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ADVERSE SELECTION PROBLEMS WITHOUT
THE SPENCE-MIRRLEES CONDITION

By ArLoisio ARAUJO AND HUMBERTO MOREIRA!

We relax the single crossing property or Spence-Mirrlees condition (SMC) for the adverse
selection problem and derive the conditions for incentive compatibility (IC). Economically, this
requires that the principal has to take care of wider varieties of strategic behavior of the agent
who can now mimic the behavior of other types that are not necessarily nearby. We prove
that in order to do that he has to equalize the marginal rate of substitution and the marginal
rent between pooling types. This implies a change in the trade off between rent extraction and
distortion leading to a lower level of total welfare. Mathematically, our necessary conditions are
expressed by a generalized Lagrangian which contains terms other than the standard first and
second order conditions of the IC constraints. The incentive compatible contracts can present
discrete or continuous pooling and they are discontinuous even under the monotone hazard rate
condition. We do not enter into the full complexity of contracts, so we just consider the case of
at most one discontinuity. In the space of the limit of continuous contracts, the optimal contract
is characterized. In the context of a wider set of contracts we present a class of incentive
compatible contracts which approximates the optimal. The non SMC arises naturally when
we are dealing with a multidimensional characteristic problem with countervailing incentives
(given by the correlation between two sources of asymmetric information). Therefore, our paper
also gives a framework to study multi-characteristic adverse selection problems. We give some
examples of these in the following contexts: combination of moral hazard and adverse selection,

nonlinear pricing, regulation and labor contract.
KEYwoORDS: Spence-Mirrlees condition; marginal rate of substitution and rent identities; dis-
crete pooling.
1. INTRODUCTION
THE MAIN GOAL OF THIS PAPER is to relax the classical Spence-Mirrlees condition

(SMC) which has been extensively used in the literature to characterize the solu-
tion of the adverse selection problem.
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In the one-dimensional parameter case, the SMC is by definition the mono-
tonicity of the marginal rate of substitution between the decision taken by the
agent and the money transfer given by the principal with respect to the parameter
(asymmetric information).

The SMC permits the second order approach for the problem and makes the
feasible set convex: in the presence of positive (respectively negative) SMC, a
decision path is implementable if and only if it is non-decreasing (respectively
non-increasing) in the parameter.

The SMC also enables a full characterization of the optimal solution: if the
optimal decision is strictly monotone in the parameter, then it should be the
relaxed solution.? Moreover, a maximal interval where it is constant is such that
the marginal virtual surplus of the principal (i.e., the social surplus minus the
informational rent) should be zero. These properties are sufficient to provide an
algorithm allowing the computation of optimal solutions (see Fudenberg and Tirole
(1991) or Guesnerie and Laffont (1984)).

The question studied in this paper is: What happens when the SMC is not
valid anymore? In this case, there are at least two regions in the plane of the
parameter versus the decision variable: the positive and negative single crossing
regions. An implementable decision path should preserve monotonicity in each
region, and it may or may not cross the curve that separates the two regions
(the frontier). If the decision path crosses the frontier, what are the necessary
conditions for the incentive compatibility? First, the decision path crosses the
frontier in a U-shaped form (or a bell-shaped form) because of the monotonicity.
Then, we prove that a necessary condition is: if two types have the same decision,
then their marginal rate of substitution should be the same. In economic terms,
if two types are pooling in a given contract, then the principal guarantees truth
telling only if the marginal rate of substitution of the two types is the same. We
will call this marginal condition with respect to the decision the marginal rate of
substitution identity. Moreover, there exists an analogous marginal condition with
respect to the type, the marginal rent identity. In general, these conditions are not
sufficient for incentive compatibility, but they are sufficient in a particular setup
that we will examine.3

We use the second order condition of the incentive compatibility (IC) con-
straint and the marginal rate of substitution identity as the constraints of the
adverse selection problem and derive the first order conditions for the optimal
contract. The constraints will be both of the equality and inequality type and our
problem is not concave anymore, but we still can compute the optimal contract in
a particular setup. These constraints indicate that the principal has to take care of
wider varieties of strategic behavior of the agent who can now mimic the behavior
of other types that are not nearby. Mathematically, our results are expressed by

2 This solution is obtained by imposing the first order condition of the incentive compatibility
constraint to reduce the problem only to the decision variable.

3 The more general case is not finished. The difficulty of a complete characterization is that
even if a decision path does not cross the two regions, the monotonicity condition is not sufficient to

characterize the implementable decisions.



a generalized Lagrangian which contains terms other than the first and second
order conditions of the IC constraints. We do not get into the full complexity of
contracts: we just consider the case of at most one discontinuity. However, many
examples show that this is enough to approximate the principal’s relaxed welfare.

Chassagnon and Chiappori (1995) studied the insurance market competitive
equilibrium with adverse selection and moral hazard where the SMC is not valid.
However, they studied the two-type case and the second order approach remains
true in the continuous version of their model. We will use the same idea of simul-
taneous adverse selection and moral hazard to provide the example below without
the SMC and where the second order approach is not valid.

ExamPLE 1: (Owner-manager relationship under moral hazard and adverse
selection)

Suppose that an owner (the principal) of a firm has to hire a manager (the
agent) to deliver a product for him. Assume that the manager can choose between
two types of technologies and the manager is more or less productive depending on
his type and on the technology chosen by him. The owner has to design a reward
schedule.

Let x be the units of output, § the manager’s productivity, y the worker’s
effort and t the salary. Each type of manager has a comparative advantage in one
of the technologies. More precisely, the technologies are described by T' € {17,15}:

T1: r=(1-0y, 606
T2 : x =0y, e

where © = [0, 1] is the set of types and the distribution of the manager’s type is
represented by a density function p:© — Ry .

The manager’s utility function is V = ¢ — y? and the owner is risk neutral
with utility function given by: U = x — .

Define also the manager’s utility function given the technology choice and as
a function of the output:

2
xr
V(x,t,9|T1)_t—<1_0)

and
2\ 2
Vix,t,0|Te) =t — (5) .

It is clear that V(x,t,0 | T1) > V(z,t,0,T3) if and only if 8 < 1/2, i.e.,
the low (high) types have comparative advantage in technology T; (T5). It follows
that the managers with characteristic 6 close to 0 (respectively 1) are specialists
in technology T; (respectively T). We also say that types 6 close to 1/2 are
generalists (they are the bad types).



The principal’s problem is to maximize his expected utility over all the con-
tracts {z(-), ()} given the participation constraints and, in the case of asymmetric
information, the incentive compatibility constraints, i.e.,

ma Eglx(0) — t(0
e oz (0) —t(0)]

subject to incentive compatibility and participation constraints (where the man-
ager’s reservation utility is zero).
Depending on the informational structure, we have different problems:

1) Second Best with the technology choice information: 6 is not observable, but T
is observable and verifiable. In this case the optimal contract can be contingent
only on the technology choice. Therefore, the owner designs two types of contracts
(one for each chosen technology)

i=1,2

{(,’]jl (0), t; (‘9)) 6€l0,1]

such that it satisfies, for each i =1, 2,

(IC;) 0 € arg max V(x;(0),t:(0),0 | T;) V6 €]0,1].
0€[0,1]

The manager with productivity 6 chooses T1 (13) if and only if
V(z1(0),81(0),0 | T1) = (S)V (22(0),12(0),0 | T2)

and the owner has to take this last inequality into consideration to compute his
expected utility.

However, since the type 6 has a comparative advantage in T3 (T3) if and only
if 6 < (>)1/2, then, in equilibrium, the optimal contract should induce type
0 < (>)3 to choose Ti (T») when the distribution is symmetric with respect to
1/2. Therefore, the employer will design {z1,t1} ({x2,t2}), shutting down each
type 0 < (>)1/2 in equilibrium, i.e., the IR will not hold for this type. This
implies that type 1/2 will have zero rent in equilibrium. We can say that the
owner will use the technology choice as a signal of the manager’s type (since he
can control this choice).

Conditional on each technology, the principal’s problem is going to be a stan-
dard adverse selection with the SMC. The optimal decision is going to be U-shaped
and has the same properties of separating or continuous pooling equilibrium. In
Section 4, we will explicitly compute the solution and introduce lotteries in the
technology choice to improve the expected profit of the owner.*

2) Second Best without the technology choice information: neither 6 nor T are ob-
servable. In this case the optimal contract can not be contingent on the technology,

4 The intuition here is that by using lotteries the principal can threaten the risk averse agent and

extract more rent from him. We will show that lotteries on the production choice do not help.



i.e., the owner can not use the technology choice as a signal of manager’s type.
Therefore, the owner will face a manager that has the following utility function:

t— <1f0)2, if 0el0,1/2]

2
t— (%) , otherwise

It is easy to see that the derivative of the marginal rate of substitution with
respect to the type changes its sign exactly at type 1/2. Therefore, the principal’s
problem does not have the SMC.

As we explained above, we have to consider now the marginal rate of substi-
tution identity to characterize the solution. In this case, this identity is equivalent
to the symmetry with respect to 1/2, i.e., implementable decisions are going to be
U-shaped symmetric with respect to 1/2 (see Section 4 for the details). In par-
ticular, the optimal decision will also have this property. Since the owner can not
see the technology choice, he will never know this choice in equilibrium because
for each output decision, there are exactly two types of managers using different
technologies and delivering it (this is what we call a discrete pooling equilibrium).

The impossibility of observing the choice made by the agent transforms
the bidimensional second best problem (in (77,6)) with information into a one-
dimensional problem (only in #) without the SMC. We can use this method to
generate several examples. The key point is that there is a “countervailing” effect
between technology choice and productivity: the principal guarantees truth telling
only if he equalizes marginal utilities of the agents that choose the same output.

Another example to be considered in this paper is a natural extension of
nonlinear pricing models studied by Mussa and Rosen (1978) and Maskin and
Riley (1984) where the SMC is relaxed. Suppose that a monopolist faces different
types of demand with finite elasticity. More precisely, the demands are linear, the
market size is decreasing in the type and the maximum price where there exists
positive demand is increasing in the type. This means that the market for the low
types (in the sense of willingness to pay for the good) is the large one. In this case
the SMC fails to hold and the optimal contract is going to be non-decreasing for
the low types and non-increasing for the high types (a bell-shaped curve). The
reason is that the monopolist wants to extract the maximal rent as in the single
crossing case, but now he has to deal with the trade-off between the size of the
market and the consumer’s willingness to pay: he will extract less rent from low
types because he wants to sell the good more and at the same time he wants to
extract the rent of high types without breaking the IC constraints. Therefore, the
condition is that low and high type consumers that are pooling in the same quality
or quantity have to have the same marginal valuation (the competitive price) for
the good, i.e., in equilibrium they are treated as the same. This leads to a discrete
pooling equilibrium again. The same aspects of countervailing and bidimensional
characteristic problem are repeated here.

There are some contributions on the literature of multi-characteristic and
multi-decision problem: McAfee and McMillan (1988) gives a generalization of the

V(x,t,0) =



SMC which is enough to imply a strong structure on the agent’s utility function.
Matthews and Moore (1987) studies the case of when there are more decision vari-
ables than characteristics. Armstrong (1995) characterized the optimal solution
of a specific model of multiproduct nonlinear pricing. He showed that bunching
is common in this case. Our paper also addresses this question. More recently,
Rochet and Choné (1997) studies the ironing principle in a multidimensional non-
linear pricing model.

We also analyze a regulation model a la Laffont and Tirole (1993). In their
basic model, the cost function depends on a non observable parameter (the effi-
ciency) and the effort of the firm’s manager in cutting costs. The cost function is
one-dimensional in the sense that there is just one source of activity that allows the
manager to cut cost. Suppose, however, that there are two kinds of activities that
the manager employs to cut cost and the regulator can only observe the aggregate
cost, i.e., there are two sub-costs that are not observable by the regulator and
the sum of them are contractile. Moreover, these activities are substitutes in the
manager’s point of view (i.e., the manager’s disutility of effort has positive cross
derivative) and there is a decreasing relation between the parameters that charac-
terize the sub-costs. We show that this kind of interaction will result in non-single
crossing and again we will have the same kind of message that we explained in the
examples above.

Finally, we study a labor contract where workers have a vector of two char-
acteristics (unknown to the firm) that are mixed in a verifiable signal (schooling).
This example follows, in spirit, Cavallo, Heckman and Hsee (1998). The firm is
a profit maximizer and its technology depends on this vector of characteristics:
one of the characteristics has a multiplicative effect over the worker’s effort and
the other one is constant. There is a conflict of interest between the firm and the
worker because effort is costly (and not observable) and the workers’s abilities are
not totally captured by the signal. This is a standard adverse selection problem.
However, depending on the parameters of the model, the SMC does not hold. In
this case, discrete pooling equilibrium may appear, and indicates that different
workers with respect to the profile of characteristics may be treated as the same
in equilibrium.

The paper is organized as follows. In Section 2 we present the adverse selec-
tion model. In Section 3 we give necessary conditions for the solution of adverse
selection problems without the SMC. Section 4 presents some examples. Section
5 gives the final conclusions and the Appendix A contains the proofs.

2. THE ADVERSE SELECTION MODEL

The relationship between the principal and the agent(s) involves only two
types of variables: The first type is associated with a decision (or action) variable
(denoted by x) which is observable. The variable of the second type (denoted by
t) generally has the meaning of money transfer from the principal to the agent.

The principal and the agent interact through these two variables and the
asymmetry of information can be described as follows: there is a one-dimensional



parameter 6 which is known to the agent and unobservable to the principal. This
parameter belongs to some compact interval © = [§,0] C R. The principal has
some a priori probability distribution on © which is associated to a continuous
density p: © — R, . We can interpret this function as the principal’s subjective
assessment of the probability of § when there is only one agent or the objective
distribution of their types when there are many agents.

The principal’s utility function is U: I xRx© — R, where I C R is an interval,
U(z,t,0) = u(x,0)—t and u is C3 . The agent’s utility function is V: IXxRx© — R
such that V(x,t,0) = v(x,0) +t and v is C3.

A mechanism (contract or allocation) is a pair of functions (x,t): © — R2. A
mechanism can be viewed as a procedure giving the decision to the principal who
commits himself to a decision rule relating the choice of = and ¢ to messages sent
by the agent. By the revelation principle (see Fudenberg and Tirole (1991)), any
mechanism can be mimicked by a direct truthful one in the sense that there is no
loss of welfare to the principal.

A decision function z: © — [ is implementable if there exists a money transfer
function ¢:© — R that satisfies the incentive compatibility constraint: for all
(0,0) € ©2,

(IC) V(z(0),t(6),0) > V(x(6),t(0),0).

We will say in this case that the allocation (z,t) is implementable or satisfies
truth telling, or that = implements ¢. In other words, the announcement of the
truth is an optimal strategy for the agent whatever the truth may be.

We say that an allocation (x,t) satisfies the individual-rationality constraint
if for all 6 € ©,

(IR) V(z(0),t(0),0) > 0.

An implementable allocation that satisfies the IR constraint is called feasible.
We assume that the agent’s reservation utility is independent of his type® and,
without loss of generality, we normalize it as zero.

The principal’s (or the adverse selection) problem is to choose a feasible allo-
cation with the highest expected payoff, i.e., the principal maximizes his expected
utility subject to the agent’s IR and IC constraints:

max Ey[U(x(6),t(0),0)]

s.t.
(IC) V(z(0),t(0),0) > V(x(0),t(0),0), V(0,0) € ©2
(IR) V(z(0),t(0),0) >0, VY0ecO

5We do this for simplicity. However, we can consider the case where the agent’s reservation

utility depends on the type. See Maggi and Rodriguez-Clare (1995), for instance.



where Fjy is the expectation operator with respect to the prior.

DeriNITION 1: Let C be the set of all cadlag decisions, i.e., the space of all

x:© — R right continuous and such that lim z(0) exists for each § € © (and, in
0—6
6<6
this case, it will be denoted by x_(0)), with the pointwise limit topology at every
continuous parameter of the limit decision function (this is the weak topology in

the distributional sense - see Rudin (1974)).

Below we present the classical first and second order conditions of the incentive
constraints extended to cadlag decisions. All the proofs are presented in Appendix

A.

LemMMA 1: (The first and second order conditions of the IC constraint)

(i) Let = be a bounded decision such that the set of its discontinuity points
has zero Lebesque measure. If t implements x, then the agent’s value (or rent)
function of = is given by®

VZ(0) = v(z(6),0) + t(0) = V*(0) + /; vg(x(0),0)dl, V0 € ©.

(1) If © is a bounded cadlag implementable decision, then x is non-decreasing
(resp. mon-increasing) on the region where vyg > 0 (resp. vyo < 0).

Lemma 1 (i) shows that for each implementable cadlag x, there exists a unique
(except by a constant V*(0)) cadlag money transfer that implements z, defined by

t(0) = V*(0) —v(x(0),0), V0 € ©.
Then, we define

&*(0,0) =V (x(0),t(0),0) — V(x(0),t(0),0)

6 z(6) _ _
_ / { / N vw(f,@)d:ﬁ}d@
0 z(0)

and, after an integration by parts, the virtual surplus (i.e., the social surplus minus
the informational rent) times the probability is

(P(9) —1)
p(0)

where P(0) = | : p(#)dh is the cumulative distribution.

f((0),0) = [u(x(0),0) +v(x(0),0) + ve(z(0),0) — V*(0)]p(0)

6 The sub-index in the function represents the partial derivative of the function with respect to

that sub-index. Also, the superior order derivative will be represented in a multi-index notation.



If vg > 0, then the rent function V* assumes its minimum at 8, and since
money transfer is costly for the principal, the IR constraint will be binding at the

optimal contract in 6, i.e., V*(0) = 0. If vp <0, V*(f) =0 and

P)
p(0)

Otherwise, V* can assume its minimum at some point in © depending on x (except
in special cases such as the example in the introduction where this point is 1/2
for every decision x). Therefore, in the general case one might need a Lagrange
multiplier for the IR constraint in the problem that follows. For the sake of
simplicity, let us assume that vy has a constant (positive) sign (see remark 3 after
Theorem 4’).

The principal’s optimization program becomes

f(x(0),0) = [u(m(@), 0) +v(xz(0),0) + vg(z(6), 0)]p(9).

max Fy
zeC

(P) s.t. 9(0,0) >0, V6,0 € ©.

If we ignore the IC constraint, then the problem is called relaxed and so is its
solution (first order approach). The first order condition of the relaxed problem
is given by

fx(x(0),0) =0, forall 0O

when x(0) is in the interior of I.

It is well known in the literature of adverse selection problems that a sufficient
condition for implementation is the constant sign of the partial derivative of the
marginal rate of substitution with respect to the parameter:

(CS+) Op (E> =vz9>0 onlx0O,
Vi

or
Vi

(CS_) Op (—) =v,<0 onlx®O.
Vi

This is known as the Spence-Mirrlees Condition (SMC) or sorting condition and
it implies that the indifference curves of two different types cross only one time.

In the presence of CS, (respectively CS_), it is easy to show (see the proof of
Lemma 1) that if a cadlag decision is non-decreasing (respectively non-increasing),
then it is implementable. Therefore, the adverse selection problem is equivalent
to

max Fy [

s.t. x is non-decreasing (respectively non-increasing).
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This program is known as the second order approach because, under the SMC,
the monotonicity of the decision is equivalent to the local second order condition
of the IC constraint. Using the Hamiltonian approach, as in Guesnerie and Laffont
(1984), one can obtain a full characterization of the solution.

3. RELAXING THE SPENCE-MIRRLEES CONDITION

Now we will introduce a natural generalization of the SMC. Assumption Al
below separates the plane (0, x) into two regions: CS; and CS_.

AssuMPTION Al: vyg(x,0) = 0 defines a function xg of 6 on O; v,29 <0 and
Vg2 > 0 on I x ©.

By the Implicit Function Theorem and A1, z¢ is C! and increasing:

To(0) = — 27 (@0 (0).)
Ux29(x0 (6),6)

Moreover, if x < xo(0), vio(z,0) > 0 (CS;) and if x > x(0), vee(z,0) <0 (CS-),
for all 6 € © (see figure 1 below). Therefore, the assumption Al generalizes the
SMC, because O x I is separated into two parts: above (respectively below) xq,
vgo < (respectively >) 0 on I x ©.

Changing the sign of x or 6, there are three other equivalent cases: v,29 > 0
and vzg2 < 0, with zg increasing and reverting the regions where v,y > 0 and
vz < 0; v29 < 0 and ve2 < 0 (see Example 2); v,29 > 0 and vy92 > 0 (see
Example 4), for the respective cases where z is decreasing.

Ficure 1.— The curve zg.

We can relax the second part of Al: instead of assuming that xg is increasing,
xg could have a finite number of peaks. However, the analysis would be more
difficult without any substantial gain in the results.

The next theorem will give necessary conditions for implementability. First,
we say that z is right increasing at 6 € O if x(0) < x(0 + ¢), for every sufficiently
small € > 0. Analogously, we define left increasing and right and left decreasing.

THEOREM 1: (Necessary conditions for implementability) Assume Al. If x is
an implementable cadlag decision, then

(i) if x is right (left) increasing at 6 and $*(0,0) = 0, then
va(2(0),0) = ()vs(2(6), )

and the inequalities revert when x is right (left) decreasing.
(ii) if *(0,0) =0, then

vg(2(0),0) < vg(x(0),0) and ve(x(0),0) > vy(x_(0),0)
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and with equality when x is continuous at 6 > 6.
(iii) If @ is right and left increasing at 0 and x = x(0) = x(), then

~

Ve (2, 0) = vy (2, 0).

REMARK 1: Item (ii) is the dual condition of (i) when we interchange 6 and z,
i.e., instead of looking at the direct decision (z as a function of ), we look at the
inverse function (0 as a function of x), which can be interpreted as the marginal
rent equality of a type that considers his designed choice and an indifferent choice.

REMARK 2: The economic interpretation for Lemma 1 and Theorem 1: In
order to provide truth telling, the principal offers a contract that

e is non-decreasing (respectively non-increasing) in @ if the marginal rate of sub-
stitution is decreasing (respectively increasing) in 6.

e if two agents (0 and é) choose the same decision and the agents cannot locally
misrepresent their types, then the principal must equalize the marginal rate of
substitution of the two agents (MRS? = MRS?) - see figure 2 below.

e if a type is indifferent between his designed choice and type 0 choice, then the
principal must equalize the agent’s rent of these choices.

Ficure 2.— The U-shaped decision.

The SMC obligates the principal only to check the upstream or downstream
types in the case of CSy or CS_, respectively (i.e., to check the second order condi-
tion or the monotonicity). However, the no SMC case obligates the principal also
to check the marginal rate of substitution identity (the cross-stream condition).
Therefore, the IC constraint is less restrictive in the former case than in latter one
and, thus, the rent extraction is less powerful when there is no SMC.

If x hits the curve xg, then it should cross xy in a constant way or preserve
the marginal utility for types that choose the same level of = (if = were identical
to xo in an interval, then the IC constraint would not hold locally). This last
condition is new, and when the SMC is not valid, it can play an important role in
order to characterize the optimal solution of the adverse selection problem, as the
examples of Section 4 will show. We will call this condition the marginal rate of
substitution and rent identities.”

Observe that if (z,t) is feasible and 2(0) = z(0), then #(d) = t(d). Thus,
if two types are pooling in a feasible contract, then they should have the same
marginal rate of substitution or a continuum of types between them should also
pool.

7 Observe that the marginal rate of substitution identity is equivalent to v; being constant on

every level set of a feasible decision x.
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It is important to note that we are dealing with a non-concave problem be-
cause the set of feasible decisions for the agent is not convex when the agent’s
utility function does not satisfy the SMC.

3.1. The Necessary Conditions for Optimality

From the local second order condition of the IC constraint we know that an
implementable decision that crosses continuously from one region to the other has
to have a U-shaped form or present continuous pooling. This will give us a large
scale pooling equilibrium (even under monotone hazard-rate property)®. We will
study two cases: the continuous and the discontinuous crossing.

We will study the necessary conditions for optimality. First, we will character-
ize the relaxed solution. Let 1 be the relaxed solution for (P). By the Maximum
Theorem, x1 is a continuous function of 6.

DerINTTION 2: The hazard rate is by definition: M (0) =

Even under a monotone hazard rate condition (MHRC), i.e., M(-) is increas-
ing, the relaxed solution is not monotone.

ProposIiTION 1: (Geometry of the curves) Assume that A1 and MHRC hold,
u is concave and does not depend on 6, and v(-,0) is concave. If x1 crosses xg,

then 1 is U-shaped and is above (below) the first best solution when it is above
(below) xg.

The proof of this proposition is straightforward and it is not presented here.

Ficure 3.— The possible cases for x¢ and z;.

The two top cases correspond to the SMC situation. In this paper we are
going to treat the third case. The other three cases represent the possibilities which
although not considered specifically in this paper can be given similar treatment.

AssumPTION A2: w1 is U-shaped, crosses xg in a decreasing way, x1(0) >
r1(0) and x § z1(0) & fz(z,0) % 0, for all 6 € ©.

A sufficient condition for the second part of A2 is the concavity of f(-,8), for
each 0 € ©. If z1(0) belongs to the interior of I, then f.(z1(0),0) = 0. Under
A2, the principle of optimality for the adverse selection problem is to find an
implementable decision “as close as possible” to x;.

We are going to divide the analysis into two cases. The first one is the space
of the limit of continuous implementable decisions. In the second one the decision

8 Chapter 9 of Laffont and Tirole (1993) studies the repeated regulation game without commit-
ment and the “ratchet effect”. They show that in equilibrium there may exist substantial pooling
in every continuation equilibrium. In particular, their definition of pooling over a large scale for a

continuation equilibrium is equivalent to our discrete pooling notion.



13

can have at most one discontinuity (and the associated correspondence is not
necessarily implementable).

The former situation corresponds to the case where the space of feasible con-
tracts is more restricted. This diminishes the space of contract that the principal
can design and enlarges the strategic space of the agents because they have more
options to mimic the agents that have a set of choices. In the last situation the
principal controls the choice of the agent more, increasing his surplus. In partic-
ular, we will see that the set of realized equilibrium choices is disconnected, i.e.,
there exists a range of decision choices between two equilibrium realizations that
is not attainable. The intuition is that the principal designs a game for the agent
to play and he strictly prefers to limit the agent’s decision choice set, comparing
the first situation with the second one.

If more discontinuities are possible, the principal’s welfare increases. However,
as will be shown in Examples 2 and 4, the single-discontinuity case approximates
the relaxed welfare very well.

3.2. The Case of the Closure of Continuous Decisions

Define a A b = min{a, b} and a V b = max {a,b}. Let x be a bounded imple-
mentable cadlag decision and define X (0) = [z_(0) A z(0),2_(0) V x(0)], for all
0 € O, the associated correspondence of x. The characterization of the set of the
closure of continuous implementable decisions is given by:?

THEOREM 2: (The closure of continuous decisions) Let x be a bounded im-
plementable cadlag decision and X s the associate correspondence. Thus, x is in
the closure of the set of all continuous implementable decisions if and only if X s

implementable, i.e., f; [fmy(é) vmg(iz,é)di} df >0, Yy e X() (or 9X(6,0) > 0).

Under Al, if X is implementable, then = crosses zy in a continuous way one
time at most. In this case £ must be non-increasing or non-decreasing or U-shaped.
In this section, we will consider only the decision € C such that the associated
X is implementable. Observe that when the SMC is valid, this set is equivalent
to the continuous implementable decisions.

The next theorem gives a situation such that the necessary conditions of
Lemma 1 and Theorem 1 are sufficient for the characterization of an implementable
decision (the proof is analogous to the proof of Lemmas 3 and 4).

THEOREM 3: (Sufficient conditions for implementability) Assume Al. Let x
be a bounded cadlag decision that satisfies the necessary condition of Lemma 1 (ii)

and Theorem 1 (i3). If ©(0) > x(0), then x is implementable.

9 Indeed, as we will see in Theorem 5, the optimal decision can have discontinuities (except in
cases like Examples 1 and 3). But we are assuming that the discontinuity is part of the decision (i.e.,
the associated correspondence is implementable). The sketch of the proof of Theorem 2 is presented

in Appendix A.
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The sufficient conditions for implementability of a decision x such that x(8) <
x(0) is more difficult. However, Theorem 3 can be used to solve some problems.

A natural question is the existence of an optimal contract. Page (1991) pro-
vides a general result for the existence of an optimal contract in the case where the
contracts are lotteries. In the case of deterministic contracts, Athey (1997) gives
the existence of a pure strategy equilibrium for games with incomplete information
under a generalized Spence-Mirrlees Condition or a limited complexity condition
(i.e., the strategies have a finite number of peaks as a function of the parameter).
In our case, we have the following;:

LemmaA 2: (Existence) Suppose that A1 and A2 hold. Then, there exists x*
a solution for (P) in the set of the closure of continuous implementable decisions.

We will present an analogous version of this lemma (Lemma 2) whose proof
is given in the Appendix A.'Y The next theorem gives the characterization of the
optimal U-shaped part of the decision.

THEOREM 4’: (Necessary conditions for optimality) Suppose that A1 and A2

hold. Let 0y be the continuous crossing parameter for x* and 601 < 0y < 05 such
that x*(0y) = x*(01). Then:

(i) If x* is right and left decreasing at 0, then

fa(z,0) _ fa(, A)
vao(2,0) Vo (T é)

where 0y < 0 < 0y, vy(x,0) = vy(x,0) and x = z*(0) = z*(0).
(i) If [a,b] C [8,00] is a maximal interval where x* is constant, then

AB
/ f=(z,0)d0 + / fz(z,0)d0 =0
where 01 < a < 0o, x%|jqp) = T and, in the integral, a and b are defined by the
equality v, (x, ) = v, (z,0), where = a or b, respectively.
As we will see later, Theorem 4’ is generalized by Theorem 4.

REMARK 1: % is the Lagrange multiplier of marginal rate of substitution

identity and we can rewrite the condition of Theorem 4’ (i) as

fo(2,0)  vee(x,0)

~

fx(l'; 9) Uﬂ?e(l'aé)

10 we only have to observe that if a sequence of implementable correspondence (X, ) converges
to X, then X is also implementable.
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with the following meaning: the rate of the virtual surplus between type 6 and 0
is equal to the rate of the marginal rent between them.

For an illustration of the distortion effect in the case of no SMC, suppose that
the principal’s utility function does not depend on the agent’s type. Omitting
the argument of the functions and putting a hat over the function when it is
evaluated at 6 and no hat when it is evaluated at 0, the first order condition given
by Theorem 4’ when discrete pooling occurs is

Uz ¥V gy Yzt o

Vo Vo

REMARK 2: The part (ii) is the analogous to the ironing principle (see Mussa
and Rosen (1978)). However, in our case the ironing principle may be disconnected.

REMARK 3: (Rent extraction versus distortion) As we observed in Section 2,
if vg changes its sign, then we have to consider a Lagrange multiplier for the IR
constraint. An alternative way to deal with this problem is to define o(z,0) =
v(z,0) + KO where K > 0 is such that 9y > 0 and replace v by 9. However, in
order to have an equivalent problem, we have to assume now that the reservation
utility of type 0 is K6 . This kind of situation has been studied in the literature
(see Maggi and Rodriguez-Clare (1995) or Jullien (1997) for a complete treatment)
and one could apply the same method to treat this problem here.

For instance, suppose that vgs < 0 and that the curve in the plane (6,x)
defined by vg = 0 is in the region where v,9 > 0. Thus, this curve is increasing,
separating the plane into two regions: above this curve, vy > 0, and below it,
vg < 0. Moreover, assume that the optimal decision crosses this curve just once at
0y € ©. Fixing 6y and proceeding in a similar way, we will end up with the same
theorems except that the objective functional will change to

f(x,0) =u(x,0) + v(z,0) + M(0)ve(z,0)

where

ST it0E [60,9)
M(0) = Py .
20 if 0 € [0, 0).

In this case, the type 60y is the only one to have zero rent. The economic
intuition is the same of “countervailing incentives” in Lewis and Sappington (1989)
(see also Maggi and Rodriguez-Clare (1995)). The difference is that in our case it
comes from the no SMC and in their case it is based on the type dependence of
the agent’s outside opportunity.

Finally, if the optimal decision crosses the curve vg = 0 on an interval (g, 61),
then along this interval f(z,0) = wu(x,0) + v(x,0) and the IR constraints are
binding on (6o, 61).

REMARK 4: Suppose that z* crosses xgp in a continuously differentiable way.
For instance, this will be the case when the hazard rate is continuous at the crossing
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point. However, as it is shown in Examples 1 and 3, this condition may not be
true. In this case, the critical decision characterized by Theorem 4’, x¢ and x;
cross at the same point and this critical decision is strictly between zg and x;.

The new feature of the solution that appears in Theorem 4’ is the possibility of
discrete pooling or large scale pooling, i.e., in the optimal solution some isolated
types can choose the same level of the contract. In the literature there exist
just two types of equilibria: separating or continuous pooling equilibrium. In the
former the agent’s type is known ex-post by the principal and in the latter the
principal knows a range of types where the agent is. When the SMC does not
hold, one can have discrete pooling equilibria besides separating and continuous
pooling. In this case the principal does not know the true type between two types
or between two ranges of types. Therefore, the optimal solution can have these
three characteristics: separating, continuous pooling or discrete pooling.

Under SMC, the pooling interval of the optimal contract is characterized by
the marginal welfare of the principal being zero along this interval. Theorem 4’
shows that this property is no longer valid when there exists discrete pooling.

Under the assumption that follows we can characterize the optimal decision.
For each p > 0, let 27'(0) be the implicit solution of f.(-,0) + pv.e(-,0) = 0, for
each 0 € ©. Observe that 29 = x;.

A

AssumpPTiON A3: For each 0 and p > 0, the equations v.(xf(-),) =

ve (24 (1), 0) and ve(2h(-),-) = vg(zt(),-) have at most one solution in the in-

creasing part of x4 on CSy.

This assumption means that the curve x/ crosses the implicit solutions of

Ve (+,a) —vg(+,0) = 0 and ve(+,0) — ve(Z,0) = 0, at most once for each a € © and
T € I. For examples, see 2 and 4.

THEOREM 5: (Optimal decision) Assume A1, A2 and the first part of A3 for
w=0. Then the optimal solution for (P) is:

e | T if 6<6,
xw)_{xl(e), if 0> 6,

where T = x1(61), ;1 f2(Z,0)d0 =0 or

w i z1(0), if 0<b
v (0) = { 2(0), if 6> 6

where x* is characterized by Theorem 4’ (i) and 61 is such that *(6) = x*(0).

The intuition of Theorem 5 is straightforward: every monotone implementable
decision is dominated by a U-shaped decision or a continuous decision that is
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constant plus the relaxed solution (see the proof in the Appendix A). Theorem 5
displays the optimal decision in each case.

Observe that the optimal decision given in the Theorem 5 can be discontinuous
at 01, because " is strictly between z¢ and z; (see remark 4 after Theorem 4’).

3.3. The Case of One Jump Decisions

We are not going to characterize the space of implementable decisions because
it is very large. For instance, there are implementable decisions that cross the curve
xo many times. Our strategy instead is to derive the necessary optimal conditions.
In order to do this, we deal with a relaxed program and give conditions under which
this relaxed solution is the optimal second best decision. We are going to consider
contracts of limited complexity: we restrict the number of crossing to at most one.
The following lemma guarantees that there is a solution in this space and it is
analogous to Lemma 2.

LeMMmA 2: Assume that A1 and A2 hold and that I is bounded. There is a
solution of (P) in the set of all decisions x € C that crosses xo one time at most.

In what follows we are going to give the necessary optimal conditions when
there is just one discontinuity. First we provide a generalization of Theorem 4’
that can be useful in the case where the relaxed solution is increasing in CSy (the
case that is not treated here). This theorem derives the first order condition of
a strictly increasing (or decreasing) part of a decision that satisfies the necessary
conditions of Theorem 1. Formally:

THEOREM 4: (Necessary conditions for optimality) Suppose that A1 and A2
hold. Let x* be an optimal decision and [0,02%] an interval in © on which x*
is continuous and strictly monotone (in particular, the necessary conditions of
Theorem 1 are satisfied under equality). If for each 6 € [0',0?] there exist a
unique 0 # 0 such that & (0, é) = 0. Then,

fol@,0) _ fo(@,0)

V20(2,0)  vg9(,0)

where 0 € [0Y,02], v, (2,0) = v,(2,0), ve(x,0) = vo(#,0) and x = z*(0), & =
z*(0).

The interpretation of Theorem 4 follows the same intuitions of Theorem 4’
(see the remarks after that theorem) except that besides the marginal rate of
substitution identity, the principal must equalize the marginal rent identity in
order to obtain truth telling. Observe that Theorem 4’ is a particular case of
Theorem 4 when = = 2.
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ConTiNnvous CrossinG: (but not constant)!?  Fix 6y € © as a parameter
where x* has a discontinuity and #; > 6y is the minimal parameter that defines
the U-shaped part of the optimal decision. Consider the space of cadlag decisions
x such that x(01) = x*(61), = is non-increasing on [#, 0;] and non-decreasing on
[02, 0], where 0o = (61, 2*(61)).12

A relaxed program'?

(x(0),0)

p(0) |

max Fy|

s.t
(0) <0, VO € [0,04]
#(0) > 0, VO € 05,0
x(0) = x*(0), VO € [04, 6]

(9)
0 0o_) / / Vo (T dxd@ >0
6o (6o)

z—(6o) = x(
:E(@Z) =z (02'), i=1,2

where x*(+) is the implicit solution of the first order condition given in the Theorem
4’ (observe that z"(61) = x*(f2)). Observe that if there exists § > 65 such that
x(0) > x_(6p), this would imply that there is a U-shaped part on [§, 6y), which is
not possible (because this would generate another discontinuity - see the remark
4 after Theorem 4’).

The Lagrangian will be:

0

L, i, My Ao, T) = / [F(@(6).6) — T(6)(6)]d6 + / [ (2(6),6) + T(0)(6)]d

02

x(6) _
+ M/ / V2 (F,0)dEdO + No[z_(00) — z(B)]
90 (80)

+ A[2"(01) — 2(01)] 4 Aofx™(02) — x(62)]

where I' > 0 is the monotonicity multiplier (with I = v), p > 0 is the Lagrange
multiplier of the IC constraint of the pair (0,60y_), \g > 0 and A\; € R (i = 1,2)
are the Lagrange multipliers associated to the other three constraints.

Taking the Gateaux derivative with respect to the space of admissible direc-
tions: H = {h:© — R; C' on [0,01] N [#2,0] and h|(g, g,y = 0}, the first order

1 The constant crossing will be considered in the next case.

12 ¢(0,x) is defined in the proof of Theorem 4 and the U-shaped part of the optimal decision is
characterized by Theorem 4°.

13 The relaxed program is given by a less relaxed program than the original one and it essentially
consists of adding the monotonicity conditions, the IC constraint of the highest type with respect to

the type where the discontinuity occurs, and the U-shaped characterization of Theorem 4’.
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condition is (6 means the Gateaux derivative):

6L (x) = / [£2(2(0),0) +7(O)|h(0)d0 — T_(Bo)h_(0) — T(01)h(6:)

n /e £ (2(6),8) — 7(0)]1(6)d0 — T (6)h(6)

0
+ u/ [vz6(2(6),0)1(0) — vao(2—(00),0)h—(60)]dO

o
+ Xo[h—(00) — h(0)] — A\1h(61) — A2h(B2) =0
and the Kuhn and Tucker slackness conditions are:
r'e)z@)=0
ud®(0,0y_) =0
Xo[z_(00) —z(0)] =0
x(0;) = x(0;), i =1,2

Then,
( fz(z,0)+~(0) =0, forfd < By
fu(2,0) +~v(0) + pvgg(z,0) =0, for 6y <0 < 64
fu(z,0) — v(0) + pvgg(z,0) =0, for 62 < 0

—F_(eo) + [Ux(it_(eo), 190) — Ux(m_(eo),a)] + X =0, forf =20y
)\Z+F(02):0, for0=0;,, 1=1,2

( T(0) — X =0, forf=20

and

([ fo(21,0)d0, 6 € [0o,00]
L(0) + J;" [fo(T2,0) + poss(T2,0)]d0, 0 € [60,01]
T(02) + [y [fo(T2,0) + pves (72, 0)]d0, 0 € [0, 61]
( fy [fo(@1,0) + pvas(21,0)]d0, 0 € [62,0]

where v = 0 for 6 € [0,0o] or 6 € [01,05] and Z;’s are the constant parts of the
optimal decision.!*
We can calculate the second order derivative of the Lagrangian:

r(6) =

01

0
L) = | Fon(@(0), 0)R(0)2d0 + 9 Fou((0), 0)R(0)2d0

0
y /9 0220 (2(0), 0)1(8)2 — vy29(z— (60), O)h—(00)2]d6

14 Using the first order condition of the Lagrangian, one can easily verify that there exists no

other constant part in the optimal decision.
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Since p > 0 and v,29 < 0, if frr, < 0and fou (-, 00)+p(ve2 (s, 90)—%2(-,5)) < 0, then
the second order derivative is always negative. This means that our Lagrangian is
a concave functional and the first order condition is necessary and sufficient (for
each 6y and 6,).

Therefore, the candidate of second best solution of our program in this case
is ~
( .]31(9), 0 < 6y
Xy, é0§9<000ré2§9§§
z(0) =< z(0) 601 <0 <06
o, 0o <0<0iorb <0<
\ iﬂff(e)a él <6< éQ

where 2/ is the implicit solution of f,(-,0) + pv.e(-,0) = 0.

FiGure 4.— The critical decision in the case of continuous crossing.

Lemma 3: (Implementability of a critical decision) Under A1-A3, for each 0
and 01, the decision defined above is implementable.

Finally, one must optimize with respect to 6y. This is done in the numerical
Examples 2 and 4 (observe that this program is not concave anymore).

DisconTiNnuous CrossiNG:!1%  Fix 6y € © as a parameter where z* may
cross xg discontinuously. We are going to solve the following relaxed program:

f(x(0), 9)]
p(0)

max FEp|

s.t.
() < (2)0, V0 < (=)o

X _ (90)

_ 0 x(0) 5 5
& (3,60 ) = / / veo(#, 0)didd > 0
0o
x_(0o) > x(0)

Assume that the optimal decision is piecewise continuously differentiable with
at most one discontinuity. More precisely, we assume that discontinuity occurs at
0p. The Lagrangian will be

[}
L(z, u A T) = / [ (2(6).0) + T(6)i(0)]d6

z(9)
—|—,u/ / Vo (T dxd@
6o (80)

+ Az (6o) — z(0)]

15 We can adapt this case to the continuous crossing one.
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where p > 0 is the Lagrange multiplier of the IC constraint of the pair
(0,00_),I:© — R is the Lagrangian multiplier of the monotonicity of z with

I = vy (T'<0forf <byand T >0 for § > ) and X\ > 0 is the multiplier of the

third constraint.
Taking the Gateaux derivative with respect to the space of admissible direc-

tions: H = {h:© — R; C'}, the first order condition is:

%L@)ZA[h@@%%—v@ﬂﬂ®%+ilwwhi%)

0
+ u/e [vz0(2(6), 0)1(0) — vao(z—(00),0)h—(60)]dO

+ A[h_(60) —h(0)] =0

and the Kuhn and Tucker slackness conditions are:

0(0)i(0) = 0

Then,
( folz,0) =0, for 6<6
fo(2,0) —~(0) =0, for 6y <0< by
fo(x,0) — ¥(0) + pvge(z,0) =0, for 0y <0<0
T_(0) + p[ve(z_(00),00) — ve(x_(00),0)] + A =0, for 6 =0,
(@) —A=0, for =20

Observe that
ﬁﬁfM”'eq%m
F(@) - fgo fm Mvme(f%é)]dév 0 € [00,@1]
Jolfo(@ é4ﬁww@ 0)]d0, 0 < [0,,0)

Hl
Cbz

where v = 0 for 0 € [él,ég] or 0 € [0, 0o and T,;’s are the constant parts of the

optimal decision.
We can calculate the second order derivative of the Lagrangian:

%
SunL( /.mm <>w+u/[%%@wxmmm%wﬂwa%xmnx%fwe

fo

and again the same remark of the continuous crossing case is valid here.
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Therefore, the candidate for second best solution of our program is
z1(0), 6 < by

T1, G <60 <6porfy <

Ta, 6o <0 <0,

CC'IiL(G), él SGSéZ

z(0) =

Ficure 5.— The critical decision in the case of discontinuous crossing.

LemMA 4: (Implementability of a critical decision) Under A1-A3, the decision
defined above is implementable, for each 0g.

Again, one can optimize with respect to 8y and obtain the optimal decision
in the class of decisions that cross x(y discontinuously.

Our procedure is to use these first order conditions to implement the critical
solution in numerical examples (see Examples 2 and 4). Lemmas 3 and 4 guarantee
that the decisions characterized above are implementable under assumption A3.

4. EXAMPLES

ExaMPLE 1: CORPORATE FINANCE

Returning to the example in the introduction, define:

u(z,0) =x

7 if T=1T;
v(x,0 | T) = (1-
R if T="T,

In what follows we characterize the second best solutions with and without
the technology choice information:

1) Second Best with information: ~ As we explained in the introduction, the
verifiability of the technology choice allows the principal to extract more rent
from the agents with less distortion, such that only a middle type will have zero
rent. The intuition is straightforward: a generalist (bad type) will have zero rent
and a specialist will have positive rent.

More striking, if the principal can commit to use lotteries on the technology
choice, he can threaten a group of middle risk averse agents and extract all the
rent from them and improve his profit even more. See the details in Appendix B.

If p = 1 and randomization is not possible, then

(1-0)* .
m, if 96 [0,1/2]
03
202—0)

5B () =
otherwise
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If p(f) = 26, for all 6 € ©, then

1-0)°
( 5 ) , if 6 €]0,00]
I'SB (0) _ A
0
5 otherwise
where 93/3 + 0o = 1.
2) Second Best without information:  (xTP tT5)
Define now
ba,0)={ 170
_9_3; , otherwise

Because the principal can not monitor the technology choice, he will face an
agent with utility function ¢ (and not v). Therefore, we can use Theorem 4’ in
order to characterize the second best solution. Here, xq is defined by 6 = 1/2.

Since vg(z, 0) § 0 if and only if 6 % 1/2, the IR constraint will be binding at
1/2 on the optimal contract. Thus, define

f(z,0) =u(x,8) + 0(x,0) + M(0)vg(x,0)

where
Mq(0) if 0€]0,1/2
o= { M o< 012
Ms(0) if 0e[1/2,1].
Observe that 0, (x,0) = ﬁm(a:,é) if and only if 0 =1—0 and Uzo(x,0) =
—Uzg(x,1 — ). Thus, Theorem 4’ gives

fo(@TB(0),0) + fo(xTB(0),1 - 0) =0, 0€][0,1/2].

The IC constraint defines a convex set and the objective function is concave.
Therefore, the use of lotteries on production does not improve the principal’s
welfare (which depends strongly on the symmetry of this example).

If the distribution is symmetric with respect to 1/2, then it is straightforward
to check that the second best problem without information is equivalent to the
second best one with information when randomization is forbidden. Thus, the loss
of profit caused by non verifiability of information is equal to that caused by the
lack of commitment in using lotteries when information is available (see Appendix
B).

In particular, if p = 1, (x is the second best solution without infor-
mation (2°F is symmetric with respect to 1/2).

SB’ tSB)
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If p(0) = 26, for all § € O, then the second best without information is

1— 4
(2—%), if 6€]0,1/2]
zTB(9) = .
0
174 otherwise

The basic intuitions behind this example are the following. First, when we
moved from the second best problem with information to the one without, we
moved from a bidimensional problem in (7,6) to a one-dimensional problem in
6 making 71" a function of 6. Finally, the incapacity to commit to announcement
of the technology makes the principal equalize the marginal utilities of the pool-
ing types in order to guarantee truth telling. This is exactly what explains the
“countervailing” incentives in this example.

One may claim that this example is very particular in the sense that it is
symmetric. However, we can make a perturbation of this model and obtain the
same qualitative results. One way to do this is to consider (different) sunk costs
for each technology.

The second best problem without information was inspired by Chassagnon
and Chiappori (1995). However, in that paper (if we consider the continuous
version of their model), the cross derivative of the agent’s utility function does
not change the sign, it only changes its magnitude, i.e., indifference curves of the
agent have a kink. This is enough to produce multiple crossing of the indifference
curves of two distinct types, but not to destroy the second order approach.

F1aure 6.— The corporate finance example for p(f) = 26.

The top figure presents the second best with (xsb) and without (ztb) tech-
nology choice information. The other two figures present the IC constraints of xtb
and xsb (i.e., the graphs of ®*** and $**), respectively. The minimal value in
right bottom figure is —0.3950.

ExAMPLE 2: NONLINEAR PRICING

This example follows the same setup of Maskin and Riley (1984) (see also
Mussa and Rosen (1978)). A monopolist produces a single product at a cost of
£2? for x units. A buyer of type 6 € [a,a+ 1] (a > 0) has preferences represented
by the utility function

V(x,t,0) = / w(Z,0)dT —t
0

where x is the number of units purchased from the seller and ¢ is the price paid for
x. The function 7(-,0) is the inverse demand function of the group of consumers
with taste characterized by 6. The monopolist does not observe the type, but
knows P(-), the distribution of type, with density function p(-).
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We assume that the inverse demand has the following form: 7(x,0) = 6 —
2a(0)x where, « is three times continuously differentiable, a(0) = 0, & > 0, & > 0.
a(0)

0
w > 0 if and only if &) > «(0)/0, V6 € (a,a + 1] and this last
inequality is true because « is convex. Since 6/2a/(60) is the market size of the type
0 demand (i.e., the number of units bought at price zero), what we are assuming is
that the market size decreases with 6 and @ is the supreme of prices for which there
exists a positive demand. This assumption can imply no SMC, and it is in contrast
with the monotonicity assumption of 7(z, - ) in Maskin and Riley (1984).16

Define

d ((ald) ) _

The assumption & > 0 implies that is increasing in 6, since 5 < 0

M(9) = —), 0 € la,a+1]
f(z,0) = u(x,0) +v(x,0) + M(0)ve(x,0).

Therefore,

vgo(x,0) =1 —2&(0)x § 0 if and only if = % xo(0) =

24(0)

for all 6 € [a,a + 1].

Since & > 0, xg is decreasing and 2@1(.9) < 2(19(9) < a(ee) , V0 € la,a+1],
which implies that the SMC fails to hold here. (Observe that v,(x,8) > 0 if
and only if x < %). Moreover, observe that v, (z,0) = vg(z,0) if and only if

m(x,0) = 7(x, é), i.e., two types are pooling in the same contract if they have the
same marginal valuation for the good.
The relaxed solution is given by

1 0+ M(0) +
2 | e+ a(0) + a(0)M(0)

33'1(19) =

where [z]T = max{z, 0}.

Assume that:

al: M(6) >0, for all b € [a,a+ 1].
a2:  c+a@)M(0)+ a(f) >0, for all € [a,a + 1].

16 This is equivalent to assuming that the marginal utility of consumption increases for low types

and decreases for high types.
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Assumption al is the monotone hazard rate condition and assumption a2
holds for ¢ large enough. Assumption a2 implies that f( -, ) is a concave function,
for all 0 € [a,a + 1].

If x1 does not cross zg, then the second best solution is going to be z;.
Observe that

1’1(9)

VIIA

. : > .
26(0) if and only if ¢ = 0a(0) — a(6).

Hence, we guarantee that x; crosses xg if we assume
a3: c<ala+1)—ala+1)
because 0&(0) — () is increasing in 6 (since & > 0).

Under al, a2 and a3, Lemmas 3 and 4 can be applied in order to characterize
the second best solution. Observe that x; will be bell-shaped and that vg(x,0) =
[1 —&(f)z]x > 0 if and only if x < 1/&(6) (thus, the lowest type a has zero rent).

Consider the particular case that satisfies al-a%: p =1, c¢=1 and a(f) =
b p2
20°.

2
For instance, if b = 2, then v(z, ) = ©(0z), where 9(y) =y — y>.

Therefore, the relaxed solution is

20 —a—1 +
c+b(30 —a—2)0

1’1(9) =

and

Using Theorem 4’, the bell-shaped part of the solution is given by

vy = 0+ /360 = 2¢/b
Xz = .

2(3b02% + ¢)

We present the two candidates of the second best decision for a =1, b =1
and ¢ = 1.5:17

Ficure 7.1.— The curves xopt0 and x; and their respective IC constraints.

The top figure gives the optimal decision (xopt0) given in Theorem 5; its
expected profit is 0.19906; the relaxed and the first best profits are 0.20302 and
0.29387, respectively. The bottom left figure is the IC constraint of zoptO (the
graph of ®*°P" which minimal value is zero, i.e., zopt0 is implementable). The
bottom right figure is the IC constraint of the relaxed solution (the graph of @t
which minimal value is —0.0096129, i.e., it is not implementable).

17 They are calculated using a routine in MATLAB.



27
Ficure 7.2.— The curves xoptl and xopt2 and their respective IC constraints.

The top (bottom) left figure gives the optimal decision - xoptl (xopt2) -
characterized by Lemma 3 (4); its expected profit is 0.20302 (0.20265). The top
(bottom) right figure is the respective IC constraint - the graph of ¢=oPt! (p=ort2)
- which minimal value is zero, i.e., xoptl (zopt2) is implementable.

Where x is the curve that separates CS_ and CS_, z; is the relaxed solution
and xpp is the first best solution. In Appendix C we present a table showing a
comparative static exercise in ¢ (the cost parameter). As we can see in the table
both the first and second best profit decreases with c. Observe also that the value
¢ = 4.25 corresponds to the SMC case (see the Table 1 in Appendix C).

ExAMPLE 3: REGULATION PROBLEM

We are going to present a simple model of regulation of a firm like in Laffont
and Tirole (1993), Chapter 1. Suppose that there is a project with social value S
that can be implemented by a firm that has the following cost structure:

C=0C1+ 0
01:01—61
02:02—62

where the cost C' is observable (but C7 and Cy are not), 61 and 2 are the cost
parameters known only to the firm, and e; and e, are unobservable actions of the
firm representing the efforts to reduce the sub-costs C; and Cs, respectively.

The non-monetary disutility of effort is given by 1(e1,e2). We assume that
it is three times differentiable, the first and second derivatives of v are positive,
ie., Dip = (11,19) > 0 and

DZw — 1/}11 1/}12
V21 P2
is a positive definite matrix (where the subindex represents the partial derivatives).

The firm’s problem with characteristic vector (61,62) and total cost C' is to
minimize the disutility of effort:

oy VO = ot =Co

st. C1 +Cy=C
Assuming an interior solution, the first order condition is
YP1(01 — C1,02 — Ca) = 12 (01 — C1, 02 — Cs).
Following Lewis and Sappington (1989), we can introduce countervailing in-

centives into the model by allowing the firm’s sub-cost parameter of production
02 to be a function of the sub-cost parameter 61: 03 = (), twice differentiable.
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This countervailing incentive will be associated with the no SMC in two cases (in
the other two cases, the SMC is valid).

(a) substitute efforts and negative correlation between the sub-costs: 112 > 0 and
1 < 0.

(b) complementary efforts and positive correlation between the sub-costs: 115 < 0
and 1 > 0.

Let us consider case (a). This means that there is countervailing incentive in
the effort allocation for sub-cost reduction, since these activities are substitutes
and the cost parameters move in opposite directions. For instance, a family of
examples is given by 7, a convex decreasing function and

Y(e) = ATe + eTBe + £(e)

where e = [e1, €], A > 0, B is a definite positive matrix and £(e) = €3 +&etea+
5216361 + 5263 are the third order terms with & >0, §; >0, 4,57 = 1,2.

The consequence is that the SMC can not hold. Indeed, define the firm’s
surplus as

V:t—’L/J(Gl—Cl,GQ—Cg)

where ¢ is the net money transfer from the regulator to the firm and {C; =
C;(61,C)}1 2 are the optimal decisions of the firm given its first sub-cost parameter
and observable aggregate cost. If

v(C,01) = —p(6; — C1,02 — ()

then, by the Envelope Theorem (to simplify the notation we will omit the argu-
ments of the functions), ve = ¥1 and vg, = — (Y1 + Y21) = —1(1 + 7). Thus,

v, 20 & 1+730

and, consequently, if n is a concave decreasing function, the IR constraint will be
binding at the parameter 69 such that 1 + 7 = 0. From now on assume that this
is the case.

Finally, the cross derivative of v is given by:

0C,

veo, = Y11 + Y1an + (Y11 — wlz)a—gl

and, since 1121 < 0, the sign of vey, can actually change (see the specific example
below).
The social welfare function is

W=S8—(1+Nt+C)+V=8—(1+\N(—v+C)—AV

where

V(01) = /0 " oo(C(0).6)dd

0
1
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is the firm’s rent function and A\ > 0 is the “shadow price of public funds” (see
Laffont and Tirole (1993) for the details).
The relaxed functional is

F={S— 0+ N(—v+C)+ AMug, }p

P/p if 6<60<69 .
whnere = — 1S € nazard rate.
e M= ey it << SO P
- p 1 1 >

The first order condition of the relaxed problem is

A
=14—M .
wl +1+)\ /00091

By Theorem 4’ if 6; and 6, are pooling on the same aggregate cost, then

fe fe X

= = and ve = Vo
(el'R Voo,

where the hat means that the functions are calculated at the él allocation. And,

~1

after some trivial manipulations, 1 = 1 + —— (M — ]/\4\){1)5;1 - Ucel}_l and

N 14+ A
Y1 = 1.

Comparing the first order condition of the relaxed program with the second
best one, we see that the incentive correction term depends on the marginal rent
of the type (for the former) and depends on an “average” of the marginal rent of
the types that are pooling (for the latter).

Let us take a particular example (the symmetric case): The type set is © =
[0, 1] with the uniform distribution, ¥ (ey, e2) = (€1 +e2)? and 05 = n(61) = 1 —63.
Thus the firm’s minimization effort program has the following solution: C; = 6,
and Cy = C' — 01 (since Cy <1 — 67 for C < 1).

The curve that separates the regions where the sign of vcg, changesis 6; = 1/2
and ve = V¢ if and only if 51 = 1—6;. Applying Theorem 5 we get the second
best cost:

gy [ 3P0 (1= 256 i 0<o <12
(01) = 1 1— 2 )(1—=-0)=(1=22)(1-0)2 if 1/2<06,<1
2+( 1—|—/\)( 1) ( 1+>\)( 1) i /2 <61 <

This is also the regulator’s relaxed cost when he can contract on the sub-
costs, i.e., in this case the non-observability of the sub-costs does not distort the
regulatory solution. However, if the distribution is not symmetric, then distortion
will occur. For instance, when the distribution is given by p(0) = 20, the relaxed
solution is:

[y

1_1_(1_%)91_(1—14%)0% if 0<6;<1/2
(1 -

2
(1- )0+ s i 12561 <1

C1(6:) = {
3+ (1= 5y



30

and the second best solution is:
1

cin A Ao A 0,
0(91)_2+(1 2(1+)\)>61 (1 1+)\>61+2(1+)\)1—01’

for 6, € [0,1/2] and C*(01) = C*(1 — 64), for 61 € [1/2,1].
Ficure 8.— The regulation problem for A = 0.05.

The top figure presents the relaxed (C'1) and second best (C*) solutions. The
other two figures present the IC constraints of C'1 and C* (the graph of ! and
@C*), respectively. The minimal value of the bottom right figure is —0.0012.

The economic interpretation is immediate: the sub-cost reductions are sub-
stitute activities and the sub-cost structure presents a countervailing property:
the extreme types correspond to specialists in each activity and the middle type
is a (bad) generalist in both activities. Thus, the optimal contract is such that
two different specialists are choosing the same aggregate cost in equilibrium (and
each one is going to cut the sub-cost that is more inefficient); the middle type

(01 = 1/2 = 65) is the only one that has zero rent (this is analogous to Example
1).

EXAMPLE 4: LABOR CONTRACT!®

We present a very simple model where workers have a verifiable signal s
(schooling) that is the aggregation of two unknown personality characteristics: 6
(“cognitive ability”) and 1 (“non-cognitive ability”):

s=0+n

where 0 € [0, 0] has cumulative distribution P and density function p. Therefore,
given the schooling s, we can also determine the distribution of 7.

If the firm hires the worker with a profile of characteristic (0,7), then this
worker will produce an output x following the technology:

x =0e+an

where e is the worker’s effort (unknown to the firm) and « is the shadow price of
the non-cognitive ability for the firm. The firm maximizes its profit

U=mx—1t

where t is the salary paid to the worker and m is the price of x. This means
that the firm uses the cognitive and non-cognitive abilities of a worker, but in a

18 This example is motivated in part by Cavallo, Heckman and Hsee (1998) who present evidence
on the GED as a mixed signal of cognitive and non-cognitive abilities (GED is an exam taken by
American high school dropouts to certify their equivalence with high school graduates): comparing the

GED recipients and other dropouts, there is no wage differential between them.
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different manner they are presented in the signal: 6 is productive with effort while
7 is constant.

The firm will use the signal, salary and output as a mechanism to extract
the worker’s rent. However, since effort is costly, for a given signal there exists a
conflict of interest between the firm and the worker. Moreover, the schooling s is
a mixed signal of 6§ and 7 and the firm can not infer correctly ex-ante the worker’s
abilities.

The worker’s disutility of effort is given by ¥: R, — R. For simplicity, we
assume that v is quadratic, i.e., ¥(e) = 2. For a given schooling s, the necessary
effort for a worker with characteristics (6, s—0) to produce z is e = a— 0~y where
y = as — x.'? Thus, we can express type 6 worker’s quasi-linear utility function
in terms of the verifiable variables (x,t) and the characteristic : V =t — v(x, 0),
where

v(x,0) = —[a — 071y

If we take the cross derivative of v with respect to x and 0, we get
veo(x,0) = 207%[e — 0 1y].
This means that the SMC can not hold: the curve xg is given by

a
xo(0) = as — 59.

Thus, the discrete pooling equilibrium may happen. The discrete pooling
condition is given by v, (z,0) = v, (x,0), where v, (z,0) = —20~1e. In this case

0=p(0,2)=(ay™ =671

Since vg = —20~2ey, the marginal rent of the worker is negative if and only
if z < as (thus vy changes its sign - see remark 3 after Theorem 4’). Then, since
Vz29(x,0) = 4073 is positive and v,g2(,0) = 2073[6071y — 2a] is negative, an
implementable contract that crosses the curve xq is U-shaped.

Let us consider a particular example: © = [1, 2] with the uniform distribution.

It is easy to see that the relaxed solution crosses xo at §* = a/m. Thus, if
a/7 € (1,2), the relaxed solution is given by:

200 — 762
0) = mi —0}.
x1(0) = min {as, as + 20-2) }
Using Theorem 4’ we can calculate the U-shaped part of the second best con-
tract: it is going to be one of the roots of the following third degree polynomial:2°

2
~T a7 (G a0 )y — 075 + 2007y + 074 =0,

19 Observe that e > 0 if and only if ¢ < as.

20 The monotonicity condition eliminates the other roots.



We present a particular example: 7 =1, a =3.6, s =15, 7 =2, 0 =1 and

6 = 2. The candidates for the second best decision are:2!

Ficure 9.1.— The curves xopt0 and x; and their respective IC constraints.

The top figure is the optimal decision (zopt0) given by Theorem 5; its ex-
pected profit is 4.1834; the relaxed and the first best profits are 4.1957 and 5.3333,
respectively. The bottom left figure is the IC constraint of xoptO (the graph of
@*°Pt0 which minimal value is zero). The bottom right figure is the IC constraint
of the relaxed solution (the graph of $** which minimal value is —0.096005, i.e.,
it is not implementable).

Ficure 9.2.— The curves xopt0 and xoptl and their respective IC constraints.

The top (bottom) left figure gives the optimal decision - xoptl (xopt2) -
characterized by Lemma 3 (4); its expected profit is 4.1876 (4.1942). The top
(bottom) right figure is the respective IC constraint - the graph of ¢=oPt! (p=ort2)
- which minimal is zero, i.e., xoptl (zopt2) is implementable.

In Appendix C we do a comparative static exercise with « (the shadow price
of the non-cognitive ability). Observe that the parameter a = 2 corresponds to
the no SMC situation (see the Table 2 in Appendix C).

We summarize this example:

e Discrete pooling: two different workers with different profiles of characteristics
for a given s choose the same contract. This property captures the idea that
a worker with high cognitive ability and low non-cognitive ability can not be
distinguished from a worker with low cognitive ability and high non-cognitive
ability in equilibrium.

e The firm offers the same contract for an interval of high type workers to extract
all their rent. These types provide the highest output.

e The worker 6% (a middle type) provides the lowest output and has the highest
rent.

e The rent extraction and distortion trade-off take into consideration the new
conditions for implementability.

5. CONCLUSIONS

In this paper we studied a generalization of the SMC. Although this leads
to a non-convex problem, we are able to give economically meaningful solution.
We first give a necessary condition for implementability which could be translated
into the marginal rate of substitution and rent identities. These conditions are
also sufficient for some cases. Next we derive the Lagrangian for the second best

21 Asin Example 2, we used a MATLAB program to calculate these candidates.
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problem taking into consideration these necessary conditions. This leads to the
equality of the marginal virtual surplus rate between two pooling types and the
rate of the marginal rent between them.

Four numerical examples illustrated our method: a principal-agent problem
with simultaneous adverse selection and moral hazard, the nonlinear pricing prob-
lem, sub-cost observation in a regulation problem and mixed signal in a labor
contract model. In all examples multidimensional characteristics and countervail-
ing incentives are presented.
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APPENDICES

APPENDIX A
Proors

1. Proof of Lemma 1:

(i) The IC constraint implies that for 0>0

v(z(0),0) — v(x(0),9) S Vo) — V() S v(z(0),0) — v(x(0),9)
0—0 - 0—0 - 0—0

Since U is 03 and X is bounded, the inequality above shows that V% is a Lipschitz function.

Moreover, if T is continuous at 07 then

d T _
@V (0) = vo(x(0),0).

By the Fundamental Theorem of Calculus, we get (i).

(i) From (i), t(@) =P* (0) - U(l’(e), 9), for all @ € ©. Thus, it is easy to see that

o 0 z(0) B B
V(a(0).00).0) ~ V(el0).0.0) = [ | [ vuota. )iz ad
0 z(0)
forallg,éAEQ. B o R
Let 0y € [Q, Q) such that Vg9 (Z’(Qo), 190) > (). By the right continuity, there exists 8y > 0
such that the convex hull of {(02,%(91)), 01,92 S [00,00) and 01 < 02} is in the region
Vg > 0. Let (a, b) be a maximal interval in I such that ZC(O()) > ZC(G), for all @ € (a, b) If
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a = 90, then the double integral above will be negative for 0 =aand0 =0b.1fa > 00, then the
left limit of the double integral will be also negative for 0=a_and0 =0 (since (a, b) is maximal
and LL'_((I) > 1’(90)) In both cases we have a contradiction with the IC constraint. Therefore,

2(0) < 2(0), for an1 0 € I. Q.E.D.

2. Proof of Theorem 1:

(i) Define a local inverse for X at 0. Applying Fubini’s Theorem and taking the right (left) derivative
at 1’(9) and observing that :L'(@) is a minimum point for @(, 0), we get the result.

ii) Observe that if we fix 0, 0 is a minimum point of @* (-, @). Thus, the result is a direct consequence
(ii) ) p ) ) q

of the first order conditions.

(iii) Observe that if Y = IL’(Q) = Z’(é), with Q,é € O, then

57(0,0) = /9 ' { / ; e é)d:z«] dé
= — /j Uj@) Va9 (7, é)d:z] di = —%(0,0).

Since I is implementable, P* (0, 0) =0.
If 2 is right and left increasing at 9, applying (i), we get the result. QED

3. Proof of Theorem 2:

Let (xn) be a sequence of continuous implementable decisions such that 'y, — & in the weak

topology. In particular, £, — & almost surely. By the dominated convergence theorem (see Rudin

(1974)),

% Y 5 5
(*) / /  vy6(7,0)did > 0
6 Jxz(0)

when Yy = :L'(é) or Y = CL'_(é)

Given ¥ in the interior of X(é) for 7 sufficiently large, let é € O such that :L'n(én) =Yy
(such Qn exists because Iy, assume values close to T _ (é) and to 1’(9) for large T1). Then, by the
monotonicity of Xy, we can choose 977, such that 0 — 9 Again, by the dominated convergence
theorem, (*) is also true for such Y.

Conversely, if I is such that the associated correspondence X is implementable, & can cross
continuously from CS_ to CS4 one time at most. Thus, Lemma 1 (ii) implies that X is non-increasing
or non-decreasing or U—shaped. Let [01, 02] C O. If the IC constraint is not binding on this interval,
we can approximate the discontinuities of £ by a continuous monotone part. Otherwise, we can use
the marginal rate of substitution and rent identities to approximate L by a monotone decision on this

interval. This procedure in both cases leads to an implementable continuous decision as close as one

wants to X in the weak topology sense. QED

4. Proof of Lemma 2:
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Consider the topology of the pointwise convergence at the continuous points of the limit, i.e.,
Ty converges to X if and only if xn(G) — CC(@) for every 0 € O where T is continuous. It is well
known that every bounded and closed set in Cis compact with respect to this topology (see Billingsley
(1986)).

It is easy to see that if Xy, is a sequence of implementable uniformly bounded cadlag decisions
converging to X, then T € C is bounded. Moreover, for each 9, é € O continuous parameters for T,
dTn (0, é) — @7 (0, é) because Tp, (9) — 33(0) and xn(é) — ZC(é) Since X is a cadag decision,
the IC constraint is satisfied at T for every 0 and é If Ty, crosses g at most one time, for each
N, then it is easy to see that X has the same property (otherwise, there wuold exist 70 such that Ty,
crosses L) more than one time). Therefore, the set of implementable decisions in C that cross o at
most one time is closed.

Finally, the objective function of (P) is continuous with respect to the considered topology. Thus,
by the Weierstrass Theorem, there exists an optimal decision for (P) in the set of uniformly bounded

cadlag decisions. Q E.D.

5. Proof of Theorem 4:

Consider the following transformation: T from §R4 to %27 T = (Tl, TWQ)7 where

~

T1(0,2,0,2) = v, (2,0) — 0y
Ty(0,2,0,%) = vg — va(&,0)

where hat means that the function is calculated at (:i’, 9) and without hat means that it is calculated

at (,0).

The Jacobian of 1’ with respect to the variables (0, :i') is:

R - _@me Umx(jja 0) - @xx
J(e,:ﬁ)T o ( 0 —v.0(2,0) )

with determinant |=](,§ j)T‘| = @IQUIQ(IIAZ', 0) < 0. By the Implicit Function Theorem, for each
)

(0, x, é, i’) such that T(@, x, é, i’) = (0, 0), there exists a local neighborhood of (9, LL') where we
can put (0, i’) as a continuous differentiable function of (0, LL'): (0, i’) = 90(0, :L'), Y = ((,01, (,02)

In this case:

-1 1 — Vg fi',@ ﬁ:r:r_vm:r :2'70
o)™ = ke (o0 0)

Vr0V0(2, 0 0 — Vg0

and

which implies that

J(&w) e @mevme

and |J(97m)g0| = Umg/ﬁmg.

1 Vyd (i’, 9)2 + [@mm — Vgn (:ﬁ, 0)][1)99 — Vg (QAZ', 9)] Umg[f)xm — Vg (QAZ', 9)]
(#,0) Vzo[vog(Z, 0) — vog] — V20026

)
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In order to get the first order conditions, we have to take the Gateaux derivative of the functional

defined from the maximization problem above. Assume that CCl [61,62] is increasing and define the space

of admissible per’curbations:22
H = {h [01, 92] — §R, Cl, h(Gl) = 0, = 1, 2, and T + h is increasing}

and the objective functional:

02 (0, z* (01))

Fz)= [ f(x(0),0)d0 + / F(x(0),0)do

¢(62,27(62))

= [ {f((0),0) = [0:¢0" (0, 2(0))2(0) + Bp0" (6, 2(0))] f (x(6), (0, x(6))) }db

where T = 2* + h
The first order condition gives (omitting the arguments of the function and putting a hat when

the function is calculated at (0):

02
6hF(5E*) = {frh - [(3“5901:1':* + ar@‘;pl)h + 8m901h]f
01

- [8$901j7* + 89301](fx6x302 + feaxgol)h}de = 0.

By an integration by parts we have

02 92 .
- / Fou']dd = / (Font)hd6
o1 g1

02

= | {[f:(0:9%F" + 09p?) + fo(Dup' @™ + Dpp")]|0upt
91

+ f(Ora & + Dzop? ) Yhd0.

Plugging this last equation into the first order condition, we get

02

{fr = [2]000' 000> — 09> 00| hd = O
01

92
/91 o — Fol T 16 = 0.

Thus,

Vxo 2
A= fm — A—f;r = 0, which is equivalent to

Vo

Jo _ e oED.
(O] Vo

22 By the uniqueness of 6 for each 6 € [01, 92] such that &% (6, é) =0, if T =0 along = + h,
then z* + h is implementable for h € H sufficiently small.
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6. Proof of Theorem 5:23

If T is contained in CS_, then it is non-increasing and the decision y() = 1’1() V 1’0(9) is

implementable and dominates T (Y is a degenerate U-shaped decisi0n24.) Suppose now that I is in
CS_. Thus, X crosses or does not cross 1. In both cases, we will construct an implementable decision
that crosses T and dominates X.

Let Qm be the minimum for 1. For each 01 S [Qm, 0] we can define the following decision:

8

21(0) for 6 >0,

(6) = 1(01) for p(01,21(01)) VO <O <0

y\v) = z1(0(0,21(0))) for ©(0,21(0))VE <0< p(b1,21(61))VE
(

21(0) for <0< p(0,2:(0) V0

where (¥ is defined in the proof of Theorem 4 above such that T — Z.
We claim that A3 implies that Y is U-shaped when 80(017 1 (01)) > Q Indeed, define ’7(9) =
(,0(9, 1’1(9)) We have that ’)/ = o + @:rl'l (omitting the arguments of the functions) and, in

particular,

UmQ(xl(gm); Om)

020 (@1 O ) B 21 (Or)))

Y(Om) = ©0(Om, 21(0m)) =

because IL:l <0m) = 0.

If there exist 01,02 S @, 91 % 92, such that 7(91) = 7(02) and .]3(91) > 0, then the
implicit solution of Um('; ’Y()) — Um(', 0) = 0 crosses 1 at 91', 1= 1, 2, which contradicts A3.
Thus, 7Y is monotone where I'1 is increasing. Since ’V(gm) < 07 7Y is non-increasing or, equivalently,
Y is non-increasing on [Q, (,0(91, 1'1(91))]

As in the proof of Lemma 3, Y is implementable. If T does not cross T1, let 91 = Hm, and if
it does cross, consider 01 as the parameter where the crossing occurs. In both cases, it is easy to see
that Y dominates Z.

By Lemma 2’ let " be the optimal decision and [91, 92] C O and interval. We have the
following possibilities on [91, 92]:

(i) the IC constraint is not binding: making the standard variational calculus argument, T* = T
on 01, 0

(ii) the IC constraint is binding: if % is part of the “U” (i.e., where the marginal rate of
substitution is binding), using Theorem 4’, then T = LL'u; otherwise, ™ is constant and it is not
part of a “U” on [01, 02] Then, consider the maximal interval containing [01, 92] where T is
constant. This case will lead to £* = T on this maximal interval.

Thus, the optimal decision has one of the shapes presented in the statement of this theorem (i.e.,
Z1 plus U-shaped part or constant part plus T1).

Observe that the first case is equivalent to the single crossing situation and it is optimal in the

set of the decision that are non-decreasing (and it is implementable when @(91, .]_3) < Q) The second

23The basic idea of the proof is domination: the definition of a set of implementable decisions
that the principal is better off, i.e., given any implementable decision, there exist an implementable
decision in this set that is more close to 1. In this proof, this set is given by 1 plus a U-shaped part
or constant part plus x1.

24 By U-shaped part we mean an interval where the marginal rate of substitution and rent iden-

tities are “binding” and a U-shaped decision is the one that contains a U-shaped part.
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case is the U-shaped one characterized by Theorem 4 (i) (and its implementability by Theorem 3). We
argue that in this case the decision presented is optimal in the set of U-shaped decision. Indeed, fix
f € O. Observe that in the case of Theorem 4’, by assumptions Al and A2, if I is sufficiently small,
the expression A>0 (defined in the proof of Theorem 4) and if X is sufficiently large, A< 0.25
This proves that the first order condition of the U-shaped part is also sufficient when it is the unique

critical point for each 0 that defines an implementable decision. QED

7. Proof of Lemma 3:%6
We have to show that @m(g’ 9) > 0, for all 9, 0 € ©. Let us consider the following cases:
0. 9, 0 e [01, 02] Without loss of generality, assume that 0 < 0. There are two cases to consider:

0.1. 0 < (0, 2(6)). Using Fubini’s Theorem,

) 2(0) 1 pea(2) .
&7 (0,0) = / { / . vme(:z,e)de]daz
x w1(x

m

z(0)
- / (00 (F, 1(8)) — v (&, 02(E))|dE

where X4y, is the minimum of T and 01, Y2 are the two inverses of L on [CCm, 33(91)]7 where (V2 (CC)
0, for all x € [CC(Q),ZC(@)] From Theorem 1 (iii), 'Ux(.f?, gpl(f)) > Ux(fé, @2(@))7 for all T €

[T, ©(0)] (with equality on [Ty, £(0)]). Thus, D*(0, (0, x(0))) > 0. (Observe that if =
p(0,2(0)), then (0, 0(6, 2(0))) = 0.

0.2. 0 > @(é,l’(é)) We have that

. 0(0,2(0)) [x(6) _ . 0 z(6) - _
o*(0,0) :/ /N vmg(f;,G)dde—i—/ o /~ Vz0(Z, 0)dzdl
4 z(6) ©(0,2(0)) Jx(6)

620 (20
:/ / Voo (7, 0)dEd0 > 0
0 z(0)

A

because @x(é, (,O(é, $(é))) = 0 and by the monotonicity on [90(0, :L'(é)), 9]

1. 60 < 90 which generates the following sub-cases:

CC(H) Z CC(é) and the derivative of

A

1.1. 0 < 0. The monotonicity implies that, for each 0 c [9, 9],
D% with respect to 0 is

Ded" (0,0) = vg((0),0) — vg(x(6),0) < 0.

(because Vg9 < 0 on this region). Since @m(g’ 9) =0, p* (é, 0) > 0.

25 Since vzg and U, have opposite signs and f; and f; have positive signs when « is small and
are negative when x is large.
26 Observe that the main difference between this case and the one treated in Lemma 4 is on the

interval [01,02]: in former case, the decision is U-shaped and in last one, the decision is constant.
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A~

1.2. 0 < 0. First, assume that = 90_ (the left hand side limit at 90) Define y() =

max{:c(-),:c(ﬁl)}. By assumption A3, the derivative 89459(-, é) changes its sign at most one

time: non-negative and then non-positive. From the case 0,
*(9,0) > oY (9, 0)
and D% (0,0) = 0 imply this case. A
For the general case, observe that @ (6,60) > &% (0,0 _), because the derivative
0,"(0,0) = [v2((0),0) — va(x(0),0))(0)
is non-positive.

2.é>90

2.1 0 > . This case is a consequence of monotonicity and case 0.

~

2.2. 90 < 0 < é Taking the derivative of D7 with respect to 9, we get
0,97 (0,0) = [v2((0),0) — v.((8), 0)]().

By assumption A3, this derivative changes its signal at most one time: non-negative and then

non-positive. Since d* (é, é) = 0, if o* (9, é) > 0, then @x(g, é) > (. Thus, it is enough to

prove that
z_(6o) 5
/ / Vo (7, 0)dTd0 > 0 (%).
(6)

z_(6o) .
/ / ng G)dfdg >0
) (9)

and 69¢m (0, é) = Vg (33(9), 0) — 1},9( (9), 9) changes its signal at most one time (by assumption

A3): non-negative and then non-positive. These two claims imply (*)

Observe that

2.3. 0 < 00. We have that

Oo :r(@) B
&7 (0,0) = &7 (0, 6p) + / / veo (%, 0)didd.
(6)

y6(9)

By monotonicity and case O, P* (00, é) > 0 and f f (9)

result. QED

CC 9)d33d0 > 0 we get the

8. Proof of Lemma 4:

The proof is analogous to the Lemma 3 proof, but the case 2.3 which has the following modifi-

cation:

2.3’. We have to prove that f:o j(é) Uxe(-%; é)di’dé > 0, for all Yy € [33(90), ZC_(H())] First,
this inequality is true for Yy = T _ (90) Taking the derivative of this double integral with respect to
Y, we get Up (y, 00) — VUp (y, 9), which changes its signal at most one time. Thus, it is enough to
check the inequality at Yy — 33(00) Taking the right derivative of " (0, 007) > 0 with respect to
0 at 0 = 007 we get

U@(l'_(eo), (90) - U@(Z’(eo), 90) > 0.
Since ®” (00, 00) = 0, we have the desired result. QED
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AppPENDIX B
SeconD BesT WiTtH INFORMATION: The Use of Lotteries

Define the expected utility function of the agent with type @ on the bundle (Oé, xT1,x2, t):

V(a,x1,22,t,0) =t + av(z1,0|T1) + (1 — a)v(ze,0 | T2)

where @ © [0, 1] is the probability that the principal will recommend the use of T1 with production
1 and the probability 1 — o with production X9.

Now a contract is defined by (Oé, xT1,X2, t)l 0 — [0, 1] X R+2 xR (t is the expected transfer
of the lottery).

To avoid extra difficulties, assume the monotone hazard rate condition:

P(6 P(0)—1

MHRC: M1 (9) = (6) and MQ (9) = P)-1 are non-decreasing on 0.
p(0) p(0)

. . ~ _ -2,..2 -2,..2

Let us introduce some notation: 'U(Oé, T1,T2, 9) = —[Oé(l — 9) xr1° + (1 — 06)0 T2 ]

is the agent’s expected cost function in the lottery, and ﬂ(a, X1, IL'Q) = ax + (1 — OZ)IL'Q is the

principal’s expected revenue. Thus, V(Oé, 1,29, t, 0) =t4+ 17(0(, T1,T9, 0)

Proceeding in an analogous manner, the relaxed functional is
f U D a,r1,T
flayzq,29,0) = U, z1, 22) + 0(ev, 21, 22, 0) + pleszs 2)(0)

where V(a’xl’xQ) (9) = f09 17.9(0((5), 1'1(@), T2 (é), é)dé + V(a’wl’xQ) (0) is the type 0 agent’s

rent function. Finally, consider the following special cases of the degenerate lot‘ueries:27
. B ) B . o
[, 0) = W(2 — i, @1, 29) + (2 — i, 1, 22, 0) + VETHT172)(9)
for 1 = 1, 2. Thus, after an integration by parts,

fi(xi,e) =u(z;,0) +v(z;, 0| T;) + M;(0)vg(x;, 0| T;).

First, let us treat the case where the principal is prohibited from randomizinggs, i.e., (¢ is equal
to O or 1. The game works as follows: the principal designs a reward schedule based on the technology
choice: T; — (:L'i,tl'), 1 = 1, 2. The agent accepts or rejects this schedule. If he accepts, he
announces the verifiable technology he will use and the truthful type. Given the technology choice j—;’,
the principal’s objective function will be fZ (IL'Z', 9)

Depending on the technology choice, the problem is a standard adverse selection with the SMC.
Therefore, T1 (respectively T9) is implementable if and only if it is non-increasing (respectively non-
decreasing).

The principal provides two contracts (one for each technology choice) and decides where to shut

down in each contract and takes this into consideration to determine his objective function, i.e., when

27T A degenerate lottery is the one in which ¢ is 0 or 1.
28 If there is no commitment to using lotteries, i.e., after knowing the agent’s type (ex-post) the
principal can bias the lottery when it is profitable and this is not verifiable, then lotteries do not help

ex-ante.
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the agent is going to choose T1 or TQ. Since 1}9( t, ot ’Tl) has constant sign, the rent function is
monotone (given T;) Therefore, there exists a unique 91 where the contract (ZCZ‘, tz) is shut down,

i.e., ifr =1 (respectively 1= 2)7 then the rent function for all types 0 > 01 (respectively 0 < 02)

is negative on the contract (IL'Z', tl) We have the following cases:

1. 91 < 02. The IR constraint is not satisfied on the interval (01, 02) for both contracts, which is

not possible.

2. 01 > 02. Denote Vi, the rent function on the contract (scz,tl) Since Vl is decreasing, VQ
is decreasing, V1(01) =0< VQ(Hl) and VQ(HQ) =0< Vl(ez), then there exists a unique
0y € (92, 92) such that

01 fo
V1 (0) :/g vo(21(0), 0| T1)d6 :/ vo(22(0), 0| To)d0 = V() > 0.

o 02

This implies that the principal can extract this rent by subtracting it from 1 and 9 and raise his
profit.

What we have just proven is that a pair of contracts is feasible if and only if case 2 is true and
they are weakly dominated by one where 91 = 92. Now, it is very easy to characterize the second

best contract (xfB’ ZCgB, CY). The necessary (and sufficient) first order conditions are:

f@7P(0),0) =0 it 6 €[0,0]

f?.(257(0),0) =0 it 0o, 1]

and
{1 if 96[0,00]
o =
0 if 96[90,1].

This means that 90 is determined by the intersection of the relaxed solutions and it is the only
type that has zero rent and it is optimal to induce all types 0 < 90 (respectively 0 > 90) use
technology T1 (respectively TQ) Observe that MHRC implies that :L'“lgB is decreasing and :L'“;B is
increasing. Thus, this pair of contracts are implementable for the second best problem. If this were
not the case we would have to consider the “ironing principle”.

~ Let us return to the case in which the principal can commit to use lotteries. Taking the derivative
of f with respect to I;, it is easy to see that non degenerate lotteries will be used on the intervals
where the IR constraints are binding, i.e., where the rent function is null. For the rest of the interval
the optimal contract is characterized by: flx<1'l, 9) =0 whenax =2 — 3.

Therefore, we have to characterize the intervals where the rent function is null. However, if the

rent function is constant on (01, 92) along an implementable contract (CY, X1, 332), then
17.9(0((0), CCl(O), 332(9), 0) =0, V0 € (017 02)

This implies that (omitting the dependence of the contract on 0)

0322
(1—0)"322 + 032

a =
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on the interval (91, 92)
Plugging this last equation into the objective function of the principal, on the interval (01, 02),
it will be

1 T3 B (z122)
O (2) +1 n(O)3(2)" +1 ot (1 -0)

where 77(9) = %

It immediately follows that \I/< t, ot ,0) is a concave functional and that \I/(Z'l,l'g, 9) =
\I’(scg,xl, 1— 9)7 for all (331,332,9). Therefore, if (CCT(@),CC;(@)) is the optimal for a given
0, then CCT(G) = CC;(l — 9), for all § € [0, 1]

The first order condition gives that :L'>(1< = :L'; =z* and, consequently,

" (0) =5

1 1 3 3
USRS

and

1

O

for all f € (91, 92)

The first order condition that determines 6; (=1, 2) is

Therefore, 02 is determined by the continuity of the principal’s ex-post profit when passing from
randomization to non-randomization. Moreover, when to randomize or not depends on whether the
right hand side of the last equation is greater than the left hand side or not, respectively.

In general, many intervals can appear in the optimal contract and it is not easy to determine
them. However, the symmetric case is very simple to deal with. If the distribution is symmetric with
respect to 1/2, then it is easy to prove that those intervals are determined by the intersection of x*
and IL'SB and randomization occurs if and only if ™ is above LL'SB.

We have to check that this randomized relaxed contract is incentive compatible in order to
conclude that it is the second best solution. Let us answer this question in the symmetric distribution

case. For simplicity, assume that there is just one interval where randomization occurs: (91, 92) (thus,

92 =1- 91) Formally, we have to check that

SB

°(0,6) > 0, V0,0 € [0,1]
on the randomized relaxed solution, where P* corresponds to the function V. There are several cases

to consider:

1. 9, 0 € [0, 01] or 0, 0 e [02, 1] The incentive compatibility is an immediate consequence of

monotonicity of .rfB and ZCgB and the SMC.

2. G,é S [01,02]: Note that

To(2*(9),60) = —2[a”(B)(1 — 0) 7% — (1 — " (6))0~*|2" (6)
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~

and, by the definition of & and Up(z*(0),0) = 0, we have that § > @ if and only if

~

o (2 (6),0) < 0. Thus

This implies that the IC constraint is satisfied.

The remaining cases reduce to these two.
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AprPENDIX C
TaE TABLES

We present the tables of Examples 2 and 4.
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TABLE 1
NonLinear Pricing

lla=10=1

c 0.V.0 0.Vl 0.V.2 R.V. F.B.YV.
1.25 0.21968 0.22322 0.22514 0.22547 0.31478
1.5 0.19906 0.20136 0.20265 0.20302 0.29387
1.75 0.18402 0.18504 0.18547 0.18578 0.27568
20 0.17096 0.17154 0.17155 0.17178 0.2597
2.25 0.15968 0.15989 0.15905 0.16007 0.24553
2.5 0.14984 0.14991 0.14992 0.15004 0.23287
2.75 0.14121 0.14125 0.14123 0.14132 0.2215
3.0 0.1336 0.1336 0.1336 0.13365 0.2112
3.25 0.12679 0.12679 0.12679 0.12683 0.20185
3.5 0.12069 0.12069 0.12069 0.12073 0.1933
3.75 0.11518 0.11518 0.11518 0.11521 0.18546
4.0 0.11017 0.11017 0.11021 0.11021 0.17825
4.25 0.10564 0.10564 0.10564 0.10564 0.17158

12a=20=1

c 0.V.0 0.Vl 0.V2 R.V. F.B.V.
4.5 0.234840 0.235400 0,235430 0.235490 0.288560
5.0 0.222202 0.222260 0,222260 0.222380 0.275780
5.5 0.210520 0.210660 0.210650 0.210750 0.264100
6.0 0.200260 0.200310 * 0.200360 0.253390
6.5 0.190970 0.190980 * 0.191010 0.243520
7.0 0.182520 0.182530 0.182530 0.182530 0.234400
7.5 0.174810 0.174810 0.174810 0.174810 0.225940
8.0 0.167750 0.167750 0.167750 0.167750 0.218080
8.5 0.161250 0.161250 0.161250 0.161260 0.210750

where * means that there is no feasible solution for the optimization program.



TABLE 2
Labor Contract

21s=2m1=2

a OVO OVl o0V2 RV. FBJV.
2.0 4.1533 4.1533 4.1533 4.1533 4.3333
2.2 4.2224 4.2224 42224 4.2224 4.5333
2.4 42535 4.2535 4.2537 4.2538 4.7333
2.6 4.2532 4.2534 4.2542 4.2546 4.9333
2.8 4.2277 4.2298 4.2316 4.2325 5.1333
3.0 4.1834 4.1876 4.1942 4.1957 5.3333
3.2 41266 4.1363 4.1517 4.1538 5.5333
3.4 4.0641 4.0953 4.1149 4.1175 5.7333
3.6 4.0087 4.064 4.0972 4.1003 5.9333
3.8 3.9605 4.0508 4.1161 4.1207 6.1333

225s=15nm=2

a 0V0 0.V1 0.V2 RYV. F.B.V.
2.0 2.1533 21533 2.1533 21533 2.3333
2.2 20224 2.0224 2.0224 2.0224 2.3333
24 1.8535 1.8536  1.8537 1.8538 2.3333
2.6 1.6532 1.6534 1.6542 1.6546 2.3333
2.8 1.4277 14298 1.4316 14325 2.3333
3.0 1.1834 1.1876 1.1942 1.1957 2.3333
3.2 092663 0.93627 0.95166 0.95378 2.3333
3.4 0.66409 0.6953 0.71494 0.71749 2.3333
3.6 0.40871 0.46398 0.49722 0.50032 2.3333
3.8 0.16048 0.25084 0.31606 0.32069 2.3333

where

0O.V. 0: Optimal Value 0 - the expected virtual surplus at xoptO
O.V. 1: Optimal Value 1 - the expected virtual surplus at xoptl
0O.V. 2: Optimal Value 2 - the expected virtual surplus at xopt2

R. V.. Relaxed Value - the expected virtual surplus at x;

F.B. V.: First Best Value - the principal’s first-best expected utility



