(m(w) — 2(w))dp(w | a)

4 We can also assume different subjective beliefs for the principal and for the agent.

5We assume that .]3(11)) c I7 Yw e Q, Vo e C.



and
Vi(z,a) = / o(e(w), a)dp(w | a)
— 5(a) + M(a) /Q o(a(w))dp(w | a),
respectively.

We assume that U, V:C x A — R are well defined, i.e., the integrals above
exist and a € A — [, 7(z(w))dp(w | a) is an element of C?(A) for each z € C.
The principal-agent’s problem is

max U (z, a)
zel
acA

(P) st. V(z,a)>V(z,a),Vac A

where V is the minimum level of utility for the agent.

The first constraint of the problem is a consequence of the non-observability
of the action by the principal. It is known as the incentive compatibility (IC)
constraint. The second constraint is determined by market forces or bargaining
power. This is called the individual rationality (IR) constraint.

We separate the above problem into two parts. In the first one we fix an
action a* € A and solve the problem:

W(a*) :gleaécU(sc,a )

(P st. V(z,a*) >V(zr,a),Yac A

V(z,a®) >V
In the second one we solve:

(P7) max W(a")

We are not going to discuss the existence of solution for problems (P), (P’)
and (P”) (for a reference see Grossman and Hart (1983) and Page (1987)). Our
aim is to characterize the solution of problem (P’) writing its Lagrangian for a
fixed a* € A. By a simple change of variable, we can suppose that v(x) = x, for
all x € I. Without loss of generality, we can assume that vV =0.

3.2  Mathematical Framework

Let A be a compact non degenerated interval on R of the form [a,a]. We
denote by C™(A) the space of n times continuously differentiable real functions
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defined on A, n > 0, with the topology of the uniform convergence until the
derivative of order n, i.e., given f € C™(A), we define the norm of f by ||f||, =

max ||f*]|s, where ||f||s = sup |f(a)|, f*) is the derivative of order k of f and
0<k<n acA

f© = f. We have that (C"(A),|| - ||») is a Banach space.

Now fix a* € A and define F = {f € C"(A); f®(a*) = 0,0 < k < n}. It
should be clear that F'is a closed vector subspace of C™(A). Let A be the set of all
functions in F' such that a* is a global minimum which is equivalent to the set of all
non-negative functions in F. Thus, A is a positive cone on F. We also define the
following concepts: M(A) is the set of all finite measures defined on the Borel sets
of A and M (A) is the non-negative elements of M(A); F* is the topological dual
of F' with respect to the norm topology and F7 is the set of positive elements with
respect to the positive cone A (i.e., A € F7 if and only if A € F* and A(f) > 0,
VfeA); Ci(A) (respectively Cy4(A)) is the set of the non-negative (respectively
positive) continuous functions defined on A.

Let

D:C"(A) — C"Y(A) q I.C"(A) — C"tl(A)
A foo= Jfla)da
be the differential and integral operator, respectively. The following lemma char-
acterizes the subspace F' and it is easy to prove:

Lemma 35.1.

(i) If n = 2, D®: F — C(A) is a continuous linear isomorphism and Cy(A) C
D2(A).

(ii) If n = 1, D: F — C(A) is a continuous linear isomorphism and if a* = a

(respectively a* =a), then Cy(A) C D(A) (respectively —C4(A) C D(A)).

Lemma 3.1 implies also that int(A) # ¢ since C'y 4 (A) is an open set of C'(A).
We can be more precise: If n = 2, every function in F' with strict global minimum
at a* and positive second derivative at a* is an interior point of A. If n = 1 and
a* = a (respectively a* = @), every function in F' with strict global minimum at
a* and positive (respectively negative) first derivative at a* is an interior point of
A. The reciprocal is also true in both cases.

By Lemma 3.1, we have that the topological dual of F', F™*, is isomorphic to
the topological dual of C(A), M(A). Therefore, we can characterize F™* using the

following lemma (the proof is given in the appendix:®)

Lemma 3.2. (The positive dual of F).

(i) If n =2, for each A € F there exist a non-negative measure p on the Borel
sets of A, a; > 0,1 =0,1,2 such that for all f € F

A(f) = /Afd,u +aof’(a*) + a1 f'(a) — asf'(@)

6 Since we don’t know a proof of Lemma 3.2 in the Functional Analysis literature, we will give our

proof.
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(ii) If n = 1 and a* = a (respectively a* = @), for each N\ € FY there exist a
non-negative measure [ on the Borel sets of A and g > 0 such that for all
fer

M1 = [ fdu + aof' (@)

From the proof of Lemma 3.2 (i), if the support of u is a subset of [a + ¢,@]
(respectively [a, @ — €]) for some € > 0, then ay = 0 (respectively as = 0), because,
if this is not the case, the right hand side of the definition of A will not be an
element of F'y. Moreover, the measure p is finite on the complement of every open

interval around a*. However, it can be an unbounded measure. For instance, the

measure that has density proportional to ﬁ belongs to F'y . This measure

is a Levy measure because it defines a continuous functional on F' but it can be
unbounded at a*. We have the following;:

Corollary. (The dual of C*(A) and C*(A)).
(i) If X € C%(A)*, then there exist \; € R, 1 < i <5, and a Lévy measure with

sign 1 on the Borel sets of A such that
M) = [ = F@)dnt M f@) + 32 £'0") 4 a /(@)
+ A f(@) + 25 f1(@)

for all f € C*(A).
(ii) If X\ € C1(A)*, then there exist \; € R, i = 1,2, and a Lévy measure with sign
1 on the Borel sets of A such that

A = [(F = £@ Dt M f(a) +0a f(a)
for all f € C*(A), where a* =a or a* =7.

Proof. Since the map

C%(A) - F x 2
f = (f = f(a), f(a®), ['(a"))

is an isomorphism and F* = F} — I’} , the result follows from the previous lemma.
The proof of (ii) is analagous. O

3.8 The Lagrangian Approach

Let L be a vector space, C' C L be a convex subset and a* € A. Suppose that
UV:C x A— R are functions such that
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Assumption A1.  U(-,a*):C — §R 18 a concave Gateaux differentiable functional
in the set of internal points of C, C,7 such that the differential 8U (z,a*; - ): L — R
is a linear map, for all x € C.

Assumption A2. V(-,a):C — R is an affine map® for all a € A and
V(x,-): A — R is a function in C*(A), for all x € C.

Because of the assumptions made in the beginning of this section, A1 and
A2 are easily satisfied. Moreover, since V (-, a) is an affine map, for all a € A,
V(-,a), Va(+,a) and V,a(+,a) are Gateaux differentiable in C’, where V, and V,,
are the first and the second derivative of V' with respect to a, respectively (the
same is valid for U). Moreover, 6V (x,a; -) = ¢(-,a), 6Va(z,a; ) = @ -, a)
and 6V,a(x,a; -) = Paa(-,a), for all z € C and for all a € A, where ¢(h,a) =
1/a[V(z + ah,a) — V(z,a)], for all z € C, for all h € L and a > 0 such that
x+aheC.

The following assumption is necessary:
Assumption A3. There exists a solution x* of (P’) which belongs to C.

Before we establish our result we will list two more conditions which will be
assumed as hypotheses. Each corresponds to a Slater condition of (P’).

Condition C1. There exists zo € C such that V(zg,a*) — V(zo, -) € int(A),
V(zg,a*) >0 and 6Vy(x,a*; -) #0 for some x € C.

Condition C2. There exists xog € C such that V(zo,a*) — V(xo, -) € int(A)
and 8V (x,a*; ) and 6Vy(x,a*; -) are linearly independent functionals for some
zeC?

By the remark following Lemma 3.1, the first part of C1 or C2 is equivalent
to find xg such that a* is the unique minimum point of V(xg,a*) — V(zg, - ) and
Vaa(xg,a*) < 0. The following theorems are the characterization of the optimal
solution of the moral hazard problem. They are an easy consequence of the Kuhn
and Tucker Theorem and Lemma 3.2.

Theorem 3.0. Assume that A1-A8 and C1 or C2 hold. Then there exist \; € R,
i=1,2, and p € My (A) such that x* mazimizes:

7 C = {l’ € C, Vhe L, Jda > 0 such that T +ah € C} The symbol O represents the Gateaux
differential with respect to X.

81n the sense that V (w1 + (1 — a)xg,a) = aV(z1,a) + (1 — @)V (23,a), Va; € C,
i=1,2,Yae[0,1],Va € A.

9 And consequently, it is valid for all T & C
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(i) if a* € (a,a),

L(z,a™) =U(z,a") + A\ V(z,a") + A2 Vo (z,a") — /A Vaa(z,a)dp(a)

and Vo (x*,a*) =0, [, Vaa(x*, a)dpu(a) =0, A\ V(z*,a*) = 0.
(ii) if a* = a (respectively a* = @),

L(z,a") =U(x,a") + A\ V(x,a") " /A Va(z,a)du(a)

and Vo(z*,a*) < 0 (respectively Vo(z*,a*) > 0), [, Vo(z*,a)du(a) = 0,
M V(z*,a*) =00 and CI implies \; > 0.

The proof is given in the appendix.

Theorem 3.1. Assume that A1-A3 and C1 or C2 hold. Then there exist \; € R,
t=1,2, and p a positive measure on the Borel sets of A such that x* mazximizes:

(i) if a* € (a,a),
L(z,a") =U(z,a") + MV (x,a") + X2V (2, a™)
- OZOVaa(ZC, a*) - OélVa(CC,Q) + OCZVa(ZC7a)

n /A (V(z,a*) - V(z,a))dp(a)

and Vy(x*,a*) = 0, agVae(z*,a*) = 0, a1Vy(z*,a) = 0, aaVu(z*, @) = 0,
JA(V(z*,a*) = V(a*,a))du(a) =0, Ay V(z*, a*)=0.

(ii) if a* = a (respectively a* =a),

L(z,a™) =U(x,a*) + \1 V(z,a") (—) aoVu(x,a”)
+

+/A(V(:c,a*) ~ V(z,0))dp(a)

and Vo (x*,a*) < 0 (respectively Vo (z*,a*) > 0), agVa(z*,a*) =0, [,(V -
V(z*,a))du(a) =0, A1 V(2*,a*) = 0

The proof is given in the appendix.
Theorem 3.0 can be easily generalized to the multidimensional parameter case.
However, it is not possible to extend Theorem 3.1 to the multidimensional case

10 In this case, the conditions on (SVQ (33, CL*; . ) in conditions C1 and C2 are not necessary.

1 See the last footnote.
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using our method since we are not able to extend Lemma 3.2. (Even though we
think that, in the multidimensional case, a similar characterization is possible.)

Corollary. Under the assumptions of Theorem 3.1, if x* is such that V(z*, -) has
a finite number of maximal points: ay,...,ax, the Lagrangian becomes

(i) if a” € (a,7)
L(z,a*) =U(z,a") + MV (z,a") + Ao Va(z,a")
- OZOVaa(ZC, a*) - Oélva(CC,Q) + OéZVa(ZC76)

3 V(. a®) — Vi, ap))

(i) if a* = a (respectively a* =a)

L(z,a") =U(z,a") + M V(z,a") — agVu(z,a”)

(+)
K
+ Z Mk(V(l', a*) - V(IL', a'k))
k=1
Proof. We  only have to  observe that [, (V(2*,a*)

K

— V(z*,a))du(a) = 0 implies that the measure p is Y urba,, where 8,, is the
k=1

Dirac measure concentrated at ay. O

Remark 1. If L is the space of all real measurable functions on (€2, .A) and U is an
expected utility function with an increasing kernel function u, then \; is always
non-negative. Moreover, from the remark following Lemma 3.2, if a ¢ {a1, ...,ax}
(respectively @ ¢ {a1,...,ax}), an = 0 (respectively as = 0).

Remark 2. Theorem 3.1 shows that, under the Slater condition (C1 or C2), the
problem (P) has a Lagrangian.

Mirrlees and Roberts (1980) have the following result:

For almost all'?> C> function V the number of distinct maxima in a variable
is less than or equal to n + 2 for all z € C, and the dimension of the surface
{(z,a) € C x A; V,(z,a) = 0} corresponding to z with  distinct maxima is less
than or equal to n + 1 — r, where n is the dimension of L (in the case of finite
dimensional vector space).

Therefore, the remark above can be used for almost all functions V. However,
our example 1 shows that this is not always the case.

12 The set of such functions contains a countable intersection of dense sets in the Whitney or strong

topology.
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Now we are going to characterize the problem (P) in the variables z and a
together. We give a local characterization of the optimal for the problem (P)
(since this is not a concave problem in general).

Assume that there exists a solution (z*,a*) € C' x A of the problem (P) and
U(-,-) is Gateaux differentiable in (z,a) with linear differential. Label A1’ the
assumption Al without the concavity hypothesis. Suppose that V is a generic
function (not necessarily affine in x) such that

Assumption A2°.13 8§V, is a continuous function along each direction of L x % and
V(z,-): A — R is a function in C*(A), for allx € C.

The correspondent Slater condition is

Condition C3. There exists h® € L x R such that V(z*,a*) + S0V (z*,a*) > 0
and V(z*,a*) — V(z*, - ) + 6po(V(x*,a*) — V(z*, -)) € int(A). If a* € (a,q),
Vaa(z*,a*) < 0 and 6,0 Vo (x*,a*) = 0. If a* = a (respectively a* = @), V,(z*,a*)+
Opo Va(z*, a*) é) 0.

Under these assumptions we have

Theorem 3.2. Assume that A1°, A2” and C3 hold. Then there exists a Lagrangian
function L (as in Theorem 3.1) such that

<0, a*=a
Lo(z*,a™)¢ =0, a* € (a,a)
>0 a*=a

and'* L,(z*,a*) = 0, with the Kuhn and Tucker’s conditions.

The proof is given in the appendix.

Remark. Observe that if a* € (g,a@) and V,,(z*,a*) < 0, then the complementary
slackness Kuhn and Tucker condition agV,.(z*,a*) = 0 of Theorem 3.1 implies
that ag = 0 for Theorem 3.2.

The remarks following Theorem 3.1 can be also applied in the case of Theorem
3.2.
3.4  Related Literature

In the existing literature, we have two conditions that guarantee the so called
FOA: the monotone likelihood ratio property (MLRP) and the convexity of the

13 Now O represents the Gateaux differential in the variables L and Q together.

14 Lx represents the Gateaux differential with respect to the variable I.
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distribution function property (CDFP). MRLP has the fairly natural interpreta-
tion that a (first best) costly action increases the probability of high outcome
than a less costly one. CDFP is not as easy to accept, most of the distributions
commonly occurring in statistics do not have this property. For instance, suppose
that output is subject to a simple additive disturbance ¢ with distribution F', and
effort is measured in output terms. The realized output is given by © = a + €, and
€ has distribution function F'(x — a) which is convex in effort if and only if € has
an increasing density.

Rogerson (1985) shows that, in the presence of MRLP and CDFP, the agent’s
utility function is a concave function of the action at the optimal contract and
therefore the first order condition of the IC constraint is sufficient to characterize
IC. From the complementary slackness Kuhn and Tucker conditions of Theorem
3.2, the FOA is also obtained in our framework. Mirrlees (1975) and (1986) has
an example in which the FOA is not valid which we are going to reexamine. We
present two more examples in which the FOA can not be applied.

The multipliers of the Theorem 3.1 and Theorem 3.2 have a quite simple
meaning: \; represents the IR constraint multiplier; \s represents the multiplier of
the first order condition of the IC constraint; oy is associated with the second order
condition of the IC constraint in the case of Theorem 3.1 (i) and with the first order
condition in the case of Theorem 3.1 (ii); oi; (¢ = 1,2) is the multiplier associated
to the effect of the first derivative of the agent’s expected utility function with
respect to the action in the boundary of A, a and @, whether a and @ belong to the
set of the binding actions of the IC constraint. Finally, the measure p represents
the multiplier which captures the information of multiple maxima because, by the
complementary slackness Kuhn and Tucker conditions, u has support on the set of
the binding actions of the IC constraint. Therefore, besides the usual terms in the
FOA Lagrangian, in the general case we have to consider the second order effect,
the binding actions of the IC constraint and the behavior of the first derivative of
V(x*, -) on the boundary of A.

Mirrlees (1975) and (1986) also has a Lagrangian approach with the following
differences from ours: he deals with a finite dimensional state space and multiple
action variables and we treat the general state space case with an one-dimensional
action variable (even though we have a Lagrangian form for multiple dimensional
case. See the theorem in the appendix). In the Mirrlees’ Lagrangian the multiplier
of the second order condition is absent because he assumes that all critical action
are non-degenerated!® (i.e., V,, is non-degenerated for all critical points, i.e., V, =
0) and the multipliers of the first derivative at the boundary is also absent because
Mirrlees assumes that the action set is open.

However, the main difference is that Mirrlees’ Lagrangian has multipliers for
the first order condition of the agent’s utility function at each binding action.
This implies that the number of variables is greater than the number of equations

15 However, we assume that the optimal action, when it is in the interior of action set, is non-

degenerated (see condition C3).



15

for the system generated by the first order condition of the Lagrangian and the
complementary slackness Kuhn and Tucker conditions. In our case the number of
the variables is the same of the equations.

Observe that the first order conditions of the binding actions of the IC con-
straint are actually redundant as constraints because if the action is binding in
the IC constraint, then it automatically satisfies the first order condition. Mirrlees
used these conditions as constraints (additionally with the equations of the binding
IC constraints) for regularity reasons of the Kuhn and Tucker Theorem (see the
introduction) and this is why the match of equations and variables does not occur
in his case. In our case we do not need to use these conditions as constraints for
the Lagrangian, but we use them as additional equations. The result is that we
obtain the match of the number of equations and variables.'®

And finally, he does not cover our Theorem 3.1 (ii) and Theorem 3.2 when
the optimal action is in the boundary of the action interval. Mirrlees (1975) and
(1986) also observe that when the state space is infinite dimensional, it would be
possible to have the agent indifferent with respect to a continuous set of action
at the optimum. Our example 1 below illustrates this possibility: the agent is
indifferent to all the actions in the feasible domain.

In what follows, we give four examples where the FOA is not valid. The
second example is the example of section 2. In the third example, we use a Math-
ematica program to compute optimal solutions using the first order conditions of
the Lagrangian and the complementary slackness Kuhn and Tucker conditions of
Theorem 3.2 (ii). The Mirrlees’ counter example is analyzed in the example 4.

3.5 FExamples

Example 1.
Let
e A=1[0,1]; I=%R;02={0,1,2,...}; A =P(Q) (set of the parts of Q);
) u(m):—g—Q, r€R;v(x) =2, xe€l;

S(a) = a® —2a; M =1, a € A; p(n|a) = ale T neNacA (Poisson

n!
distribution with parameter a); 7: 2 — R such that 7(n) = n, for all n € Q;

L=C={2:0Q—- R, Zﬁ<oo}.

n!
n>0

Thus,

2

U(e.a)= -3 B )

16 Even in the case when we there exist the multipliers for the derivative of the agent’s expected utility

function with respect to the action in the boundary actions, because these points are fixed.
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and

V(x,a) = Z z,p(nla) + a® — 2a
n=0

where z: () — R is an element of C, a € A and z,, = x(n).
Fix a* € (0,1). By Theorem 3.1, the associated problem (P’) has the following
Lagrangian:

L(z,a") =U(z,a") + M V(z,a") + X2 Vo (z,0") — agVaa(z,a")

where \; > 0, Ay € ® and a9 > 0. (Assume, for a while, that the Lagrange
multipliers a1, as and the measure p of Theorem 3.1 are null.)

If * € C is a solution of the problem then (z*, A1, A2, ap) is a saddle point of
the Lagrangian, i.e.,

(I) L, (x*,a") =0, Yn=0,1,2, ..
(ID) Vo(z*,a") =0

(II1") MV (z",a*) =0

(IV) apVaa(z®,a*) =0

where L, represents the derivative of the Lagrangian with respect to the variable
T
Therefore, we can rewrite (I’) to (IV’) as

% 2 1 2a* %2
0 xZ—n:A1+A2n *a _aon ( +(;)n—|—a 7
a a*
for all n €
(1I1) Z(fo_l —z})p(nja®) +2a* —2=0
n>0
(I11) MO anp(nla®) + a*® =2a*) =0, Ay >0
n>0
(v) a0( 2 (@2 = 2050 + )p(nla’) +2) =0, ag > 0.

n>0
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Making the calculations, we have the following results for the Lagrange mul-
tipliers:

M =a* —a*?, Ao=a"(1 — 2a*) =a* — 2a*% and o = a*>.
Hence, the optimal solution is
¥ =3n —n? n=0,12,..

Observe that A1, A2, ap and z* satisfy the optimality conditions. Therefore,
x* is the solution of our problem. Observe also that z* is independent of a*. It
is straightforward to conclude that the agent is indifferent to all actions at the
optimal contract, i.e., V(z*, -) = 0. Since ag = a*? > 0 we can say that the
second order approach is valid here.

Moreover, MLRP is satisfied but CDFP is not. It is easy to see that the
solution x** obtained by the FOA is

o =a*? + 2(1—a")n

and
V(z™,a) = (a — a*)2

which does not satisfy the IC constraint: Indeed, a* minimizes V (z**, ).

Ezxzample 2.

4

Let Q = {17273}; A = [175]7 M(a) = a(a3 —|—CL2 —a+ 1), S(a) = —(% +
100 + 16); p(a) = gsrm—ar7(@®, a® — a,1); u(z) = ;5 v(z) = V22,

Suppose that the principal would like to induce effort 2, i.e., he would like to
solve problem (P’) for a* = 2. Proceeding as in the example 1 above we have the
following results:

(2" =(35,5,288)

32
A = 1.189

{ Xs = —0.0535
= 0.0714 &4

( ; =0, i=0,1,2

Observe that the FOA is not valid because p is non-null (it is a multiple of
the Dirac measure at the 4). The figure below is the agent’s expected utility at
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the optimal contract as a function of the action:

Figure 2

Observe that at the optimal contract the agent is indifferent between two
efforts (2 and 4), however from the principal’s point of view the better effort is the
low one.

Ezample 3. (Example of the section 2)

To solve this example we constructed a simple algorithm in Mathematica to
compute critical points of the Lagrangian with the complementary slackness Kuhn
and Tucker conditions of Theorem 3.2.'7 Taking the Lagrangian of Theorem 3.2
when a* =@ (and consequently the Lagrangian of Theorem 3.1 (ii)), we have the
following results:

Optimal action: { a* =0.9

. ;=0
Optimal contract:
5 = 1.23457
A1 = 1.62
Lagrange multipliers of Theorem 3.2 (ii): ag =0

1= 0.602222 dy
Ezxample 4. (Mirrlees’ counter example).

In Mirrlees (1975) and (1986), there is an important example showing that
the FOA is not valid in general. Under the light of what we said in this paper,
how can we solve such example?

The example is: Let

2 2

U(z,a) =—(a—1)" — (x — 2)
17 Using the Kuhn and Tucker’s conditions and the first order conditions of the Lagrangian and sepa-
rating the items (i) and (ii) of Theorem 3.2, we have 20 possible nonlinear systems. We calculate the
critical points of these systems (when they exist) and select the one that maximizes the principal’s

expected utility function.
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V(z,a) = ge~(@+D)? | o=(a—1)

where € R and a € R.'® Suppose that there is no uncertainty and the reservation
utility is V = —oo (i.e., there is no IR constraint).

In Mirrlees (1975) and (1986), the solution is shown to be z* = 1 and a* =
0.957 and the first order approach can not be applied. However, V' (z,-) has just
one (regular) maximum, for all x # 1. Therefore, by our previous analysis, if
x* # 1 were the solution, then the FOA would be valid. As long as this is not
true, the unique viable solution is * = 1.

Observe that V(1,-) has two maximal points: —0.957 and 0.957 and it is also
easy to find the Lagrange multipliers such that (1,0.957) is the unique critical
point of

L(z,a) =U(z,a) + MVy(z,a) + p1(V(z,a) — V(z,a1))

with V,(z,a) = Vu(x,a1) = 0 and V(z,a) = V(z,a1) (where a; can be shown to
be —0.957).

The main feature of this example is its robustness: one can make a small
perturbation of the principal’s and the agent’s utility function and obtain the
same type of solution. This means that, even though the FOA is very frequent in
the literature, one can not neglet situations where FOA is not valid.

Some results in the literature, valid under FOA, can be easily generalized
under our framework. We give three applications:

(1) Holmstrom (1979) showed that Ao > 0 under FOA. However, our examples
1 and 2 show that Ao can be negative in some cases.

(2) Using Theorem 3.2, we can easily prove that if the MLRP holds and the
optimal action is the supreme of the binding action set of the IC constraint,
then the optimal contract should be monotone.

(3) Let s be a random variable representing a signal. We can show that
the return 7 is sufficient for (7, s) with respect to a € A if and only if the
distribution of 7 and s given a f(m, s|a) is multiplicatively separable in s and
a, i.e.,

f(m,sla) = g(wla)h(, s).

We say that s is informative about a € A whenever x is not sufficient for
(7, s) with respect to a € A. Holmstrom (1979) and Shavell (1979) showed
that there exists a new contract using s that strictly Pareto dominates the
optimal contract without using s if and only if s is informative about a € A.
We can easily extend this result under our assumptions (see the proof in the
references and use our Lagrangian approach to do the extension).

4. Conclusions

18 Indeed, we can restrict our attention to a compact interval in R without loss of generality.
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In this paper we studied a general characterization of optimal solutions for
the moral hazard problem when the set of parameters is a compact interval in the
real line. We obtained a Lagrangian for the infinite dimensional state space. In
the finite state space case, our approach matches the numbers of equations and
variables of the first order conditions of the Lagrangian which does not happen in

the case of Mirrlees (1975) and (1986).
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Appendix

Since A strictly contains a set that is isomorphic to C4 (A) under the isomor-
phism described at Lemma 3.1, F7} is equivalent to a proper subset of M (A4). We
are going to describe such subset in a more specific way in the following lemmas:

Lemma 1.

(i) If n = 2, for each A € F* there exists p € M(A) such that X\(f) = [, f"du,

for all f € F, and conversely. Moreover, if X € F then € M (A).

(i) If n = 1 and a* = a (respectively a* = @), for each X € F* there exists
1€ M(A) such that X(f) = [, f'dp, for all f € F, and conversely. Moreover, if
A € F then € M (A) (respectively —p € M4 (A)).

Proof. 1t is an immediate consequence of Lemma 3.1 and the fact that the topo-
logical dual of C(A) is M(4). O

Lemma 2.
(i) If n = 2, for each A € F} there exists a non-decreasing function
& A — Ry such that & (o~ 7] is concave, §|[ga*] is convex and N(f) = [, "¢ da +

f"(a*)[€(a*) — &(a*)],10 for all f € F, where £': A — R is an integrable function
on A equal to the derivative of & almost everywhere.

(it) If n = 1 and a* = a (respectively a* = @), for each A\ € F there is a
non-decreasing concave (respectively convex) function &: A — Ry such that A(f) =
[ F'éda + F(@)é(a) (respectively, A(f) = — [, f'€'da— F'@[E@) — & @), for
all f € F, where §': A — R is an integrable function on A equal to the derivative
of & almost everywhere.

Proof. (i) Given A € F7}, by Lemma 1 there exists u € M (A) such that A(f) =
[, f'dp, ¥ f € F. Since p is a finite non-negative measure, the set D = {a €

1 ¢(az) = timy_o-£(t).
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A; p({a}) # 0} is an enumerable set. Let b € A and 0 < 1 < e such that a* <b—e
and b,b —€, b+e€ ¢ D. Let o: R — [—1,1] a C* function such that

0 if a<b—€eora>b+e
pla)=¢ 1 if b—e+6<a<b-9¢
-1 if b+6<a<b+e—-96

and a — ¢(a — b) is an odd function, where § = (e — 1)/2. Define f = I?(p). We
have that f € A.

Then 0 < A(f) = bbj: ¢(a)du(a). Making 6 — 0, we have that u([b —€,b]) >
w([b, b+ €]). Analogously, if b € A is such that b+ ¢ < a* and b,b —e,b+¢€ ¢ D
then p([b,b+ €]) > p([b — ¢,b)).

Define £: A — R4 by &(a) = u([a,a]), Va € A. Then £ is a non-decreasing
right continuous function. Given z,y € [a*,a] — D such that x < y and z = % ¢
D

£() ~ &) = il ) = plz9]) = ) — €2
= ¢ (5] 2 5@ + 360

Moreover, if b € (z,y), the right continuity of £ implies

r+b\ . x4y
€< 2 >_1yl?bl€< 2 )

) ) )+ et
— ylb 2 2

Therefore, taking the limit in z, we have £(b_) > w. Since £ is non-
decreasing, {(b_) = &(b). Thus ¢ is continuous at b and D N [a*,a] C {a*}.
This implies that £ is a concave function on [a*,a@]. Analogously, ¢ is a convex
function on [g, a*]. Therefore, £ is absolutely continuous on every compact subset
of (a, a*)U( ) By Rudin (1974) there exists £’: A — R an integrable function
such that &(y = [Y¢(a) da, for any z,y € (a,a*) or z,y € (a*,a), and this
completes the proof of (i).
The proof of (ii) is analogous. [

Proof of Lemma 3.2. (i) Let £’: A — R, be as in Lemma 2 (i). We can assume that
¢’ is right continuous, non-decreasing on [a, a*) and non-increasing on (a*,@]. Then
¢"” is equal, in the distributional sense on R, to a measure defined on the Borel
sets of A non-negative on [a,a*) and non-positive on (a*,a] (see Rudin (1974),
Theorem 8.6). Taking ¢’ in the place of ¢, b € A — {a*} in the proof of Lemma 2
(i) and integrating by parts in the distributional sense (see Rudin (1991) for the

definitions):
[ veda=— [ 160)¢" da
A A
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we conclude by a similar argument of the proof of Lemma 2 that & |[a,a*) and
£ |(a*,a] are convex functions. Therefore, £ can be identified with a right con-
tinuous function non-decreasing and non-negative on [a,a”) and non-decreasing
and non-positive on (a*, @], almost everywhere. Analogously, in the distributional
sense the derivative of £ can be identified with a non-negative measure p defined
on the Borel sets of A (use Theorem 8.6 of Rudin (1974) and the fact that £ is
non-decreasing on [a,a*) and on (a*,a], almost everywhere).

Since ¢ is convex on [a,a*) and concave on (a*,a], we have the following
inequalities

§(a) —¢&(a”) < €'(a)(a—a”) <0, when a <a”,

§(a) —&(a”) > '(a)(a—a”) > 0, when a > a”,

respectively. Thus, lim £'(a)f'(a) = lim (a — a*)f’(a)M = f"(a*) lim (a —

— *
a—a a—a*

a*)¢'(a) = 0, for all f € F. Integrating by parts we get?°

| rrean=ref;- [ e

= fl(@)¢' (@) — f'(a)¢'(a) -I-/Afd,u, VfePF.

Using Lemma 2 (i) we conclude the proof.
The proof of (ii) is analogous. O

Proof of Theorem 3.0. We will only prove (i) because the proof of (ii) is analogous.
We have to consider two cases:

(a) Assume Cl. Define D = {z € C;V,(z,a*) = 0}. By A2, D is a convex set.
Then the following problem is equivalent to (P’):

*
max U(z,a")

st. V(z,a*)—V(z,-)€eA
V(z,a*) > 0.

By the Slater condition C1, Kuhn and Tucker Theorem (see Luenberger
(1969), Theorem 1, sec 8.3) and Lemma 1, there exist \y > 0 and p € M (A)
such that * maximizes

Li(z,a") =U(z,a") + A\ V(z,a") — /A Vaa (2, a)dp(a)

in D such that Ay V(2*,a*) =0 and [, Vaa(2*,a)du(a) = 0.

20 The term —fg”lz is considered as a part of fA fd,u
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To complete the proof we only have to guarantee the existence of Lagrange
multipliers for the problem

*
max Ly(z,a")

s.t. Va(z,a™) =0.

Under assumptions A1-A3 and Cl1, this is the case, i.e., there exists Ay € R
such that z* is a critical point of L(x,a*). Since L(-,a*) is a concave functional,
z* is a global maximum of L(z,a*).

(b) Assume C2. If V(z*,a*) = 0, the proof is analogous to the proof of (a).
Suppose that V(z*,a*) > 0. Then z* € D (because V(-,a*) is an affine map)
which implies that (P’) is equivalent to the problem:

*
max U(z,a™)

st. V(z,a™)—V(z,-) €A
The rest of the proof is similar to (a) with Ay =0. [

Proof of Theorem 3.1. Theorem 3.1 is a corollary of Theorem 3.0 and Lemma 3.2.
O

Proof of Theorem 3.2. First suppose that a* € (a,a@). Define f,g1,92: L x R — R

such that . .
f(h) = 6,U(2",a")

g1(h) =V (z*,a™) + 6,V (z*,a")
g2(h) = 6pVa(z*,a”)

and g3: L x ® — C?(A) such that
ga(h) = V(" a®) = V(2" -) + n(V(2",a") — V(z7, -))

It is easy to see that f, g1, g2, g3 are affine functions.
It suffices to prove that the problem
h
2y S ()
s.t. g1 (h) 2 0

92(h) =0
gg(h) cA

has a Lagrangian and 0 € L x R is its solution. Condition C3 guarantees the Slater
condition for this problem. Therefore, we only have to show that 0 is its solution.
Take h € L x R satisfying the constraints of the problem above. Define for each
A € [0,1], ha = A% + (1 = A)h. Thus, g1(hy) > 0, ga(ha) = 0 and g3(hy) € int(A),
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for all A € (0,1], by C3 and the fact that g1, 92,93 are affine functionals. Fix
A € (0,1]. For € > 0 (sufficiently small), define ¢: (—¢,€) x (a,@) — R such that

o(t,a) = Vo (x* +th,a+th3).

We have that ¢ is C1, ©(0,a*) = 0 and ¢,(0,a*) < 0 (by C3). By the Implicit
Function Theorem and C3 we can put a as a C* function of ¢, a(t), in a neighbor-
hood of (0,a*) such that a(0) = a*, ¢(t,a(t)) = 0 is satisfied for all ¢ near 0 and
a’(0) =0 (since g2(hy) = 0). The Taylor formula implies that

V(x* 4 thy,a(t) +th3) = V(z*,a*) + t6, V(z*,a*) +r(t)
= tg1(ha) + (1 = 1)g1(0) + (),

where }Hn@ = 0.

—

Then

V(z* +thi, a(t) + th3)
t

= () + (= g (0) + 2.

t
t
Since g1(hy) > 0, g1(0) > 0, for ¢t > 0 sufficiently small, V(z* + th},a(t) +

th3) > 0. Moreover, V, (z* +th}, a(t) +th3) = 0 and V. (z* +th},a(t) +th3) <0,
for ¢ sufficiently small, i.e., a(t) 4 th3 is a strict local maximum of V (z* +thi, -).

Analogously,
V(z* +thi,a(t) +th3) — V(z* +thi,a 1 r(t,a
4 A, ) TR - VL) — g ) )+ (5 g (0)(a) + L2
where tlin%@ = 0, for each a € A.

However, a(t)+th? is a strict local maximum of V (z*+th}, - ), gs(hx) € int(A)
and g3(0) € A, which implies that V (x*+thi, a(t)+th3)—V (z*+th}, -) € int(A).2

Since (z*, a*) is the solution of the moral hazard problem and (z* +th}, a(t) +
th3) is feasible for that problem, U(z* +thi,a(t) +th3) < U(z*,a*), for all t > 0
sufficiently small.

Therefore, 6, U(z*,a*) < 0, since a’(0) = 0. Making A — 0, §,U(z*,a*) <0

If a* = a (respectively a* = @), the proof is analogous. [

21 By the compactness of the complement of an open interval around a”.
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