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SUMARIO

Num artigo recente, Cechetti, Lam e Mark (1990a) tiveram por
objetivo mostrar que a correlacao serial negativa no retorno de
longo prazo das agbes eram consistentes com um modelo de equilibrio
de determinacao de pregos de ativos. Neste artigo, mostramos que
este resultado se baseia num erro de especificagao do modelo de
Markov para mudangas de regime do processo de dotagao e numa
hipétese forte sobre o conhecimento do estado futuro da economia
pelo agente representativo. Uma vez que a especificagao correta do
modelo de Markov é escolhida para o processo de dotagao e a
hipétese usual sobre o conhecimento do agente é restabelecida, o
modelo nao produz a reversdo a média na magnitude encontrada nos
dados. Além do mais, a débil reversao a média produzida pelo modelo
& atribuida ao viés causado pelo tamanho pequeno da amostra.

ABSTRACT

In a recent paper, Cechetti, Lam and Mark (1990a) intended to
demonstrate that negative serial correlation in long horizon stock
returns was consistent with an equilibrium model of asset pricing.
In this paper, we show that their result relies on a misspecified
Markov swiching model for the endowment process and on a strong
assumption about the knowledge of the future state of the economy
by the representative agent. Once the proper Markov specification
is chosen for the endowment process and the normal assumption is
made about the agent’s knowledge, the model does not produce mean
reversion in the magnitude detected in the data. Furthermore, the
small amount of mean reversion produced by the model is only due to
small sample bias.



The negative serial correlation detected in long horizon stock
returns by Poterba and Summers (1988) and Fama and French (1988)
could be interpreted as evidence in favor of the inefficiency of
financial markets, or predictability of returns. Stock prices take
irrational long swings away from their fundamental value. However,
Fama and French (1988) propose also an efficient market or rational
pricing explanation based on equilibrium expected returns. If
shocks to expected returns are uncorrelated with shocks to rational
forecasts of dividends, a shock to expected returns must be
compensated by an opposite movement in the current price. If
moreover expected returns are highly correlated but mean reverting,
a shock to expected returns has no long term effect on expected
prices. Mean reversion in prices is thus implied by mean reversion
in expected returns. This is why we observe a negative correlation
petween the return for holding a stock from k periods before the
shock occurred to the time of the shock, and the return for holding
a stock from the time of the shock to k periods ahead. T o
support the efficient market explanation, one needs therefore an
equilibrium model that can produce mean reverting expected returns.
This is precisely the task undertaken with apparent success by
Cechetti, Lam and Mark (1990) (hereafter CcIM). In a Lucas exchange
economy Wwith infinitely many identical agents, they show that
consumption smoothing motives with a moderate degree of risk

aversion can produce negative autocorrelation in real returns of
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the magnitude observed in the data. compared with similar
exercises aimed at explaining the equity premium puzzle for
example, the strength of their demonstration seems to come from the
fact that the parameters of the endowment process are estimated by
maximum likelihood instead of being calibrated to match a few
moments of the data. More precisely, they specify for the
endowment process a Markov switching (MS) model characterized by
two states, one of low growth and one of normal growth, and
estimate by maximum likelihood the parameters of this model for
three historical series on real consumption, GNP and dividend
growth rates. The justification for using these three series comes
from the fact that the Lucas model does not provide a way to select
any particular series among the three since it imposes an equality
between consumption, dividends, and output.

In this paper, we show that if instead of imposing one
particular MS model, one specifies a larger class of MS models and
lets each historical series of endowment decide on the best model
according to various testing procedures, the chosen specification
is a two-state Markov switching model with one mean and two
variances. The measures of mean reversion (variance ratios and
regression coefficients at various lags) implied by this
specification for the endowment process are much less supportive of
the equilibrium model, leaving the small sample bias as the main
source of explanation for the generated negative autocorrelation in
returns.

Furthermore, we show that the results obtained by CLM are very
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sensitive to the specific dating chosen for the Markov variable
which represents the state of the economy in the endowment
equation. This dating gives the agents foreknowledge of the state
of the economy next period. Choosing a more natural dating while
maintaining the remaining features of their specification produces
positive autocorrelation in returns.

To assess the empirical validity of such an equilibrium asset
pricing model, there are two possible ways to proceed. One can
start by fitting the data on the endowment process with the best
specification within a class of models and generate return series
using the theoretical formulas implied by the model. The
evaluation then consists in comparing the simulated series to the
observed series. This comparison can however be made in many
dimensions, mean reversion chosen in this paper being only one of
them. Another way to proceed will be to use the theoretical return
formulas and the observed return series to estimate by maximum
likelihood the parameters of the endowment process and compare them
with actual data on consumption. This is the approach taken in a
more general model by Bonomo and Garcia (1990).1 CIM follow a
third approach which is less satisfactory from the point of view of
assessing the model. Although they estimate the parameters of the
endowment process by maximum likelihood, their specification choice

is geared at matching as closely as possible a particular set of

1 In that paper, we model the endowment process as a joint bivariate Markov process and derive the return
formulas following the same method as in this paper. The assessment of the model is done along the two possible
ways outlined in the text. First, we compare, for both real and excess returns, the unconditional first and
second moments, the varisnce ratios and univariate regression coefficients, and the regression statistics of
returns on the dividend-price ratio produced by the model to the actuals. Second, we estimate using the return
formulas the parameters of the endowment that will rational ize the observed returns.
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statistics on returns, that is mean reversion statistics. But by
doing so, their demonstration reduces to showing that there exists
one equilibrium model that can produce mean reversion, without
showing that it is fully consistent with the observed endowment
data.

In Section I, we present the equilibrium asset pricing model
and derive closed-form solutions for the returns. In Section II, we
estimate by maximum likelihood various MS models for the endowment
process and select the best specification for each of the three
series of consumption, GNP and dividends. In Section III, we use
the maximum likelihood estimates of the parameters obtained in
Section II and the theoretical return formulas derived in Section
I to generate the small sample and large sample empirical
distributions of the variance ratios and regression coefficients at
various lags for four specifications of the endowment process which
differ by the number of different means and variances and by the
timing of the Markov variable. We then compare the respective
implications of each specification for mean reversion. We interpret

the results in Section IV and conclude in Section V.



I. The Model

our assumptions, apart from those related to the specification
of the endowment process, are standard in the literature.

An infinitely-lived representative agent maximizes her
intertemporal VN-M utility function over her lifetime and receives
each period an endowment of a nonstorable good. Assuming additive
time separability and constant discounting of the utility function,
the utility at time t, V., can be written as:

V.=E.Y, BIU(C,.y) (1)

t=0

where E, denotes expectation conditional on information available
at time t, U an atemporal utility function and C, the agent’s
consumption at time t. We assume that U is the power utility

function with constant relative risk aversion ¥:

1-y
u(c,) =€i_; (2)

The first-order condition for an interior maximum implies that
the price of an asset 1 at time t (ps) is equal to the expected
product at time t of the asset payoff at time t+1 (x“#) and the

marginal rate of substitution between t and t+l (m, ), that is:

1 1
P{=E (M ¢,y Xia)

Using our assumptions about the utility function stated in (1)



and (2), this condition can be rewritten as:

C., Y
Ptl":BEc [( é 1) thaa]
t

An equity is defined as an asset which gives the right to the

endowment stream in the economy. Since the unique good in the
economy is nonstorable, the dividend D is identical to consumption.

Therefore, the equity price at time t satisfies:

- Dt+1 Y -
Pe=BEJ 5 (P +De.s)
4

Iterating the above equation gives:

P:’=DZ§; pIED.] (3)

We postulate that the logarithm of the endowment process
follows a random walk where both the mean and the variance change
according to a Markov state variable S, which takes values
0,1,...,K=-1 (in the case of K states). The Markov process (S;} has

the following transition probability matrix m:

DPyo by; Porxa)
Pio Py Pix-1}

T=
Pig1jo Prx-111 7 Plx-1) (5-1)
The endowment process can then be written as:
de=d, =0+, S; o+ o +0g 1 Spq, ot (00,5 o+ - *Wp 15p,¢) € (4)

where S, . is a function of the state of the economy, S, taking
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value 1 whenever S, = i and 0 otherwise; 4, is 1n D, €, is a N(0,1)
error term. Then, in state i, the mean and standard deviation of
the growth rate of the endowment will be given by (a,ta,,0,te;).

Given the process defined by (4) and the transition
probability matrix =, we can find closed form solutions for the
asset prices and derive formulas for returns.

Iterating n times equation (4) in exponential form, we obtain:

n
1- 1-
Di.Y=D¢ Yexp[(l -¥) f‘: Qo+, Sy oyt +0x 1 Sxq, bes*t (0o +®, S,y ++WySx te7) €cay
-1

Taking the conditional expectation of both sides with respect
to the information set at time t and using the independence of the

sequences (S,) and (¢,) results in:

Echl:; =Dg_1EceXp(Pon+Plil eontthralp e, n) (5)

where:

- 2
Po=(1’Y)ao+—'—L"(12 ) @,
)2
pj=(1—y)aj+—ELéLL-(2w0mj+w§) Jj=1..K-1

n
ijC:11=hE Sjc*h j=1...K"'1
=]

The expectation term on the right hand side of (5) can be

written in matrix form :

EceXp(Ponﬂhil N R [T ALY P 71

where I, , is a 1xK row vector with 1 in the column corresponding to
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the state at time t and zeros in the other columns, 1 is a Kxl

column vector of ones, and A is defined as follows:

A . e
Doo Po1€’'  Dog,€ "°

B Br-
A=et Pig P11€ Pig,e™"!

By Br3
[Pk-10 Px-11€ Py.1x1€ 7]

So, expression (5) can be substituted in the egquity price

equation (3) to obtain the following formula:

PEf=D.p (S,) (6)

where:

p(S,) =I; [(I-BA)*-I11 (7)

When K=2, it is easy to see that p becomes:

_ Wo _ Py (2-5)
p(S)=1 Be (poo*’iu e -1 (8)

where:

A=ﬁ2 (p00+p11-1) e2|&o+|&1_ﬁeuo (pne”l*'poo) +1

Defining the one period equity return, R,, as



- Pt#l +Dt#1
t
13:

we can use (6) to arrive at the following return formula:?

= p (Stﬁl) +1

R, exp(ao+a15t‘1+(0)0*'(015,_.‘1)6“1) (9)
p(S,)

The natural informational assumption is to provide the agent
with the knowledge of the state of the economy she is facing, that
is s, (or equivalently S1J,SLt,...,Sth) is known at time t. An
alternative assumption is to provide the agent with the
foreknowledge of the state of the economy one period ahead, that is

s is known at time t, as CLM do. An equivalent way of stating

+1

this assumption is to maintain that the agent at time t knows at
most S, but to make d,-d., a function of S, ; instead of S,. In that

case, the endowment equation becomes:

d-d, ;=0 +@ Sy ¢ gFe - 0y Sy g, 1 ¥ (@g+@; S e q¥e e +0 g 1 Sko1,e-1) € (10)

The price and price dividend ratio formulas can be derived in a
similar way in this case. It is easy to see that instead of (5) we

should have:

Eth:g =Dé_1EcexP(pon*p1i1 1,0t tBgo1dx1 c-1,n) (11)
The matrix formula for the expectation term in the right hand

side of (11) is:

2 uhen K=2, Sy ¢t and S, ere identical.



I, BA"]

where the matrix B is defined as follows:

1 0 - O
Beo¥d® et - 0
o 0 - ePr1

Using (11) in (3) results in the following formula for the
price dividend ratio:
pr(S,) =PI, B(I-PA)*1 (12)

When K=2, the expression for the price dividend ratio is:

Bo*p1S_ 2Bo*H, _
pr(5) - BT 2R TP P = (13)

The return formula becomes:

L= p (Sc+1) +1

R{ exp (e +a; S, + (W, +w,5,) €,,) (14)
p (S,

II. Estimation of the Endowment Process

since we specify a general Markov switching model with K
states for the endowment process, the logical first step is to
check if a two-state model fits better than a one-state model, i.e.

the random walk model. CILM showed that a two-mean, one variance
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Markov model fits the data better than a random walk’®. We will
therefore skip that step in our gradual testing procedure.

The estimation and testing strategy is to start with the
estimation of the two-state MS models, select the Dbest
specification within that class, and then test for the presence of
a third state keeping as the null hypothesis the best specification
in the two-state class. The procedure stops when there is no
evidence for the presence of a higher number of states.

The upper panel of Table 1 presents the maximum likelihood
estimates of three two-state models for each of the series of
consumption, dividend , and GNP growth rates. Taking consumption
as an example, the first model (Cl) is the two-state MS model with
two means (g, agta,) and one variance (mf). The second model (C2)
refers to the one-mean (a,) and two-variance (mf, (mdﬂh)z) model.
Finally, C3 is the two-state encompassing model with two means (q,
ayta,) and two variances (mf, (mdﬂh)z). To test the constraint
©,=0, one can use a l1ikelihood ratio test of Cl against C3 since Cl
is nested in C3. The X% p-value line indicates a value of 0.011 for
the null of Cl1 against the alternative C3, which means that Cl can
be rejected in favor of C3 almost at the 1% level of confidence.

The two other sets of columns for dividends and GNP confirm
this evidence against the constraint ©,=0. We could stop the
exercise here for the two-state specification and decide that the

(C3, D3, G3) models are the preferred ones. However, for reasons

3 They also compare their two-mean one variance MS model to an AR(1) or AR(2) specification in terms of
forecasting power. For GNP and consumption, there is no clear winner, but for dividends the MS model performs
much better. A case is therefore made for the MS model given its snalytical tractability.
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of parsimony, given the unsignificance and close-to-zero value of
a,, we can reestimate the model under the constraint a,=0. The
results are presented in the C2, D2 and G2 columns. The X2 p-value
1ine confirms that C2 (resp. D2, G2) cannot be rejected in favor of
c3 (resp. D3, G3) at the 84% (resp. 80%, 97%) level. We will
therefore retain C2 (resp. D2, G2) as our null hypothesis against
the three-state formulation, the logical next step in our testing
procedure.

Although the two-state specification is nested in the three-
state specification, there are many parameter combinations of the
three-state model which provide a two-state representation. A two-
state specification can be obtained by setting a, and e, to zero,
or by setting the corresponding transition probabilities to the
third state to zero. Note also that in the latter case the
parameters a, and o, have no role and could take any values®.
Because of this identification problem, the classical hypothesis
testing procedures (LR, LM, Wald) used for nested models fail to
apply to test for the number of stétess.

To illustrate the problems involved, we will choose as a null
hypothesis a linear model in growth rates with one mean (;) and
one variance (moz) and as an alternative a two-state MS model
(adding the parameters a,;, @;, Pqp and p,, to the null

specification). To start with the IM test, we note that the first-

4 In the former case, the probabilities that link the third state to the other states could take any of
infinitely msny values without affecting the two-state representation, i.e. any of the infinitely many
combinations of probability values that correspond to the same unconditional (steady state) probebilities for
the first and second states,

5 as indicated in Hamilton (1989) p. 377, footnote 12.
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order conditions with respect to a;, ©;, Py and p,, are identically
zero at the constrained MLE if we choose a,=0, ©,=0, Py=1 and p;,=0
as our specific version of the null®. Therefore, one can never
reject the null of a single state even when the two-state model is
the truth. For the LR and Wald tests, one can always estimate the
two-state model, but two sorts of problems arise if the single
state model is true. First, attempting to estimate the two-state
model might prove unsuccessful, or convergence might be very slow.
Second, the regularity conditions (identification and rank
conditions) are violated. Under the null of a single state (ag=a,,
0,=0,),the probability parameters Py, and p,, are unindentified,
since any value between 0 and 1 will leave the likelihood value
unchanged. Therefore the scores with respect to py, and py, will be
identically zero and the asymptotic information matrix will be
singular. No valid asymptotic test can therefore be constructed
under the null of a single state.

To overcome these problems, we will use various tests
described in Appendix A7, i.e. the Davies (1987) bound test, the
Gallant (1977) test and the Davidson and MacKinnon (1981) J-test.
The first test has been proposed by Boldin (1989) in the Markov
switching model context, while the second has been suggested by
Gallant (1977) for non-linear models where a similar problem

applies. The third test is the well-known test for non-nested

6 Notice also that, as mentioned above, there are infinitely many combinations which represent the nutl
hypothesis.

7 A description of additional tests that could be useful in guiding the choice of the number of states is
found in Garcia and Perron (1990).
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models. The results for the tests of the best two-state MS model
(c2, D2 G2) against a three-state MS model are shown in the bottom
panel of Table 1. For the consumption series, convergence could
not be achieved with the three-state model, an indication, as
mentioned earlier, that the series is best characterized by two
states in variance. This is confirmed by the Gallant test and the
J-test. For the dividend and GNP series, the Davies quick rule® and
the J-test favor the two-state specification, but the Gallant test
is not as clear, especially for dividends.® Given our current
ignorance about the respective powers of these tests, we are
inclined to accept the two states in variance specification.

The estimation procedure gives as a Dby-product the
probabilities of being in state 0 or 1 at time t given the
information available at time t.' These probabilities are shown
for each of the series in Figure 1. For the consumption series, the
variance switches from the high state to the low state in 1950 and
stays there almost until the end of the sample. For the GNP series,
the high variance period extends mainly from 1930 to 1949. For the
dividend series the changes are more frequent, but the same low
variance is exhibited after 1950. Given the correspondence between
the endowment and the stock prices in the Lucas model, this

characterization of the endowment process is in line with the

8 See Appendix A for a definition of the quick rule for the Davies bound test.

9A more complete Markov specification for the dividend and GNP series should include some autoregressive
parameters but no closed-form solution can be found for the stock price when autocorrelation parameters are
present,

10g0e Hamilton (1989) for a detailed explanation of these so-called filter probabilities.
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previous evidence (Officer (1973), Schwert (1989)] of a much higher
variance in stock prices in the 1930s''. In the next section, we
will analyze the effects of the various characterizations of the

endowment process on the generated measures of mean reversion.

III. Implications of Different Specifications

for Negative Autocorrelation in Real Returns

In this section, we will compare the negative autocorrelation
patterns in returns generated by the equilibrium model for four
different specifications of the endowment process: one mean, two
variances (1M2V) for both S, and §,,, two means, one variance (2M1V)
for both S, and S,_,. We use as measures of negative autocorrelation
both the variance ratios (VR= Var(RLtm)/mVar(Rt), for m equal 2 to
10) and the multiperiod returns regression coefficients (regression

of R, on R for m equal 1 to 10).

t+Hm t-m’

Tables 2 and 4 report the results of the Monte Carlo
experiment for the variance ratios and the regression coefficients
respectively. The Monte Carlo distributions for these statistics
are generated in the following way. Given a randomly drawn vector
of N(0,1) errors €., and a randomly drawn vector of S, according to
the transition probabilities estimated in Section II, we generate

series of returns according to formulas (9) or (14) for R, and RJ

respectively, with the estimates obtained in Section II for the a

" Equation (6) shows that when we stay in the same state for & period of time, the growth rate of pe
mimics the growth rate of D. Then s higher variance for the endowment growth will translate into a higher
variance for the stock price growth.
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2 We replicate

and o parameters of the consumption growth series.
the procedure 10,000 times and compute each time the variance ratio
and the regression coefficient. We therefore obtain the respective
distributions of variance ratios and regression coefficients at
various lags.

For the length of the series, we choose 116 observations (the
number of observations for the actual returns) to generate the
small sample distributions, and 1,160 observations for the large
sample ones. We report the medians of the distributions as well as
the percentage of the distribution below the actuals. For the
small sample results, this percentage is to be interpreted as a p-
value for the hypothesis that the actuals are produced by the
model. The closer it is to the 50% line, the more support for the
hypothesis. The large sample statistics are produced to evaluate
whether the model is capable of generating some negative
autocorrelation even in large samples. In other words, we want to
assess the magnitude of the small sample bias present in the small
sample results.

Table 2 shows that the combination of the 2Ml1V, S ,
specification (the one chosen by CIM) with a concave utility
function (y=1.7) 1is the only one to generate negative
autocorrelation of the magnitude exhibited by the actual data: for

all other combinations the variance ratios are in general

substantially larger.

120.5ults obtained with the GNP and dividend series estimates are not reported because of space
cons iderations. The conclusions reached are very similar in nature.
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The large sample results in the bottom part of the table
reinforce the conclusions one can infer from the top part: only the

2M1V, S specification combined with a concave utility function

t-1
generates large sample variance ratios substantially smaller than
one. In other words, the variance ratio values smaller than unity
obtained from the other models are due to small sample bias. As
shown in table 3, the population variance ratios (see Appendix B
for their derivation) for the three other specifications are
greater than one when a coefficient of relative risk aversion of
1.7 is assumed.

The figures in tables 2 and 3 reveal the importance for the
CLM results of both the 2M1V specification and the lagged state (S,
;) structure. If the MS specification that best fits the data, i.e.
the 1M2V specification, is substituted for the 2M1V one while the
lagged state structure is maintained, a lower small sample bias
will remain as the only source of a slight negative
autocorrelation. If we otherwise change the lag structure to
recover the usual one while maintaining the 2M1V specification an
even more striking result is obtained when the utility function is
concave: the variance ratio is substantially greater than one and
increasing with the return horizon. If the endowment model which
best fits the data and the natural lag structure is chosen, the
results are similar to the ones with the lagged structure: unlike
the results obtained using the 2M1V specification, the 1M2V

specification results are robust to the choice of the lag

structure.
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returns.

When one state is persistent and the other is not, as in the
2M1V specification, the pattern of autocorrelation depends on two
factors: the magnitude of the change in the price dividend ratio
when changing states (since p(0) and p(l) appear in the return
equation in that case), and the timing of the Markov variable in
the exponent term in the return equations (9) and (14).

For the first factor, it is easily seen from equations (8) and
(13) that the difference between the price dividend ratios in the

two states is given by:

B (Pyo+Py;—1)

3 [exp (py) —exp (po+H,) ] (15)

p(0)-p(1)=

p£(0) -pt(1) =B [exp (o) —ex (o +ny)) (16)

when the endowment equation is (4) or (10) respectively.

In this latter specification, it is also assumed that the
representative agent knows S, at time t-1. This fact explains the
absence in (16) of the term (py+p;;~1) which appears in (15). This
term reflects the uncertainty faced by the agent regarding the
state of endowment growth in the next period. Given the estimated
values for the transition probabilities in the 2M1V specification
(Py;=0.5265, p,=0.9760), one can see that the difference between
p(0) and p(1l) is about halved when the S, specification is chosen
instead of the S, retained by CLM. Also, in both cases, p(0) is

less than p(1l) for the specific values chosen or estimated for the
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The results of Table 4 for the regression coefficients are
analogous to the results obtained for the variance ratios', that
is, the 2M1V,S , specification is the only one to generate
coefficients that are negative enough to approach the actual data.

What are the special features in this specification that explain

these results?

IV. Interpretation of the Results

To understand how the characteristics of the Markov switching
model for the endowment process affect the theoretical
autocorrelation of returns, one has to look at equations (9) and
(14) which define the equilibrium returns. The return is seen to
depend on the Markov state in two adjacent periods and on the
realization of the i.i.d. term € in the second period. If both
states are persistent (high py,, and p,;), the state observed in
period t is likely to remain unchanged and the successive returns
are likely to differ only through e€,,. This tends to generate
positive autocorrelation in long-horizon returns. Conversely, when
both states show little persistence (low p,, and p,;) , the observed
state is likely to change, producing negative autocorrelation in
returns. The fact that the estimated py and p,, are both very high
for the 1M2V model is at least part of the explanation for the

slightly positive value found for the population autocorrelation of

13 The regression coefficients (b) and the variance ratios (V) are linked by the following formula:
bek) = v(2k)/V(k) -1
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parameters. '

To see the influence of the second factor, the timing of the
Markov variable, one can look again at the return equations. In the
explanation that follows, we neglect the effect of the i.i.d. term
€. Suppose the economy has been in state 0 for some periods. When
there is a change from state 0 to state 1, equations (8) and (13)

will read as follows:

_p(1)+1

R =
ea= ooy P (%ore)

_p(1)+1

Rt-rl- p(O) exP(ao)

Then both p(1) and pt(1) appear in the numerator and p(0) and
pt(0) in the denominator in both specifications and, since p(1)
(resp. p'(1)) is greater than p(0) (resp.(p'(0)), the part of the
equation which multiplies the exponential term will increase in
both cases (but more for the lagged specification for the reasons
mentioned above). For the exponential term however, only a, will
appear in the lagged specification, driving the returns much higher
than in the normal specification where o, (high in absolute value
and negative) will also be present. For the next period, if we stay
in state 1 the return tends to be lower than in state 0 (since a,
is appearing in the exponential term in both cases and p(l) (resp.
pt(1)) is greater than p(0) (resp. pt(0)), but there is still a good

chance of returning to state 0, since state 1 is not very

MIn their discussion of the sign of pL(O)-pLU) on page 407, CLM state that it is always negative when
the coefficient of relative risk aversion, y, is greater or equal to 1, without mentioning that the validity
of this statement depends on the parameter values. The statement is not true for example if the bed state is
slightly more persistent than the good state.
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persistent (p,;=0.5265). In this case, the return equations will be

given by:

:_E_(p_.)._iexp(ao)

R
t+1 p(l)

L
Rt111=-%)é—)tlexp (a0+a1)

For the lagged specification the return will be very low
because p'(1) will now appear in the denominator, p'(0) in the
numerator and «, in the exponential term. This sequence of positive
and negative spikes in returns is what generates the negative
autocorrelation pattern associated with the 2M1V  lagged
specification. For the non-lagged specification the exponential
term will smooth out both positive and negative spikes (because «a,
will be present when the other term is high but not when it is
low), resulting in the suppression of the negative autocorrelation
effect.

For the 1M2V specification, the timing of the Markov variable
does not alter substantially the results, since p, and p,; are high
- making the difference p(0)-p(l) almost identical in both lag
structures - and «, is 0.

The mean reversion effect in equilibrium asset pricing models
based on a regime-switching endowment can be produced by two kinds
of dynamics. A high variance state of some persistence increases
risk in returns and implies that a higher expected return is
required compared with a low variance state. Switching from a high

variance state to a low variance state can produce mean reversion
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in asset prices. The main reason why the two-variance, one-mean
estimated model cannot produce mean reversion is that the states
are too persistent. The other kind of dynamics is generated by the
intertemporal substitution of the agent when faced with alternating
high and low growth rates in her endowment. When in addition the
agent knows the state of the economy in the next period, she can
adjust more radically her consumption in response. The facts that
the mean growth rates in the estimated model are very far apart and
that this foreknowledge assumption is made are the two reasons of
the success of the CILM model in producing mean reversion.

An additional feature of the results remains to be explained.
Table 3 exhibits a monotonic relationship between the population
variance ratios and the return horizon. To understand this fact, it
must be remembered that the longer the horizon, the more numerous
are the changes in states, hence the larger is the measure of

autocorrelation.

V. Conclusion

In this paper, we showed that, among various Markov
specifications for the endowment process, mean reversion of the
magnitude detected in the data was only obtained by combining an
arbitrary assumption about the timing of the Markov variable §,
with a misspecification of the process. This was the particular
combination chosen by CLM on the grounds of being on the tradeoff

frontier between a model that completely matches the data and one
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that is tractable. The timing of the state is justified by the fact
that in actual economies future nominal dividend payments are
announced in advance. In a long-term setting with annual
observations as it is the case here, such a justification is not
very convincing. Moreover, this specification is used to model the
consumption and GNP series as well, for which obviously the same
justification does not apply. This dating of the Markov variable
coupled with the fact that the agents in the economy are assumed to
know also the state at time t has, as we saw, a very important
bearing on the results. We showed that when the natural timing of
the unobservable Markov variable is matched with the best tractable
specification in this class of models, the amount of negative
autocorrelation generated is substantially smaller than what is
found in the data. Moreover, the small sample bias stands as its
only explanation.

Furthermore, it must be emphasized that none of the models
generates negative autocorrelation in excess returns, contrary to
what is apparent in actual data, as shown in Table 5%.

Finally, as we mentioned in the introduction, it is not enough
to show that one particular equilibrium model can generate mean
reversion. To gain acceptance for this model, one will have to
show that it is also capable of reproducing both the endowment
process features and the other characteristics of the return series

such as the unconditional moments or the regression coefficients on

15 The formulas for the theoretical variance ratios and regression coefficients are derived in Appendix
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other financial variables. In this paper, we applied our effort to
best characterizing the endowment series and the model did not
stand the test. It remains as an open question whether a more
elaborate model for the endowment process can reproduce, in a
representative agent economy setting, the characteristics of the

return series.
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Appendix A

1. Davies Bound Test

The procedure proposed by pavies applies when a vector y of
dimension say g is present only under the alternative hypothesis.
pefine the likekihood ratio statistic as a function of y:

LR(y) =2 (1n L, (y,) -1n LJ) (A1)

where L,(Y,) denotes the likekihood value of the objective function
evaluated at vy, (a2 given value for y) under the alternative
hypothesis, and L, the maximized value obtained under the null
hypothesis (where Y is not present). th‘y be*the argmax of L,(Y)
and M be the maximum of LR(y) = 2(1n L, -1n L;). pDavies derives
the following upper bound for the significance of M:

g1 M 2;29

priLR(y)>M) =Pr[x;>M) +VM * exp *? 7
I'(-2)

2

where I'(.) denotes the gamma function and V is defined as:

Tu 2
V=f‘aLRa(Y!) 2 IdY
Y1

[y

1 1

|+|ZR(y,) # -LR(y,) 2|+ = +|LR(y,) *-LR(Y,)

wl-

1
z

where v, Y, ---+ Y, are the turning points of LR(y). A quick rule
is obtained upon making the assumption that the likelihood ratio
has a single peak. In that case V reduces to 2M'/2,  our testing
procedure uses this quick rule and estimates the model under the
alternative hypothesis to obtain L: (and therefore M and V) to
calculate the significance level. Another procedure, which avoids
estimating the model under the alternative, would consider a fine
grid of values for the vector y, compute V by substituting these
values into formula (A.2), and find the maximized value L,(y ) over

the grid (with the associated vector y') to compute M.

1
=|LR(v,) *-LR(¥;)

2. Gallant’s Test Procedure
Consider the following models under the null and alternative
hypotheses:
Hy 1y, = g{x., ¥) + e,
H :y,=9g(x.,¥) +1 d(x.. @) + e,

The basic idea of the test is straightforward. Let z,  be a
given vector of variables which do not depend on unknown
parameters. If 1,, the true value of 71, is equal to O, the least
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squares estimator of & in the following regression:

yv=g(x,¥) +z{ & + e (A.3)

is estimating the null vector. let B = (ap, @y, O O Wy, O, Py
(i,3 =1,2,3)) be the vector of parameters in the t ree-state modef
(in the two-state model the vector is defined similarly without o,,
w,, and p; ; (i, =3)). The Gallant procedure applied to determining
the numbér of states in a Markov switching model follows four

steps:

i) For a given set of values for B (say m) indexed by i, calculate
the fitted values ?i for the model with the larger number of
states.

ii) If the matrix Y = (yy, ---r Y, ) is too big, extract a few
principal components, say 4, (or fhe first few vectors of the
orthogonal matrix in a singular value decomposition of Y).

iii) Add these principal components (call them 2z, a vector of
dimension d) to the model with the lower number of states, i.e.
estimate (A.3) where the function g(x%,, ¥) represents the model

with the lower number of states.

iv) Compute the following residual sums of squares:

H: #2=% (y,-g(x,. §) -82.)°

t=1

Hy: 62=% (y,-g(x., §))?

t=1

The 1likelihood ratio test, with size a, rejects the null
hypothesis if:
32 dF

=2 51 4 —2%—
62 (T-d-p)

where u is the number of parameters estimated under the null
hypothesis, d is the dimension of the vector z, and F, denotes the
a percentage point of a F(d, T-u-d) distributed random variable.
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Appendix B: pDerivation of the Population

variance Ratios and Regression Coefficients

Formulas B.2-B.9 for equity returns(R) and

asset

returns(Rf) first and second moments are easily derived from the
equity return formula (2) in the text and the folowing formula for

the risk-free asset:

s 2w
Rtt(sc) = ¢(B t) ex‘{_yao_ Y 2(‘)0)

where

- 1
¢ (1) (g+(1-@)w) (1-r) +Q-p+pw)r

o2
W=eXI{Y“1+Yz(wow1+—§i))

Moment Formulas:

and

2
w
ERt=exp(ao+—§3) 2 n(r+1) C(r+1,s+1) A, (r,s)
r=0,1

g=0,1

where:

A, (7, S) =—%%—f-exp(2(al+2wowl+wi)s)

{5 7 q)
2-p-q' 2-p-q

1_
o
l-p p

E(R?) =exp(2(¢,+@))) ¥ m(r+1) C(r+1,5+1) Ay (1, 9)

r=0,1
8=0,1

_29_

(B.1)

(B.2)

(B.3)



where:

hga (£, 8) =t ‘ff)r;;”zexp(z(al+2wow1+w§)s)

E(RR, ;) =exp(2a,+0}) 20: n(r+1) C(r+1,8+1) C¥(8+1, u+1) C(u+l, v+1) A,_(1, 8, u, v)
I=0,1

£=0,1
u=0,1

(B.4
where:

- (p(s)+1 1 w3
Aoz, 8,u,v)=2L Sp?r;;?£;)+ )eXP«“1+wow1+ij(V*S))

exp(—va - Yzw‘z’)
ERf= 2 )Y m(r+1) (o) (B.5)

B Ir=0,1

2 - - 2 2
E’(Rf):exD( 2ya,-y wo) E n(r+1)¢§,(r) (B.6)

BZ Ir=0,1

27" y2¢2
E(RfRf_k)=exP( BZY w}) Y n(r+1)Ck(r+1,s+1) (1) (s) (B.7)
r=0,1

8=0,1

2
. ex;{ao(l—y)+1%3(l-yz))
E(R; i R,) = 2: n(r+1)Ck(r+1,s+1)C(s+1,u+1)6(r,s,u)

B r=0,1
8=0,1
u=0,1

k=0,1,2,..,10

(B.8)
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where:

_ (p(w)+1)§(x) _cgj) )
6(r,s,u) 5 (5) exp«a1+wow1+ > Ju

2
exp(ao (1-v) +—%3 (1-12))
E(R,_RS) = 5 Y m(r+1)c(r+1,s+1)C**(s+1,u+1)0(u, r, 8)

Ir=0,1
8=0,1

u=0,1 k=1,2,..,10

(B.9

Using (B.2) to (B.9) it 1is straightforward to find the
correlation coefficients (p) at various lags for the equity returns
and the excess returns. Then, the theoretical values for the k-
period variance ratio (V) and regression coefficient (b) can be
obtained by the application of the following formulas:

k-1

1.2 _
V(k) =1+ k; (k-7) p,

k

(jpj+(k‘j)qu)
b(k)= ; ey

ke2 (k-3) e
=1

For the specification which uses S in the endowment equation
the theoretical values for the variance ratios and regression
coefficients can be found in a similar way.
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TABLE 1-Maximum Likel ihood Estimates of Two-State Models

and Test Results

e e R R O R R R EEESE————————.
R e S e e

i(Standard error in
parentheses)

Consumption Dividends GNP
C1 €2 c3 D1 D2 D3 G1 62 a3
0.0236 0.0200 0.0205 0.0171 -.00008 0.0010 0.0240 0.0179 0.0180
i (6.44) (6.89) (5.90) (1.53) (-0.01) (0.14) (5.78) (5.58) (5.54)
-0.0899 -0.0020 -0.370 -0.0093 -0.1756 +0.0013
(-6.57) (-0.27) (-6.56) (-0.43) 7.1 (-0.0%)
g 0.0329 0.0176 0.0177 0.1050 0.0429 0.0428 0.0431 0.0310 0.0310
(12.04) 6.32) (6.49) (13.69) (7.69) (7.83) (15.05) (11.70) (12.04)
0.0289 0.0288 0.1400 0.1404 0.0781 0.0781
(5.90) (5.89 (6.87) (7.16) (4.29) (4.22)
0.5265 0.9849 0.9848 0.1753 0.8430 0.8367 0.5089 0.9305 0.9305
1.97) (59.27) (59.44) (0.82) (8.40) (8.52) (2.32) (15.03) (15.75)
0.9760 0.9610 0.9613 0.9508 0.8289 0.8238 0.9821 0.9858 0.9858
(44.11) (28.23) (28.74) (40.52) (9.66) (9.53) (93.93) (66.08) (77.31)
269.96 276.37 276.41 179.67 191.744 191.81 294.41 311.366 311.367
0.011 0.84 0.000 0.80 0.000 0.97
ﬁlote: Asymptotic t-ratios in parentheses.
H Tests of Two States (C2, D2 or G2) against Three States
&avies Test i : 0.878 1.0
kal Lant 0.562 0.029 0.114 i
est
!
-Test 0.040 -0.097 -0.52 i
Davidson and (0.069) (0.359) (0.570)

Notes:

consumption model since convergence could not be achieved with three states.
-The Gallant test is an F-test, for which we report also a p-value for the null of a two-state model. It has been
performed by using in the two-state model the estimated growth rate based on Ml estimates of the three-state model for
both dividends and GNP where convergence was obtained. For consumption, we gave a series of values to the three-state
model parameters and calculated the corresponding consumption growth rate. We formed a matrix Y with these calculated
growth rates and extracted the first vector of the orthogonal matrix obtained from a Singular Value Decomposition of Y.
.The J-test is s t-test on & in the model: y= (1-a) f(8) + ag + u, where f(B) stands in our case for the model with the
lower number of states and g for the estimated growth rate with the higher number of states, calculated as indicated for

the Gallant test for the respective series.
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TABLE 2-Median of Distribution of Variance Ratios of Returns
for Models Calibrated to Consumption
y=0 y=0 y=0 y=0 y=1.7 y=1.7 y=1.7 y=1.7
k
Actusl 5.9 8:.q 5, S¢ S:.9 5:.9 8, 5,
241V mzv 241V 1M2v M1V 1M2v 241V 1M2v
T =16
2 1.0137 0.9853 0.9932 0.9863 0.9918 0.9502 0.9930 1.1162 0.9921
(0.59) (0.58) (0.58) (0.59) (0.68) (0.58) (0.21) (0.58)
3 0.8664 0.9609 0.9773 0.9602 0.9774 0.8951 0.9775 1.1739 0.9775
(0.31) (0.23) (0.32) (0.23) (0.44) (0.23) (0.06) (0.23)
4 0.8351 0.9354 0.9636 0.9335 0.9657 0.8524 0.9635 1.1992 0.9653
(0.33) (0.24) (0.33) (0.24) (0.47) (0.24) (0.06) (0.24)
S 0.7978 0.9115 0.9483 0.9118 0.9543 0.8175 0.9490 1.2115 0.9537
(0.32) 6.23) (0.32) (0.23) €0.47) (0.24) (0.07) (0.23)
6 0.7459 0.8898 0.9330 0.8905 0.9368 0.7898 0.9340 1.2182 0.9383
(0.28) (0.20) (0.28) (0.20) (0.43) (0.20) (0.06) (0.20)
7 0.7259 0.8713 0.9187 0.8728 0.9209 0.7685 0.9195 1.2167 0.9215
(0.29) (0.22) (0.29) (0.21) (G.44) (0.22) (0.06) (0.21)
8 0.7363 0.8560 0.9043 0.8558 0.99048 0.7490 0.9041 1.2065 0.9041
(0.33) (0.26) (0.34) (0.26) (0.48) (0.26) (0.06) (0.26)
9 0.7102 0.8405 0.8901 0.8405 0.8894 0.7317 0.8908 1.1954 0.8891
(0.33) (0.26) (0.33) (0.25) (0.47) (0.26) (0.09) (0.26)
10 0.7242 0.8260 0.8724 0.8254 0.8732 0.7156 0.8735 1.1870 0.8732
(0.37) (0.31) (0.37) (0.31) (0.51) (0.31) (0.11) (0.31)
T = 1160
2 1.0137 1.000 0.9999 0.9983 0.9989 0.9554 1.0000 1.1453 0.9992
(0.63) (0.66) (0.63) (0.68) (0.90) (0.67) (0.00) (0.68)
3 0.8664 0.9977 0.9974 0.9961 0.9975 0.9228 0.9971 1.2408 0.9977
(0.02) (0.00) (0.02) (0.00) (0.20) (0.00) (0.00) (0.00)
4 0.8351 0.9968 0.9954 0.9930 0.9962 0.9001 0.9948 1.3049 0.9964
(0.02) (0.00) (0.02) (0.00) (0.21) (0.00) (0.00) (0.00)
5 0.7978 0.9938 0.9936 0.9903 0.9950 0.8830 0.9923 1.3500 0.9951
(0.01) (0.00) (0.01) (0.00) (0.17) (0.00) (0.00) (0.00)
6 0.7459 0.9905 0.9915 0.9874 0.9939 0.8709 0.9906 1.3821 0.9943
(0.00) (0.00) (0.00) (0.00) (0.09) (0.00) (0.00) (0.00)
7 0.7259 0.9889 0.9902 0.9854 0.9920 0.8607 0.9891 1.4041 0.9924
(0.00) (0.00) (0.00) (0.00) (0.09) (0.00) (0.00) (0.00)
8 0.7363 0.9863 0.9892 0.9838 0.9907 0.8531 0.9877 1.4210 0.9907
(0.01) (0.00) (0.00) (0.00) (0.13) (0.00) (0.00) (0.00)
9 0.7102 0.9839 0.9875 0.9810 0.9892 0.8462 0.9865 1.4343 0.9893
(0.01) (0.00) (0.00) (0.00) (0.11) (0.00) (0.00) (0.00)
10 0.7242 0.9823 0.9866 0.9795 0.9876 0.8401 0.9854 1.4439 0.9878
(0.01) (0.00) (0.01) (0.00) (0.15) (0.00) (0.00) (0.00)

Notes: .The figures between parentheses give the percentage of Monte Carlo distribution below the actual value.
‘ALl models we refer to in this table are two-state Markov switching models.
2M1V stends for the model with two (state) means and one (state) variance.
T1M2V stends for the model with two (state) variances and one (state) mean.
-Sy stands for the model where the Markov variable at time t enters the endowment equation at time t.
.Sﬁg stands for the model where the Markov variable at time t-1 enters the endowment equation at
t t.
.The numbers for the two -mean -one - var iance(2M1V) lagged(st_1) Markov switching model differ slightly from CLM results becau
of data revisions at the end of the sample.
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Models Calibrated to Consumption

TABLE 3-Population Variance Ratios for

k Actual S S S, S,
2M1V iM2v 2M1V 1M2V

2 1.0137 0.9524 1.0000 1.1481 1.0000
3 0.8664 0.9206 1.0001 1.2471 1.0001
4 0.8351 0.8987 1.0002 1.3153 1.0002
5 0.7978 0.8831 1.0002 1.3638 1.0002
6 0.7459 0.8716 1.0002 1.3992 1.0002
7 0.7259 0.8630 1.0003 1.4259 1.0003
8 0.7363 0.8564 1.0003 1.4465 1.0003
9 0.7102 0.8511 1.0004 1.4627 1.0004
10 0.7242 0.8469 1.0004 1.4759 1.0004

Note: The values are calculated for y=1.7.
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TABLE &-Median of Monte Carlo Distribution and Population Value

of Regression Coefficients of Returns for Models Cal ibrated to Constgggon
1 1
k y=0 y=1.7 iy=0 y=1.7 y=1.7 y=0 y=1.7 ly=0 y=1.7 1.7
i H
""" T=116 i T=1160 Populat ion T=006 b T=1160 iPopulation
M1y ! 1My
| St-1
1 -0.0145 -0.0492 -0.0001 -0.0445 -0.0475 -0.0070 -0.0070 -0.0002 -0.0000 0.0000
(0.59) (0.68) (.64) (0.91) (0.58) (0.58) (0.68) (0.68)
2 -0.0397 -0.0899 -0.0033 -0.0568 -0.0564 $-0.0219 -0.0217 -0.0027 -0.0034 0.0001
(0.18) (0.30) (0.00) (0.01) 1(0.12) (0.13) (0.00) (0.00)
3 -0.0574 -0.1026 -0.0061 -0.0563 -0.0531 -0.0345 -0.0346 -0.0041 -0.0047 0.0001
(0.38) (0.49) (0.03) (0.18) (0.32) (0.32) (0.01) (0.02)
(3 -0.0678 -0.1072 -0.0076 -0.0522 -0.0470 -0.0482 -0.0480 -0.0055 -0.0061 0.0002
(0.46) (0.56) (0.09) (0.28) (0.42) (0.42) (0.07) (0.07)
5 -0.0776 -0.1113 -0.0084 -0.0478 -0.0409 ;-0.0648 -0.0640 -0.0066 -0.0066 0.0002
(0.33) (0.40) (0.01) (0.03) §(0.31) (0.31) (0.01) (0.01)
[ -0.0848 -0.1156 -0.0101 -0.0433 -0.0357 £-0.0780 -0.0775 -0.0088 -0.0081 0.0002
(0.40) (0.46) (0.02) (0.06) 1(0.39) (0.39) (0.02) (0.02)
7 -0.0994 -0.1234 -0.0115 -0.0393 -0.0314 :-0.0918 -0.0927 -0.0095 -0.0094 0.0003
(0.38) (0.42) (0.01) (0.03) §(0.37) (0.37) (0.02) (0.01)
8 -0.1119 -0.1349 -0.0116 -0.0367 -0.0279 1.0.1047 -0.1041 -0.0112 -0.0102 0.0003
(0.32) (0.36) (0.00) (0.00) :(0.33) (0.33) (0.00) (0.00)
9 -0.1241 -0. 1449 -0.0125 -0.0346 -0.0251 £-0.1179 -0.1172 -0.0124 -0.0121 0.0003
(0.29) (0.32) (0.00) (0.00) §(0.29) (0.29) (.00) (0.00)
10  -0.1368 -0.1563 -0.0140 -0.0345 -0.0227 £-0.1304 -0.1303 -0.0139 -0.012¢9 0.0003
0.21) (0.22) €0.00) (0.00) :(0.22) (0.22) (0.00) (0.00)
S¢
1 -0.0141 0.1163 -0.0016 0.1453 0.1481 §-0.0081 -0.0080 -0.0011 -0.0009 0.0001
(0.58) (0.22) (0.64) (0.00) :(0.59) (0.59) (0.69) (0.69)
2 -0.0417 0.0879 -0.0044 0.1401 0.1456 £-0.0020 -0.0205 -0.0024 -0.0024 0.0001
(0.18) (0.04) (0.00) (0.00) :(0.12) (0.12) (0.00) (0.00)
3 -0.0556 0.0524 -0.0071 0.1145 0.1219 §-0.037S -0.0370 -0.0039 -0.0034 0.0001
(0.36) (0.26) (0.03) (0.00) :(0.32) (0.32) (0.01) (0.01)
4 -0.0657 0.0207 -0.0094 0.0899 0.0997 5-0.0481 -0.0482 -0.0042 -0.0042 0.0002
(0.46) 0.27) (0.09) (0.00) §(0.42) (0.42) (0.07) (0.07)
5 -0.0757 -0.0073 -0.0107 0.0711 0.0822 $-0.0645 -0.0638 -0.0059 -0.0055 0.0002
€0.33) (0.21) (0.01) (0.00) :(0.32) (0.32) (0.01) (0.01)
6 -0.0886 -0.0309 -0.0110 0.0571 0.0690 §-0.0812 -0.0823 0.0073 -0.0069 0.0002
(0.41) (0.30) (0.02) (0.00) :€0.40) (0.40) (0.02) (0.02)
7 -0.1017 -0.0526 -0.0109 0.0462 0.0590 1-0.0967 -0.0955 -0.0083 -0.0083 0.0003
(0.38) (0.31) (0.01) (0.00) :¢0.38) (0.38) (0.01) (0.01)
8 -0.1166 -0.0750 -0.0121 0.0374 0.0513 2-0.1114 -0.1114 -0.0098 -0.0095 0.0003
(0.32) 0.27) (0.00) (0.00) :(0.33) (0.33) (0.00) (0.00)
9 -0.1280 -0.0949 -0.0128 0.0313 0.0453 1.0.1247 -0.1238 -0.0111 -0.0107 0.0003
(0.29) (0.25) (0.00) (0.00) :€0.30) (0.30) (0.00) (0.00)
10 -0.1398 -0.1126 -0.0141 0.0254 0.0405 1-0.1418 -0.1414 -0.0128 -0.0127 0.0003
(0.21) (0.18) (0.00) (0.00) 1(0.22) (0.22) (0.00) (0.00)

-The figures between parentheses give the percentage of Monte Carlo distribution below the actual value.
-All models we refer to in this table are two-state Markov switching models.

.2M1V stands for the model with two (state) means and one (state) variance.

-1M2v stands for the model with two (state) variances and one (state) mean.

-S, stands for the model where the Markov variable at time t enters the endowment equation at time t.

-8, .4y stands for the model where the Markov variable at time t-1 enters the endowment equation at

t t.

.The numbers for the two-mean-one-variance(2M1V) lageed(st,1) Markov model differ slightly from CLM results because of
data revisions at the end of the sample.

4
Notes:
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Table 5-Population Values for the
Excess Returns Variance Ratios

; ; -
Actual | 2M1V 1M2V §2M1V 1M2V
Bursersssensss ctnsstnsnsssrsss sonsnss mosersnssessssssssssesss sosssusa ssssses davsasessuransse ressssss sosssaon sssssnmsesnoss sesnssssseseensssosmeessesoon
g f S¢ ; S,
2 1.0492 0.9993 1.0013 0.9994 1.0160
3 0.9300 0.9989 1.0026 0.9990 1.0311
4 0.9121 0.9986 1.0038 0.9987 1.0454
5  0.8639 0.9983 1.0050 0.9985 1.0589
6 0.7848 0.9982 1.0062 0.9983 1.0717
7 0.7246 0.9980 1.0073 0.9982 1.0837
8  0.7123 0.9980 1.0083 0.9981 1.0952
9  0.7038 0.9979 1.0094 0.9981 1.1060
10 0.7148 0.9978 1.0104 0.9980 1.1162

Note: The values are calculated for y=1.7.
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CONSUMPTION
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