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Abstract

Masini, Ricardo Pereira; Medeiros, Marcelo Cunha (adviser);
Carvalho, Carlos Viana de (co-adviser). Contributions to the
Econometrics of Counterfactual. Rio de Janeiro, 2016. 129p.
Tese de Doutorado — Departamento de Economia, Pontif́ıcia Uni-
versidade Católica do Rio de Janeiro.

This thesis is composed of three chapters concerning the economet-

rics of counterfactual analysis. In the first one, we consider a new, flexible

and easy-to-implement methodology to estimate causal effects of an inter-

vention on a single treated unit when no control group is readily available,

which we called Artificial Counterfactual (ArCo). We propose a two-step

approach where in the first stage a counterfactual is estimated from a large-

dimensional set of variables from a pool of untreated units using shrinkage

methods, such as the Least Absolute Shrinkage Operator (LASSO). In the

second stage, we estimate the average intervention effect on a vector of vari-

ables, which is consistent and asymptotically normal. Moreover, our results

are valid uniformly over a wide class of probability laws. As an empirical

illustration of the proposed methodology, we evaluate the effects on inflation

of an anti tax evasion program. In the second chapter, we investigate the

consequences of applying counterfactual analysis when the data are formed

by integrated processes of order one. We find that without a cointegration

relation (spurious case) the intervention estimator diverges, resulting in the

rejection of the hypothesis of no intervention effect regardless of its exist-

ence. Whereas, for the case when at least one cointegration relation exists,

we have a
√
T -consistent estimator for the intervention effect albeit with a

non-standard distribution. As a final recommendation we suggest to work

in first-differences to avoid spurious results. Finally, in the last chapter we

extend the ArCo methodology by considering the estimation of conditional

quantile counterfactuals. We derive an asymptotically normal test statistics

for the quantile intervention effect including a distributional test. The pro-

cedure is then applied in an empirical exercise to investigate the effects on

stock returns after a change in corporate governance regime.

Keywords
Counterfactual analysis; Comparative studies; Treatment effects;

Synthetic control; LASSO; Factor models;



Resumo

Masini, Ricardo Pereira; Medeiros, Marcelo Cunha (orientador) ;
Carvalho, Carlos Viana de (co-orientador). Contribuições para a
Econometria de Análise Contrafactual. Rio de Janeiro, 2016.
129p. Tese de Doutorado — Departamento de Economia, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Esta tese é composta por três caṕıtulos que abordam a econometria de

análise contrafactual. No primeiro caṕıtulo, propomos uma nova metodolo-

gia para estimar efeitos causais de uma intervenção que ocorre em apenas

uma unidade e não há um grupo de controle dispońıvel. Esta metodologia,

a qual chamamos de contrafactual artificial (ArCo na sigla em inglês), con-

siste em dois estágios: no primeiro um contrafactual é estimado através de

conjuntos de alta dimensão de variáveis das unidades não tratadas, usando

métodos de regularização como LASSO. No segundo estágio, estimamos o

efeito médio da intervenção através de um estimador consistente e assintot-

icamente normal. Além disso, nossos resultados são válidos uniformemente

para um grande classe the distribuições. Como uma ilustração emṕırica

da metodologia proposta, avaliamos o efeito de um programa antievasão

fiscal. No segundo caṕıtulo, investigamos as consequências de aplicar an-

álises contrafactuais quando a amostra é gerada por processos integrados

de ordem um. Conclúımos que, na ausência de uma relação de cointegração

(caso espúrio), o estimador da intervenção diverge, resultando na rejeição da

hipótese de efeito nulo em ambos os casos, ou seja, com ou sem intervenção.

Já no caso onde ao menos uma relação de cointegração exista, obtivemos

um estimador consistente, embora, com uma distribuição limite não usual.

Como recomendação final, sugerimos trabalhar com os dados em primeira

diferença para evitar resultados espúrios sempre que haja possibilidade de

processos integrados. Finalmente, no último caṕıtulo, estendemos a meto-

dologia ArCo para o caso de estimação de efeitos quant́ılicos condicionais.

Derivamos uma estat́ıstica de teste assintoticamente normal para inferência,

além de um teste distribucional. O procedimento é, então, adotado em um

exerćıcio emṕırico com o intuito de investigar os efeitos do retorno de ações

após uma mudança do regime de governança corporativa.

Palavras–chave
Análise contrafactual; Estudos comparativos; Efeito de tratamento;

Controle sintético; LASSO; Modelo de fatores;
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1
ArCo: An Artificial Counterfactual Approach for High-
Dimensional Panel Time-Series Data

1.1
Introduction

We propose a method for counterfactual analysis to evaluate the impact

of interventions such as regional policy changes, the start of a new government,

or outbreaks of wars, just to name a few possible cases. Our approach is

specially useful in situations where there is a single treated unity and no

available “controls” and is easy to implement in practice1. Furthermore, the

method is robust to the presence of confounding effects, such as a global

shock. The idea is to construct an artificial counterfactual based on a large-

dimensional panel of observed time-series data from a pool of untreated peers.

Causality is a research topic of major interest in empirical Economics.

Usually, causal statements with respect to the adoption of a given treatment

rely on the construction of counterfactuals based on the outcomes from a

similar group of individuals not affected by the treatment. Notwithstanding,

definitive cause-and-effect statements are usually hard to formulate given

the constraints that economists face in finding sources of exogenous vari-

ation. However, in micro-econometrics there has been major advances in

the literature and the estimation of treatment effects is part of the toolbox

of applied economists; see Angrist e Imbens (1994), Angrist et al. (1996),

Heckman e Vytlacil (2005), Conley e Taber (2011), Belloni et al. (2014),

Ferman e Pinto (2015), and Belloni et al. (2016).

On the other hand, when there is not a natural control group and there

is a single treated unit, which is usually the case when handling aggregate

(macro) data, the econometric tools have evolved at a slower pace and much

of the work has focused on simulating counterfactuals from structural models.

However, in recent years, some authors have proposed new techniques inspired

partially by the developments in micro-econometrics that are able, under some

assumptions, to estimate counterfactuals with aggregate data; see, for instance,

Hsiao et al. (2012) and Pesaran e Smith (2012).

1Although the results in the chapter are derived under the assumption of single treated
unit, they can be easily generalized to the case of multiple units suffering the treatment.
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1.1.1
Contributions of the Chapter

The content of this chapter fits into the literature of counterfactual ana-

lysis when a control group is not available and usually only one element suffers

the treatment. We propose a two-step approach called the Artificial Coun-

terfactual (ArCo) method to estimate the average treatment (intervention)

effect on the treated unit. Differently from the cross-section literature, the av-

erage is taken over the post-intervention period and not over the treated units.

In the first step, we estimate a multivariate model based on a high-dimensional

panel of time-series data from a pool of untreated peers, measured before the

intervention, and without any stringent assumption about the actual Data

Generating Process (DGP). Then, we compute the counterfactual by extra-

polating the model with data after the intervention. High-dimensionality is

relevant when the number of parameters to be estimated is large compared to

the sample size. This can happen either when the number of peers and/or the

number of variables for each peer is large or when the sample size is small.

We use the Least Absolute Selection and Shrinkage Operator (LASSO) pro-

posed by Tibshirani (1996) to estimate the parameters. Nonlinearities can be

handled by including in the model some transformations of the explanatory

variables, such as polynomials or splines. Furthermore, we propose a test of no

intervention effects with a standard limiting distribution which is uniformly

valid in a wide class of DGPs, either by imposing any stringent restriction

on the model parameters, as it is usually the case when the LASSO is the

estimation method, or by modifying the estimator as in Belloni et al. (2016).

We also show that it is not necessary to consider two-step extensions of the

LASSO, such as the adaptive LASSO of Zou (2006), to handle highly collinear

regressors. The method is able to simultaneously test for effects in different

variables as well as in multiple moments of a set of variables such as the mean

and the variance.

In addition, we accommodate situations when the exact time of the

intervention is unknown. This is important in the case of anticipation effects.

We also propose a Lp test inspired by the literature on structural breaks

Bai (1997), Bai e Perron (1998) and we show that the asymptotic properties of

the method remain unchanged. Finally, we derive tests for the case of multiple

interventions as well as for contamination effects among units.

The identification of the average intervention effect relies on the common

assumption of independence between the intervention and the treated peers

but we allow for heterogeneous, possibly nonlinear, deterministic time trends

among units. Our results are derived under asymptotic limits on the time
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dimension (T ). However, we allow the number of peers (n) and the number of

observed variables for each peer to grow as a function of T .

A thorough Monte Carlo experiment is conducted in order to eval-

uate the small sample performance of the ArCo methodology in com-

parison to well-established alternatives, namely: the before-and-after

(BA) estimator, the differences-in-differences (DiD) estimator assuming

each peer to be an individual in the control group, the panel factor

model of Gobillon e Magnac (2016), hereafter PF-GM, and the syn-

thetic Control method, hereafter SC, of Abadie e Gardeazabal (2003) and

Abadie et al. (2010). We show that the bias of the ArCo method is, in general,

negligible and much smaller than some of the alternatives. Also, the simula-

tions show that the variance and the mean square error of the ArCo estimator

is considerably smaller than the ones from its competitors. Moreover, the test

for the null of no intervention effect has good size and power properties.

Finally, we illustrate the methodology by evaluating the impacts on

inflation of an anti tax-evasion program implemented in October 2007 in

Brazil. The mechanism works by giving tax rebates for consumers who ask

for sales receipts. Additionally, the registered sales receipts give the consumer

the right to participate in monthly lotteries promoted by the government.

Similar initiatives relying on consumer auditing schemes were proposed in the

European Union and in China. Under the assumptions that (i) a certain degree

of tax evasion was occurring before the intervention, (ii) the sellers has some

degree of market power and (iii) the penalty for tax-evasion is large enough

to alter the seller behaviour, one is expected to see an upward movement in

prices due to an increase in marginal cost. Compared to the counterfactual, we

show that the program caused an increase of 10.72% in consumer prices over a

period of 23 months. This is an important result as most of the studies in the

literature focused only of the effects of such policies on reducing tax evasion

but neglected the potential harmful effects on inflation.

1.1.2
Connections to the Literature

Hsiao et al. (2012) considered a two-step method where in their first step

the counterfactual for a single treated variable of interest is constructed as a

linear combination of a low-dimensional set of observed covariates from pre-

selected elements from a pool of peers. The model is estimated by ordinary

least squares using data from the pre-intervention period. Their theoretical

results have been derived under the hypothesis of correct specification of a

linear panel data model with common factors and no covariates. The selection
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of the included peers in the linear combination is carried out by information

criteria. Recently, several extensions of the above methods have been proposed.

Ouyang e Peng (2015) relaxed the linear conditional expectation assumption

by introducing a semi-parametric estimator. Du e Zhang (2015) made improve-

ments on the selection mechanism for the constituents of the donors pool.

The ArCo method generalize the above papers in important directions.

First, by considering LASSO estimation in the first step we allow for a large

number of covariates/peers to be included, not requiring any pre-estimation

selection which can bias the estimates. Furthermore, shrinkage estimation is

quite appealing when the sample size is small compared to the number of

parameters to be estimated. It is important to mention that all our convergence

results are uniform on a wide class of probability laws under mild conditions

as mentioned previously. Second, all our theoretical results are derived under

no stringent assumptions about the DGP, which we assume to be unknown.

We do not need to estimate the true conditional expectation. This is a nice

feature of the ArCo methodology, as usually models are misspecified. Third, we

do not restrict the analysis to a single treated variable. We can, for instance,

measure the impact of interventions in several variables of the treated unit

simultaneously. We also allow for tests on several moments of the variable of

interest. Fourth, we also demonstrate that our methodology can still be applied

when the intervention time is unknown. Finally, we develop tests for multiple

interventions and contamination effects.

When compared to DiD estimators, the advantages of the ArCo meth-

odology are three-fold. First, we do not need the number of treated units to

grow. In fact, the workhorse situation is when there is a single treated unit.

The second, and most important difference, is that the ArCo methodology has

been developed to situations where the n−1 untreated units differ substantially

from the treated one and can not form a control group even after conditioning

on a set of observables. Finally, the ArCo methodology works even without the

parallel trends hypothesis2.

More recently, Gobillon e Magnac (2016) generalize DiD estimators by

estimating a correctly specified linear panel model with strictly exogenous

regressors and interactive fixed effects represented as a number of common

factors with heterogeneous loadings. Their theoretical results rely on double

asymptotics when both T and n go to infinity. The number of untreated units

must grow in order to guarantee the consistent estimation of the common

factors. The authors allow the common confounding factors to have nonlinear

2The first difference can be attenuated in light of the recent results of
Conley e Taber (2011) and Ferman e Pinto (2015) who put forward inferential procedures
when the number of treated groups is small.
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deterministic trends, which is an utmost generalization of the linear parallel

trend hypothesis assumed when DiD estimation is considered.

The ArCo method differs from Gobillon e Magnac (2016) in many ways.

First, as mentioned before, we assume the DGP to be unknown and we do not

need to estimate the common factors. Consistent estimation of factors needs

that both the time-series and the cross-section dimensions diverge to infinity

and can be severely biased in small samples. The ArCo methodology requires

only the time-series dimension to diverge. Furthermore, we do not require the

regressors to be strictly exogenous which is an unrealistic assumption in most

applications with aggregate (time-series) data. We also allow for heterogeneous

nonlinear trends but there is no need to estimate them (either explicitly or via

common factors). Finally, as in the DiD case, we do not either require the

number of treated units to grow or to have a reliable control group (after

conditioning on covariates).

Although, both the ArCo and the SC methods construct a counterfac-

tual as a function of observed variables from a pool of peers, the two ap-

proaches have important differences. First, the SC method relies on a con-

vex combination of peers to construct the counterfactual which, as pointed

out by Ferman e Pinto (2016), biases the estimator. This is clearly evidenced

in our simulation experiment. The ArCo solution is a general, possibly non-

linear, function. Even in the case of linearity, the method does not impose

any restriction on the parameters. For example, the restriction that weights

in the SC methods are all positive seems a bit too strong. Furthermore,

the weights in the SC method are usually estimated using time averages of

the observed variables for each peer. Therefore, all the time-series dynam-

ics is removed and the weights are determined in a pure cross-sectional set-

ting. In some applications of the SC method, the number of observations to

estimate the weights is much lower than the number of parameters to be

determined. For example, in Abadie e Gardeazabal (2003) the authors have

13 observations to estimate 16 parameters3. A similar issue also appears in

Abadie et al. (2010), Abadie et al. (2014). In addition, the SC method was de-

signed to evaluate the effects of the intervention on a single variable. In order

to evaluate the effects in a vector of variables, the method has to be applied

several times. The ArCo methodology can be directly applied to a vector of

variables of interest. In addition, there is no formal inferential procedure for

hypothesis testing in the SC method, whereas in the ArCo methodology, a

simple, uniformly valid and standard test can be applied. Finally, as discussed

3In these cases the estimation is only possible due to the imposed restrictions, which can
be seen as a sort of shrinkage.
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in Ferman et al. (2016), the SC method does not provide any guidance on how

to select the variables which determine the optimal weights.

With respect to the methodology by Pesaran e Smith (2012), the major

difference is that the authors construct the counterfactual based on variables

that belong to the treated unit and they do not rely on a pool of untreated

peers. Their key assumption is that a subset of variables of the treated unit is

invariant to the intervention. Although, in some specific cases this could be a

reasonable hypothesis, in a general framework this is clearly restrictive.

Recently, Angrist et al. (2013) propose a semiparametric method to eval-

uate the effects of monetary policy based on the so called policy propensity

score. Similar to Pesaran e Smith (2012), the authors only rely on information

on the treated unit and no donor pool is available. As before, this is a ma-

jor difference from our approach. Furthermore, their methodology seems to be

particularly appealing to monetary economics but hard to be applied in other

settings without major modifications.

It is important to compare the ArCo methodology with the work of

Belloni et al. (2014) and Belloni et al. (2016). Both papers consider the estim-

ation of intervention effects in large dimensions. First, Belloni et al. (2014)

consider a pure cross-sectional setting where the intervention is correlated to a

large set of regressors and the approach is to consider an instrumental variable

estimator to recover the intervention effect, as there is no control group avail-

able. In the ArCo framework, on the other hand, the intervention is assumed

to be exogenous with respect to the peers. Notwithstanding, the intervention

may not be (and probably is not) independent of variables belonging to the

treated unit. This key assumption enables us to construct honest confidence

bands by using the LASSO in the first step to estimate the conditional model.

Belloni et al. (2016) proposed a general and flexible extension of the DiD ap-

proach for program evaluation in high dimensions. They provide efficient es-

timators and honest confidence bands for a large number of treatment effects.

However, they do not consider the case where there is no control group avail-

able. Finally, it is not clear how to apply their methods to aggregate (macro)

data.

1.1.3
Potential Applications

There has been a large body of studies that require the estimation of

intervention effects with no group of controls.

Measuring the impacts of regional policies is a potential application.

For example, Hsiao et al. (2012) measure the impact of economic and polit-
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ical integration of Hong Kong with mainland China on Hong Kong’s economy

whereas Abadie et al. (2014) estimate spillovers of the 1990 German reunific-

ation in West Germany. Pesaran et al. (2007) used the Global Vector Autore-

gressive (GVAR) framework of Pesaran et al. (2004) and Dees et al. (2007) to

study the effects of the launching of the Euro. Gobillon e Magnac (2016) con-

sidered the impact on unemployment of a new police implemented in France

in the 1990s. The effects of trade agreements and liberalization have been dis-

cussed in Billmeier e Nannicini (2013), and Jordan et al. (2014). The rise of a

new government or new political regime are, as well, a relevant “intervention”

to be studied. For example, Grier e Maynard (2013) considered the economic

impacts of the Chavez era.

Other potential applications are new regulation on housing prices as

in Bai et al. (2014) and Du e Zhang (2015), new labor laws as considered in

Du et al. (2013), and macroeconomic effects of economic stimulus programs

Ouyang e Peng (2015). The effects of different monetary policies have been

discussed in Pesaran e Smith (2012) and Angrist et al. (2013). Estimating the

economic consequences of natural disasters, as in Belasen e Polachek (2008),

Cavallo et al. (2013), Fujiki e Hsiao (2015), and Caruso e Miller (2015), is also

a promising area of research.

The effects of market regulation or the introduction of new financial

instruments on the risk and returns of stock markets has been considered

in Chen et al. (2013) and Xie e Mo (2013). Testing the intervention effects in

multiple moments of the data can be of special interest in Finance, where

the goal could be the effects of different corporate governance policies in the

returns and risk of the firms Johnson et al. (2000).

This chapter is organized as follows. In Section 1.2 we present the

ArCo method and discuss the conditional model used in the first step of the

methodology. In Section 1.3 we derive the asymptotic properties of the ArCo

estimator and state our main result. Sub-section 1.3.3 deals with the test for

the null hypothesis of no causal effect. Extensions for unknown intervention

time, multiple interventions and possible contamination effects are described in

Section 1.4. In Section 1.5 we discuss some potential sources of bias in the ArCo

method. A detailed Monte Carlo study is conducted in Section 1.6. Section 1.7

deals with the empirical exercise. Finally, Section 1.8 concludes. Tables, figures

and all proofs are relegated to the Appendix.

1.2
The Artificial Counterfactual Estimator
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1.2.1
Setup

Suppose we have n units (countries, states, municipalities, firms, etc)

indexed by i = 1, . . . , n. For each unit and for every time period t = 1, . . . , T ,

we observe a realization of zit = (z1
it, . . . , z

qi
it )
′ ∈ Rqi , qi ≥ 1. Furthermore,

assume that an intervention took place in unit i = 1, and only in unit 1, at

time T0 = bλ0T c, where λ0 ∈ (0, 1).

Let Dt be a binary variable flagging the periods when the intervention

was in place. We can express the observable variables of unit 1 as

z1t = Dtz(1)
1t + (1−Dt)z(0)

1t ,

where Dt = I(t ≥ T0), I(A) is an indicator function that equals 1 if the

event A is true, and z
(1)
1t denotes the outcome when the unit 1 is exposed to

the intervention and z
(0)
1t is the potential outcome of unit 1 when there is no

intervention.

We are ultimately concerned with testing hypothesis on the effects of the

intervention on unit 1 for t ≥ T0. In particular, we consider interventions of

the form

y
(1)
t =

y
(0)
t , t = 1, . . . , T0 − 1,

δt + y
(0)
t , t = T0 . . . , T,

(1-1)

where y
(j)
t ≡ h(z

(j)
1t ) for j ∈ {0, 1}, h : Rq1 7→ Rq is a measurable function of

z1t that will be defined latter, and {δt}Tt=T0 is a deterministic sequence. Due

to the flexibility of the mapping h(·), interventions modeled as (1-1) are quite

general. It includes, for instance, interventions affecting the mean, variance,

covariances or any combination of moments of z1t. The null hypothesis of

interest is

H0 : ∆T =
1

T − T0 + 1

T∑
t=T0

δt = 0. (1-2)

The quantity ∆T in (3-1) is similar to the traditional average treatment

effect on the treated (ATET) vastly discussed in the literature4. Furthermore,

the null hypothesis (3-1) encompasses the case where the intervention is a

sequence {δt}Tt=T0 under the alternative, which obviously is a special case of

uniform treatments by setting δt = δ,∀t ≥ T0.

The particular choice of the transformation h(·) will depend on which

moments of the data the econometrician is interested in testing for effects of

the intervention. In other words, the goal will be to test for a break in a set of

unconditional moments of the data and check if this break is solely due to the

4However, as pointed out in the Introduction, the average is taken over time periods and
not over cross-section elements
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intervention or has other (global) causes (confounding effects). Typical choices

for h(·) are presented as examples below.

Example 1.1 For the univariate case (q1 = 1), we can use the identity

function h(a) = a for testing changes in the mean. In fact, provided that the

p-th moment of the data is finite, we can use h(a) = ap to test any change in

the p-th unconditional moment.

Example 1.2 In the multivariate case (q1 > 1) we can consider

h(z1t) =

{
z1t for testing changes in the mean,

vech (z1t, z
′
1t) for testing changes in the second moments.

Example 1.3 We can also conduct joint tests by combining the different

choices for h. For example, for testing simultaneously for a change in the

mean and variance we can set h(a) = (a, a2)′. In the multivariate case we can

set yt = diag (z1t, z
′
1t).

Set yt = Dty(1)
t +(1−Dt)y(0)

yt . The exact dimension of yt depends on the

chosen h(·). However, regardless of the choice of h(·), we will consider, without

loss of generality, that yt ∈ Y ⊂ Rq, q > 0, and that we have a sample {yt}Tt=1,

being the first T0 − 1 observations before the intervention and the T − T0 + 1

remaining observations after the intervention.

Clearly we do not observe y
(0)
t after T0−1. We call y

(0)
t the counterfactual,

i.e., what would yt have been like had there been no intervention (potential

outcome). In order to construct the counterfactual, let z0t = (z′2t, . . . ,z
′
nt)
′ and

Z0t =
(
z′0t, . . . ,z

′
0t−p
)′

be the collection of all the untreated units’ observables

up to an arbitrary lag p ≥ 0. The exact dimension of Z0t depends upon the

number of peers (n − 1), the number of variables per peer, qi, i = 2, . . . , n,

and the choice of p. However, without loss of generality, we assume that

Z0t ∈ Z0 ⊆ Rd, d > 0.

Consider the following model

y
(0)
t =Mt + νt, t = 1, . . . , T, (1-3)

whereMt ≡M(Z0t),M : Z0 → Y is a measurable mapping, and E(νt) = 0.5

Set T1 ≡ T0−1 and T2 ≡ T −T0 +1 as the number of observations before

and after the intervention, respectively. One can estimate the model above

using the first T1 observations since, in that case, y
(0)
t = yt. Then, the estimate

M̂t,T1 ≡ M̂T1(Z0t) can be used to construct the estimated counterfactual as:

5Which can be ensured by either including a constant in the model M or by centering
the variables in a linear specification.
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ŷ
(0)
t =

y
(0)
t , t = 1, . . . , T0 − 1,

M̂t,T1 , t = T0, . . . , T.
(1-4)

Consequently, we can define:

Definition 1.1 The Artificial Counterfactual (ArCo) estimator is

∆̂T =
1

T − T0 + 1

T∑
t=T0

δ̂t, (1-5)

where δ̂t ≡ yt − ŷ
(0)
t , for t = T0, . . . , T .

Therefore, the ArCo is a two-stage estimator where in the first stage we

choose and estimate the modelM using the pre-intervention sample and in the

second we compute ∆̂T defined by (1-5). At this point the following remarks

are in order.

Remark 1.1 The ArCo estimator in (1-5) is defined under the assumption

that λ0 (consequently T0) is known. However, in some cases the exact time of

the intervention might be unknown due to, for example, anticipation effects.

On the other hand, the effects of a policy change may take some time to be

noticed. Although the main results are derived under the assumption of known

λ0, we later show they are still valid when λ0 is unknown.

1.2.2
A Key Assumption and Motivations

In order to recover the effects of the intervention by the ArCo we need

the following key assumption.

Assumption 1.1 z0t |= Ds, for all t, s.

Roughly speaking the assumption above is sufficient for the peers to be

unaffected by intervention on the unit of interest. Independence is actually

stronger than necessary. Technically, what is necessary for the results is

the mean independence of the chosen model as in E(Mt|Dt) = E(Mt).

Nevertheless, the latter is implied by Assumption 1.1 regardless of the choice

ofM. It is worth mentioning that since we allow E(z1t|Dt) 6= E(z1t) we might

have some sort of selection on observables and/or non-observables belonging

to the treated unit. Of course, selection on features of the untreated units is

ruled out by Assumption 1.1.

Even though we do not impose any specific DGP, the link between the

treated unit and its peers can be easily motivated by a very simple, but general,
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common factor model:

z
(0)
it = µi + Ψ∞,i(L)εit, i = 1, . . . , n; t ≥ 1 (1-6)

εit = Λif t + ηit, (1-7)

where f t ∈ Rf is a vector of common unobserved factors such that

supt E(f tf
′
t) < ∞ and Λi, is a (qi × f) matrix of factor loadings. Therefore,

we allow for heterogeneous determinist trends of the form ζ(t/T ), where ζ is a

integrable function on [0, 1] as in Bai (2009). {ηit},i = 1, . . . , n, t = 1, . . . , T ,

is a sequence of uncorrelated zero mean random variables. Finally, L is the lag

operator and the polynomial matrix Ψ∞,i(L) = (Iqi + ψ1iL + ψ2iL
2 + · · · ) is

such that
∑∞

j=0ψ
2
ji <∞ for all i = 1, . . . , n. I is the identity matrix. Usually,

we have f < n. Thus, as long as we have a “truly common” factor in the sense

of having some rows of Λi non zero, we expect correlation among the units.

The DGP originated by (2-6) is fairly general and nests several mod-

els as by the multivariate Wold decomposition and under mild conditions,

any second-order stationary vector process can be written as an infinite order

vector moving average process; see Niemi (1979). Furthermore, under a mod-

ern macroeconomics perspective, reduced-form for Dynamic Stochastic Gen-

eral Equilibrium (DSGE) models are written as vector autoregressive moving

average (VARMA) processes, which, in turn, are nested in the general spe-

cification in (2-6) Fernández-Villaverde et al. (2007), An e Schorfheide (2007).

Gobillon e Magnac (2016) is a special case of the general model described

above.

In case of Gaussian errors, the above model will imply that E[y
(0)
t |Z0t] =

ΠZ0t. Otherwise, we can choose modelM to be a linear approximation of the

conditional expectation. The strategy is to define xt as a set of transformations

of Z0t, such as, for instance, polynomials or splines, and write y
(0)
t as a linear

function of xt.

There are at least two major advantages of applying the ArCo estimator

instead of just computing a simple difference in the mean of yt before and

after the intervention as a estimator for the intervention effect. The first is

an efficiency argument. Note that the “before and after” estimator defined

as ∆̂
BA

T ≡ 1
T−T0+1

T∑
t=T0

yt − 1
T0−1

T0−1∑
t=1

yt is a particular case of our estimator

when you have “bad peers”, in the sense they are uncorrelated with the unit of

interest. In this case,M(·) = constant and ∆̂T = ∆̂
BA

T . In fact, the additional

information provided by the peers helps to reduce the variance of the ArCo

estimator.

The second, and more important, argument in favor of the ArCo method
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is related to its capability of isolate the intervention of interest from aggregate

shocks. When attempting to measure the effect of a particular intervention

we are usually in a scenario that other aggregate shocks took place at the

same time. The ability to disentangle these two effects is vital if one intends to

provide a meaningful estimation of the intervention effect. A simple thought

experiment illustrates the point: suppose all units at time T0 are hit by a

(aggregate) shock that changes all the means by the same amount. If we apply

the BA estimator we will eventually encounter this mean break and would

erroneously attribute it to the intervention of interest6. On the other hand,

if we use the ArCo approach, since all the units have changed equally, the

estimated effect will be insignificant.

Finally, it is important to stress that the validity of the ArCo procedure

does not rely on the traditional parallel trend assumption such as the one

usually considered in DiD techniques nor does it assume the trend to be the

same for all the units at a given time, as for instance in the SC framework.

The necessary assumption for our methodology to work properly is some sort of

combination of peers (modelM) that can generate an artificial counterfactual

whose difference from the real counterfactual is well behaved (in the sense

of admitting a Law of Large Numbers and Central Limit theorems). This is

usually possible with deterministic trends that do not dominate the stationary

stochastic component asymptotically as well as when there is some common

structure among units.

1.3
Asymptotic Properties and Inference

1.3.1
Choice of the Pre-intervention Model and a General Result

The first stage of the ArCo method requires the choice of the modelM.

One should aim for a model that captures most of the information from the

available peers. Once the choice is made, the model must be estimated using

the pre-intervention sample.

It is important to recognise that we do not assume that the model choice

is actually the true model. We can consider that zit is generated by a DGP

such as (2-6) irrespective of the choice of M. Ideally, in the mean square

error sense, we would like to set M as the conditional expectation model

m(a) = E(yt|Z0t = a).

6Unless the intervention of interest is the aggregate shock but in that case we have invalid
peers since they were treated.
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Motivated by the fact the dimension of Z0t can grow quite fast in any

simple application (by either including more peers, more covariates, or by

simply considering more lags) we propose a fully parametric specification in

order to approximate m(·) as opposed to try to estimate it non-parametrically.

In particular, we approximate it by a linear model (q linear models to be

precise) of some transformation of Z0t. Consequently, the model is linear

in xt = hx(Z0t), where in xt we include a constant term. In particular, hx

could be a dictionary of functions such as polynomials, splines, interactions,

dummies or any another family of elementary transformations the Z0t, in the

spirit of sieve estimation Chen (2007). The same approach has been adopted

in Belloni et al. (2014) and Belloni et al. (2016).

Hence,Mt = diag (θ′0,1, . . . ,θ
′
0,q)xt, where both xt and θ0,j, j = 1, . . . , q,

are d-dimensional vectors for j = 1, . . . , q. We allow d to be a function of T .

Hence, xt and θ0,j depend on T but the subscript T will be omitted in what

follows. Set rt ≡mt−Mt as the approximation error and εt ≡ yt−mt as the

projection error. We can write the model as in (2-3), with νt = rt + εt. The

model is then comprised of q linear regressions:

y
(0)
jt = x′tθ0,j + νjt, j = 1, . . . , q, (1-8)

where θ0,j are the best (in the MSE sense) linear projection parameters which

are properly identified as long as we rule out multicollinearity among xt

(Assumption 1.2).

We consider the sample (in the absence of intervention) as a single

realization of the random process {z(0)
t }Tt=1 defined on a common measurable

space (Ω,F) with a probability law (joint distribution) PT ∈ PT , where PT
is (for now) an arbitrary class of probability laws. The subscript T makes it

explicit the dependence of the joint distribution on the sample size T , but we

omit it in what follows. We write PP and EP to denote the probability and

expectation with respect to the probability law P ∈ P , respectively.

We establish the asymptotic properties of the ArCo estimator by con-

sidering the whole sample increasing, while the proportion between the pre-

intervention to the post-intervention sample size is constant. The limits of the

summations are from 1 to T whenever left unspecified. Recall that T1 ≡ T0−1

and T2 ≡ T − T0 + 1 are the number of pre and post intervention periods,

respectively and T0 = bλ0T c. Hence, for fixed λ0 ∈ (0, 1) we have T0 ≡ T0(T ).

Consequently, T1 ≡ T1(T ) and T2 ≡ T2(T ). All the asymptotics are taken as

T → ∞. We denote convergence in probability and in distribution by “
p−→”

and “
d−→”, respectively.

First, we state a general result under very high level assumptions which
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all the other subsequent results rely on. Let M̂t,T1 = (x′tθ̂1,T1 , . . . ,xt
′θ̂q,T1)

′,

for t ≥ T0, where θ̂j,T1 , j = 1, . . . , q, is estimated with only the first T1 pre-

intervention observations, and define ηt,T1 ≡ M̂t,T1 −Mt, t ≥ T0.

Proposition 1.2 Under Assumption 1.1, consider further that, uniformly in

P ∈ P (an arbitrary class of probability laws):

(a)
√
T
(

1
T2

∑
t≥T0 ηt,T1 −

1
T1

∑
t≤T1 νt

)
p−→ 0

(b) 1√
T1

Γ
−1/2
T1

∑
t≤T1 νt

d−→ N (0, Iq), where ΓT1 = EP
[

1
T1

(
∑

t≤T1 νt)(
∑

t≤T1 ν
′
t)
]
.

(c) 1√
T2

Γ
−1/2
T2

∑
t≥T0 νt

d−→ N (0, Iq), where ΓT2 = EP
[

1
T2

(
∑

t≥T0 νt)(
∑

t≥T0 ν
′
t)
]
.

Then, uniformly in P ∈ P,
√
TΩ

−1/2
T

(
∆̂T −∆T

)
d−→ N (0, Iq), where N (·, ·)

is the multivariate normal distribution and ΩT ≡
ΓT1
T1/T

+
ΓT2
T2/T

.

Condition (a) above sets a limit for the estimation error to be asymptotic

negligible, ensuring the
√
T rate of convergence of the estimator. Under

condition (a) we can write:

∆̂T −∆T =
1

T2

∑
t≥T0

νt −
1

T1

∑
t≤T1

νt + op(T
−1/2).

Finally, conditions (b) and (c) ensure the asymptotic normality of the

terms above after appropriate normalization. From the asymptotic variance ΩT

it becomes evident that an intervention at the middle of the sample, λ0 = 0.5,

is desirable when limT→∞ ΓT1 = limT→∞ ΓT2 ≡ Γ, which happens for instance

when {νt} is a stationary process. In this case, limT→∞ΩT = Γ/λ0(1− λ0).

Recall that if M = α0, the estimator is equivalent to the BA estimator.

Therefore, one advantage of the ArCo is to provide a systematic way to

extract as most information as possible from the peers in order to reduce the

asymptotic variance of the prediction error. We can make more explicit the

peers’ contribution in reducing the asymptotic variance of the ArCo estimator

by the following matrix inequality (in term of positive definiteness)

0 ≤ lim
T→∞

ΩT ≡ Ω ≤ lim
T→∞

TV

(
1
T2

∑
t≥T0

y
(0)
t − 1

T1

∑
t≤T1

y
(0)
t

)
≡ Ω̃,

where V is the variance operator defined for any random vector v as V(v) =

E(vv′)− E(v)E(v′).

The upper bound Ω̃ is the long run variance of the variables of the

unit of interest (unit 1) weighted by the intervention fraction time λ0. As a
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consequence, our estimator variance for any given λ0, lies in between those two

polar cases. One polar case is when there is a perfect artificial counterfactual

and the other one is when the peers contribute with no information. Thus,

the peer’s contribution in reducing the ArCo estimator asymptotic variance

could be represented by a R2-type statistic measuring the “ratio” between the

explained long-run variance Ω to the total long-run variance Ω̃.

1.3.2
Assumptions and Asymptotic Theory in High-Dimensions

The dimension d of xt can be potentially very large, even larger than the

sample size T , whenever the number of peers and/or the number of variables

per peer is large. In these cases it is standard to allow d, and consequently

θj, j = 1 . . . , q, to be function of the sample size, such that d ≡ dT and

θj = θj,T . In order to make estimation feasible, regularization (shrinkage) is

usually adopted, which is justified by some sparsity assumption on the vector

θ0,j, j = 1 . . . , q, in the sense that only a small portion of its entries are different

from zero.

We propose the estimation of (1-8), equation by equation, by the LASSO

approach and we allow that dimension d > T to grow faster than the sample

size7. Also, since each equation in the model is the same, we drop the subscript

j from now on to focus on a generic equation. Therefore, we estimate θ0 via

θ̂ = arg min

{
1

T0 − 1

∑
t<T0

(yt − x′tθ)2 + ς‖θ‖1

}
, (1-9)

where ς > 0 is a penalty term and ‖ · ‖1 denotes the `1 norm.

Let θ[A] denote the vector of parameters indexed by A and S0 the index

set of the non-zero (relevant) parameters S0 = {i : θ0,i 6= 0} with cardinality

s0. We consider the following set of assumptions.8

Assumption 1.2 (DESIGN) Let Σ ≡ 1
T1

∑T1
t=1 E(xtx

′
t). There exists a con-

stant ψ0 > 0 such that

‖θ[S0]‖2
1 ≤

θΣθs0

ψ2
0

,

for all ‖θ[Sc0]‖1 ≤ 3‖θ[S0]‖1.

Assumption 1.3 (HETEROGENEITY AND DEPENDENCY) Let wt ≡
(νt,x

′
t)
′, then:

7Some efficiency gain could be potentially obtain by a joint estimation, for instance, a
SUR (seemly unrelated regression) setting if the regressors of each equation are the not the
same. We do not pursue this route here.

8Recall that since we drop the equation subscript j, the assumptions below must
understood for each equation j = 1, . . . , q separately.
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(a) {wt} is strong mixing with α(m) = exp(−cm) for some c ≥ c > 0

(b) E|wit|2γ+δ ≤ cγ for some γ > 2 and δ > 0 for all 1 ≤ i ≤ d, 1 ≤ t ≤ T

and T ≥ 1,

(c) E(ν2
t ) ≥ ε > 0, for all 1 ≤ t ≤ T and T ≥ 1.

Assumption 1.4 (REGULARITY)

(a) ς = O
(
d1/γ√
T

)
(b) s0

d2/γ√
T

= o(1)

Assumption 1.2 is known as the compatibility condition, which is extens-

ively discussed in Bülhmann e van der Geer (2011). It is quite similar to the

restriction of the smallest eigenvalue of Σ, when one replace ‖θ[S0]‖2
1 by its

upper bound s0‖θ[S0]‖2
2. Notice that we make no compatibility assumption

regarding the sample counterpart Σ̂ ≡ 1
T1

∑T1
t=1 xtx

′
t.

Assumption 1.3 controls for the heterogeneity and the dependence struc-

ture of the process that generates the sample. In particular Assumption 1.3(a)

requires {wt} to be an α-mixing process with exponential decay. It could be

replaced by more flexible forms of dependence such as near epoch dependence

or Lp-approximability on an α-mixing process as long as we control for the

approximation error term. Assumption 1.3(b) bounds uniformly some higher

moment which ensures an appropriate Law of Large Numbers, and Assumption

1.3(c) is sufficient for the Central Limit Theorem. The latter bounds the vari-

ance of the regression error away from zero, which is plausible if we consider

that the fit will never be perfect regardless of how much relevant variables we

have in (1-8).

Assumption 3.4(a) and (b) are regularity conditions on the growth rate

of the penalty parameter and the number of (relevant/total) parameters,

respectively. They are smaller than the analogous results found in the literature

for the case of fix design and normality of the error term.9

We can now define P as the class of probability law that satisfies

Assumptions 1.2,1.3 and 3.4(b). However, for convenience we explicitly state

all those assumptions underlying the results that follows. Here is our main

result.

9Under those condition, 3.4(a) and (b) become ς = O

(√
log d
T

)
and s0

log d√
T

= o(1),

respectively.
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Teorema 1.3 (MAIN) LetM be the model defined by (1-8), whose parameters

are estimated by (1-9), then under Assumptions 1.1-3.4:

sup
P∈P

sup
a∈Rq

∣∣∣PP [√TΩ
−1/2
T (∆̂T −∆T ) ≤ a

]
− Φ(a)

∣∣∣→ 0, as T →∞,

where ΩT is defined in Proposition 1.2,the event {a ≤ b} ≡ {ai ≤ bi,∀i} and

Φ(·) is the cumulative distribution function of a zero-mean identity covariance

normal random vector.

The results above are uniform with respect to the class of probability

laws P , which we believe to be large enough to be of some interest. Notice

that we do not require any strong separation of the parameters away from

zero, which is usually accomplished in the literature by imposing a θmin which

is uniformly bounded away from zero. The uniform convergence above is

possible, in our case, as consequence of Assumption 1.1, which translates into

the treatment Dt being uncorrelated with the regressors xt. In other words,

the potential non-uniformity issues regarding the estimation of the parameters

of θ0 do not contaminate the estimation of ∆T , even if the coefficients of the

conditional model are of order O(T−1/2) as discussed in Leeb and Pötscher

(2005,2008,2009).

In a different set-up, Belloni et al. (2014) consider the case where the

treatment is correlated with the set of regressors. Consequently, they propose

the estimation via a moment condition with the so called orthogonality property

in order to achieve uniform convergence. Further, Belloni et al. (2016) gener-

alize this idea to conduct uniform inference in a broad class of Z-estimators.

In our framework the orthogonality property is a consequence of Assumption

1.1.

1.3.3
Hypothesis Testing under Asymptotic Results

Given the asymptotic normality of ∆̂T , it is straightforward to conduct

hypothesis testing. It is important, however, to remember the dependence of

the results upon knowing the exact point of a possible break and the assurance

that the peers are in fact untreated. Fortunately, both conditions can be tested,

which is the topic of the next sections. For now will we consider that unit 1

is the only one potentially treated and the moment of the intervention, T0, is

known for certain.

First we need a consistent estimator for the variance ΩT . More precisely,

we need estimators for both ΓT1 and ΓT2 . If we expect to have uncorrelated

residuals and given the consistency of θ̂, we can simply estimate it by the
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average of the sum of squares of residuals in the pre-intervention model. A

popular choice for serially correlated residuals is presented in Andrews (1991)

and Newey e West (1987). Both have a similar structure given by the weighted

autocovariance estimator as

Γ̂Ti = Γ̂0i +
M∑
k=1

φ(k)
(
Γ̂ki + Γ̂

′
ki

)
, i = {1, 2}, (1-10)

where Γ̂k1 ≡ 1
T1−k

∑T1−k
t=1 ν̂tν̂

′
t+k, Γ̂k2 ≡ 1

T2−k
∑T−k

t=T0
ν̂tν̂

′
t+k, k = 0, . . . ,M , and

ν̂t = yt − M̂T0(xt)− ∆̂T I(t ≥ T0).

In practice, we still need to specify the maximum number of

lags/bandwidth to consider and the weight function. Usually, the later is

a kernel function centered at zero. A common choice is a Bartlett kernel

where the weights are given simply by φ(k) = 1 − k
M+1

. Theorem 2 of

Newey e West (1987) and Proposition 1 of Andrews (1991) give general con-

ditions under which the estimator is consistent. Moreover, Andrews (1991)

discusses what kind of kernels are allowed and present a sizeable list of options.

It also describes a data-driven procedure for bandwidth selection.

Therefore, if we replace ΩT by Ω̂T ≡
Γ̂T1
T1/T

+
Γ̂T2
T2/T

, we can construct honest

(uniform) asymptotic confidence intervals and hypothesis testing as follows:

Proposition 1.4 (Uniform Confidence Interval) Let Ω̂T be a consistent es-

timator for ΩT uniformly in P ∈ P. Under the same conditions of Theorem

1.3, for any given significance level α:

Iα ≡
[
∆̂j,T ±

ω̂j√
T

Φ−1(1− α/2)

]

for each j = 1, . . . , q, where ω̂j =

√
[Ω̂]jj and Φ−1(·) is the quantile function of

a standard normal distribution. The confidence interval Iα is uniformly valid

(honest) in the sense that for a given ε > 0, there exists a Tε such that for all

T > Tε:

sup
P∈P
|PP (∆j,T ∈ Iα)− (1− α)| < ε.

Proposition 1.5 (Uniform Hypothesis Test) Let Ω̂T be a consistent estimator

for ΩT uniformly in P ∈ P. Under the same conditions of Theorem 1.3, for a

given ε > 0, there exists a Tε such that for all T > Tε:

sup
P∈P
|PP (WT ≤ cα)− (1− α)| < ε,
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where WT ≡ T∆̂
′
T Ω̂
−1

T ∆̂T , P(χ2
q ≤ cα) = 1 − α and χ2

q is a chi-square

distributed random variable with q degrees of freedom.

1.4
Extensions

We consider extensions of the framework developed previously. In Section

1.4.1 we deal with the problem of an unknown intervention time and propose a

procedure to account for that and develop a consistent estimator for the most

likely intervention time. The case of multiple intervention points is treated in

Section 1.4.2 and, finally, Section 1.4.3 investigates the presence of treated unit

among the controls, which is particularly useful for testing for spillover effects.

1.4.1
Unknown Intervention Timing

There are reasons why the intervention timing might not be known for

certainty. It could be due to anticipation effects related to rational expectations

regarding an announced change in future policy. Or, on the other hand, a

simple delay in the response of the variable of interest. Regardless of the cause

of uncertainty about the timing of the intervention, we propose a way to apply

the methodology even when T0 is unknown.

We start by reinterpreting our estimator as a function of λ (or Tλ ≡
bλT c), where λ ∈ Λ, a compact subset of (0, 1):

∆̂T (λ) =
1

T − Tλ + 1

∑
t≥Tλ

δ̂t,T (λ), ∀λ ∈ Λ (1-11)

where δ̂t,T (λ) = yt−M̂T (λ)(xt), for t = Tλ, . . . , T , and M̂T (λ) is the estimate

of the model M based on the first Tλ − 1 observations. Also, consider a λ-

dependent version of our average treatment effect, given by

∆T (λ) =
1

T − Tλ + 1

T∑
t=Tλ

δt.

For fixed λ, provided that the condition of Proposition 1.2 are satisfied

for Tλ (as opposed to just T0 ≡ Tλ0), we have the convergence in distribution to

a Gaussian. Hence, it is sufficient to consider the following extra assumption.

Assumption 1.5 {(y′t,x′t)′} is a strictly stationary process.

Assumption 1.5 above is clearly stronger than necessary. For instance, it

would be enough to have {νt} as a weakly stationary process. However, in order
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to avoid assumptions that are model dependent (via the choice ofM) we state

Assumption 1.5 as it is. It follows for instance if the process that generates the

observable data in the absence of the intervention {z(0)
t } is strictly stationary

and both transformations h(·) and hx(·) are measurable.

In order to analize the properties of the estimator (1-11) it is convenient

to define the stochastic process {ST} indexed by λ ∈ Λ, such that for each

λ ∈ Λ, we have ST (λ) ≡
√
TΓ
−1/2
T [∆T (λ)−∆T (λ)]. Note that unlike the

notation used in Proposition 1.2, we do not include the factors T1/T and

T2/T inside the asymptotic variance term also since all the results will be

under stationarity (Assumption 1.5) we replace ΓT1 and ΓT2 by its asymptotic

equivalent ΓT , which is independent of λ ∈ Λ.

Therefore, the convergence in distribution of ST (λ) to a Gaussian for

any finite dimension λ = (λ1, . . . , λk)
′ follows directly from Theorem 1.3

combined with Assumption 1.5 and the Cramèr-Wold device. Furthermore the

next theorem shows that ST converges uniformly in λ ∈ Λ.

Teorema 1.6 Under the conditions of Proposition 1.2 and Assumption 1.5:

ST (λ) ≡
√
TΓ
−1/2
T [∆T (λ)−∆T (λ)]

d−→ S ∼ N (0,ΣΛ),

where ΣΛ(λ, λ′) = Iq
(λ∨λ′)(1−λ∧λ′) , ∀(λ, λ′) ∈ Λ2. For p ∈ [1,∞], ‖ST‖p

d−→
‖S‖p, where ‖f‖p =

(∫
|f(x)|pdx

)1/p
if 1 ≤ p ≤ ∞ and ‖f‖∞ = supx∈X |f(x)|.

The second part of Theorem 1.6 gives us a direct approach to conduct

inference in the case of unknown intervention time. We can replace ΓT by a

consistent estimator Γ̂T (as for instance the one discussed in in Section 1.3.3)

and conduct inference on ‖ŜT‖p under a slightly stronger version of H0, (which

clearly implies H0):

Hλ
0 : δt = 0, ∀t ≥ 1.

In practice, as it is the case for the structural breaks tests, we trim the

sample to avoid finite sample bias close to the boundaries and select Λ = [λ, λ̄].

Table C.8 presents the critical values for common choices of p = {1, 2,∞} and

trimming values.

The procedure above suggests a natural estimator for the unknown

intervention time, which might be useful in situations such as the one discussed

in Section 1.4.2 where treatment occurs at multiple unknown intervention

times.

We assume a constant intervention such as
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Assumption 1.6 δt = ∆, for t = T0, . . . , T , where ∆ ∈ Rq is non-random.

Remark 1.2 Recall that Assumption 1.6 is not overly restrictive due to the

flexibility provided by the transformation h(.). The mean of yt might as well

represent the variance, covariances or any other moment of interest of the

original z1t variable.

Remark 1.3 Assumption 1.6 implies an instantaneous treatment effect (step

function) at t = T0. In most cases, however, we might encounter a continuous

intervention effect, possibly reaching a distinguishable new steady state value.

We could accommodate these cases by trimming this transitory part of the

sample, provided we have enough data, and then apply the methodology in the

trimmed sample where Assumption 1.6 holds.

Proposition 1.7 Under the conditions of Proposition 1.2 and Assumptions

1.5 and 1.6, ∆̂T (λ)
p−→ φ(λ)∆, where

φ(λ) =

{
1−λ0
1−λ if λ ≤ λ0,
λ0
λ

if λ > λ0.

Since both 1−λ0
1−λ and λ0

λ
are bounded between 0 and 1, we have that

‖plim ∆̂T (λ)‖p ≤ ‖∆‖p for all λ ∈ Λ, where ‖ · ‖p denotes the `p norm. Under

the maintained hypothesis that ∆ 6= 0, we can establish the identification

result that plim ∆̂T (λ) = ∆ if and only if λ = λ0. The result above naturally

suggests an estimator for λ0:

λ̂0,p = arg max
λ∈Λ

JT,p(λ) and JT,p(λ) ≡ ‖∆̂T (λ)‖p. (1-12)

Teorema 1.8 Let p ∈ [1,∞]. Under the conditions of Proposition 1.2 and

Assumptions 1.5 and 1.6, for ∆ 6= 0, λ̂0,p = λ0 + op(1). If ∆ = 0, λ̂0,p

converges in probability to any λ ∈ Λ with equal probability.
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1.4.2
Multiple Intervention Points

We can readily extend our analysis to the case of more than one

intervention taking place in the unit of interest as long as, in each of them,

Assumption 1.6 is valid. Suppose we have S ordered known intervention points

corresponding to the fractions of the sample given by λ0 ≡ 0 < λ1 < · · · <
λS < 1 ≡ λS+1.

For each of the intervention points s = {1, . . . , S} we can define the time

of each intervention by Ts ≡ bλsT c and construct our estimator in the same

way we did for the single intervention case. To simplify notation we define

the set of all periods after intervention s but before the intervention s + 1 by

τs = {Ts, Ts + 1, . . . , Ts+1−1} and set #{A} the number of elements in the set

A. Then, we have S estimators given by:

∆̂
s

T ≡ ∆̂T (λs, θ̂s) =
1

#{τs}
∑
t∈τs

[
yt −Mp(xt, θ̂s,T )

]
, s = 1, . . . , S,

where once again θ̂s,T is the LASSO estimator using the sample indexed by

t ∈ τs−1. Note that we could allow the linear model to depend on s, i.e., differ

from one intervention point to another. However, a much more parsimonious

estimation could be obtained by choosing the same model for all intervention

periods.

Under the same set of assumptions for the single intervention case plus

Assumption 1.6, we have the sequence of estimators {∆̂
s

T}Ss=1 consistent for

their respective intervention effects {∆s}Ss=1 and also asymptotically normal.

However, we need to make a minor adjustment in the asymptotic covariance

matrix to reflect the intervention timing as:

√
TΓ
−1/2
T

(
∆̂

s

T −∆s
)

d−→ N
[
0,

1

(λs − λs−1)(λs+1 − λs)

]
, s = 1, . . . , S.

Since under Assumption 1.6 all the interventions are constant, we have

that the asymptotic variance Γ is the same across all intervention points.

Therefore, we can apply the inference for each breaking point as we have

described for the single intervention case.

On the other hand, if the intervention points are unknown, we need to first

estimate their location as in the single intervention case. Since the intervention

points are assumed to be distinct, i.e. λi 6= λj, ∀i, j, it follows from Proposition

1.7 that there exists an interval of size ε > 0 around every intervention point



Chapter 1. ArCo: An Artificial Counterfactual Approach for High-Dimensional
Panel Time-Series Data 34

such that

∆̂
p

T (λ)
p−→

{
1−λp
1−λ ∆ if λ ∈ [λp − ε/2, λp],
λp
λ

∆ if λ ∈ (λp, λp + ε/2].

Nonetheless, in contrast to the single intervention scenario, in the case of

multiple intervention points we need first to estimate how many are they and

their respective location to construct {∆̂
p

T}Pp=1. One approach is to start with

the null hypothesis of no intervention (s = 0) against the alternative of a single

one. We can then compute λ̂1 as in (1-12) and test the null using ∆̂
0

T (λ̂1). In

case we are able to reject the null, we split the sample at λ̂1 and repeat the

procedure in each of the two subsample. Every time we reject the null we split

the sample in λ̂s and proceed sequentially until we no longer reject the null in

any subsample.

The sequential procedure described above was advocated by

Bai e Perron (1998). It in based on the observation that given a non-zero

number of true intervention points, the first loop will encounter the most

significant one (in terms of SSR reduction) and proceed sequentially until it

finds the last one of them. In case we have multiple intervention points with

the same magnitude the method would converge to any of them with equal

probability.

Formally, starting from an arbitrary number of s ≥ 0 intervention points

and for a given significance level α we test for each of the s+ 1 subsamples as:

H(s)
0 : ∆ = 0 for all λ ∈ [λj, λj+1)sj=0 ,

H(s+1)
1 : ∆ 6= 0 for any λ ∈ [λj, λj+1)sj=0 .

Note that the overall significance level of the test is no longer the individual

significance level and it has to be adjusted to account for the sequential nature

of the procedure.

1.4.3
Testing for the unknown treated unit/Untreated peers

All the analysis carried out so far relies on the knowledge of which unit

is the treated one and also, more importantly, on the assumption that the

remaining are in fact untreated during the sample period (Assumption 1.1).

Yet, there might be cases where we are either unsure or would like to test for

those conditions. Given any finite subset I of the available units we would like

to test the following hypothesis

Hn
0 : ∆

(i)
T = 0 ∀i ∈ I ⊆ {1, . . . , n}

Hn
1 : ∆

(i)
T 6= 0 for some i ∈ I
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Nothing prevents us from running the same procedure considering each

unit i ∈ I to be the treated one to obtain ∆̂
(i)

T as in (1-5) for i = 1, . . . , nI ,

where nI < ∞ is the cardinality of the set I. We can then stack all of them

in a vector as Π̂T (I) ≡
(
∆̂

(1)′

T . . . ∆̂
(nI)′

T

)′
as an average estimator for the true

average intervention effect vector ΠT (I) ≡
(
∆

(1)′

T . . .∆
((I))′

T

)′
where ∆

(i)
T is

defined for each unit. Hence,

Proposition 1.9 Under the conditions of Proposition 1.2, for any finite

subset I ⊆ {1, . . . , n}

√
TΣ

−1/2
I

[
Π̂T (I)−ΠT (I)

]
d−→ N (0, I),

where ΣI is a covariance matrix with typical (matrix) element (i, j) ∈ I2 given

by:

Ωij
T ≡ TE

[(
∆̂

(i)

T −∆
(i)
T

)(
∆̂

(j)

T −∆
(j)
T

)′]
,

with Ωij
T =

ΓijT1
T1/T

+
ΓijT2
T2/T

, Γij
T1

= E
[

(
∑
t≤T1

νit)(
∑
t≤T1

νjt
′
)

T1

]
, and Γij

T2
=

E
[

(
∑
t≥T0

νit)(
∑
t≥T0

νjt
′
)

T2

]
.

Therefore, for a given consistent estimator Σ̂ we have under Hn
0 :

W π
T ≡ T Π̂

′
T Σ̂
−1

I Π̂T
d−→ χ2

nq.

We can obtain a consistent estimator for ΣI repeating the same procedure

described in Section 1.3.3 for each pair (ij) ∈ I2 to obtain Ω̂
ij

and finally

construct the matrix Σ̂I . Hence, for a desired significance level, we can then

use W π
T to test Hn

0 . Once you remove the (likely) treated unit and re-test it

again with the remanning units (peers) the test becomes yet more useful. In

case we fail to reject the null, we can interpreted this result as a direct evidence

in favour of the hypothesis that the peers are in fact untreated considering the

sample at hand. Which ultimately provides support to our key Assumption

1.1.

1.5
Selection Bias, Contamination, Nonstationarity and Other Issues

In this section we discuss some possible sources of bias in the ArCo

method. In particular, we consider the potential effects when the intervention

does not affect only the outcome of the variable of unit 1. Equivalently, we
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investigate the consequences whenever Assumption 1.1(b) fails and we expect

to have E(z0t|Dt) 6= 0.

We consider without loss of generality a simpler version of the DGP

described in Section 2. Each unit i = 1, . . . , n under no intervention is

represented by z
(0)
it = lift + ηit, where ηit is a zero mean independent and

identically distributed (iid) idiosyncratic shock with variance σ2
ηi

. Furthermore,

E(ηitηjt) = 0, for all i 6= j. Also, the common factor vector ft is an iid random

variables with zero mean and variance σ2
f .

Set yt = z1t, xt = (z2t, . . . , znt)
′, l0 = (l2, . . . , ln)′ and σ2

η0
=

(σ2
η2
, . . . , σ2

ηn)′. In this setup we can write(
yt

xt

)
∼

[
0, σ2

f

(
l21 + r1 l1l

′
0

l1l0 l0l
′
0 + diag (r0)

)]
,

where ri ≡
σ2
ηi

σ2
f

is the noise to signal ratio of unit i = 1, . . . , n and r0 =

(r2, . . . , rn)′.

As a consequence, the best linear projection model is given by L(yt|xt) =

x′tβ0, where β0 = [l0l
′
0 + diag (r0)]

−1
(l1l0). Furthermore, yt = x′tβ0 +νt, where

E(xtνt) = 0 by definition, and σ2
ν ≡ E(ν2

t ) = σ2
f (l21 + r1 − β′0l1l0).

Therefore, we have that β0 ≡ β0(l, r) and σ2
ν ≡ σ2

ν(l, r, σ
2
f ), where

r = (r1, r
′
0)′ and l = (l1, . . . , ln)′.

Suppose now that we have an intervention affecting all units from T0

onwards, i.e. Assumption 1.1(b) does not hold. We consider two situations,

one where the intervention is a change in the common factor given by a

deterministic sequence {cft }t≥T0 and one where it is completely idiosyncratic

{cit}t≥T0 for i = 1, . . . , n, z
(1)
it = z

(0)
it + 1{t ≥ T0}

(
cit + lic

f
t

)
.

Consequently, for t = T0, . . . , T :

δt = yt − x′tβ0 = y
(0)
t + c1

t + l1c
f
t −

(
x

(0)
t + c0

t + l0c
f
t

)′
β0

= c1
t + νt − c0

t
′
β0 + (l1 − l′0β0) cft .

Clearly, under Assumption 1.1(b), we have that c
(0)
t = cft = 0, ∀t,

thus E(δt) = c1
t and, ignoring the sampling error of estimating β0, the ArCo

estimator will be unbiased for the average of c1
t for the post intervention period.

On the other hand, without those assumptions we have the following bias in

normalized statistic

bt ≡ E
(
δt − c1

t

σν

)
=

(
l1 − l′0β0

σν

)
︸ ︷︷ ︸

≡φf

cft −
c0
t
′
β0

σν
(1-13)
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The factor in the first term of the bias φf = φf (l, r, σ
2
f ) is a non-

linear expression which is hard to express in closed form. However, regardless

of the choice of the factor loads l and idiosyncratic shock variances σ2
η =

(σ2
η1
, . . . , σ2

ηn)′, we have that as σ2
f → ∞, r → 0 and consequently R2 → 1.

Hence we write φf = φf (R
2). Moreover, φf (R

2) is strictly decreasing in R2 and

approaches zero quite fast as it can be seen in the left scale of Figure B.1. Also

φf = φ(s0) is also decreasing in the number of relevant variables s0 for fix R2.

Hence, if c0
t = 0 but cft 6= 0, even with moderate R2, we have a reasonably

small bias which causes the inference to be valid with minor overejection.

This is in contrast to the case where we do not include relevant peers in our

analysis . In fact, as mentioned previously in the Introduction, that is the main

motivation for using the present methodology as opposed to an alternative

that does not involve peers (a simple before-and-after estimation of averages

for instance). ArCo can effectively isolate the intervention of interest even

in the case of partial fulfilment of Assumption 1.1. In the limit of a perfect

counterfactual, the bias is zero and the higher is the correlation among the

treated unit and the peers, the smaller is the bias.

The second bias term in (1-13) can be seen as a result, for instance, of

a global shock that induce breaks in peers in a non-systematic way, which

makes this source of bias difficult to handle. To get a better sense, consider

for instance the case where the idiosyncratic shock is a fixed proportion of the

standard deviation of each unit, i.e. cit = kσi, ∀i for some k ∈ R. In that case,

φg = (σ′β0/σν)k, where σ = (σ1, . . . , σn)′. Here the opposite happens, namely

φg(R
2) is zero when R2 = 0 and increases in the overall fit of the model. The

bias increase is quite sharp as can been seen in the right scale of Figure B.1.

Therefore, whenever one expects c0
t 6= 0, the ArCo methodology does not

work properly but the BA estimator does as it can be seen as a particular case

of the ArCo estimator with R2 = 0 (for instance by not including any peers)

and hence the bias is zero. In general, the ArCo estimator gives the difference

between the actual break in the treated unit and what is expected from the

peers. A standard solution is to assume that the “treatment assignment” is

independent of z0t = (z2t, . . . , znt)
′, which is our Assumption 1.1 and the ArCo

approach is not subject to selection bias. However, it is important to stress

that the “treatment assignment” might be dependent on z1t and our approach

is still valid.10 One way to check if there is no “treatment contamination” is to

test the peers for possible breaks after T0 as discussed in Section 1.4.3.

Other possible source of problems is the use of“non-stationary”processes,

10The result is analogous to the average treatment effect on the treated not being biased
by selection on (un)observables.
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leading to spurious results. In this chapter we focus solely on the case the

variables of interest have some sort of “fading memory” behaviour. Thus, if one

or more variables are found to be integrated, they must be differenced first in

order to achieve stationarity.

1.6
Monte Carlo Simulation

We conducted two sets of Monte Carlo simulations. First, we conduct

size and power simulations in order to investigate the finite sample properties

of the test. We consider a broad range of cases by combining different

innovation distributions, sample sizes, number of peers, number of relevant

peers, dependence structure, trends and intervention types. Second, a “horse

race” is proposed in order to compare the ArCo estimator with potential

alternatives. We consider the SC method of Abadie e Gardeazabal (2003) and

Abadie et al. (2010), the PF estimator suggested in Gobillon e Magnac (2016)

and the DiD and BA estimators.

1.6.1
Size and Power Simulations

The DGP considered is a version of the common factor model (2-6) with

the following baseline scenario: T = 100 observations, n = 100 units, q = 1

one variable per unit, λ0 = 0.5 (intervention at the middle of the sample),

s0 = 5 relevant (non-zero) parameters with loading factor equal to 1 and

f = 1 common factor. The common factor and all idiosyncratic shocks are

independent and identically normally distributed with zero mean and unit

variance. We perform 10,000 simulations.

First, we analyze the influence of the underlying distribution on the

test size by holding all the other parameters above fixed and performing the

simulation for a chi-square distribution with 1 degree of freedom for asymmetry

issues, t-Student distribution with 3 degrees of freedom for fat-tails and a mixed

normal distribution for bimodality.11 As shown in first panel of Table C.2, little

influence in the overall size of the test is perceived.

Next we analyze the influence of the number of observations in the test

size. We consider T = {25, 50, 75, 100}. Surprisingly, the size distortions are

small even with only 50 observations as shown in the second panel of Table

C.2. We stress that since we deal with the intervention at the middle of the

sample we have less than T/2 observations to fit the high dimensional model.

11All innovations are standardized to zero mean and unit variance.
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We now investigate the influence of increasing the number of covariates

(by increasing either the number of lags or the number of peers)12. We set

d = {100, 200, 500, 1000}. The third panel of Table C.2 shows that the test

size seems to be unaffected by the increase in model complexity. This should

come with no surprise since consistent model selection is not an issue for the

methodology to work.

We consider a change of relevant (non-zero) covariates (units) in the pre-

intervention model. We consider a case where all the regressors are irrelevant,

which reduces (asymptotically) the ArCo to the BA estimator, and we further

increase s0. In the last scenario we consider all regressors non-zero but with

decreasing magnitude 1/
√
j, j = 1, . . . , 100. In all cases the LASSO does not

overfit the pre-intervention data and the size distortions are small as displayed

in Table C.2.

Finally, we consider the case where each unit follows a first-order autore-

gressive process in order to investigate issues that arise in the presence of serial

correlation. In this scenario we include lags of the relevant covariates instead

of new peers. The results are shown in the last panel of Table C.2. We note

a persistent oversized test, which is more pronounced as the autoregressive

coefficient (ρ) becomes closer to 1. The empirical distribution of the estim-

ator (not shown) is, however, very close to normal, and the distortion is a

sole consequence of the poor finite sample properties of the variance estim-

ator . In particular it underestimates Ω. We tried several alternatives for Ω̂T ,

including Newey e West (1987), Andrews (1991), Andrews e Monahan (1992),

and Haan e Levin (1996). We obtain the best results (last panel of Table C.2)

using the procedure proposed in Andrews e Monahan (1992).

It is worth mentioning that the slightly oversized tests are a direct

consequence of the persistence of {νt} and not necessarily of the persistence

of {(yt,x′t)} per se. The problem is attenuated, for instance, when enough

lags are included to make {νt} closer to a white noise process, or when a linear

combination of (potentially highly persistent) {(yt,x′t)} is almost uncorrelated.

For pure finite MA processes the usual kernel HAC estimator are known to

perform well and the tests are not oversized.

1.6.2
Estimator Comparison

In order to conduct the“horse race”among competitors for counterfactual

analysis we consider the following DGP:

12The difference is not completely innocuous since we loose one observation to each
included lag. Therefore, we include new (uncorrelated) peers and deal with the lag inclusion
in the serial correlation scenario.
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z
(0)
it = ρAiz

(0)
it−1 + εit, i = 1, . . . , n, ; t = 1, . . . , T, (1-14)

where εit = Λif t+ηit, f t = [1, (t/T )ϕ, vt], zit ∈ Rq, ρ ∈ [0, 1), ϕ > 0,Ai(q×q)
is a diagonal matrix with diagonal elements strictly between −1 and 1, {vt} is

a sequence of iid standardized normal random variables, {ηit} is a sequence of

iid normal random vectors with zero mean and covariance matrix r2
fInq where

rf > 0 can be interpreted as the noise-to-signal ratio which controls the overall

correlation among the units, and Λi is a (q × 3) matrix of factor loadings.

Let zt be the nq dimensional vector obtained by stacking all the z
(0)
it and

Λ is the (nq×3) matrix after stacking all the Λi. Similarly, define εt by stacking

εit and A is the (nq × nq) diagonal matrix composed by the block diagonals

Ai. We use the notation Λ(j) to denote the jth column of Λ, thus µε,t ≡
E(εt) = Λ(1) + Λ(2)(t/T )ϕ, Ω ≡ V(εt) = Λ(3)Λ(3)′ + r2

fInq, µt ≡ E(zt) =

(Inq − ρA)−1µε,t, and vec (Σ) ≡ vec [(Vzt)] = [I(nq)2 − ρ2A⊗A]−1vec (Ω).

We set y
(1)
it = y

(0)
it + δt1{t ≥ T0 and i = 1}, for simplicity we set δt = δ

constant and equal to one standard deviation from the unit of interest (unit

1). We are interested in estimating the average treatment effect

∆ =
1

T − T0 + 1

T∑
t=T0

δt = δ.

We now briefly state the estimators considered in the Monte Carlo study.

Whenever is convenient we use the following partition scheme: zit = (yit,x
′
it)
′

and z0t = (z′2t, . . . z
′
nt).

Before-and-After (BA)

The difference between the average of the y1t before and after the

intervention:

∆̂BA =
1

T − T0 + 1

T∑
t=T0

y1t −
1

T0 − 1

T0−1∑
t=1

y1t.

Differences-in-Differences (DiD)

The ordinary least squares (OLS) estimator of the dummy coefficient in

the following regression models. For the case with covariates,

yit = α0 + x′itβ + α1I(i = 1) + α2I(t ≥ T0) + ∆DD∗I(i = 1, t ≥ T0) + εit,



Chapter 1. ArCo: An Artificial Counterfactual Approach for High-Dimensional
Panel Time-Series Data 41

or, for the case without covariates,

yit = α0 + α1I(i = 1) + α2I(t ≥ T0) + ∆DDI(i = 1, t ≥ T0) + εit.

Gobillon and Magnac (GM)

The estimator is defined as per Gobillon e Magnac (2016):

∆̂GM =
1

T − T0 + 1

T∑
t=T0

(y1t − ŷ1t) ,

where ŷ∗1t = x1tβ̂ + f̂tΛ̂1 or without including the covariates ŷ1t = f̂tΛ̂1. We

choose r the number of factors to be 2 (or 3 if a trend is included).

Synthetic Control (SC)

For simulation purposes we use the algorithm Synth13. We choose on top

of all covariates (xit), the average of the dependent variable (yit) during the

pre-intervention period as a matching variable.

∆̂SC = 1
T−T0+1

T∑
t=T0

(y1t − ŷ1t) ,

where ŷ1t = w∗′y0t. The weight vector w must be non-negative entries that

sum to one. It comes from a minimization process involving only values of the

selected variables prior to the intervention. In our particular case, we take the

pre-intervention average z̄ = 1
T0−1

∑T0−1
t=1 zt, partition as z̄ = (z̄1, z̄0

′)′ and

reshape z̄0 to a matrix Z̄0(n− 1× q) where each row are the variables of each

of the remaining n− 1 units

w∗(V ) = arg min
w≥0,‖w‖1=1

‖z̄1 −w′z̄0‖V ,

where ‖ · ‖V is the norm induced by a positive definite matrix V .

Finally, V is chosen as

V ∗ = arg min
1

T0 − 1

T0−1∑
t=1

[y1t −w∗(V )′y0t]
2
, (1-15)

and we set w∗ ≡ w∗(V ∗).
The results are presented in Table C.3. The smoothed histograms can

be found in Figures B.2–B.7. Overall, the SC and the GM are heavily biased

13R package maintained by Jens Hainmueller.
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in most cases considered. For the former, this might well be a consequence

of the instability of algorithm to find the minimizer of (1-15), since the bias

persists even in the absence of time trends, where any fixed linear combination

of the peers should give us an unbiased estimator. For the latter it is most

likely a consequence of the poor finite sample properties of common factor

estimator. It is well understood from Bai (2009) that the consistency depends

on the double asymptotics on n and T . On the other hand, BA, DiD and the

ArCo seems to have comparable small bias at least in absence of deterministic

trends regardless of the presence of serial correlation. The ArCo seems to have

better MSE performance. This comes with no surprise since by definition our

estimator in the first stage searches for the linear combination that minimizes

the MSE.

For the trended cases, first note the BA estimator is severely biased since

without using the information of the peers it cannot take into account the time

trend effect. For the common trend cases, the DiD estimators have relatively

small bias for both the linear and quadratic term. For the former it is expected

since a common linear time trend the exactly the kind of DGP that the DiD

estimator was designed for. Once again, the ArCo estimators have comparable

bias to the DiD estimators for the common trend cases but with significant

smaller variance (ranging from 6-16 times smaller). The clear advantage of

the ArCo estimation can be seem in the idiosyncratic time trend cases. Even

though some small (in finite sample) bias start to show up, it is clear much

smaller than all other alternatives.

1.7
The Effects of an Anti Tax Evasion Program on Inflation

In this section we apply the ArCo methodology to estimate the effects

of an anti tax evasion program in Brazil on inflation. Although, the causes of

business non-compliance and tax evasion have been extensively studied in the

literature, as, for example, in Slemrod (2010), little attention has been devoted

to measure the indirect effects from enforcing tax compliance.

In Brazil, tax evasion is a major fiscal concern and both the federal

and local governments have been proposing new strategies to reduce evasion.

Early in 1996, the federal government introduced the SIMPLES14 system which

drastically simplified the tax payments process and helped in reducing the tax

burden on small enterprises. Later in 2005, the federal government launched

the electronic sales receipt program (Nota Fiscal Eletrônica), to further reduce

compliance costs to firms.

14Integrated System of Tax Payments for Micro and Small Enterprises
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In October 2007, the state government of São Paulo in Brazil implemen-

ted an anti tax evasion scheme called Nota Fiscal Paulista (NFP) program.

The NFP program consists of a tax rebate from a state tax named ICMS

(tax on circulation of products and services). ICMS is similar to the European

VAT and the Canadian GST. However, unlike VAT and GST, ICMS does not

apply to services other than those corresponding to interstate and intercity

transportation and communication services. The NFP program works as an

incentive to the consumer to ask for electronic sales receipts. The registered

sales receipts give the consumer the right to participate in monthly lotteries

promoted by the government. Furthermore, according to the rules of the pro-

gram, registered consumers have the right to receive part of the ICMS paid

by the seller, as tax rebate, when their tax identifier numbers (CPF) are in-

cluded in the electronic sales receipts. Similar initiatives relying on consumer

auditing schemes were proposed in the European Union and in China; see, for

example, Wan (2010). The effectiveness of such programs has been discussed

in Fatas et al. (2015) and Brockmann et al. (2016). In the Brazilian state of

São Paulo, the NFP program has received extensive support from the popula-

tion. In January 2008, 413 thousand people were registered in program while

in October 2013 there were more than 15 million participants. The amount

in Brazilian Reais distributed as rebates also grew rapidly from 44 thousand

Reais in January 2008 to an average of 70 million Reais distributed monthly

by the end of the same year. Figure B.8 illustrates the NFP participation as

well as the value distributed as tax rebates.

Souza (2014) was the first author to discuss whether retailers increased

prices in response to the NFP program and consequently whether the program

impacted negatively consumers’ purchasing power. By using the SC method to

construct a counterfactual to the State of São Paulo, Souza (2014) showed that

one year after the launching of the NFP program, the accumulated inflation

on food away from home (FAH) was 5% higher in the state of São Paulo when

compared to the synthetic control. In September 2009, the differences raised

to 6.5%. We extend the analysis of Souza (2014) by considering the ArCo

methodology as an alternative to the SC method. We also consider the BA,

GM, and DiD estimators.

Under the assumptions that (i) a certain degree of tax evasion was

occurring before the intervention, (ii) the sellers have some degree of market

power and (iii) the penalty for tax evasion is large enough to alter the seller

behaviour, one is expected to see an upward movement in prices due to an

increase in marginal cost. Therefore, we would like to investigate whether the

NFP had an impact on consumer prices in São Paulo. We test this hypothesis
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below as an empirical illustration of the ArCo methodology. The answer to this

kind of question has important implications regarding social welfare effects that

are usually neglected in the fiscal debate whenever the aim is to enforce tax

compliance.

The NFP was not implemented throughout the sectors in the economy

at once. The first sector were restaurants, followed by bakeries, bars and other

food service retailers. We do not possess a perfect match for a general consumer

price index (IPCA - IBGE) and the sector where the NFP was implemented.

However, we can take the IPCA component of food away from home (FAH)

as a good indicator for price levels in those sectors. The sample then consists

of monthly FAH index for 10 metropolitan areas15 including São Paulo from

January 1995 to September 2009. As a matter of comparison, Souza (2014)

estimated a counterfactual by the SC method with assigning the following

weights to Belo Horizonte, Recife, Goiânia, and Porto Alegre, respectively:

0.40, 0.27, 0.19, and 0.14. All other donors were assigned zero weights.

In order to compute the counterfactual by the ArCo methodology we

consider the following variables from the pool of donors: monthly inflation

(FAH), monthly GDP growth, monthly retail sales growth and monthly credit

growth. All variables are stationary and no lags or additional transformations

are considered. The conditional model is linear and is estimated by LASSO,

where the penalty parameter is selected by the Hannan and Quinn (HQ)

criterium. The choice of the HQ instead of the BIC, for example, is driven by

the fact that the latter delivers conditional models with no variables in most of

the cases. The in-sample period (pre-intervention) consists of 33 months while

the size of the out-of-sample period is 23.

The factors in the GM methodology are computed from the monthly

growth in GDP, retail sales and credit by principal component methods. The

number of factors is determined as to explain 80% of the total variance in the

data. The BA estimator considers only variables from the treated unit.

The results are depicted in Table C.4. The upper panel in the table

reports, for different choices of conditioning variables, the estimated average

effect after the adoption of the NFP. The standard errors are reported between

parenthesis. Diagnostic tests do not evidence any residual autocorrelation and

the standard errors are computed without any correction. The table also shows

the R-squared of the first stage estimation, the number of included regressors

in each case as well as the number of selected regressors by the LASSO. In all

cases, the average effect is significant at the 1% level. The highest R-squared is

15Goiânia-GO, Fortaleza-CE, Recife-PE, Salvador-BA, Rio de Janeiro-RJ, São Paulo-SP,
Porto Alegre-RS, Curitiba-PR, Belém-PA, Belo Horizonte-MG
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achieved when inflation and GDP are used as conditioning variables, followed

by a model with inflation, GDP and retail sales. In the first case, column

(5) of Table C.4, the monthly average effect is 0.4478%. The aggregate effect

during the out-of-sample period is 10.72%. In the second case, column (6) of

Table C.4, the monthly average effect is 0.3796% and the aggregate effect is

9.04%. Two facts worth discussing. The first one is the much higher estimated

effect when only credit variables are included. This is due to huge outliers

(huge increase) observed in credit series in the out-of-sample period for the

states of Pernambuco and Rio de Janeiro. If these two states are removed from

the donors pool, the monthly average effect drops to 0.5768%. The second

point that deserves attention is the much lower effect when only inflation is

considered, although the in-sample fit is reasonably good.

Figures B.9 and B.10 show the actual and counterfactual data, both in-

sample and out-of-sample. Figure B.9 considers the case where only inflation

and GDP growth are considered as conditioning variables while the plots in

Figure B.10 consider the case where retail sales growth are also included as a

potential regressor in the first stage model.

The lower panel of Table C.4 presents some alternative measures of the

average effect, namely the BA, GM and DiD estimators. In all cases the

estimated effects are smaller than the ones estimated with the ArCo. The

DiD estimators are closer to the SC. The GM falls somehow in between the

SC/DiD and the ArCo.

We also run a placebo ArCo estimator to check the robustness of the

method. When we do this we find that Porto Alegre seems to have nontrivial

breaks after October 2007; see Table C.5. For this reason we re-run the analysis

without Porto Alegre in the donor pool. The results are reported in Table C.6.

The overall picture seems unchanged.

1.8
Conclusions and Future Research

We proposed a flexible method to conduct counterfactual analysis with

aggregate data wish is specially relevant in situations where there is a single

treated unit and “controls” are not readily available, such as in regional policy

evaluation. The ArCo methodology is very easy to implement and extends and

generalize previous proposals in the literature in several aspects: (1) the distri-

bution of test for no-intervention effect is standard and asymptotically honest

confidence regions for the average intervention effect can be easily construc-

ted; (2) although the results rely on the number of time-series observations

diverging, the LASSO estimator has good finite sample properties,even when
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the number of estimated parameters are much larger than the sample size;

(3) we allow for nonlinear, heterogenous confounding effects; (4) we provide a

complete asymptotic theory which can be used to jointly test for intervention

effects in a group of variables; (5) The methodology can be applied even if the

time of the intervention is not known for certain, which gives us a consistent

estimator for the time of the intervention; (6) multiple interventions can be

handled; and finally, (6) we also propose a test for the presence of spillover

effects among the units.

The current research can be extended in several directions as, for ex-

ample, the case where the variables are nonstationary (either with cointegration

or not). A non-parametric or semiparametric estimation in the pre-intervention

model can be also considered.



2
Counterfactual Analysis with Integrated Processes

2.1
Introduction

Over the last few years, there has been a growing interest in the liter-

ature in developing econometric tools to conduct counterfactual analysis with

aggregate data when a “treated” unit suffers an intervention, such as a policy

change, and there is not a clear control group available. In these situations,

the proposed solution is to construct an artificial counterfactual from a pool of

“untreated” peers (“donors pool”). For example, Hsiao et al. (2012) considered

a stationary panel factor model, hereafter PF, where the counterfactual for

the treated variable of interest is constructed from a linear combination of

observed variables from selected peers given by the conditional expectation

model. Another seminal method is the Synthetic Control, hereafter SC, ap-

proach of Abadie e Gardeazabal (2003) and Abadie et al. (2010). In the SC

framework, the counterfactual variable is build as a convex combination of

peers where the weights of the combination are estimated from time-series av-

erages of several variables from the donor pool and is inspired by the matching

literature. Although, the above methods seem similar they differ remarkably

in the way the linear combination of peers is constructed.

More recently, there has been several extensions of the above meth-

ods being proposed in the literature. Ouyang e Peng (2015) extended the

PF method by relaxing the linear conditional expectation assumption and

introducing a semi-parametric estimator to construct the artificial coun-

terfactual. Du e Zhang (2015) and Gao et al. (2015) made improvements on

the selection mechanism for the constituents of the donors pool in the PF

method. Fujiki e Hsiao (2015) considered the case of multiple treatments.

Carvalho et al. (2016), proposed the Artificial Counterfactual (ArCo), which is

a major extension of the PF method and considered, as well, the case of high-

dimensional data. Finally, the SC method has been generalized by Xu (2015).

The main purpose of this chapter is to investigate the con-

sequences of applying panel based methods, such as Hsiao et al. (2012)

and Carvalho et al. (2016), when the data are non-stationary. The conclusions

of the chapter can be also directly extended to SC method, the generalized SC

method and the further extensions of the PF method discussed above. Most

of the literature on counterfactual analysis for panel data do not take into ac-
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count the possibility of non-stationarity. One key exception is Bai et al. (2014)

where the authors show, under some assumptions, consistency of the panel

approach when the data are integrated of first order. However, the paper does

not provide the asymptotic distribution of the estimator.

Both the PF and the ArCo (in its simplest form), construct the counter-

factual for the treated variable of interest as a linear combination of untreated

variables from the peers. The motivation is that there is some common dynam-

ics between the treated unit and the members of the donor pool. We consider

two very distinct scenarios: (i) The cointegrated case, where there is at least

one cointegrated relation among the units and; (ii) The spurious case, where no

integration relation exists. We show that in the first case we have a consistent,

but not asymptotically normal, estimator for the different in the drifts before

and after the intervention. We also considered under case (i) the possibly of

working in first difference of the variable and in fact with a stationary pro-

cess. It comes with no surprise that the methods can, in that specific case, be

applied directly resulting in a consistent asymptotically normal estimator.

The troublesome scenario is case (ii) - the spurious case - where we

demonstrate that the treatment effect estimator diverges. The lack of coin-

tegration relation makes the construction of the artificial control using the

pre-intervention period invalid, due to harmless effects from spurious regres-

sions as discussed in Phillips (1986). As a consequence, one tends to reject the

the hypothesis of no intervention effect too often when the true effect is null.

The chapter is organized as follows. Section 2.2 presents the setup

considered in the chapter while Section 2.3 delivers the theoretical results.

Section 2.5 concludes the chapter. Finally, all proofs are presented in the

Appendix.

2.2
Setup and Estimators

2.2.1
Basic Setup

Suppose we have n units (countries, states, municipalities, firms, etc)

indexed by i = 1, . . . , n. For each unit and for every time period t = 1, . . . , T ,

we observe a realisation of a variable yit. We consider a scalar variable just for

the sake of simplicity and the results in the chapter can be easily extended to

the multivariate case. Furthermore, assume that an intervention took place in

unit i = 1, and only in unit 1, at time T0 +1, where T0 = bλ0T c and λ0 ∈ (0, 1).

Let Dt be a binary variable flagging the periods after the intervention.
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As a result, we can express the observed y1t as

y1t = Dty(1)
1t + (1−Dt)y(0)

1t ,

where

Dt =

1 if t ≥ T0

0 otherwise,

and y
(1)
1t denotes the outcome when the unit 1 is exposed to the intervention

and y
(0)
1t is the potential outcome of unit 1 when it is not exposed to the

intervention.

We are ultimately concerned in testing hypothesis on the potential effects

of the intervention in the unit of interest (unit 1) for the post-intervention

period. In particular we consider interventions of the form

y
(1)
1t = δt + y

(0)
1t ; t = T0 . . . , T, (2-1)

{δt}Tt=T0 is a deterministic sequence.

The null hypothesis becomes

H0 : ∆T =
1

T − T0 + 1

T∑
t=T0

δt = 0. (2-2)

The quantity ∆ in (3-1) is quite similar to the traditional average

treatment effect on the treated (ATET) vastly discussed in the literature. It

is clear that y
(0)
t is not observed from T0 onwards. For that reason, we call

thereafter the counterfactual, i.e., what would y have been like had there been

no intervention (potential outcome).

In order to construct the counterfactual let y0t ≡ (y2t, . . . , y
′
nt)
′ be the

collection of all untreated variables.1 Panel based methods, such as the PF and

ArCo methodologies, construct an artificial counterfactual by considering the

following model in the absence of an intervention:

y
(0)
1t =M(y0t) + νt, t = 1, . . . , T, (2-3)

where M : Y0 ×Θ→ R measurable mapping index by the θ ∈ Θ.

The main idea is to estimate (2-3) using just the pre-intervention sample

(t = 1, . . . , T0 − 1), since in that case y
(0)
1t = y1t. Consequently, the estimated

counterfactual is given as:

ŷ
(0)
1t = M̂(y0t), t = T0, . . . , T, (2-4)

1We could also have included lags of the variables and/or exogenous regressors into y0t

but again to keep the argument simple, we have considered just contemporaneous variables;
see Carvalho et al. (2016) for more general specifications.
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where M̂(·) ≡ M(·; θ̂). Under some mild condition is possible to show that

δ̂t ≡ yt− ŷ(0)
t , for t = T0, . . . , T is an unbiased estimator for δt, t = T0, . . . , T as

the pre-intervention sample size grows to infinity. Also, under the assumption

that the controls are untreated (Assumption 1.1) the average of δ̂t over the

post-intervention period:

∆̂ =
1

T − T0 + 1

T∑
t=T0

δ̂t, (2-5)

is consistent for the average (across time) treatment effect ∆T and asymptot-

ically normal as T →∞.

2.2.2
Non-stationarity

Let y
(0)
t ≡ (y

(0)
1t ,y

(0)
0t )′ denote all the units in the absence of the

intervention. Under stationarity of y
(0)
t and additional mild assumptions,

Hsiao et al. (2012) and Carvalho et al. (2016) show that (2-5) is
√
T -consistent

for ∆ and asymptotically normal. Suppose now that {y(0)
t } is integrated process

of order 1, I(1), defined on some probability space (Ω,F ,P) and we assume

for notational convenience that:2y
(0)
t = y

(0)
t−1 + µ+ εt, t ≥ 1

y
(0)
0 = 0,

(2-6)

where µ ∈ Rn is a drift and εt is a zero mean stationary process with a Wold

Representation given by C(L)vt. L denotes the lag operator, C(L) is a (n×n)

matrix polynomial with C(0) = In and all eigenvalues of the companion form

are inside the unit circle, and vt is a white noise vector such that

E(vtv
′
s) =

{
Λ, if t = s,

0, otherwise,

where Λ is a positive definite symmetric covariance matrix.

2.3
Theoretical Results

Before we present our main results let us establish some notation and

definitions that we use throughout the rest of the chapter for clarity purposes

2Assume y
(0)
0 = 0 is without loss of generality. We could either assume y

(0)
0 to be a any

constant or even a random vector with a specific distribution.
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2.3.0
Notation and Definitions

For any given matrix M ∈ Rn×n and vector v ∈ Rn we use the following

partition scheme:

M =

( 1 n− 1

1 m11 m10

n− 1 m01 M 00

)
v =

(
1 v1

n− 1 v0

)

For any zero mean vector process {vt} we define the following matrices:

Ω0(v) ≡ lim
T→∞

T−1

T∑
t=1

E(vtv
′
t)

Ω1(v) ≡ lim
T→∞

T−1

T∑
t=1

t−1∑
s=1

E(ηsη
′
t)

Ω(v) ≡ Ω0(v) + Ω1(v) + Ω1(v)′

if the limits exist; and the following random matrices

R(v) ≡ Ω1/2

[∫ 1

0

W (r)W ′(r)dr −
∫ 1

0

W (r)dr

∫ 1

0

W ′(r)dr

]
Ω1/2

P (v) ≡ Ω1/2

[∫ 1

0

W (r)W ′(r)dr − 3

∫ 1

0

rW (r)dr

∫ 1

0

rW ′(r)dr

]
Ω1/2

V (v) ≡ Ω1/2

[∫ 1

0

W (r)dW ′(r)−
∫ 1

0

W (r)drW ′(1)

]
Ω1/2 + Ω1 + Ω0

Q(v) ≡ Ω1/2

[∫ 1

0

W (r)dW ′(r)−
√

3

∫ 1

0

rW (r)drW ′(1)

]
Ω1/2 + Ω1 + Ω0,

where W (·) denotes a vector Wiener process on [0, 1]n; Ω0 ≡ Ω0(v), Ω1 ≡
Ω1(v) and Ω ≡ Ω(v).

We establish the asymptotic properties of the estimator by considering

the whole sample increasing, while the proportion between the pre-intervention

to the post-intervention sample size is constant. For convenience set T1 ≡ T0−1

and T2 ≡ T − T0 + 1 are the number of pre and post intervention periods,

respectively recall that T0 = bλ0T c. Hence, for fixed λ0 ∈ (0, 1) we have

T0 ≡ T0(T ). Consequently, T1 ≡ T1(T ) and T2 ≡ T2(T ). All the asymptotics

are taken as T →∞. We denote convergence in probability and in distribution

by “
p−→” and “

d−→”, respectively.

On top of the statistical independence of the intervention with respect

the the untreated units (Assumption 1.1), we consider the following key

assumption:
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Assumption 2.1 Let {zt}∞t=1 be a sequence of (n × 1) random vectors such

that

(a) {zt}∞t=1 is zero mean weakly (covariance) stationary;

(b) E|zi1|δ <∞ for i = 1, . . . , n and some 2 ≤ δ <∞;

(c) {zt}∞t=1 is mixing with either
∑∞

m=1 α
1−1/δ
m <∞ or

∑∞
m=1 φ

1−2/δ
m <∞.

Assumption 2.1 state general conditions under which the multivariate

invariance principle is valid for the process {zt}∞t=1. Assumption 2.1(a) limits

the heterogeneity in the process (at least up to the second moment). Assump-

tion 2.1(b) is just a standard higher moment existence condition for all the

n coordinates of the random vector which guarantees, along with Assumption

2.1(c), bounded covariances. Finally, 2.1(c) restrains the temporal dependence

requiring the sequence to be either strong mixing with size − δ
δ−2

or uniform

missing with size − δ
2δ−2

.

The following result is well-known and it will be stated here just for the

sake of clarity of the developments in the forthcoming sections.

Proposition 2.1 Let St =
∑t

j=1 zj be the partial sum of the sequence {zt}∞t=1

of (n× 1) random vectors. Then, under Assumption 2.1,

(a) Σ = limT→∞ T
−1E(STS

′
T ) exist and is positive definite

(b) ZT (r) ≡ T−1/2S[rT ]
d−→ Σ1/2W (r)

where [·] denotes the integer part and W (·) is a vector Wiener process on [0, 1]n

The implied convergence in Proposition 2.1(a) is a direct consequence

of the stationarity assumption together with the mixing condition as shown

by Ibragimov e Linnik (1971). Finally, Proposition 2.1(b) is a multivariate

generalization of the univariate invariance principle Durlauf e Phillips (1985).

Let r denotes the rank of C(1). As shown in Engle e Granger (1987), a

necessary condition for y
(0)
t to have r ∈ {1, . . . , n−1} cointegration relations is

that the rank ofC(1) be n−r, i.e., rank deficient. When r = 0 which there is no

cointegration and when r = n the vector y
(0)
t is stationary in levels. Therefore,

we consider datasets that are generated, in the absence of a intervention, either

by a cointegrated system of order 1 or that are just a collection of unrelated

I(1) processes.
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2.3.1
The Cointegrated Case

If we have r cointegration relations, then there exists a n×r matrix Γ with

rank r such that Γ′(y
(0)
t − tµ) is I(0), where. Since every linear combination

of the columns of Γ is also a cointegration vector for y
(0)
t . We can define

(1,−β′0)′ = Γδ for some δ 6= 0 ∈ Rr such that (1,−β′0)(y
(0)
t − tµ) ≡ νt ∼ I(0).

Note that even after the normalization of the first element the resulting

linear combination is not the only possible stationary process (unless r = 1).

However, as we will show below, the least squares procedure will give consistent

estimators for the combination that give the stationary process with the

smallest variance.

Therefore, the “cointegrated regression” can be written as

y
(0)
1t = γ0t+ β′0y

(0)
0t + νt, for t ≥ 1

where γ0 ≡ µ1 − β′0µ0.

Since for the pre-intervention period, t = 1, . . . , T0 − 1 we have the

observable yt = y
(0)
t . We can use the pre-intervention sample to estimate

the unknown parameters, We will consider two distinct specifications for the

pre-intervention period: (i) the correct specification with a time trend included

and (ii) the misspecified case with no time trend, which naturally arising for

stationary processes.

y1t = γ0t+ β′0y0t + νt (2-7)

y1t = α0 + π′0y0t + ζt (2-8)

Clearly, α0 = 0 and ζt = νt + γ0t. Thus, ζt is non-stationary unless γ0 = 0.

We can apply the results of the Lemma A.6 together with the continuous

mapping theorem to show the following convergence in distribution:

Lemma 2.1 Let the process {y(0)
t } be defined by (2-6) have at least one coin-

tegration relation (0 < r < n). Also let {ηt ≡ (νt, ε
′
0)′} satisfies Assumption

2.1, then for the least squares estimator of the parameters appearing in (2-7)–

(2-8) as T0 →∞:
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(a) For µ = 0,

T0

(
β̂ − β0

)
d−→ P−1

00Q01 ≡ ξ

T
3/2
0 (γ̂ − γ0)

d−→
[√

3Ω1/2W (1)
]

1
− ξ′

[
3Ω1/2

∫ 1

0

rW (r)dr

]
0

T0 (π̂ − β0)
d−→ R−1

00 V 01 ≡ ω

T
1/2
0 (α̂− α0)

d−→
[
Ω1/2W (1)

]
1
− ω′

[
Ω1/2

∫ 1

0

W (r)dr

]
0

(b) For µ0 6= 0 and n = 2,

π̂ − β0
p−→ γ0

µ0

T−1
0 (α̂− α0)

p−→ 0

In case of µ 6= 0 for either, specification (2-7) or n > 2, the least squares

estimators are not defined asymptotically.

, where P ≡ P (η), Q ≡ Q(η), R ≡ R(η), V ≡ V (η) and Ω ≡ Ω(η).

Remark 2.1 Whenever there is a drift among the peers and n > 2 we have a

multicollinearity issue in the least squares estimators, since the drift component

dominates the other terms asymptotically. In case of specification (2-7), since

we are fitting the trend term tγ, the multicollinearity appears even for n = 2

(only one control). Note that, for the specification (2-8), if we replace γ0 by its

definition µ1 − β0µ0, then as expected π̂
p−→ µ1

µ0
.

Remark 2.2 In fact the estimators (2-5) is of little usage whenever we expect

to have integrated process with drift. Not only the estimator is not well in large

samples, but a simple fitted trend regressor makes a reasonable counterfactual

for the unit of interest. Therefore we treat for now on only the the case without

drift (µ = 0).

Similar results to Lemma 2.1(a) appear in Durlauf and Phillips (1985)

for instance where the estimator for the non deterministic regressor is super-

consistent.

We now consider the estimation for the intervention effect in two spe-

cifications descrobed above: (i) The true model as in (2-7); and (ii) a model

that would naturally arise if we choose to ignore (or be unaware of) the non-

stationarity in the data. As shown above, the distribution of the regression

estimators is dependent on the presence of a drift term. As a consequence, the
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intervention effect estimator could is defined, for each specification j = {1, 2},
as:

∆̂j =
1

T2

T∑
t=T0

y1t − ŷ(j)
1t where ŷ

(j)
1t =

{
γ̂t+ β̂

′
y0t if j = 1

α̂ + π̂′y0t if j = 2
(2-9)

where γ̂, β̂, α̂ and π̂ are the least squares estimators of the parameters

appearing in (2-7)–(2-8) using only pre-intervention sample.

Teorema 2.2 Let the process {y(0)
t } be defined by (2-6) have at least one

cointegration relation (0 < r < n). Also let {ηt ≡ (νt, ε
′
0)′} satisfies the

Assumption 2.1, then for the estimators defined in (2-9) as T →∞:

√
T
(

∆̂1 −∆
)

d−→ c1(λ0)σνW (1)− c2(λ0)ξ′Ω
1/2
00 W (1),

√
T
(

∆̂2 −∆
)

d−→ c3(λ0)σνW (1)− c4(λ0)ω′Ω
1/2
00 W (1),

where σ2
ν = Ω11 and ci ≡ ci(λ0) for i ∈ {1, 2, 3, 4}, such that

c1 =
[

1
1−λ0 + 3(1+λ0)2

4λ30

]1/2

, c2 =
[

1−λ0
9λ2

+ (1+λ)2

25λ3

]1/2

, c3 =
[

1
λ0(1−λ0)

]1/2

, c4 = 1
λ0
,

and Ω ≡ Ω(η), ξ ≡ ξ(η) and ω ≡ ω(η) are defined in Lemma 2.1.

Therefore both estimators above are
√
T -consistent for ∆, however with a

non-standard limiting distribution. Notice the first term in the limiting distri-

bution of the second specification is in fact the same distribution that appears

in Carvalho et al. (2016) for the stationary case. Even though the results above

rule out common inference procedures, in Section 2.4 we investigate the results

of using a conventional t-stat.

2.3.2
The Spurious Case

We now turn to the case where no cointegration relation exists among

yt prior to the intervention, hence C(1) is full rank. We consider for the pre-

intervention period the same specification, (2-7) and (2-8), that were used

in the cointegrated case. However, since the “true parameters” no longer

exist3, we cannot express least-squares estimators as diferent form their “true

parameters”. Hence we have the following result:

Lemma 2.2 Let the process {y(0)
t } be defined by (2-6) have no cointegration

relation (r = 0). Also let {εt} satisfies Assumption 2.1, then for the least

squares estimator of the parameters appearing in (2-7)–(2-8) as T0 →∞:

3In the sense that no (linear) combination of the units result in a stationary process
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(a) For µ = 0

β̂
d−→ P−1

00 P 01 ≡ χ,

T
1/2
0 γ̂

d−→
[
3Ω1/2

∫ 1

0

rW (r)dr

]
1

− χ′
[
3Ω1/2

∫ 1

0

rW (r)dr

]
0

,

π̂
d−→ R−1

00R01 ≡ ψ,

T
−1/2
0 α̂

d−→
[
Ω1/2

∫ 1

0

W (r)dr

]
1

−ψ′
[
Ω1/2

∫ 1

0

W (r)dr

]
0

,

(b) For µ0 6= 0 and n = 2

β̂
p−→ µ1

µ0

,

γ̂
p−→ 0,

, π̂
p−→ µ1

µ0

T−1
0 α̂

p−→ 0.

In case of µ 6= 0 and n > 2 the least squares estimators are not defined

asymptotically.

, where P ≡ P (ε), R ≡ R(ε) and Ω ≡ Ω(ε).

The limiting distribution of π̂ and α̂ are well known from the spurious

regression case discussed in Phillips (1986). For β̂ and γ̂, the result is analogous

but with a different limiting distribution. In both cases, when r = 0 and

consequently yt does not cointegrate, we have a spurious regression and both

β̂ and π̂ converges, as T0 → ∞, not to a constant but to a functional of a

multivariate Brownian motion. While α̂ diverges, γ̂ converges to zero (which

is the value of the parameter γ0 when µ = 0).

Once again we consider the scenario where the researcher conduct the

estimation using the estimators defined in (2-9) with yt in levels.

Teorema 2.3 Let the process {y(0)
t } be defined by (2-6) have no cointegration

relation (r = 0). Also let {εt} satisfies Assumption 2.1, then for the estimators

defined in (2-9) as T →∞:

1√
T

(
∆̂1 −∆

)
d−→ c5(λ0)

[
σ1W (1)− χ′Σ1/2

00 W (1)
]
,

1√
T

(
∆̂2 −∆

)
d−→ 1

3

[
σ1W (1)−ψ′Σ1/2

00 W (1)
]
,
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where c5(λ0) =
[

1−λ0
9

+ (1+λ0)2

25λ0

]1/2

; σ1 ≡ Ω11; and Ω ≡ Ω(ε), χ ≡ χ(ε),

ψ ≡ ψ(ε) are defined in Lemma 2.2.

From the theorem above, it is clear that, unlike in the cointegrated case,

∆̂j diverges as T → ∞ for both specifications. As for the cointegration case

we investigate the limiting distribution of a conventional t-statistic in Section

2.4.

2.3.3
First-Difference

A simple alternative approach would be to work with the first difference

zt ≡ yt − yt−1, and have, by definition, a stationary dataset either in the

cointegrated case or in the spurious one.

zt = µ+ ∆µdt + εt

The difference would be that for the cointegrated case the covariance matrix of

Γ ≡ V(εt) is rank deficient (n− r) and for the spurious case is full rank since

r = 0. Nevertheless, we can apply the panel-based methodologies for stationary

process unaltered. The pre intervention model becomes

z1t = λ0 + θ′0z0t + ωt t = 2, . . . , T0

where θ0 = Γ−1
00 Γ01 and λ0 = µ1 − β′µ0. For the post -intervention period

t = T0 +2, . . . T , we can take the average of the ẑ1t = λ̂+ θ̂
′
z0t as the estimator

for E(z1) ≡ µ∗1 and construct the following estimator for the difference in the

drifts ∆µ = µ1 − µ∗1

∆̂F = 1
T−T0−1

T∑
t=T0+2

(
z1t − λ̂− θ̂

′
z0t

)

θ̂ =

(
T0∑
t=2

ż0tż
′
0t

)−1 T0∑
t=2

ż0tż1t

λ̂ = z̄1 − θ̂z̄0.

From Theorem 1.3 for the particular case of low dimensional linear

specification with q = 1 we have:

√
T

(
∆̂F −∆µ

)
σ̂F (λ0(1− λ0))−1/2

d−→ N (0, 1) ,
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where σ̂2
F is a consistent estimator for σ2

F ≡ limT→∞ T
−1V(

∑T
t=1 ωt), defined

in (2-11) for the post intervention residuals.

Remark 2.3 The approach above also give us
√
T -consistent estimator for

the difference in drifts. However, in contrast to the cointegrated estimator, it

is asymptotically normal hence more practical for conducting inference.

Remark 2.4 The limiting distribution in first difference is independent of both

the prior knowledge of the true values of µ and the true hypothesis (H0 or H1).

Remark 2.5 Working in first difference we avoid a true spurious regression

since if the integrated process is truly uncorrelated we will end up having θ̂ ≈ 0

for the pre-intervention period.

2.4
Inference

Given the asymptotic results from the last section for both the cointeg-

rated and the spurious case we would like to investigate the consequences of

conducting usual inference. In particular we investigate the limiting distribu-

tion of a conventional t-statistic such as

τj ≡ ∆̂j/σ̂j, j = {1, 2} (2-10)

, where the denominator is supposed to be a consistent estimator for the

standard deviation of ∆̂j defined in (2-9). For that let

Define the OLS residuals for the post intervention regression period,

t = T0 + 1, . . . , T , as

ν̂1t = y1t + γ̂t− β̂
′
yt0

ν̂2t = y1t + α̂− π̂′yt0.

Then, for each j = 1, 2, we have the following covariance estimators for

ρ2
k ≡ E(νtνt+k), where k = {−T + T0 + 1, . . . , T − T0 − 1}:

ρ̂2
jk =

{
1

T−T0

∑T−k
t=T0+1 ν̂jtν̂jt+k if k ≥ 0,

1
T−T0

∑T+k
t=T0+1 ν̂jtν̂jt−k if k < 0.

Therefore, for some choice of a kernel function φ(·) and bandwidth JT such

that JT →∞ as T →∞, we have

σ̂2
j ≡ σ̂2

j (JT ) =
∑
|k|<T

φ(k/JT )ρ̂2
jk. (2-11)
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2.4.1
Inference on the Cointegrated Case

Consider now the following stronger version of Assumption 2.1.

Assumption 2.2 Let {zt}∞t=1 be a sequence of random vectors (n × 1) such

that

(a) {zt}∞t=1 is zero-mean fourth order stationary process

(b) E|z1|4δ <∞ and some δ > 1

(c) {zt}∞t=1 is strong mixing with the mixing coefficients such that∑∞
m=1 m

2α
1−2/δ
m <∞

Clearly, Assumption 2.2 implies Assumption 2.1. The fourth order sta-

tionarity requirement on {νt} translates into weak stationarity of {w(k)
t ≡

νtνt+k} for any k ∈ Z. Assumptions 2.2(a)-(c) are sufficient for Assumption

A of Andrews (1991) which translate in the summability of the covariances of

w
(k)
t , i.e.

lim
T→∞

T−1V

∑
|k|<T

T−|k|∑
t=1

νtνt+|k|

 <∞.

Thus, we have a weak law of large number by Chebyshev’s Inequality applied

for each k which is result (a) of the following lemma.

Lemma 2.3 If the sequence {νt} satisfies Assumption 2.2, then, when µ = 0

for each j = 1, 2,

(a) ρ̂2
jk

p−→ ρ2
k

If in addition,
∫∞
−∞ |φ(x)|dx <∞ and J2

T/T → 0 as T →∞, then

(b) σ̂2
jT

p−→
∑∞

k=−∞ ρ
2
k ≡ σ2

v.

Lemma 2.3(b) follows from arguments similar to Newey e West (1987)

and Andrews (1991).

Teorema 2.4 If the process {ηt} satisfies the assumptions of Proposition 2.1,

then, as T →∞:

(a) For µ = 0 and under H0,

√
Tτ1

d−→ c1(λ0)W (1)− σ−1
ν c2(λ0)ξ′Ω

1/2
00 W (1)

√
Tτ2

d−→ c3(λ0)W (1)− σ−1
ν c4(λ0)ω′Ω

1/2
00 W (1)

where the constants ci(λ0) for i = {1, 2, 3, 4} are defined as in Theorem

(2.2)
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(b) Under the alternative, H1, and/or µ 6= 0, both estimators (j = 1, 2)

diverge as T →∞.

Remark 2.6 For the case with no drift, under H0 we have a
√
T -consistent

estimator for the difference in drifts albeit with a non-standard asymptotic

distribution.

Remark 2.7 Even though to de-trend (remove the drift) from a series is

a straightforward process, it is not applicable when we are testing the drift

stability. We could potentially remove the sample mean of the first difference

for the period prior to the intervention and carry on the procedure above as

the µ = 0. However, as we show below to conduct the whole estimation in first

difference is much simpler and give us asymptotically normal estimators.

2.4.2
Inference on the Spurious case

Since hypothesis testing is not carried directly on ∆̂j, it is useful to derive

an expression for the limiting distribution of a common t-stat such as the one

considered in the cointegrated case.

Lemma 2.4 If the process {εt} satisfies the assumptions of Proposition 2.1,

then as T →∞, for any k ≥ 0

T−2

T∑
t=1

vtv
′
t+k

d−→ Σ1/2

∫ 1

0

W (r)W ′(r)drΣ1/2,

where the process {vt} is defined as vt = vt−1 + εt, t ≥ 1 and ε0 = 0.

Note that the limiting distribution above is independent of k. In fact, it

is the same distribution derived in Lemma 1 when we consider k = 0. It follows

from the fact that the additional term
∑T

t=1 vt
∑k

i=1 ε
′
i is Op(T ). Using Lemma

2.4 we can state the following result.

Lemma 2.5 If the process {εt} satisfies the assumptions of Proposition 2.1,

then, under H0 and as T →∞:

(a) T−1ρ̂2
1k

d−→ (1− λ0)
(
A11 +A10A

−1
00A01

)
(b) T−1ρ̂2

2k
d−→ (1− λ0)

(
B11 +B10B

−1
00B01

)
If in addition,

∫∞
−∞ |φ(x)|dx <∞ and J2

T/T → 0 as T →∞, then

(c) (JTT )−1σ̂2
1T

d−→ Cφ(1− λ0)
(
A11 +A10A

−1
00A01

)
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(d) (JTT )−1σ̂2
2T

d−→ Cφ(1− λ0)
(
B11 +B10B

−1
00B01

)
where Cφ ≡

∫∞
−∞ φ(x)dx. Under the alternative H1 and/or µ 6= 0 and n = 2

we have

(e) T−2ρ̂jk = op(1)

(f) T−2σ̂j = op(1)

for j = 1, 2 and ∀k.

Result (b) for k = 0 appears in Phillips (1986) except for the fraction

term 1−λ0. It turns out it is valid for all fixed k and also for specification (2-7)

albeit with a different limiting distribution. Using a HAC covariance estimator

as proposed by Newey e West (1987) and Andrews (1991), we have an even

weaker convergence rate as it goes from T−1 to JTT
−1 as stated in Lemma

2.5(c)-(d).

Now combining Theorem 2.3 with Lemma 2.5 together with the continu-

ous mapping theorem we have the following result.

Teorema 2.5 If the process {εt} satisfies the assumption of Proposition 2.1,

then as T →∞, the estimators defined in (2-9)

(a) For µ = 0 and under H0,

J
1/2
T τ1

d−→ c5(λ0)√
Cφ(1− λ0)

[
σ1W (1)− χ′Σ1/2

00 W (1)
]

[
A11 +A10A

−1
00A01

]−1/2

J
1/2
T τ2

d−→ 1

3
√
Cφ(1− λ0)

[
σ1W (1)−ψ′Σ1/2

00 W (1)
]

[
B11 +B10B

−1
00B01

]−1/2

where c5(λ) =
[

1−λ0
9

+ (1+λ0)2

25λ0

]1/2

and σ1 ≡ Σ11

(b) Under the alternative H1 and/or µ 6= 0, the estimators above are not

defined asymptotically.

When conducting a t-test one draws inference on the premisses that√
Tτj

d−→ N (0, 1) under H0. However, as Theorem 2.5 shows, for the case

with no drift (µ = 0),
√
Tτj actually diverges under the assumption that

JT = o(T 1/2). Therefore, ignoring the non-stationarity of the data we end up

rejecting the null hypothesis too often. In fact, as the sample size increases,
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the probability of type I error increases. If we use a simple variance estimator

such as σ̂jT = ρ̂j0, we still have τj = Op(1), hence the t-test also diverges.

Still under the H0, but with µ0 6= 0, the estimator ∆̂j is not defined

asymptotically unless n = 2. Even when that is the case, the variance estimator

now converges to zero as per (e) and (f) of Lemma 2.5. Consequently the t-stat

is not properly defined asymptotically. Thus, as in the cointegrated scenario,

the case with drift is of little theoretical insight even for the spurious regression.

Under H1, but still with µ0 = 0, the estimator ∆̂j is well defined (even

asymptotically) for any n, however, as in the previous case, the variance

estimator converges to zero . Nevertheless, in finite sample, we tend to get

larger values for τj as the sample size increases and truly rejecting the null

when its false. For the case where µ0 6= 0 once again the t-stat is not properly

defined asymptotically.

In summary, for the spurious case, we end up rejecting the H0 regardless

of the existence of an intervention effect when panel based methods for

counterfactual analysis are applied in levels. The result is similar in spirit of

the one found by Phillips (1986). However, in the spurious regression case we

are usually interested in the t-stat related to the β coefficients of the regression

(which are found to be tβ = Op(T
1/2)). In the present case the interest lies in

the error of the predicted model ∆̂j where we have t∆ = Op(J
−1/2
T )

2.5
Conclusions

In this chapter we consider the asymptotic properties of intervention

effects estimators based on the construction of an artificial counterfactual

from linear panel data models. The results in the chapter either show that the

estimators diverge or have non-standard asymptotic distributions. The main

prescription of the chapter is that practitioners should work in first-differences

when the data are non-stationary.



3
Conditional Quantile Counterfactual Analysis

3.1
Introduction

In this chapter we propose a new method to carry out counterfactual

analysis to evaluate the impact of interventions on the distribution of variables

of interest. Our approach is specially useful in situations where there is a single

“treated” unit and no available “controls”. The goal of the proposed method

is the construction of an artificial counterfactual based on observed data from

a pool of “untreated” peers. Our approach is a generalization of the work of

Hsiao et al. (2012) and Carvalho et al. (2016).

Causality is a major topic of empirical research in Economics. Usually,

causal statements with respect of the adoption of a given treatment (interven-

tion) rely on the construction counterfactuals based on the outcomes from a

group of individuals not affected by the treatment. Notwithstanding, definit-

ive cause-and-effect statements are usually hard to formulate given the con-

straints that economists face in finding sources of exogenous variation. How-

ever, in micro-econometrics there has been major advances in the literature

and the estimation of treatment effects is part of the toolbox of applied

economists; see, for example, Angrist et al. (1996), Angrist e Imbens (1994),

Heckman e Vytlacil (2005), Belloni et al. (2014), and Belloni et al. (2016).

Furthermore, in recent years there has been significant contributions to the es-

timation of quantile treatment effects when a control group is readily available.

See, for example, Abadie et al. (2002) and Firpo (2007) for a low dimensional

set up and Chernozhukov e Hansen (2005), Chernozhukov e Hansen (2006),

Chernozhukov e Hansen (2008), Chernozhukov et al. (2014) for high dimen-

sional one.

On the other hand, when there is not a natural control group which

is usually the case when handling aggregated (macro) data, the econometric

tools have evolved in a much slower pace and much of the work has focused on

simulating counterfactuals from structural models. However, in recent years,

some authors have proposed new techniques inspired partially by the develop-

ments in micro-econometrics that are able, under some assumptions, to con-

duct counterfactual analysis with aggregate (macro) data. Hsiao et al. (2012)

put forward a simple panel data method to estimate counterfactuals and

studied the impact of economic and political integration of Hong Kong with
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mainland China on Hong Kong’s economy. Zhang et al. (2014) applied the

same techniques of Hsiao et al. (2012) to evaluate the impact of Canada-

US Free Trade Agreement (FTA) on Canada’s GDP, labour productivity

and unemployment. Abadie e Gardeazabal (2003) used the SC method to in-

vestigate the effects of terrorism on the GDP of the Basque Country while

Abadie et al. (2010) and Abadie et al. (2014) applied the the same techniques

to measure, respectively, the effects on consumption of a large-scale tobacco

control program in California and the economic impact of the 1990 German

reunification in West Germany. Pesaran et al. (2007) and Dubois et al. (2009)

used the Global Vector Autoregressive (GVAR) framework developed by

Pesaran et al. (2004) and Dees et al. (2007) to study the effects of the launch-

ing of the Euro. Pesaran e Smith (2012) studied the effects of the quantitative

easing (QE) in the United Kingdom with a new methodology partly inspired

by the GVAR methods. Finally, Angrist et al. (2013) considered a new semi-

parametric method to measure the effects of monetary policy interventions on

macroeconomic aggregates. However, none of the above papers considered the

case of quantile treatment effects for dynamic data when there is no control

group available.

The goal of this chapter is to extend the methodology put forward by

Carvalho et al. (2016) by considering the estimation of quantile counterfactu-

als. We derive an asymptotically normal test statistics for the quantile inter-

vention effect. Our procedure is illustrated in a detailed simulation experiment

as well as in an empirical application in Corporate Finance.

The chapter is organized as follows. Section 3.2 presents the estimator

and the conditional quantile model. The asymptotic theory is derived in derived

in Section 3.3 while inference is considered in Section 3.4. The effects of

misspecification is discussed in Section 3.4.1. Section 3.5 shows the Monte

Carlo simulations. The empirical illustration is described in Section 3.6. Finally,

Section concludes de chapter. All proofs are relegated to the appendix.

3.2
The Estimator

3.2.1
Definitions

Suppose we have n units (countries, states, municipalities, firms, etc)

indexed by i = 1, . . . , n. For each unit and for every time period t = 1, . . . , T ,

we observe a realisation a random variable Zit defined on (Ω,F , P )

Furthermore we consider that there is only one unit that suffers the
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intervention (treatment) at time T0 = bλ0T c, where λ0 ∈ (0, 1). We assume,

without loss of generality, to be the unit one (i = 1) and we denote the unit

of interest Yt ≡ Z1t. Let Dt be a binary variable flagging the periods when the

intervention was in place, then we can express the observable variables of unit

of interest as

Yt = DtY
(1)
t + (1−Dt)Y

(0)
t ; Dt =

1 if t ≥ T0

0 otherwise

where, following the literature on treatment effects, Y
(1)
t denotes the outcome

when the unit i is exposed to the intervention and Y
(0)
t when it is not.

The remaning n − 1 unit (peers) are potential controls denoted by

X t ≡ (Z2t, . . . , Znt)
′. We treat the peers as untreated, i.e., the intervention

had no effect on them formally we require that Dt is independent of X t for all

t, which is implied by Assumption 1.1. Once again, Ii is important to not that

we do not necessarily require Dt to be independent of Yt (the unit of interest)

only of X t (the peers) . Since we are only interested in the treatment effect on

the treated it is a well known fact, from the treatment effect literature that we

can consistently estimate the average effect even when E(Yt|Dt) 6= 0

We are ultimately interested in the potential effects of this intervention

in the unit of interest. Formally defined for the post-intervention period as

∆t ≡ Y
(1)
t − Y (0)

t ; t = T0, . . . , T (3-1)

Clearly we do not observe Y
(0)
t after T0 − 1, for that reason we call thereafter

the counterfactual, i.e., what would Yt have been like had there been no

intervention (potential outcome). Notice that the intervention effect ∆t by

definition is a random variable possibly with with a time varying distribution

(non-stationary). We return to this discussion in subsection 3.2.2.

We construct a proxy variable for Y
(0)
t based on the Artificial Counter-

factual (ArCo) method by exploiting the relation among the the unit before

the intervention. Consider the following data generating process (DGP)

Assumption 3.1 For each unit i = 1, . . . , n

Z
(0)
it = Ψ∞,i(L)εit

εit = Λif t + ηit

f t ∼ (µt,Q)

where f t(f × 1) is a vector of common unobserved factors such that is

serially uncorrelated, with deterministic time trend µt and covariance structure
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Q(f×f). Λi(1×f) are vectors of factor loadings. The idiosyncratic error term

ηit ∼ (0, ωi) is also considered serially uncorrelated. Additionally, E(ηitf j) =

0, ∀i, t, j. Finally, L is the lag operator and the polynomial Ψ∞,i(L) = (1 +

ψ1iL+ ψ2iL
2 + · · · ) is such that

∑∞
j=0 ψ

2
ji <∞ for all i.

The GDP described by Assumption 3.1 is quite flexible. It translate into

each unit being modelled as a determistic idiosyncratic time trend plus a zero-

mean weakly dependent stationary (ARMA) process as in

Zit = µit + ζit

However, both the time trends and the error terms are linked due to the

common factor structure of the DGP. So even though Zit is allowed to be not

identically distributed (non-stationary) common regression techniques would

not result in spurious results.

3.2.2
Conditional Quantile Model

First let’s considere a supposedly more direct approach and test for the

difference in the distribution of Yt before and after the intervention. Let F0

and F1 the marginal distribution of Y
(0)
t and Y

(1)
t respectively. Then we could

use its empirical distribution function (EDF) to perform a distributional test

using some metric defined over F̂0 − F̂1. As consequence of the determinist

(but unknown) time trend this simple procedure would mistakenly indicate the

presence of a intervention effect whenever a time trend is present. Obviously

detrending (as is it common practice in time series analysis) would be naive if

we would like to test, for instance, the a intervention effect on the trend itself.

The same problem would occur in the case we would like to test for

any unconditional quantile difference before and after the intervention. Any

unconditional analysis attempt is bound to suffer from bias specially if the time

trend dominates the stochastic term which is usually the case in practice. To

circumvent this issue we exploit the the information contained in the peers to

conduct a conditional analysis. In particular we focus on conditional quantiles,

heuristically we measure the treatment effect by the potential differences that

it may cause in the quantiles of the conditional distribution of Y |X. In other

words, we test for the stability of the distribution function of Y |X, which

under the hypothesis that the peers are untreated might arguably be caused

by the treatment effect on the unit of interest.

Some notation: for the random variable Y
(0)
t |X t let FY |X(y|x) = P(Y

(0)
t ≤

y|X t = x) be the conditional distribution function. Hence we define for a given
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τ ∈ [0, 1] the conditional quantile function (CQF) as1

Qτ (x) = inf{y : FY |X(y|x) ≥ τ}

It can be shown that the CQF (if exists) is the solution to the following

minimizaton problem

Qτ (x) ∈ arg min
Q∈Q

E [ρτ (Y −Q(x)]

where ρτ (z) = z(τ − 1{z < 0}) is know as the check function

Assumption 3.2 For each τ ∈ [0, 1]

Qτ (x) = gτ (x,θ0(τ))

where gτ (·,θ0(τ))) : Rn−1 7→ R for a unique θ0(τ) ∈ Θτ ⊂ Rpτ

The assumption above postulate a correctly specified parametric model

for Qτ (x). Failure to this hypothesis (mispecification) are treated in a section

below. In the most flexible setup we allow to both the the functional form

and the true parameters to vary with τ , however one can get a much more

parsimonious model by setting both the same across the quantiles. An even

simpler solution is a linear specification such as g(x,θ0) = x′θ0.

We can define the τ−quantile error by νt(τ) ≡ Y
(0)
t − g(X t,θ0(τ)) and

rewrite the model in the conventional error format as

Y
(0)
t = g(X t,θ0(τ)) + νt(τ); P (νt(τ) ≤ 0) = τ

It can be shown that the parameter θ0 is a solution to the following

minimizaiton problem

θ0(τ) ∈ arg min
θ∈Θ

E
[
ρτ (Y

(0)
t − g(X t,θ(τ))

]
hence, using the pre-intervention sample {yt,xt}T0−1

t=1 we can estimate θ0 solving

the sample counterpart of the minimisation above

θ̂(τ) = arg min
θ∈Θ

1

T

T∑
t=T0

[ρτ (yt − g(xt,θ(τ))]

Therefore we define the conditional quantiles ArCo estimator by

1this definition is necessary to avoid Qτ (·) not to be unique for a given τ , which happen
whenever FY |X has flat regions. If FY |X is a strictly increasing CDF then Qτ (x) = F−1Y |X(τ)
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Ŷ
(0)
t (τ) = g(X, θ̂(τ)); t = T0, . . . , T (3-2)

Also we can define for each τ ∈ [0, 1] the intervention effect estimator as

m̂t(τ) = Yt − Ŷ (0)
t (τ); t = T0, . . . , T (3-3)

For completeness we now reproduce from Koenker (2005) some well

known condition to ensure the both the consistency and the asymptotic

normality of θ̂(τ)

Assumption 3.3 The distribution functions Ft(y) = P(Yt ≤ y|Xt = xt) are

(a) absolutely continuos

(b) with continuos density ft uniformily bounded away from 0 and ∞ at the

points F−1
t (τ) for t = 1, 2, . . .

Assumption 3.4 There exist positive definite matrices A and B(τ) such that

(a) limT→∞
∑T

t=1∇gt∇g′t = A

(b) limT→∞
∑T

t=1 ft∇gt∇g′t = B(τ)

(c) maxt=1,...,T ‖∇gt‖ → 0

where ∇gt = ∂g(xt,θ)
∂θ
|θ=θ0 and ft = f(g(xt, θ0))

3.3
Asymptotics

Instead of using directly the empirical quantile of {∆̂t(τ)}t≥T0 as the basis

of our inference procedure to test potential difference in the quantiles after the

intervention, it will be proven more convenient to rely on the equivalent result

P(Y
(1)
t − gτ (X,θ0(τ))−∆t ≤ 0) = E1{vt(τ) ≤ 0} = τ

Hence we replace mt(τ) ≡ Y
(1)
t − gτ (X,θ0(τ)) with its estimator m̂t(τ)

defined in (3-3) and use the empirical distribution function (EDF) of m̂t(τ)−∆t

evaluated at zero as our estimator

τ̂T (τ) = 1
T−T0+1

T∑
t=T0

1{m̂t(τ)−∆t ≤ 0} (3-4)

, which allow us to estimate the asymptotic variance without having to estimate

the density of vt(τ). Ignoring (for now) the sample variance of θ̂(τ), that would

be the average of dependent (dependence structure imposed by Ψ(L)) Bernoulli

trial with probability of success equal to τ under H0.
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Let wt(τ) = 1{vt(τ) ≤ 0} − τ , under the null and Assumption 3.1,

{wt(τ)}t is a stationary process with the j-covariance denoted by γj(τ) ≡
E(wt(τ), wt+|j|(τ)) = P(∆t ≤ 0,∆t+|j| ≤ 0). From the Bernoulli trial variance

we get γ0(τ) = τ(1 − τ). The j-correlation is denoted by ρj(τ) ≡ γj(τ)/γ0(τ)

and let φ(τ) =
∑∞

j=1 2ρj(τ), which is finite by Assumption 3.1. Hence, taking

into account the uncertainty on the estimation of θ0 during the pre intervention

period, we have

Teorema 3.1 For any τ ∈ (0, 1), let WT (τ) ≡
√
Tλ0(1− λ0)(τ̂T (τ) − τ).

Under Assumptions 1.1-3.4:

WT (τ)
d−→ N

(
0, σ2(τ)

)
where N (µ, ω2) denotes the normal distribution with mean µ and variance ω2;

and σ2(τ) = τ(1− τ)(1 + φ(τ)).

Since the above theorem is valid for any τ ∈ (0, 1) and we can any

finite set τ = (τ1, . . . , τk)
′ and apply the Cramer-Wold device to derive the

multivariate version of Theorem 3.1

Corolário 3.2 Let W T (τ ) = (WT (τ1), . . . ,WT (τk))
′ for τ = (τ1, . . . , τk)

′ ∈
(0, 1)k and k ≤ ∞. Under Assumptions 1.1-3.4:

W T (τ )
d−→ Nk (0,Σ(τ ))

where Nk(µ,Ω) denotes the k-dimensional multivariate normal distribution

with mean µ and variance Ω; and Σ(τ ) is a (k × k) the covariance matrix

Σ(τ ) =
∑
j∈Z

Γj; Γj = E(wtw
′
t+j); wt = (w1t, . . . , wkt)

′; wit = 1{∆t(τi) ≤ 0}

with a typical entry of Γ0 given by (Γ0)ij = min(τi, τj)− τiτj for 1 ≤ i, j < k

Further, since the set of indicator functions I = {1{−x]} is Donsker class

we have that the empirical process WT = {WT (τ), τ ∈ (0, 1)} admits a uniform

central limit theorem

Corolário 3.3 Let WT = {WT (τ), τ ∈ (0, 1)}. Under Assumptions 1.1-3.4:

WT
d−→ N∞(0, C)

where N∞ is a infinity dimensional Gaussian distribution with mean 0 and

covariance structure given by

C(τ, τ ′) = (min(τ, τ ′)− ττ ′) (1 + φ(τ, τ ′)), (τ, τ ′) ∈ [0, 1]2
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, where φ(τ, τ ′) = 2
∑∞

j=1 ρj(τ, τ
′), ρj(τ, τ

′) =
γj(τ,τ

′)
γ0(τ,τ ′)

and γj(τ, τ
′) =

E(wt(τ), wt+|j|(τ
′))

3.4
Inference

Under the assumption that the intervention had no effect on the unit of

interest we postule our the null hypothesis as being

H0 : ∆t = 0 t = 1, . . . , T (3-5)

As a consequence, under the null and Assumption 3.1, the conditional distri-

bution FY |X is unaltered. Hence (3-6) implies the equality of the conditional

quantiles of Yt|X t.

However, (3-6) is not implied by the equality of the conditional quantiles.

Since the latter is only with respect to the marginal distribution of Yt|X t,

the intervention might had an effect on the on the jointly distribution of

(Y1|X1, . . . , YT |XT ). For that reason we postule a weaker null hypothesis

against which the test is more powerful. We test for the stability of k < ∞,

τ − quantiles of the conditional distribution.

Hτ
0 : Qt(τ ) = Q(τ ) t = 1, . . . , T (3-6)

Once the asymptotic normality of the τ̂T is ensured (Theorem 3.1) is

straightforward to conduct asymptotic inference. For the a i.i.d sampling

we have φij = 0 or Σ(τ) = Γ0. Note that even uncoreleteness (nor mean

independence) are enough for the latter result, since we what is necessary is

serial uncorrelation (mean independence) among {wt}t, which is not implied

by the by uncorrelatedeness (mean independence) of vt.

For a general weakly dependent case φij takes into account the serial

correlation structure on wt which can be consistently estimated using the

residuals {et ≡ wt − τ̂ T}t.The finite sample covariance structure to be

estimated given by

ΣT ≡ ΣT (τ ) ≡
T−T0∑

j=−T+T0

T − T0 + 1− |j|
T − T0 + 1

Γj

Lemma 3.1 Let Σ̂T be a consistent estimator for ΣT and τ = (τ1, . . . , τk)
′ ∈

(0, 1)k. Under Assumptions 1.1-3.4 and Hτ
0:

W T (τ )′Σ̂
−1

T W T (τ )′
d−→ χ2

k

, where χ2
k is the chi-square distribution with k degrees of freedom
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In a typical application we would like to test for the stability of the

interquartile range after the intervention. For instance for a given a pair (τ1, τ2)

such that 0 ≤ τ1 < τ2 ≤ 1, let r ≡ τ1 − τ2 then we could test the stability of

the probability covered r directly using

r̂T = 1
T−T0+1

T∑
t=T0

bt; bt ≡ 1{ŷ(0)
t (τ1) ≤ yt ≤ ŷ

(0)
t (τ2)}

, which as a direct consequence of Theorem 3.1

Lemma 3.2 Under Assumptions 1.1-3.4 and H0:

√
T

 r̂T − r√
r(1−r)(1+φ̂T )
λ0(1−λ0)

 d−→ N (0, 1) (3-7)

, where φ̂T = φ̂T (r) is a consistent estimator for φT ≡ φT (r), which is the

univariate version of (3) with wt replaced by bt in the covariance {γj}j≥0

definition

Any measure of the distance between the test-statistic WT ≡ {WT (τ) :

τ ∈ [0, 1]} and the normal distribution N∞(0, C) can be used as evidence

against the null hypothesis that the the conditional distribution is stable

regarding the intervention. Some popular measures of distances are the Lp

norms denoted by ‖ · ‖p norm for p ∈ [1,∞]. Since those norms are continuos

transformation of WT , the next lemma follows from the continuos mapping

theorem.

Lemma 3.3 For p ∈ [1,∞], under Assumptions 1.1-3.4 and H0:

‖WT‖p
d−→ ‖N∞(0, C)‖p

, where ‖f‖p =
(∫
|f(x)|pdPX

)1/p
if 1 ≤ p ≤ ∞ and ‖f‖∞ = supx∈X |f(x)|

In particular for p = 2 and p = ∞ those statistics are the conditional

analogous of the square root of Cramer-von-Mises and Kolmogorov-Smirnov

(KS) statistic respectively. For a random sample (i.i.d observations) N∞(0, C)

reduces to a brownian bridge B. Such that the limit distribution is the same

of the KS-test, which is given by W∞ ≡ supu∈[0,1] B(u), which is tabulated or

it can be calculated analytically to a arbitrary precision using the Marsaglia

Tsang (2003) series

P (W∞ > x) = 2
∞∑
j=1

(−1)j−1 exp(−2j2x2)
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Similarly for p = 2, we have the limiting distribution of ‖WT‖2
2 given by

W2 ≡
∫ 1

0
B2(u)du, which can also be expanded in a series as

P (W2 > x) =
1

π

∞∑
j=1

(−1)j+1

∫ 4j2π2

(2j−1)2π2

√
−√y

sin
√
y

exp (−xy/2)

y
dy

For the case of weakly dependent data there is no simple analytic solution

for the limit distribution of the test statistics. One could conduct distributional

inference based on resampling schemes or bootstrap (block bootstrap in that

case).

Alternatively under the normality assumption of the innovation we derive

in Section 3 a close form for the covariance structure of {w} for any particular

covariance structure in the raw data. Hence one could fit an simple ARMA

model and use those estimated as plug in the λj

3.4.1
Misspecification

Qτ (x) = g (x,θ0(τ)) + aτ (x)

Consider the assumption where both f t and ηt are normally distributed

, in that case

εt ∼ (0,Π); Π =

(
Λ1QΛ′1 + ω1 Λ1QΛ′0

Λ0QΛ′1 Λ0QΛ′0 + ω0

)
.

Giving a, possibly infinity order stable matrix polinomial Ψ(L), we have

the Zt = Ψ(L)εt and covariance structure given by

Γj ≡ C(Zt,Zt+j) =
∞∑
i=0

ΨiΠΨ′i+j

Consider the assumption where both f t and ηt are normally distributed

, in that case [

It is well know that the conditional distribution of a multivariate normal

is also normally distributed as

Yt|X t = x ∼ N (α + x′β, σ2)

β = [Γ0]10[Γ0]−1
00

α = µ1 − µ0β

σ2 = Ω11 −Ω10Ω
−1
00 Ω01
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Also for a normal random variable with mean µ and variance σ2, the quantile

function is given by µ + σΦ−1(τ), where Φ(·) denotes the standard normal

distribution function. Hence for our example the conditional quantile functions

becomes

Qτ (x) = α + x′β + σΦ−1(τ) = θ0(τ) + x′β

which is linear in the parameters.

Let νt(τ) = Yt − θ0(τ) − X ′tβ = −θ0(τ) + (1,−β)Zt. Then νT =

(ν1, . . . , νT )′ is given by

1
σ
νT ∼ N (−Φ−1(τ),Λ)

λj =
C(νi, νj)

σ2
=

(1,−β)Γj(1,−β)′

(1,−β)Γ0(1,−β)′

In that case we can explicitly express the covariance structure of {wt} by

γj = P(νt ≤ 0; νt+j ≤ 0)− τ 2. Where the first term can be evaluated for j 6= 0

by

P(νt ≤ 0; νt+j ≤ 0) = Φ

[(
0

0

)
,−Φ−1(τ)

(
1

1

)
,

(
1 λj

λj 1

)]

3.5
Monte Carlo

We conducted a Monte Carlo study by simulating the DGP described

in Assumption 3.1 applying different configurations around a baseline scenario

consisting of 5 units (including the treated one), 100 observations with the

treatment at T0 = 50. Table C.7 shows the size for the test for different

distributions of the common factor. We include chi-square innovations as well

as t-distribution to check the robustness of our asymptotic results to skewness

and fat tails respectively. In seems that the the distribution pays little part on

determining the test size

Overall the test seems to be rightly sized with greater distortions as we

move away from the median. The sup test seems to be consistently slightly

undersized, whereas the L2 slightly oversized. However both distributional test

can be considered satisfactory for practical purposes.

3.6
Empirical Illustration

We now apply the methodology described so far to investigate the effects

on stock returns after a change in corporate governance regime. The different

levels of governance were created by BOVESPA in December, 2000, at the
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times with three distinct levels:2 Basic, where no special requirement is made

on top of all the rules that already apply to all listed companies in the stock

exchange. Level N1, where the participant are required, among other things,

to attempt public meeting with analysts and investors at least once an year;

keep a minimum of 25% of the company’s capital free-floating, Improvement in

quarterly reports, including the disclosure of consolidated financial statements

and special audit revision. On top of that, to qualify for the level N2, the

participant must adopt well established international laws of accounting, create

means to mediate partnership disputes,Establishment of a two-year unified

mandate for the entire Board of Directors, which must have five members at

least, of which at least 20% shall be independent members and, in case of

change of ownership, extend the same right of the common shareholders (up

to 80% of the value) to the preferential shareholders.

Finally to be listed in the most restrict of corporate governance, level

Novo Mercado (NM), the company must have only common stocks.Overall,

any movement towards higher levels (from Basic to NM) implies stronger

requirements in the listed company, which are mainly design to protect

minority shareholders. Since those movements are completely voluntary , it

is natural to interpret them as a sign of commitment to better corporate

governance practices. The date of the migration would then represent the

timing of the intervention (treatment).

We are far from being the pioneers in the attempt to uncover the link

between corporate governance and stock returns. To name a few, Mitton (2002)

looks at the Southeast Asian 1997 crises to study the relation between the

downfall of the stock market and the fact that some of those stock were also

listed in the USA via American Depositary Recipients or were audited by

well known auditing companies. Lemmon and Lins (2003) compare the stock

returns of companies with less concentrated capital structure also considering

the Southeast Asian 1997 crises background. In particular for Brazilian market,

we have Srour (2005) investigating the relation between stock returns and

corporate governance using company data from 1997-2001. Lastly, Almeida

(2007) looks at the same scenarios as ours and fit GARCH models to each

stock during the transition window.

It seems intuitive that good corporate governance should lead to a

decrease in volatility of the returns. While the causes might be different,

or at least situation dependent, there are compelling evidence presented in

conclusion of all those papers mention above to support such a claim.

We first identify stocks that made the transition. Here we do not

2Currently 2 more levels were included: Bovespa Mais and Bovespa Mais Level 2
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distinguish between any of the three level (N1,N2 or NM). Any transition

from the Basic Level to higher level of corporate governance we treat as a

intervention. While this is not entirely satisfactory there is no requirement that

each company willing to migrate must be do so level-by-level. Hence we have

cases of a company going from Basic to NW at once. Since we do not possess

any case of downgrade in the dataset we only investigate upwards movement.

Once we identify the unit that made the transition we look from peers (control)

in the same sector that did not made any change corporate governance level

in the timeframe of interest. We use this criteria to both capture sectorial

shock through the peers and isolate the unit of interest from possible spurious

correlation among unrelated companies.

The data set consist of daily closing price of hundreds of stocks listed at

Bovespa from Jan/00- Dez/09. Of those only 49 made the transition in time

spam considered. Restricting to cases, where the unit of interest has at leat

one peer in the same business segment that was untreated it reduces to 4 cases

to analyze which are described in Table C.9

3.7
Conclusion

In this chapter we have extended the ArCo methodology for the estima-

tion of intervention effects on the quantiles of variables of interest.
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A
Appendix: Proofs

A.1
Proofs of Chapter 1

We begin by proving an uniform version for the Continuous Mapping

Theorem (UCMT) and the Slutsky Theorem (UST). For the next 2 Lemmas,

XT , Y T , X and Y are random elements taking values on a subset D of the

Euclidean space (real-valued scalar, vector or matrix) defined over the same

probabilistic space with distribution P index by P .

Lemma A.1 (Uniform Continuous Mapping Theorem) Let g : D → E
be uniformly continuous at every point of a set C ⊆ D where PP (X ∈ C) = 1

for all P ∈ P.

(a) If XT
p−→ X uniformly in P ∈ P, then g(XT )

p−→ g(X) uniformly in

P ∈ P.

(b) If XT
d−→ X uniformly in P ∈ P, then g(XT )

d−→ g(X) uniformly in

P ∈ P.

Proof. The proof is similar to the classical Continuous Mapping Theorem proof

but with continuity replaced by uniform continuity. For (a), by the definition

of uniform continuity, for any ε > 0, there is a δ > 0 such that for all x,y ∈ C
if dD(x,y) ≤ δ ⇒ dE [g(x), g(y)] ≤ ε for some metric dD and dE , defined on D
and E respectively. Therefore,

PP {dE [g(XT ), g(X)] > ε} ≤ PP [dD(XT ,X) > δ] + PP (X /∈ C).

The result follows since the first term on the right hand side converges to

zero uniformly in P ∈ P by assumption and the second is zero for all P ∈ P
also by assumption.

For (b), given a set E ∈ E we have the preimage of g denoted by

g−1(E) ≡ {x ∈ D : g(x) ∈ E}. For close F ∈ E we have that g−1(F ) ⊂
g−1(F ) ⊂ g−1(F ) ∪ Cc due to the continuity of g on C. Clearly, the event
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{g(XT ) ∈ F} is the same of {XT ∈ g−1(F )}, then we can write

lim sup sup
P∈P

P[XT ∈ g−1(F )] ≤ lim sup sup
P∈P

P[XT ∈ g−1(F )]

≤ sup
P∈P

P[X ∈ g−1(F )]

≤ sup
P∈P

P[X ∈ g−1(F )] + sup
P∈P

P(X /∈ C}︸ ︷︷ ︸
=0

,

where the second inequality is a consequence of the uniform convergence in

distribution of XT to X and the Portmanteau Lemma (Lemma 2.2 Van der

Vaart, 2000). The result follows again by the Portmanteau Lemma in the other

direction. �

Lemma A.2 (Uniform Slutsky Theorem) Let XT
p−→ C uniformly in

P ∈ P, where C ≡ C(P ) is a non random conformable matrix and Y T
d−→ Y

uniformly in P ∈ P, then

(a) XT + Y T
d−→ C + Y uniformly in P ∈ P

(b) XTY T
d−→ CY uniformly in P ∈ P, if C is bounded uniformly in

P ∈ P.

(c) X−1
T Y T

d−→ C−1Y uniformly in P ∈ P, if det(C) is bounded away from

zero uniformly in P ∈ P.

Proof. If XT
p−→ C uniformly in P ∈ P, then XT

d−→ C uniformly in

P ∈ P Let ZT ≡ (vecXT , vecY T )′, then ZT
d−→ Z ≡ (vecC ′, vecY ′)′

uniformly in P ∈ P. Now the sum of two real number seen as the mapping

(x, y) 7→ x + y is uniformly continuous. The product mapping (x, y) 7→ x.y is

also uniformly continuous provided that the domain of one of the arguments is

bounded. The inverse mapping x 7→ 1/x can also be made uniformly continuous

if the argument is bounded away for zero. Since all the transformations above

applied to ZT are (entrywise) compositions of uniform continuous mapping

(hence uniformly continuous), the results follow from Lemma A.1(b). �

Proof of Proposition 1.2

Proof. Recall thatMt ≡M(xt), νt ≡ y(0)
t −Mt for t ≥ 1 and ηt,T ≡ M̂t−Mt

for t ≥ T0. From the definition of our estimator we have that ∆̂T −∆T is equal

to

1

T2

∑
t≥T0

[
yt −∆T − M̂(xt)

]
=

1

T2

∑
t≥T0

[
y

(0)
t − M̂(xt)

]
=

1

T2

∑
t≥T0

[
νt − ηt,T

]
.
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After multiplying the last expression by
√
T we can rewrite it as:

√
T
(
∆̂T −∆T

)
=

√
T

T2

∑
t≥T0

νt︸ ︷︷ ︸
≡V 2,T

−
√
T

T1

∑
t≤T1

νt︸ ︷︷ ︸
≡V 1,T

−
√
T

(
1
T2

∑
t≥T0

ηt,T − 1
T1

∑
t≤T1

νt

)

(A-1)

By condition (a) in the proposition, the last term in the right hand side

converges to zero uniformly in P ∈ P . Under condition (b), each one of the

first two terms individually converges in distribution to a Gaussian random

variable uniformly in P ∈ P , which is not enough to ensure that the joint

distribution is also Gaussian. However, notice that both V 1,T and V 2,T are

defined with respect to the same random sequence. Hence, not only they are

jointly Gaussian but also they are also asymptotically independent since they

are summed over non-overlapping intervals:

V T ≡ (V 1,T ,V 2,T )′
d−→ (Z1,Z2)′ ≡ Z ∼ N

{
0,

[
λ−1

0 Γ 0

0 (1− λ0)−1Γ

]}
,

uniformly in P ∈ P , where Γ ≡ limT→∞ ΓT .

It follows from Lemma A.1(a) that V 2,T −V 1,T
d−→ Z2−Z1, uniformly

in P ∈ P . By Lemma A.2(a),
√
T
(
∆̂T −∆T

)
d−→ N

[
0, Γ

λ0(1−λ0)

]
, uniformly

in P ∈ P . �

We now state some auxiliary lemmas that will provide bounds in prob-

ability used throughout the proof of the main theorem:

Lemma A.3 Let {ut}t∈N be strong mixing sequence of centered random vari-

ables with mixing coefficient with exponential decay. Also for some real r > 2,

supt E|ut|r+δ <∞ for some δ > 0, then there exist a positive constant Cr (not

depending on n) such that

E|u1 + · · ·+ uT |r ≤ CrT
r/2.

Proof. See Doukhan e Louhichi (1999) and Rio (1994). �

Lemma A.4 Under Assumptions 1.2-3.4, ‖θ̂ − θ0‖1 = OP

(
s0

d1/γ√
T

)
.
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Proof. For real a, b > 0 define:

A (a) =

{∥∥∥∥∥ 2

T1

T1∑
t=1

xtνt

∥∥∥∥∥
max

≤ a

}
, pt(d× 1) ≡ xtνt;

B(b) =

{∥∥∥∥∥ 1

T1

T1∑
t=1

M t

∥∥∥∥∥
max

≤ b

}
, M t(d× d) ≡ xtx′t − E(xtx

′
t),

where ‖ · ‖max is the maximum entry-wise norm.

Following Corollary 6.10 of Bülhmann e van der Geer (2011) on A (a) ∩
B(b), we have that ‖θ̂ − θ0‖1 ≤ 32ςs0

ψ2
0

, provided that ς ≥ 8a, b ≤ ψ2
0

32s0
and the

compatibility constraint is satisfied for Σ ≡ E
(

1
T1

∑T1
t=1 xtx

′
t

)
with constant

ψ0 > 0 (Assumption 1.2). For convenience set a = ς
8

and b =
ψ2
0

32s0
. Then, we

can write P
(
‖θ̂ − θ0‖1 >

32ςs0
ψ2
0

)

≤ P

(∥∥∥∥∥ 2

T

T1∑
t=1

pt

∥∥∥∥∥
max

>
ς

8

)
+ P

(∥∥∥∥∥ 1

T1

T1∑
t=1

M t

∥∥∥∥∥
max

>
ψ2

0

32s0

)

≤ d max
1≤i≤d

P

(∣∣∣∣∣
T1∑
t=1

pi,t

∣∣∣∣∣ > ςT1

16

)
+ d2 max

1≤i,j≤d
P

(∣∣∣∣∣
T1∑
t=1

mij,t

∣∣∣∣∣ > ψ2
0T1

32s0

)

≤ d

(
16

ςT1

)γ
max
1≤i≤d

E

∣∣∣∣∣
T1∑
t=1

pi,t

∣∣∣∣∣
γ

+ d2

(
32s0

ψ2
0T1

)γ
max

1≤i,j≤d
E

∣∣∣∣∣
T1∑
t=1

mij,t

∣∣∣∣∣
γ

≤ C1(γ)
d

T
γ/2
1 ςγ

+ C2(γ, ψ0)
d2sγ0

T
γ/2
1

,

where the second inequality follows from the union bound. The third inequality

follows from the Markov inequality applied for some γ > 2. The last inequality

is a consequence of Lemma 3, since (i) by Assumption 1.3(a) both {pt} and

{M t} are strong mixing sequences with exponential decay as measurable

functions of {wt}; and (ii) by Cauchy-Schwartz inequality combined with

Assumption 1.3(b) we have for some δ > 0 and t ≥ 1:

E|pj,t|γ+δ/2 ≤
(
E|xj,t|2γ+δE|νt|2γ+δ

) γ+δ/2
2γ+δ ≤ cγ, 1 ≤ i ≤ d

E|mij,t − E(xi,txj,t)|γ+δ/2 ≤
(
E|xi,t|2γ+δE|xj,tt|2γ+δ

) γ+δ/2
2γ+δ ≤ cγ, 1 ≤ i, j ≤ d.

The result follows since, by Assumption 3.4(a) ς = O
(
d1/γ√
T

)
and by

Assumption 3.4(b), s0
d2/γ√
T

= oP (1). �

Lemma A.5 Let ST ≡
∑T

t=1 ut where ut = (u1t, . . . , udt)
′ ∈ U ⊂ Rd is a zero

mean random vector, such that the process (uj,t) fulfils the conditions of Lemma

A.3 for some real r > 2 for all j ∈ {1, . . . , d}. Then, ‖ST‖max = OP (d1/r
√
T ).
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Proof. For a given ε > 0, By the union bound, followed by Markov inequality

we have:

P
(
‖ST‖max

d1/r
√
T

> ε

)
≤ d max

1≤i≤d
P
(
|Si,T |
d1/r
√
T
> ε

)
≤ max1≤i≤d E|Si,T |r

T r/2εr
≤ Cr

εr
,

where the last inequality follows from Lemma A.3. �

Proof of Theorem 1.3

Proof. Recall that ηt,T = x′t(θ̂ − θ0) for t ≥ T0, and let θ0 = (α0,β
′
0)′,

where α is the parameter of the intercept while β is the vector of remaining

parameters. Similar, let xt = (1, x̃t). From the definition of the estimator,

α̂ − α0 = 1
T1

∑
t≤T1 νt −

1
T1

∑
t≤T1 x̃t

(
β̂ − β0

)
. Combining the last two

expressions we can rewrite the estimation error as

ηt,T =
1

T1

∑
s≤T1

νs −
1

T1

∑
s≤T1

x̃s

(
β̂ − β0

)
+ x̃t

(
β̂ − β0

)
=

1

T1

∑
s≤T1

νs −

[
1

T1

∑
s≤T1

x̃s − x̃t

](
β̂ − β0

)
.

Taking the average over t = T0, . . . , T , multiplying by
√
T and rearranging

yields:

√
T

(
1

T2

∑
t≥T0

ηt,T −
1

T1

∑
t≤T1

νt

)
=

(√
T

T2

∑
t≥T0

x̃t −
√
T

T1

∑
t≤T1

x̃t

)(
β̂ − β0

)
.

We now show that the last expression is oP (1) uniformly in P ∈ P . First, we

bound it in absolute term by:∥∥∥∥∥
√
T

T2

∑
t≥T0

x̃t −
√
T

T1

∑
t≤T1

x̃t

∥∥∥∥∥
max

∥∥∥β̂ − β0

∥∥∥
1
.

Adding and subtracting the mean, the first term is the sum of two OP

(
d1/γ

)
terms by Lemma A.5 combined with Assumption 1.3(a)-(b). The second term

is OP

(
s0

d1/γ√
T

)
by Lemma A.4. Hence, the last term in the above display is

OP

(
s0

d2/γ√
T

)
= oP (1) by Assumption 3.4(b), which verifies condition (a) of

Proposition 1.2.

Now {νt} is a strong mixing process with mixing coefficient with ex-

ponential decay and supt E|νt|r < ∞ for some r > 4 by Assumption

1.3(a) and (b). Also, E(ν2
t ) is bounded by below uniformly by Assumption



Appendix A. Appendix: Proofs 88

1.3(c). Hence, we have a Central Limit Theorem as per Theorem 10.2 of

Pötscher e Prucha (1997). Therefore, conditions (b) and (c) of Proposition 1.2

are verified and the result follows directly from Proposition 1.2.

�

Proof of Propositions 1.4 and 1.5

Proof. Both follows directly from Theorem 1.3 combined with Lemma A.2(c)

�

Proof of Theorem 1.6

Proof. From (A-1) in the Proof of Proposition 1.2, we have for Tλ = bλT c,
λ ∈ Λ that Γ1/2ST (λ) is equal to:

√
T

T − Tλ + 1

∑
t≥Tλ

νt −
√
T

Tλ − 1

∑
t<Tλ

νt −
√
T

T − Tλ + 1

∑
t≥Tλ

ηt,T +

√
T

Tλ − 1

∑
t<Tλ

ηt,T .

The last two terms are op(1) uniformly in λ ∈ Λ, under the conditions of

Proposition 1.2, Assumption 1.5 and the fact that Λ is compact.

For fix λ ∈ Λ the pointwise convergence in distribution follows under

the conditions of from Proposition 1.2 (for instance under the assumptions of

Theorem 1.3). The uniform convergence result then follows from the invari-

ance principle in McLeish (1974) applied to V T (λ) ≡ 1√
T

∑
t≥Tλ νt and the

Continuous Mapping Theorem.

To obtain the covariance structure let Γs−t = E(νtν
′
s) for all s, t and note

that for any pair (λ, λ′) ∈ Λ2 we have that

1

T

∑
t≥Tλ

∑
s≥Tλ′

Γs−t =
T − Tλ∨λ′ + 1

T

 1

T − Tλ∨λ′ + 1

∑
t≥Tλ

∑
s≥Tλ′

Γs−t


= (1− λ ∨ λ′) Γ

λ ∨ λ
+ op(1),
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where λ ∨ λ′ = max(λ, λ′) and λ ∧ λ′ = min(λ, λ′). Finally, we have

E[ST (λ)S′t(λ
′)] = Γ−1/2

 T 2

(T−Tλ+1)(T−Tλ′+1)
1
T

∑
t≤Tλ

∑
s≤Tλ′

Γs−t

Γ−1/2 + op(1)

=

[
1

(1− λ)(1− λ′)

]
(1− λ ∨ λ′)

λ ∨ λ
+ op(1)

=
1

(λ ∨ λ)(1− λ ∧ λ′)
+ op(1) ≡ Σλ + op(1)

�

Proof of Proposition 1.7

Proof. Below we write Tλ to mean bλT c. All the convergence in probability

are a direct consequence of the Weak Law of Large Numbers ensured by the

conditions of Proposition 1 combined with Assumption 1.5: Let λ ≤ λ0:

∆̂T (λ) ≡ 1
T−Tλ+1

T∑
t=Tλ

δ̂t(λ) =
(

T0−Tλ
T−Tλ+1

) T0−1∑
t=Tλ

∆̂t(λ)

T0−Tλ
+
(
T−T0+1
T−Tλ+1

) T∑
t=T0

δ̂t(λ)

T − T0 + 1

= op(1) +

(
1− λ0

1− λ

)
∆.

Similarly, consider a guess after the true value, λ > λ0. Then:

∆̂T (λ) ≡ 1

T − Tλ + 1

T∑
t=Tλ

δ̂t(λ) =
1

T − Tλ + 1

T∑
t=Tλ

[
yt − M̂(xt)

]
=

1

T − Tλ + 1

T∑
t=Tλ

[yt −M(xt)]−
λ− λ0

λ
∆ + op(1)

=
1

T − Tλ + 1

T∑
t=Tλ

[
y

(0)
t −α0 − g(θ0)

]
+
λ0

λ
∆ + op(1) =

λ0

λ
∆ + op(1),

where the second equality follows from Assumption 1.6, since a step interven-

tion will only affect (asymptotically) the constant regressor estimation of the

modelM by a factor of λ−λ0
λ0

times the intervention size ∆. To see this let α0

be the constant and β0 the remaining parameters. Then,

α̂ =
1

Tλ

∑
t≤Tλ

y
(0)
t +

1

Tλ

∑
t≤Tλ

∆I(t ≥ T0)− 1

Tλ

∑
t≤Tλ

M̃(β̂),

whereM(xt;θ0) ≡ α0 +M̃(xt;β0). Since the estimation of β0 is asymptotic-
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ally unaffected by a step intervention, under the conditions of Proposition 1.2,

β̂
p−→ β0. Consequently, α̂(λ)

p−→ α+ λ−λ0
λ

∆, ∀λ ∈ (0, 1). �

Proof of Theorem 1.8

Proof. Note that: (i) The limiting function Jp,0(λ) ≡ φ(λ)‖∆‖p is uniquely

maximized at λ = λ0 under the assumption that ∆T 6= 0, (ii) The parametric

space Λ is compact; (iii) J0,p(·) is a continuous function as consequence of the

continuity of φ(·), (iv) Jp,T (λ) converges uniformly in probability to Jp,0(λ)

(shown below). Therefore, from Theorem 2.1 of Newey and McFadden (1994)

we have that λ̂0,p
p−→ λ0.

In Theorem 1.6 we show that ST converges in distribution to ST . Hence,

ST is uniformly tight (in particular with respect to λ). Therefore, 1√
T
ST (λ) is

op(1) uniformly in λ. Or equivalently, ∆̂T (λ)
p−→∆T (λ), uniformly in λ ∈ Λ.

Now consider any real valued function f(·) that is continuous on a

compact set K ⊂ Rk. In that case f(·) is uniformly continuous on K as every

continuous function on a compact domain. By definition then, for a given

ε > 0, there is a δ > 0 such that for every (x,y) ∈ K2, {|f(x)− f(y)| > ε} ⇒
{‖x− y‖ > δ}. Therefore, P(|‖x‖p − ‖y‖p| > ε) ≤ P(‖x− y‖ > δ) + P(Kc).

Finally, note that ‖ · ‖p is a a continuous function on Rq so given any

ε > 0, we can take a arbitrary large compact Kε ⊂ Rq such that P (Kc) ≤ ε.

The result then follows since the first term above converges uniformly to zero

in probability. �

Proof of Proposition 1.9

Proof. Follows directly from Theorem 1.3 applied to each unit of I individually

combined with the Cramèr-Wold device. �

A.2
Proofs of Chapter 2

Hence, we can derive the following convergence results:

Lemma A.6 let {ut} is defined as

ut = ut−1 + ηt, t ≥ 1

u0 = 0

If the process {ηt} satisfies Assumption 2.1, then as T →∞:

(a) T 1/2η̄
d−→ Ω1/2W (1)



Appendix A. Appendix: Proofs 91

(b) T 3/2η̌
d−→
√

3Ω1/2W (1)

(c) T−1/2ū
d−→ Ω1/2

∫ 1

0
W (r)dr = 1

3
Ω1/2W (1)

(d) T 1/2ǔ
d−→ 3Ω1/2

∫ 1

0
rW (r)dr = 2

5
Ω1/2W (1)

(e) T−2
∑T

t=1 utu̇
′
t

d−→ Ω1/2
[∫ 1

0
W (r)W ′(r)dr −

∫ 1

0
W (r)dr

∫ 1

0
W ′(r)dr

]
Ω1/2 ≡

R

(f) T−2
∑T

t=1 utü
′
t

d−→ Ω1/2
[∫ 1

0
W (r)W ′(r)dr − 3

∫ 1

0
rW (r)dr

∫ 1

0
rW ′(r)dr

]
Ω1/2 ≡

P

(g) T−1
∑T

t=1 utη̇
′
t

d−→ Ω1/2
[∫ 1

0
W (r)dW ′(r)−

∫ 1

0
W (r)drW ′(1)

]
Ω1/2 +

Ω1 + Ω0 ≡ V

(h) T−1
∑T

t=1 utη̈
′
t

d−→ Ω1/2
[∫ 1

0
W (r)dW ′(r)−

√
3
∫ 1

0
rW (r)drW ′(1)

]
Ω1/2+

Ω1 + Ω0 ≡ Q

(i) T−1ȳ
p−→ 1

2
µ

(j) y̌
p−→ µ

(k) T−3
∑T

t=1 ẏtẏ
′
t

p−→ 1
12
µµ′

(l) T−3
∑T

t=1 ÿtÿ
′
t

p−→ 1
3
µµ′

(m) T−1ξ̄
p−→ 1

2
γ

(n) T−3
∑T

t=1 ẏtξt
p−→ 1

12
γµ

(o) T−3/2
∑T

t=1 ẏtη
′
t

d−→ µN
(
0, 1

12
Ω
)

(p) T−3/2
∑T

t=1 ÿtη
′
t

d−→ µN
(
0, 1

3
Ω
)
,

where

Ω0 ≡ lim
T→∞

T−1

T∑
t=1

E(ηtη
′
t)

Ω1 ≡ lim
T→∞

T−1

T∑
t=1

t−1∑
s=1

E(ηsη
′
t)

Ω ≡ lim
T→∞

T−1V

(
T∑
t=1

ηt

)
= Ω0 + Ω1 + Ω′1
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and we adopt the following notation

u̇t ≡ ut − ū, ū ≡ T−1

T∑
t=1

ut, (A-2)

üt ≡ ut − tǔ, ǔ ≡ 6

T (T + 1)(2T + 1)

T∑
t=1

tut, (A-3)

Proof. Under the assumptions of Proposition 2.1, UT (r) ≡ T−1/2
∑[rT ]

t=1 ηt
d−→

Ω1/2W (r). Hence, for (a)

T−1/2

T∑
t=1

ηt = UT (1)
d−→ Ω1/2W (1) ≡ N (0,Ω) .

For (b), note that

T−3/2

T∑
t=1

tηt
d−→ 1√

3
Ω1/2W (1) ≡ N

(
0, 1

3
Ω
)
.

Thus,

T 3/2η̌ =
6T 3

T (T + 1)(2T + 1)
T−3/2

T∑
t=1

tηt
d−→
√

3Ω1/2W (1) ≡ N (0, 3Ω) .

Note that, ut−1 =
√
TUT ( t−1

T
≤ r < t

T
). Consequently, ut−1 =

T 3/2
∫ t
T
t−1
T

UT (r)dr. Then,

T−3/2

T∑
t=1

ut = T−3/2

T∑
t=1

(ut−1 + ηt)

=
T∑
t=1

∫ t
T

t−1
T

UT (r)dr + op(1)

=

∫ 1

0

UT (r)dr + op(1)

d−→ Ω1/2

∫ 1

0

W (r)dr.

We continue by showing result (c). Write:

utu
′
t = (ut−1 + ηt) (ut−1 + ηt)

′ = ut−1u
′
t−1 + ut−1η

′
t + ηtu

′
t−1 + ηtη

′
t.
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Summing over t = 1, . . . , T and rearranging

T−1

T∑
t=1

(
ut−1η

′
t + ηtu

′
t−1 + ηtη

′
t

)
= T−1

T∑
t=1

(
utu

′
t − ut−1u

′
t−1

)
= T−1 (uTu

′
T − u0u

′
0)

d−→ Σ1/2W (1)W (1)′Σ1/2.

Therefore, T−2
∑T

t=1

(
ut−1η

′
t + ηtu

′
t−1 + ηtη

′
t

)
= op(1).

Finally,

T−2

T∑
t=1

utu
′
t = T−2

T∑
t=1

ut−1u
′
t−1 + T−2

T∑
t=1

(
ut−1η

′
t + ηty

′
t−1 + ηtη

′
t

)
=

T∑
t=1

∫ t
T

t−1
T

UT (r)U ′T (r)dr + op(1)

=

∫ 1

0

UT (r)U ′T (r)dr + op(1)

d−→ Ω1/2

∫ 1

0

W (r)W (r)′drΩ1/2.

To prove (d) we write

T−2

T∑
t=1

u̇tu̇
′
t ≡ T−2

T∑
t=1

(ut − ū) (ut − ū)′

= T−2

T∑
t=1

utu
′
t − T−2

T∑
t=1

utȳ
′ − T−2ū

T∑
t=1

u′t + T−1ūū′

= T−2

T∑
t=1

utu
′
t − T−2

T∑
t=1

utū
′ − T−1ūū′ + T−1ūū′

= T−2

T∑
t=1

utu
′
t −

(
T−3/2

T∑
t=1

ut

)(
T−3/2

T∑
t=1

ut

)′
d−→ Ω1/2

[∫ 1

0

W (r)W ′(r)dr −
∫ 1

0

W (r)dr

∫ 1

0

W ′(r)dr

]
Ω1/2.

To show (e), we first let ht ≡ tut = t
∑t

s=1 ηt and define

HT (r) ≡ [rT ]

T
T−1/2

[rT ]∑
t=1

ηt
d−→ rΩ1/2W (r).

Thus,

ht−1 = T 3/2HT ( t−1
T

) = T 5/2

∫ t
T

t−1
T

HT (r)dr



Appendix A. Appendix: Proofs 94

and ht = tut = t (ut−1 + ηt) = ht−1 + ut−1 + tηt. Then,

T−5/2

T∑
t=1

ht =
T∑
t=1

∫ t
T

t−1
T

HT (r)dr + op(1)

=

∫ 1

0

HT (r)dr + op(1)

d−→ Ω1/2

∫ 1

0

rW (r)dr.

Therefore, using the previous result:

T 1/2ǔ ≡ 6T 3

T (T + 1)(2T + 1)
T−5/2

T0∑
t=1

tut
d−→ 3Ω1/2

∫ 1

0

rW (r)dr.

Result (e) is proved by writing

T−2

T∑
t=1

utü
′
t ≡ T−2

T∑
t=1

ut (ut − tǔ)′

= T−2

T∑
t=1

utu
′
t − T−2

T∑
t=1

tutǔ
′

= T−2

T∑
t=1

utu
′
t −

T (T + 1)(2T + 1)

6T 3
T 1/2ǔT 1/2ǔ′

d−→ Ω1/2

[∫ 1

0

W (r)W ′(r)dr − 3

∫ 1

0

rW (r)dr

∫ 1

0

rW ′(r)dr

]
Ω1/2.

To prove (f) we need the following result that was demonstrated by ?

T−1

T∑
t=1

ut−1η
′
t

d−→ Ω1/2

∫ 1

0

W (r)dW ′(r)Ω1/2 + Ω1.

Hence,

T−1

T∑
t=1

utη
′
t = T−1

T∑
t=1

ut−1η
′
t + T−1

T∑
t=1

ηtη
′
t

d−→ Ω1/2

∫ 1

0

W (r)dW ′(r)Ω1/2 + Ω1 + Ω0
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Finally, (f) becomes

T−1

T∑
t=1

u̇tη
′
t = T−1

T∑
t=1

utη
′
t + T−1ū

T∑
t=1

η′t

= T−1

T∑
t=1

utη
′
t +

(
T−3/2

T∑
t=1

ut

)(
T−1/2

T∑
t=1

η′t

)
d−→ Ω1/2

∫ 1

0

W (r)dW ′(r)Ω1/2 + Ω1 + Ω0 + Ω1/2

∫ 1

0

W (r)drW ′(1)Ω1/2

= Ω1/2

[∫ 1

0

W (r)dW ′(r) +

∫ 1

0

W (r)drW ′(1)

]
Ω1/2 + Ω1 + Ω0.

For (g):

T−1

T∑
t=1

utη̈
′
t = T−1

T∑
t=1

utη
′
t − T−1

T∑
t=1

tutη̌
′

= T−1

T∑
t=1

utη
′
t −

T (T + 1)(2T + 1)

6T 3
T 1/2ǔT 3/2η̌′

d−→ Ω1/2

[∫ 1

0

W (r)dW ′(r)−
√

3

∫ 1

0

rW (r)drW ′(1)

]
Ω1/2 + Ω1 + Ω0.

Consider yt = µt+ ut. Then, for (h)

T−2

T∑
t=1

yt = µT−2

T∑
t=1

t+ T−2

T∑
t=1

ut

= µT−1(T + 1)/2 + op(1)

=
1

2
µ+ op(1).

Remember that
∑T

t=1 tut =
∑T

t=1 ht = Op(5/2). Then,

T−3

T∑
t=1

yty
′
t = T−3

T∑
t=1

(µt+ ut) (µt+ ut)
′

= µµ′T−3

T∑
t=1

t2 + µ

(
T−3

T∑
t=1

tut

)′
+

(
T−3

T∑
t=1

tut

)
µ′ + T−3

T∑
t=1

utu
′
t

= µµ′
T (T + 1)(2T + 1)

6T 3
+ op(1)

=
1

3
µµ′ + op(1).
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As a result, for (i) we have

T−3

T∑
t=1

ẏtẏ
′
t = T−3

T∑
t=1

(yt − ȳ) (yt − ȳ)′

= T−3

T∑
t=1

yty
′
t −

(
T−2

T∑
t=1

yt

)(
T−2

T∑
t=1

yt

)
=

1

3
µµ′ − 1

2
µ

1

2
µ′ + op(1)

=
1

12
µµ′ + op(1).

For (j) we need:

y̌ =
6

T (T + 1)(2T + 1)

T∑
t=1

tyt

=
6

T (T + 1)(2T + 1)

T∑
t=1

t2µ+ ǔ

= µ+ op(1).

Consequently,

T−3

T∑
t=1

ÿtÿ
′
t = T−3

T∑
t=1

(yt − y̌) (yt − y̌)′

= T−3

T∑
t=1

yty
′
t −

(
T−2

T∑
t=1

yt

)
T−1y̌′ − T−1y̌

(
T−2

T∑
t=1

y′t

)
+ T−1y̌T−1y̌′

=
1

3
µµ′ + op(1).

From the definitions we have that

ẏt =
(
t− T+1

2

)
µ+ u̇t and

ÿt = (t− 1)µ+ üt.

For that reason,

T−3/2

T∑
t=1

ÿtη
′
t = µT−3/2

T∑
t=1

tη′t − µT−3/2

T∑
t=1

η′t + T−3/2

T∑
t=1

üη′t

d−→ µ 1√
3
Ω1/2W (1) ≡ µN

(
0, 1

3
Ω
)
.
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For (m) we have

T−3

T∑
t=1

ytξt = T−3

T∑
t=1

(µt+ ut) (νt + tγ)

= µT−3

T∑
t=1

tνt + µγT−3

T∑
t=1

t2 + T−3

T∑
t=1

utνt + γT−3

T∑
t=1

tut

= 1
3
γµ+ op(1).

Then,

T−3

T∑
t=1

ẏtξt = T−3

T∑
t=1

ytξt − ȳT−3

T∑
t=1

ξt

= T−3

T∑
t=1

ytξt − T−1ȳT−1ξ̄t

= 1
3
γµ− 1

2
µ1

2
γ + op(1)

= 1
12
γµ+ op(1).

�

Proof of Lemma 2.1

Proof. It is straightforward to express the least-squares estimator as the

difference to the true parameter value using notation (A-2)-(A-3) as:

β̂ − β0 =

(
T0∑
t=1

y0tÿ
′
0t

)−1 T0∑
t=1

y0tν̈t, (A-4)

γ̂ − γ0 = ν̌ −
(
β̂ − β0

)′
y̌0, (A-5)

π̂ − β0 =

(
T0∑
t=1

y0tẏ
′
0t

)−1 T0∑
t=1

y0t

[
γ0

(
t− T+1

2

)
+ ν̇t

]
, and (A-6)

α̂− α0 = T+1
2
γ0 + ν̄ − (π̂ − β0)′ ȳ0. (A-7)

We use the limiting distributions in Lemma A.6 together with the

continuous mapping theorem to show all the derivations below. Note that for
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µ = 0, then yt = ut and γ0 = 0. As a result,

T0

(
β̂ − β0

)
=

(
T−2

0

T0∑
t=1

y0tÿ
′
0t

)−1

T−1
0

T0∑
t=1

y0tν̈t,

d−→ P−1
00Q01

T
3/2
0 (γ̂ − γ0) = T

3/2
0 ν̌ − T0

(
β̂ − β

)′
T

1/2
0 y̌0

d−→
[√

3Ω1/2W (1)
]

1
−Q10P

−1
00

[
3Ω1/2

∫ 1

0

rW (r)dr

]
0

,

T0 (π̂ − β0) =

(
T−2

0

T0∑
t=1

y0tẏ
′
0t

)−1

T−1
0

T0∑
t=1

y0tν̇t

d−→ R−1
00 V 01,

and

T
1/2
0 (α̂− α0) = T

1/2
0 ν̄ − T0 (π̂ − β0)′ T

−1/2
0 ȳ0

d−→
[
Ω1/2W (1)

]
1
− V 10R

−1
00

[
Ω1/2

∫ 1

0

W (r)dr

]
0

.

For µ0 6= 0 and n = 2,

π̂ − β0 =

(
T−3

0

T0∑
t=1

y0tẏ0t

)−1

T−3
0

T0∑
t=1

y0t

[
γ0

(
t− T+1

2

)
+ ν̇t

]
=

(
T−3

0

T0∑
t=1

y0tẏ0t

)−1 [
T (T+1)(2T+1)

6T 3 y̌0 − T (T+1)
2T 2 T−1ȳ0

]
γ0 + op(1)

=
(

1
12
µ2

0

)−1 [1
3
µ0 − 1

2
1
2
µ0

]
γ0 + op(1)

=
γ0

µ0

+ op(1)

T−1
0 (α̂− α0) =

T0 + 1

2T0

γ0 + T−1
0 ν̄ − (π̂ − β0)T−1

0 ȳ0

=
1

2
γ0 −

γ0

µ0

µ0

2
+ op(1)

= op(1).

�
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Proof of Theorem 2.2

Proof. For the post intervention period t = T0, T0 + 1, . . . , T we can write:

δ̂1t − δt = y1t − γ̂t− β̂
′
y0t − δt = νt − (γ̂ − γ0) t−

(
β̂ − β0

)′
y0t

δ̂2t − δt = y1t − α̂− π̂′y0t − δt = νt − α̂− (π̂ − β0)′ y0t + γ0t.

Therefore,

∆̂1 −∆ = 1
T2

T∑
t=T0

(
δ̂1t − δt

)
= 1

T2

T∑
t=T0

νt − T+T0
2

(γ̂ − γ0)−
(
β̂ − β0

)′
1
T2

T∑
t=T0

y0t

and

∆̂2 −∆ = 1
T2

T∑
t=T0

(
δ̂2t − δt

)
= 1

T2

T∑
t=T0

νt − α̂− (π̂ − β0)′ 1
T2

T∑
t=T0

y0t + T+T0
2
γ0

From the expression above is easy to see that for the case µ = 0(γ0 = 0) both

estimators are consistent under the null ∆µ = 0. In fact,

√
T
(

∆̂1 −∆
)

=
√

T
T2

[
1√
T2

T∑
t=T0

νt

]
− T+T0

2T0

(
T
T0

)1/2 [
T

3/2
0 (γ̂ − γ0)

]
−
√

TT2
T 2
0

[
T0

(
β̂ − β0

)′][(
1
T2

)3/2
T∑

t=T0

y0t

]
d−→ 1√

1−λ0

[
Ω1/2W (1)

]
1
− 1+λ0

2λ
3/2
0

{[√
3Ω1/2W (1)

]
1
− ξ′

[
3Ω1/2

∫ 1

0

rW (r)dr

]
0

}
−
√

1−λ0
λ0

ξ′
[
Ω1/2

∫ 1

0

W (r)dr

]
0

=
[

1
1−λ0 + 3(1+λ0)2

4λ30

]1/2 [
Ω1/2W (1)

]
1
− ξ′

[
1−λ0
9λ2

+ (1+λ)2

25λ3

]1/2 [
Ω1/2W (1)

]
0

≡ c1(λ0)σνW (1)− c2(λ0)ξ′Ω
1/2
00 W (1).
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Here, we use the fact that for κ ≥ 0

V
(∫ 1

0

rκW (r)dr

)
=

∫ 1

0

∫ 1

0

(rs)κ min(r, s)dsdr =
1

(κ+ 1)(κ+ 2)

(
1− 1

2κ+ 3

)
.

Consequently, for κ = 0,
∫ 1

0
W (r)dr = 1

3
W (1) and for κ = 1,

∫ 1

0
rW (r)dr =

2
15
W (1).

For the second specification we have:

√
T
(

∆̂2 −∆
)

=
√

T
T2

[
1√
T2

T∑
t=T0

νt

]
−
(
T
T0

)1/2 (
T−T0
T0

)1/2

T0 (π̂ − β0)′
(

1
T−T0

)3/2
T∑

t=T0+1

y0t

−
(
T
T0

)1/2

T
1/2
0 α̂

d−→
(

1
1−λ0

)1/2 [
Ω1/2W (1)

]
1
− (1−λ0)1/2

λ0
ω′
[
Ω1/2

∫ 1

0

W (r)dr

]
0

−
(

1
λ0

)1/2
{[

Ω1/2W (1)
]

1
− ω′

[
Ω1/2

∫ 1

0

W (r)dr

]
0

}
=
[

1
λ0(1−λ0)

]1/2 [
Ω1/2W (1)

]
1
− ω′ 1

λ0

[
Ω1/2

∫ 1

0

W (r)dr

]
0

=
[

1
λ0(1−λ0)

]1/2

σνW (1)− ω′ 1
λ0

[
Ω1/2 1√

3
W (1)

]
0

≡ c3(λ0)σνW (1)− c4(λ0)ω′Ω
1/2
00 W (1).

Under H1 and µ0 = 0:

T−1
(

∆̂1 −∆µ
)

= T+T0−1
2T

∆µ+ op(1) = 1+λ0
2

∆µ+ op(1) and

T−1
(

∆̂2 −∆µ
)

= T+T0−1
2T

∆µ+ op(1) = 1+λ0
2

∆µ+ op(1).

�

Proof of Lemma 2.3

Proof. For t = T0 + 1, . . . , T and k = {0, 1, . . . , T − 1}:

ν̂1t+k = ν̈t+k − (β̂ − β0)′ÿ0t+k and

ν̂2t+k = ν̇t+k − (π̂ − β0)′ẏ0t+k +
(
t+ k − T+T0+1

2

)
γ̃.

Hence, if µ = 0 for the post intervention period then γ̃ ≡ γ0 + ∆µ = 0:

ν̂1tν̂1t+k = ν̈tν̈t+k − ν̈t(β̂ − β0)′ÿ0t+k − (β̂ − β0)′ÿ0tν̈t+k + (β̂ − β0)′ÿ0tÿ
′
0t+k(β̂ − β0) and

ν̂2tν̂2t+k = ν̇tν̇t+k − ν̇t(π̂ − β0)′ẏ0t+k − (π̂ − β0)′ẏ0tν̇t+k + (π̂ − β0)′ẏ0tẏ
′
0t+k(π̂ − β0).
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Both β̂ − β0 and π̂ − β0 are Op(T
−1) by Lemma 2.1. Also,

∑
ÿ0tÿ

′
0t+k

and
∑
ẏ0tẏ0t+k are Op(T

2); and
∑
ν̇tẏ0t+k and

∑
ν̇tẏ0t+k are Op(T ) all as

a consequence of Lemma A.6. Thus,

T−k∑
t=T0+1

ν̂1tν̂1t+k =
T−k∑

t=T0+1

ν̈tν̈t+k +Op(1) =
T−k∑

t=T0+1

νtνt+k +Op(1) and

T−k∑
t=T0+1

ν̂2tν̂2t+k =
T−k∑

t=T0+1

ν̇tν̇t+k +Op(1) =
T−k∑

t=T0+1

νtνt+k +Op(1),

where the last equality involves no more than some algebraic manipulation

using the definition of ν̇t and ν̈t and neglecting the op(1) terms. Therefore, by

the Law Large Numbers, which is guaranteed under the Assumption 2.2,

ρ̂2
1k ≡ 1

T−T0

T∑
t=T0+1

ν̂1tν̂1t+k
p−→ E (νtνt+k) ≡ ρk and

ρ̂2
2k ≡ 1

T−T0

T∑
t=T0+1

ν̂2tν̂2t+k
p−→ E (νtνt+k) ≡ ρk.

For the case of µ 6= 0 during the post intervention period, either under H0 or

under H1, we have for the second specification with n = 2:

T−2ρ̂2
2k ≡ 1

T 2(T−T0)

T∑
t=T0+1

ν̂2tν̂2t+k = 1
T 2(T−T0)

T∑
t=T0+1

(
t+ k − T+T0+1

2

)2
γ̃2 + op(1)

≡ 1
T 2(T−T0)

T∑
t=T0+1

ν̂2tν̂2t+k = 1
T 2(T−T0)

T∑
t=T0+1

(
t+ k − T+T0+1

2

)2
γ̃2 + op(1).

For part (b), let s̃2 be the pseudo-estimator analogous to the estimator to

s2 but with sequence ν̂t replaced by the unobservable sequence {νt} and

σ2
T =

∑
|k|<T σ

2
k. Hence,

|s2 − σ2
T | ≤ |s2 − s̃2|+ |s̃2 − σ2

T |.

�
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Proof of Lemma 2.2

Proof. The least square estimator are

β̂ =

(
T0∑
t=1

y0tÿ
′
0t

)−1 T0∑
t=1

y0tÿ1t (A-8)

γ̂ = y̌1 − β̂
′
y̌0 (A-9)

π̂ =

(
T0∑
t=1

y0tẏ
′
0t

)−1 T0∑
t=1

y0tẏ1t (A-10)

α̂ = ȳ1 − π̂′ȳ0 (A-11)

Under the assumptions of Proposition 2.1 V T (r) ≡ T−1/2
∑[rT ]

t=1 εt
d−→

Ω1/2W (r). By arguments analogous to the ones used to derive the results

(c)-(f) of Lemma A.6, we have:

T−1/2v̄
d−→ Σ1/2

∫ 1

0

W (r)dr = 1
3
Σ1/2W (1)

T 1/2v̌
d−→ 3Σ1/2

∫ 1

0

rW (r)dr = 2
5
Σ1/2W (1)

T−2

T∑
t=1

vtv̇
′
t

d−→ Σ1/2

[∫ 1

0

W (r)W ′(r)dr −
∫ 1

0

W (r)dr

∫ 1

0

W ′(r)dr

]
Σ1/2 ≡ B

T−2

T∑
t=1

vtv̈
′
t

d−→ Σ1/2

[∫ 1

0

W (r)W ′(r)dr − 3

∫ 1

0

rW (r)dr

∫ 1

0

rW ′(r)dr

]
Σ1/2 ≡ A.

For the case µ = 0, we have that yt = vt. As a consequence, by the continuous

mapping theorem,

β̂ =

[
T−2

0

T0∑
t=1

vtv̈
′
t

]−1

00

[
T−2

0

T0∑
t=1

vtv̈
′
t

]
01

d−→ A−1
00A01 ≡ χ,

T
1/2
0 γ̂ =

[
T

1/2
0 v̌

]
1
− β̂

′ [
T

1/2
0 v̌

]
0

d−→
[
3Σ1/2

∫ 1

0

rW (r)dr

]
1

− χ′
[
3Σ1/2

∫ 1

0

rW (r)dr

]
0

,

π̂ =

[
T−2

T∑
t=1

vtv̇
′
t

]−1

00

[
T−2

T∑
t=1

vtv̇
′
t

]
01

d−→ B−1
00B01 ≡ ψ, and

T
−1/2
0 α̂ =

[
T

1/2
0 v̄

]
1
− π̂′

[
T

1/2
0 v̄

]
0

d−→
[
Σ1/2

∫ 1

0

W (r)dr

]
1

−ψ′
[
Σ1/2

∫ 1

0

W (r)dr

]
0

.

�
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Proof of Theorem 2.3

Proof. For the post intervention period t = T0, T0 + 1, . . . , T we can write:

δ̂1t − δt = y1t − γ̂t− β̂
′
y0t − δt = y

(0)
1t − γ̂t− β̂

′
y0t

δ̂2t − δt = y1t − α̂− π̂′y0t − δt = y
(0)
1t − α̂− π̂

′y0t.

Therefore,

∆̂1 −∆ = 1
T2

T∑
t=T0

(
δ̂1t − δt

)
= 1

T2

T∑
t=T0

y
(0)
1t − T+T0

2
γ̂ − β̂

′ 1
T2

T∑
t=T0

y0t

∆̂2 −∆ = 1
T2

T∑
t=T0

(
δ̂2t − δt

)
= 1

T2

T∑
t=T0

y
(0)
1t − α̂− π̂

′ 1
T2

T∑
t=T0

y0t

For µ = 0, using the results from Lemma 2 and the Continuous Mapping

Theorem we have:

1√
T

(
∆̂1 −∆

)
=
(
T2
T

)1/2

[(
1
T2

)3/2
T∑

t=T0

y
(0)
1t

]
− β̂

′ (T2
T

)1/2

[(
1
T2

)3/2
T∑

t=T0

y0t

]

−
(

1
TT0

)1/2 (
T+T0

2

) [
T

1/2
0 γ̂

]
d−→
√

1− λ0

[
Ω1/2

∫ 1

0

W (r)dr

]
1

−
√

1− λ0χ
′
[
Ω1/2

∫ 1

0

W (r)dr

]
0

−
(

1+λ0

2λ
1/2
0

){[
3Ω1/2

∫ 1

0

rW (r)dr

]
1

− χ′
[
3Ω1/2

∫ 1

0

rW (r)dr

]
0

}
=
[

1−λ0
9

+ (1+λ0)2

25λ0

]1/2 {[
Ω1/2W (1)

]
1
− χ′

[
Ω1/2W (1)

]
0

}
≡ c5(λ0)

[
σ1W (1)− χ′Ω1/2

00 W (1)
]
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and

1√
T

(
∆̂2 −∆

)
=
(
T2
T

)1/2

[(
1
T2

)3/2
T∑

t=T0

y
(0)
1t

]
− π̂′

(
T2
T

)1/2

[(
1
T2

)3/2
T∑

t=T0

y0t

]
−
(
T0
T

)1/2
[

1√
T0
α̂
]

d−→
√

1− λ0

[
Ω1/2

∫ 1

0

W (r)dr

]
1

−
√

1− λ0ψ
′
[
Ω1/2

∫ 1

0

W (r)dr

]
0

− λ1/2
0

{[
Ω1/2

∫ 1

0

W (r)dr

]
1

−ψ′
[
Ω1/2

∫ 1

0

W (r)dr

]
0

}
=

[
Ω1/2

∫ 1

0

W (r)dr

]
1

−ψ′
[
Ω1/2

∫ 1

0

W (r)dr

]
0

≡ 1
3

[
σ1W (1)−ψ′Ω1/2

00 W (1)
]
.

�

Proof of Lemma 2.4

Proof. We consider for k ≥ 0 that vt+k = vt +
∑k

i εt+i. Then,

T−2

T∑
t=1

vtv
′
t+k = T−2

T∑
t=1

vtv
′
t + T−2

T∑
t=1

vt

k∑
i=1

ε′t+i.

We show that T−1
∑T

t=1 vtε
′
t+i = Op(1) for every i ∈ {1, . . . , k}. For that

purpose, define for any integer j,

U j
T (r) =

(
1
T

)1/2
[rT ]∑
t=1

εt+j.

Hence,

T−1

T∑
t=1

yt−1ε
′
t+j =

T∑
t=1

U 0
T

(
t−1
T

) ∫ T
t

t−1
T

dU j
T (r) =

∫ 1

0

U 0
T (r)dU j

T (r).

Let Ωj ≡ limT→∞ T
−1E

(∑T
t=1 εt

∑T
t=1 ε

′
t+j

)
. Clearly, Ω0 = Ω. Then,

[
U 0
T (r)

U j
T (r)

]
d−→ Σ̃

1/2
W (r)Σ̃

1/2 ≡

[
U 0(r)

U j(r)

]
where Σ̃ ≡

[
Σ Σj

Σ′j Σ

]
.

For j ≥ 0, the process εt+j is a martingale with respect to the process

yt−1. Thus, we have a sufficient condition to apply Theorem 2.1 developed by
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Kurtz and Protter (1991) and also restated in Hansen (1992) that

T−1

T∑
t=1

yt−1ε
′
t+j =

∫ 1

0

U 0
T (r)dU j

T (r)
d−→
∫ 1

0

U 0(r)dU j(r).

Note that the stochastic integral above is not easy to evaluate except for

when j = 0. In that case we have the particular result shown in ? and used to

prove part (e) of Lemma A.6 above. However, for our purposes, is enough to

known that the distribution exists and hence the term is Op(1) for any non-

negative j. Therefore, for every i ∈ {1, . . . , k}, we have T−2
∑T

t=1 vt−1ε
′
t+i−1 =

op(1). Thus, we have the desired result as a finite sum of op(1) terms.

�

Proof of Lemma 2.5

Proof. Let T1 = T − T0, by definition ν̂1t = ÿ1t − β̂
′
ÿ0t. Thus, for the case of

µ = 0 and k = 0:

T−1ρ̂2
10 =

(
T1
T

)
T−2

1

T∑
t=T0+1

ν̂2
1t

=
(
T1
T

)
T−2

1

T∑
t=T0+1

(
ÿ2

1t − 2ÿ1tβ̂
′
ÿ0t + β̂

′
ÿ0tÿ

′
0tβ̂
)

=
(
T1
T

)
T−2

1

T∑
t=T0+1

ÿ2
1t −

(
T−2

T∑
t=1

ÿ1tÿ
′
0t

)
β̂

d−→ (1− λ0)
(
A11 +A10A

−1
00A01

)
.

Similarly, for ν̂2t = ẏ1t − π̂′ẏ0t

T−1ρ̂2
20 =

(
T1
T

)
T−2

1

T∑
t=T0+1

ν̂2
2t

=
(
T1
T

)
T−2

1

T∑
t=T0+1

(
ẏ2

1t − 2ẏ1tπ̂
′ẏ0t + π̂′ÿ0tẏ

′
0tπ̂
)

=
(
T1
T

)
T−2

1

T∑
t=T0+1

ẏ2
1t −

(
T−2

T∑
t=1

ẏ1tẏ
′
0t

)
π̂

d−→ (1− λ0)
(
B11 +B10B

−1
00B01

)
.
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For k ≥ 0, note that

ÿt+k = yt +
k∑
i=1

εt+i − ty̌ = ÿt +
k∑
i=1

εt+i and

ẏt+k = yt +
k∑
i=1

εt+i − ȳ = ẏt +
k∑
i=1

εt+i.

Let θ̂1 ≡ (1, β̂
′
)′ and θ̂2 ≡ (1, π̂′)′, then we can write

ν̂1t+k = θ̂
′
1ÿt+k = θ̂

′
1

(
ÿt +

k∑
i=1

εi

)
= ν̂1t + θ̂

′
1

k∑
i=1

εt+i,

ν̂2t+k = θ̂
′
2ẏt+k = θ̂

′
2

(
ẏt +

k∑
i=1

εi

)
= ν̂2t + θ̂

′
2

k∑
i=1

εt+i,

T−k∑
t=T0+1

ν̂1tν̂1t+k =
T−k∑

t=T0+1

ν̂2
1t + θ̂

′
1

[
T−k∑

t=T0+1

ÿt

k∑
i=1

ε′t+i

]
θ̂1, and

T−k∑
t=T0+1

ν̂1tν̂2t+k =
T−k∑

t=T0+1

ν̂2
2t + θ̂

′
2

[
T−k∑

t=T0+1

ẏt

k∑
i=1

ε′t+i

]
θ̂2.

Hence, to show that T−1ρ̂2
j0 and T−1ρ̂2

jk for j = {1, 2} share the same limiting

distribution any k is sufficient to show that terms between brackets in the

above expressions are Op(T ) since θ̂j are Op(1). For each i ∈ {1, . . . , k}:

T−k∑
t=T0+1

ÿtε
′
t+i =

T−k∑
t=T0+1

ytε
′
t+i − y̌

T−k∑
t=T0+1

tε′t+i and

T−k∑
t=T0+1

ÿtε
′
t+i =

T−k∑
t=T0+1

ytε
′
t+i − ȳ

T−k∑
T0+1=1

ε′t+i.

We have shown that first and second terms of the expressions above are op(T
2)

by Lemma 2.4 and Lemma A.6 respectively. Therefore, we have proved part

(a) and (b).

For parts (c) and (d), since ρ̂jk = ρ̂j−k and the covariance kernels are
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normalized such that φ(0) = 1,

T−1σ̂2
jT = T−1ρ̂j0 + 2T−1

T−1∑
k=1

φ
(

k
JT

)
ρ̂jk

= T−1ρ̂j0 + 2T−1

T−1∑
k=1

φ
(

k
JT

) T−k∑
t=1

ν̂t
2

T − T0

+ 2T−1

T−1∑
k=1

φ
(

k
JT

)
1

T−T0

T−k∑
t=1

ν̂t

k∑
i=1

ε′t+iθ̂j

= T−1ρ̂j0
∑
|k|<T

φ
(

k
JT

)
− 2θ̂

′
j

[
1

T−T0

T−1∑
k=1

φ
(

k
JT

) T∑
t=T−k+1

P jt,T

]
θ̂j

+ 2θ̂
′
j

[
1

T−T0

T−1∑
k=1

φ
(

k
JT

) T−k∑
t=T0+1

k∑
i=1

Rjt,T (i)

]
θ̂j,

where

P jt,T =

{
T−1ÿtÿ

′
t if j = 1

T−1ẏtẏ
′
t if j = 2

Rjt,T (i) =

{
T−1ÿtε

′
t+i if j = 1

T−1ẏtε
′
t+i if j = 2

We now show that the first and second terms of the expression above are op(1).

Since θ̂j is Op(1) is enough to demonstrate that the terms between brackets

are op(1). But first we need the following bounds

E‖P jt,T‖ ≤ bp <∞ ∀j, t ≤ T, T

E‖Rjt,T (i)‖ ≤ b̄T <∞ ∀j, t ≤ T, i.

For the first one note that, for the case where µ = 0, we have:

ÿt =
t∑

s=1

(
s−1
T

)
εs ≡

t∑
s=1

g1(s, T )εs and

ẏt =
t∑

s=1

(
1− 6(T−s+1)t2

T (T+1)(2T+1)

)
εs ≡

t∑
s=1

g2(s, T )εs.

Since both function g1(·, ·) and g2(·, ·) are bound between 0 and 1 we can write
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for j = 1 (for j = 2 the argument is entirely analogous)

E‖P jt,T‖ = E‖T−1ÿtÿ
′
t‖ = E

∥∥∥∥∥T−1

T∑
s=1

g1(s, T )εs

T∑
s=1

g1(s, T )ε′s

∥∥∥∥∥
= E

∥∥∥∥∥T−1

t∑
s=1

t∑
l=1

g1(s, T )g1(l, T )εsε
′
l

∥∥∥∥∥
≤ T−1

t∑
s=1

t∑
l=1

g1(s, T )g1(l, T )E ‖εsε′l‖

≤ T−1

t∑
s=1

t∑
l=1

E ‖εsε′l‖

≤ T−1

T∑
s=1

T∑
l=1

E ‖εsε′l‖

≤ lim
T→∞

T−1

T∑
s=1

T∑
l=1

E ‖εsε′l‖ ≡ bp,

where the last limit exists under Assumptions (a)-(c) of Lemma 3. For the

second bound we have

E‖Rjt,T (i)‖ = E‖T−1ÿtε
′
t+i‖ = E

∥∥∥∥∥T−1

T∑
s=1

g1(s, T )εsε
′
t+i

∥∥∥∥∥
≤ T−1

t∑
s=1

g1(s, T )E
∥∥εsε′t+i∥∥

≤ T−1

t∑
s=1

E
∥∥εsε′t+i∥∥

≤ T−1

T∑
s=1

E
∥∥εsε′T+i

∥∥ .
Note that the last term above is op(1) because the summation is finite due

to Assumptions (a)-(c) of Lemma 3. Thus, for a fixed T and i there exist a

bound bT (i) such that E‖Rjt,T (i)‖ ≤ bT (i) <∞ for every t ≤ T and bT (i)→∞.

Moreover, due to the mixing condition (Lemma 3(c)) we know that when i = 1

we have the largest bounds over all i for a given T so we define b̄T ≡ bT (1).
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Now we show Lp convergence so for any ε > 0. Let

AT =

{
ω ∈ Ω :

∥∥∥∥∥ 1
T−T0

T−1∑
k=1

φ
(

k
JT

) T∑
t=T−k+1

P jt,T (ω)

∥∥∥∥∥ > ε

}
and

BT =

{
ω ∈ Ω :

∥∥∥∥∥ 1
T−T0

T−1∑
k=1

φ
(

k
JT

) T−k∑
t=T0+1

k∑
i=1

Rjt,T (i)(ω)

∥∥∥∥∥ > ε

}
.

For AT by the Markov’s inequality

P(AT ) ≤ 1

ε
E

∥∥∥∥∥ 1
T−T0

T−1∑
k=1

φ
(

k
JT

) T∑
t=T−k+1

P jt,T

∥∥∥∥∥
≤ 1

(T − T0)ε

T−1∑
k=1

∣∣∣φ( k
JT

)∣∣∣ T∑
t=T−k+1

E ‖P jt,T‖

≤ 1

(T − T0)ε

T−1∑
k=1

∣∣∣φ( k
JT

)∣∣∣ T∑
t=T−k+1

bp

≤ bp
(T − T0)ε

T−1∑
k=1

k
∣∣∣φ( k

JT

)∣∣∣ .
Note that the kernels are uniformly bounded such that for non-negative integer

h:

lim
T→∞

1

Jh+1
T

∑
|k|<T

∣∣∣φ( k
JT

)∣∣∣ = Ch where Ch ≡
∫ ∞
−∞

xh |φ (x)| dx.

As a result, as long as JT = o(T 1/2) we have

P(AT ) ≤ bp
ε

T

T − T0

J2
T

T

(
J−2
T

T−1∑
k=1

k
∣∣∣φ( k

JT

)∣∣∣)→ 0.

For BT , by the Markov’s inequality

AT =

{
ω ∈ Ω :

∥∥∥∥∥ 1
T−T0

T−1∑
k=1

φ
(

k
JT

) T∑
t=T−k+1

P jt,T (ω)

∥∥∥∥∥ > ε

}
and

BT =

{
ω ∈ Ω :

∥∥∥∥∥ 1
T−T0

T−1∑
k=1

φ
(

k
JT

) T−k∑
t=T0+1

k∑
i=1

Rjt,T (i)(ω)

∥∥∥∥∥ > ε

}
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For AT , by the Markov’s inequality

P(BT ) ≤ 1

ε
E

∥∥∥∥∥ 1
T−T0

T−1∑
k=1

φ
(

k
JT

) T−k∑
t=T0+1

k∑
i=1

Rjt,T (i)

∥∥∥∥∥
≤ 1

(T − T0)ε

T−1∑
k=1

∣∣∣φ( k
JT

)∣∣∣ T−k∑
t=T0+1

k∑
i=1

E ‖Rjt,T (i)‖

≤ b̄T
ε

T−1∑
k=1

k
∣∣∣φ( k

JT

)∣∣∣
≤ 1

ε
(T b̄T )

J2
T

T

(
1

J2
T

T−1∑
k=1

k
∣∣∣φ( k

JT

)∣∣∣)→ 0.

The last passage holds because by definition limT→∞ T b̄T =

limT→∞
∑T

t=1 E‖εt, εT+1‖ <∞ and under assumption that JT = o(T 1/2).

Hence, we are left with

T−1σ̂2
jT = T−1ρ̂j0

∑
|k|<T

φ
(

k
JT

)
+ op(1).

If we multiply the above expression by J−1
T , we get

(JTT )−1σ̂2
jT = T−1ρ̂j0

J−1
T

∑
|k|<T

φ
(

k
JT

)+ op(1).

By taking the limit as T →∞ we get the desired result.

�

A.3
Proofs of Chapter 3

Proof of Theorem 3.1

Proof. By assumption 3.3 g is differentiable so by the mean value theorem

Qt(τ) = g(x, θ̂(τ))−g(x, θ0(τ)) = ∇g(x, θ̃)
(
θ̂(τ)− θ0(τ)

)
where θ̃ ∈ ‖θ−θ0‖

Let T2 ≡ T − T0 + 1, then for a given τ ∈ (0, 1)

τ̂T = 1
T2

T∑
t=T0

1{∆̂t(τ) ≤ 0} = 1
T2

T∑
t=T0

1{vt(τ)−Qt(τ) ≤ 0}

, where the last term can be decompose as



Appendix A. Appendix: Proofs 111

τ̂T − τ = 1
T2

T∑
t=T0

(1{vt(τ) ≤ 0} − τ)− 1
T2

T∑
t=T0

Jt(τ)Qt(τ) +R(τ, θ̂) (A-12)

, where Jt(τ) ≡ f(g(xt, θ0)) and f(ξ) is the density function of distribution

function F (ξ) = P(vt ≤ ξ)

Under the null, the first term is op(1) by the LGN, the last term multiplied

by
√
T was shown to be op(1) by Koul (1969) and appears also in Chen and

Lockhart (2001). The term in between is also op(1) as long as θ̂ is consistent

for θ0, which demonstrate the consistency of τ̂ .

For the asymptotic normality multiply (A-12) by
√
T and , then we are

left with

√
T
T2

(
1√
T2

T∑
t=T0

1{vt(τ) ≤ 0} − τ

)
−

(
1
T2

T∑
t=T0

Jt(τ)∇g(x, θ̃)

)
√
T
(
θ̂(τ)− θ0(τ)

)
+
√
TR(τ, θ̂)

Note that the term in between is op(1) for all non constant regressores of g(·).
Let θc be constant regressor parameters and T1 ≡ T0 − 1, then the term in

between can be written using Bahadur representation (1966)

√
T
T1

(
1
T2

T∑
t=T0

Jt(τ)

)√
T1

(
θ̂c(τ)− θc,0(τ)

)
=
√

T
T1

(
1
T2

T∑
t=T0

Jt(τ)

)
D(τ)−1

1
T1

T1∑
t=1

τ − 1{vt ≤ 0}+ op(1)

, where D(τ) = limT→∞
1
T

∑T
t=1 Jt(τ).

Hence we are left with

√
T (τ̂T − τ) =

√
T
T2

(
1√
T2

T∑
t=T0

1{vt(τ) ≤ 0} − τ

)

−
√

T
T1

(
1√
T1

T1∑
t=1

1{vt(τ) ≤ 0} − τ

)
+ op(1)

let wt(τ) ≡ 1{vt(τ) ≤ 0} − τ and σ2(τ) = limT→∞ E(
∑T

t=1wt(τ))2 < ∞ by

assumption, then by the CLT we have

√
T (τ̂T − τ)⇒

√
1

1−λ0N
(
0, σ2(τ)

)
+
√

1
λ0
N
(
0, σ2(τ)

)
≡ N

(
0,

σ2(τ)

λ0(1− λ0)

)
�
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Proof of Corollary 3.2

Proof. First let wit = 1{∆t(τi) ≤ 0}− τi, and Γj = E(wtw
′
t+j) for j ∈ Z where

wt = (w1t, . . . , wkt)
′, hence

(Γ0)ij = E(1{∆t(τi) ≤ 0}1{∆t(τj) ≤ 0})− τiτj
= P(∆t(τi) ≤ 0 ∩∆t(τj) ≤ 0)− τiτj
= min(τi, τj)− τiτj

We can now take stack k equations (??), one for each τ = τ1, . . . , τk and

premultiply by any ak 6= 0 ∈ Rk:

√
Ta′k(τ̂ T − τ ) =

√
T
T2

(
1√
T2

T∑
t=T0

a′kwt

)
−
√

T
T1

(
1√
T1

T1∑
t=1

a′kwt

)
+ op(1)

But a′kwt is an ergodic stationary process, hence by the CLT each of

the terms in parenthesis converge in distribution to normal random variable

with mean 0 and variance a′kΣ(τ )ak, where Σ(τ ) ≡
∑

j∈Z Γj. Hence by the

Cramer-Wold device the corollary follows. �



B
Appendix: Figures

Figure B.1: Bias Factor defined on (1-13) for li = σηi = 1 for all i = 1, . . . , n.
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Figure B.2: Kernel Density - Estimator Comparison with no Trend and no
Serial Correlation
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Figure B.3: Kernel Density - Estimator Comparison with no Trend

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

BA

N = 10000   Bandwidth = 0.007846

Kernel

Normal

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

SC

N = 10000   Bandwidth = 0.003405

D
en

si
ty

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

DiD*

N = 10000   Bandwidth = 0.01239

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

DiD

N = 10000   Bandwidth = 0.01985

D
en

si
ty

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

GM*

N = 10000   Bandwidth = 0.007959

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

GM

N = 10000   Bandwidth = 0.003859

D
en

si
ty

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

ArCo*

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

ArCo

D
en

si
ty



Appendix B. Appendix: Figures 116

Figure B.4: Kernel Density - Estimator Comparison with Common Linear
Trend
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Figure B.5: Kernel Density - Estimator Comparison with Idiosyncratic Linear
Trend
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Figure B.6: Kernel Density - Estimator Comparison with Common Quadratic
Trend
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Figure B.7: Kernel Density - Estimator Comparison with Idiosyncratic Quad-
ratic Trend
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Figure B.8: NFP Participation (left) and Value distributed (right)
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Figure B.9: Actual and counterfactual data. The conditioning variables are in-
flation and DGP growth. Panel (a) monthly inflation. Panel (b) accumulated
monthly inflation.
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Figure B.10: Actual and counterfactual data without RS. The conditioning
variables are inflation, DGP growth, and retail sales growth. Panel (a)
monthly inflation. Panel (b) accumulated monthly inflation.
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Table C.1: Rejection Rates under the Alternative (Test Power)

α = 0.1 0.075 0.05 0.025 0.01

Step Intervention1 δt = c σ11{t ≥ T0}
c = 0.15 0.2045 0.1695 0.1287 0.0805 0.0436

0.25 0.3783 0.3266 0.2686 0.1890 0.1108
0.35 0.5769 0.5235 0.4545 0.3465 0.2414
0.5 0.8314 0.7945 0.7440 0.6478 0.5227
0.75 0.9876 0.9831 0.9741 0.9520 0.9094

1 0.9998 0.9995 0.9992 0.9983 0.9943

Linear Increasing δt = c σ1
t−T0+1
T−T0+1

1{t ≥ T0}

c = 1 0.8318 0.7938 0.7379 0.6397 0.5121
1.25 0.9877 0.9813 0.9717 0.9459 0.8948
1.5 0.9997 0.9997 0.9990 0.9969 0.9922

Linear Decreasing δt = c σ1
T−t+1
T−T0+1

1{t ≥ T0}

c = 1 0.8298 0.7956 0.7434 0.6492 0.5107
1.25 0.9868 0.9818 0.9720 0.9490 0.8985
1.5 0.9995 0.9994 0.9989 0.9968 0.9933

All simulations above as per DGP in (2-6) with the parameters in the baseline
scenario as described in the footnote of Table C.2.

1 All interventions intensity are measured as a factor c > 0 of the standard
deviation of unit of interest, σ1.
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Table C.2: Rejection Rates under the Null (Test Size)

Bias Vara ŝ0 α = 0.1 0.05 0.01

Innovation Distribution b

Normal 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
χ2(1) -0.0014 1.1004 5.9287 0.1227 0.0652 0.0154

t-stud(3) 0.0035 1.1026 5.6437 0.1077 0.0543 0.0103
Mixed-Normal 0.0069 1.1267 5.5457 0.1134 0.0607 0.0136

Sample Size

T = 100 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
75 -0.0030 1.1449 6.3992 0.1075 0.0546 0.0124
50 0.0021 1.1747 6.1219 0.1092 0.0626 0.0155
25 -0.0050 0.8324 3.2463 0.1330 0.0763 0.0226

Number of Total Covariates

d = 100 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
200 -0.0016 1.1655 5.7314 0.1102 0.0565 0.0135
500 -0.0043 1.2112 5.6625 0.1119 0.0556 0.0114
1000 0.0012 1.2477 5.5275 0.1054 0.0566 0.0115

Number of Relevant (non-zero) Covariates

s0 = 0 0.0038 1.0981 0.6105 0.1059 0.0550 0.0136
5 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
10 0.0003 1.0373 9.5813 0.1103 0.0581 0.0120
100 0.0003 - 20.1624 0.1114 0.0574 0.0145

Determinist Trend (t/T )ϕ

ϕ = 0 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
0.5 0.0142 1.1245 5.6285 0.1101 0.0598 0.0199
1 0.0183 1.1313 5.5030 0.1188 0.0613 0.0168
2 0.0221 1.1398 5.4259 0.1273 0.0675 0.0261

Serial Correlationc

ρ = 0.2 -0.0001 1.4109 5.5246 0.1160 0.0640 0.0158
0.4 0.0002 1.6909 5.9276 0.1223 0.0678 0.0184
0.6 0.0031 1.8895 6.9012 0.1440 0.0871 0.0283
0.8 0.0033 1.9977 7.9464 0.1546 0.0927 0.0329

Baseline DGP: (2-6) with T = 100, iid normally distributed innovations; T0 = 50;
n = 100 units; d = n = 100 covariates (including the constant); s0 = 5, q = 1; 10, 000
Monte-Carlo simulations per case. The penalization parameter is chosen via Bayesian
Information Criteria (BIC). We set the maximum number of included variables to be
T 0.8 in the glmnet package in R.

a Relative to the variance of the oracle/OLS estimator in the fist stage knowing the
relevant regressors.

b All distributions are standardized (zero mean and unit variance); Mixed normal equal
to 2 Normal distributions with probability (0.3, 0.7), mean (−10, 10) and variance (2, 1).

c All units are simulated as AR(1) processes. The variance estimator is computed as
Andrews e Monahan (1992) with an AR(1) pre-whitening followed by a standard HAC
estimator with Quadratic Spectral Kernel on the residuals. Optimal bandwidth selection
for AR(1) as per Andrews (1991).
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Table C.3: Estimators Comparison

BA SC DiD* DiD GM* GM ArCo* ArCo

No Time Trend (ϕ = 0) and No Serial Correlation (ρ = 0)

Bias1 -0.001 -0.678 0.005 0.008 -0.280 -0.273 0.000 0.000
Var 3.151 50.555 17.870 51.444 0.544 0.510 1.001 1.000

MSE 3.152 86.075 17.871 51.449 6.601 6.255 1.001 1.000

No Time Trend (ϕ = 0)

Bias -0.003 -0.596 0.000 0.000 -0.353 -0.294 -0.002 -0.002
Var 2.997 12.293 7.215 18.506 3.057 0.705 0.998 1.000

MSE 2.996 27.634 7.214 18.502 8.438 4.427 0.998 1.000

Common Linear Time Trend (ϕ = 1)

Bias 0.218 -0.579 0.034 0.033 -0.128 -0.195 0.028 0.029
Var 2.900 19.590 6.741 17.720 0.522 0.499 1.007 1.000

MSE 4.677 32.165 6.558 17.159 1.151 1.985 1.004 1.000

Idiosyncratic Linear Time Trend (ϕ = 1)

Bias 0.744 1.391 0.597 0.577 0.766 0.766 0.161 0.158
Var 0.288 0.564 0.392 1.720 1.499 1.113 0.996 1.000

MSE 2.270 7.544 1.651 2.771 3.493 3.142 0.999 1.000

Common Quadratic Time Trend (ϕ = 2)

Bias 0.288 -0.562 0.051 0.053 -0.170 -0.170 0.049 0.048
Var 2.809 18.486 6.571 17.199 0.512 0.488 1.007 1.000

MSE 5.583 28.407 6.105 15.837 1.520 1.498 1.010 1.000

Idiosyncratic Quadratic Time Trend (ϕ = 2)

Bias 0.994 -0.179 0.780 0.758 0.465 0.465 0.154 0.153
Var 1.443 0.377 3.499 8.878 0.282 0.274 0.992 1.000

MSE 14.786 0.701 10.868 14.002 3.216 3.210 0.998 1.000

S = 10, 000 simulations from DGP (1-14); T = 100 observations; Intervention at T0 = 50
only on the first variable of the first unit of intensity one standard deviation; rf chosen
such that R2 = 0.5; n = 5 units; q = 3 variables per unit; innovations are iid normally
distributed; ρ = 0.5 and diag (A) are independent draws from uniform [−1, 1]; All the
loads (for the constant, the time trend and the stochastic factor) are independent draws
from uniform distribution [−5, 5], except for the common trend cases where the time
trend loads are equal to unit for all variables of all units and for the cases with no time
trend where they are all set to zero.

* Estimators using the q − 1 covariates of unit 1. Hence, unfeasible if we expect the
intervention to affect all the variables in unit 1

1 Bias measured as a ratio to the intervention intensity, defined by one standard deviation
of the first variable of the first unit; Variance and MSE measured as a ratio to the ArCo
Variance and MSE, respectively.
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Table C.4: Estimated Effects on food away from home (FAH) Inflation.
Panel (a): ArCo Estimates

(1) (2) (3) (4) (5) (6) (7) (8)
0.2500
(0.1726)

0.4441
(0.1487)

0.4870
(0.1414)

0.7973
(0.2431)

0.4478
(0.2017)

0.3796
(0.1613)

0.4046
(0.1539)

0.4422
(0.1467)

Inflation Yes No No No Yes Yes Yes No
GDP No Yes No No Yes Yes Yes No
Retail Sales No No Yes No No Yes Yes No
Credit No No No Yes No No Yes No
R-squared 0.6849 0.1240 0.3856 0.3106 0.7993 0.8948 0.8072 0
Number of regressors 10 9 10 10 19 29 39 0
Number of relevant regressors 10 3 6 9 16 15 13 0
Number of observations (t < T0) 33 33 33 33 33 33 33 33
Number of observations (t ≥ T0) 23 23 23 23 23 23 23 23

Panel (b): Alternative Estimates
(1) (2) (3) (4) (5) (6)

BA 0.4472
(0.1464)

0.4478
(0.1466)

0.4390
(0.1471)

0.4538
(0.1464)

0.4501
(0.1467)

0.4422
(0.1467)

DiD 0.2195
(0.1467)

0.2111
(0.1460)

0.2171
(0.1467)

0.2112
(0.1460)

0.2088
(0.1461)

0.2194
(0.1467)

GM 0.3699
(0.1237)

0.3785
(0.1246)

0.3759
(0.1234)

0.3759
(0.1234)

0.3607
(0.1226)

−−

GDP Yes No No Yes Yes No
Retail Sales No Yes No Yes Yes No
Credit No No Yes No Yes No

The upper panel in the table reports, for different choices of conditioning variables, the estimated average intervention effect

after the adoption of the program (Nota Fiscal Paulista – NFP). The standard errors are reported between parenthesis.

Diagnostic tests do not evidence any residual autocorrelation and the standard errors are computed without any correction.

The table also shows the R-squared of the first stage estimation, the number of included regressors in each case as well as

the number of selected regressors by the LASSO, and the number of observations before and after the intervention. The

lower panel of Table presents some alternative measures of the average intervention effect, namely the Before-and-After

(BA), the method proposed by Gobillon e Magnac (2016) (GM) and the difference-in-difference (DiD) estimators.
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Table C.5: Estimated Effects on food away from home (FAH) Inflation: Placebo Analysis.
Placebos

(1) (2) (3) (4) (5) (6) (7)
Goiás (GO) −0.0113

(0.1811)
0.1624
(0.1707)

0.1606
(0.1557)

0.1888
(0.1642)

−0.1477
(0.2334)

−0.1931
(0.2331)

−0.0979
(0.2032)

Pará (PA) 0.1328
(0.2021)

0.2714
(0.1640)

0.1933
(0.1708)

−0.1419
(0.2085)

0.3690
(0.2407)

0.3690
(0.2407)

0.2789
(0.2052)

Ceará (CE) −0.0380
(0.1484)

0.2657
(0.1547)

0.2223
(0.1349)

0.2092
(0.1368)

0.1972
(0.1613)

0.1972
(0.1613)

0.1358
(0.2506)

Pernambuco (PE) 0.1769
(0.1949)

0.1895
(0.1687)

0.2698
(0.1718)

0.5322
(0.1741)

0.1586
(0.2073)

0.1586
(0.2073)

0.5021
(0.2174)

Bahia (BA) 0.0125
(0.2655)

0.0756
(0.2228)

0.1001
(0.2433)

0.5707
(0.3547)

0.2800
(0.3201)

0.2800
(0.3201)

0.1737
(0.2932)

Minas Gerais (MG) −0.0706
(0.1198)

0.1265
(0.1007)

0.1417
(0.1083)

0.3472
(0.1705)

−0.1089
(0.1560)

−0.1089
(0.1560)

0.0736
(0.1554)

Rio de Janeiro (RJ) 0.2245
(0.1165)

0.2992
(0.1278)

0.3126
(0.1230)

0.2484
(0.1245)

0.1723
(0.1111)

0.1723
(0.1111)

0.0724
(0.1300)

Paraná (PR) 0.1409
(0.2527)

0.3400
(0.1904)

0.2238
(0.1582)

0.1441
(0.2658)

0.2373
(0.2939)

0.2373
(0.2939)

0.1732
(0.2131)

Rio Grande do Sul (RS) 0.4292
(0.1614)

0.5422
(0.1653)

0.5315
(0.1599)

0.4996
(0.1580)

0.5325
(0.1627)

0.5325
(0.1627)

0.4450
(0.2430)

Inflation Yes No No No Yes Yes Yes
GDP No Yes No No Yes Yes Yes
Retail Sales No No Yes No No Yes Yes
Credit No No No Yes No No Yes

The table presents the estimated effect of the intervention on the untreated units. Values between parenthesis are

the standard error of the estimates.
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Table C.6: Estimated Effects on food away from home (FAH) Inflation: The Case without RS.
Panel (a): ArCo Estimates

(1) (2) (3) (4) (5) (6) (7)
0.2992
(0.1704)

0.4438
(0.1486)

0.4913
(0.1432)

0.5064
(0.1480)

0.4763
(0.2010)

0.4070
(0.1600)

0.4046
(0.1539)

Inflation Yes No No No Yes Yes Yes
GDP No Yes No No Yes Yes Yes
Retail Sales No No Yes No No Yes Yes
Credit No No No Yes No No Yes
R-squared 0.6439 0.1213 0.3928 0.1026 0.7960 0.8568 0.8072
Number of regressors 9 8 9 9 17 26 35
Number of relevant regressors 9 3 7 5 14 17 13
Number of observations (t < T0) 33 33 33 33 33 33 33
Number of observations (t ≥ T0) 23 23 23 23 23 23 23

Panel (b): Alternative Estimates
(1) (2) (3) (4) (5) (6)

DiD 0.2524
(0.1466)

0.2407
(0.1456)

0.2494
(0.1467)

0.2412
(0.1556)

0.2387
(0.1457)

0.2520
(0.1466)

GM 0.3694
(0.1234)

0.3788
(0.1243)

0.3595
(0.1246)

0.3775
(0.1227)

0.3660
(0.1228)

–

GDP Yes No No Yes Yes No
Retail Sales No Yes No Yes Yes No
Credit No No Yes No Yes No

The upper panel in the table reports, for different choices of conditioning variables, the estimated average

intervention effect after the adoption of the program (Nota Fiscal Paulista – NFP). The standard errors are

reported between parenthesis. Diagnostic tests do not evidence any residual autocorrelation and the standard

errors are computed without any correction. The table also shows the R-squared of the first stage estimation,

the number of included regressors in each case as well as the number of selected regressors by the LASSO,

and the number of observations before and after the intervention. The lower panel of Table presents some

alternative measures of the average intervention effect, namely the Before-and-After (BA), the method proposed

by Gobillon e Magnac (2016) (GM) and the difference-in-difference (DiD) estimators.
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Table C.7: Rejection Rates under the null (size)

Normal Distribution

(τ1, τ2) α = 0.1 0.075 0.05 0.025 0.01

(0,0.5) 0.1067 0.0687 0.0400 0.0236 0.0066
(0.33,0.66) 0.1093 0.0674 0.0394 0.0189 0.0037
(0.25,0.75) 0.1302 0.0867 0.0548 0.0339 0.0092
(0.2,0.8) 0.1414 0.0982 0.0641 0.0437 0.0154

(0.15,0.85) 0.1858 0.1333 0.0954 0.0621 0.0272
(0.1,0.9) 0.2358 0.1725 0.1278 0.0885 0.0637
‖ · ‖∞ 0.0879 0.0631 0.0432 0.0201 0.0077
‖ · ‖2 0.1194 0.0899 0.0598 0.0282 0.0107

t-Student distribution with 3 dof

(τ1, τ2) α = 0.1 0.075 0.05 0.025 0.01

(0,0.5) 0.1077 0.0670 0.0419 0.0249 0.0069
(0.33,0.66) 0.1087 0.0648 0.0366 0.0209 0.0040
(0.25,0.75) 0.1276 0.0864 0.0544 0.0326 0.0109
(0.2,0.8) 0.1449 0.1017 0.0702 0.0449 0.0168

(0.15,0.85) 0.1831 0.1343 0.0942 0.0629 0.0253
(0.1,0.9) 0.2515 0.1842 0.1348 0.0934 0.0627
‖ · ‖∞ 0.0936 0.0692 0.0469 0.0237 0.0077
‖ · ‖2 0.1215 0.0918 0.0614 0.0292 0.0117

Chi-square distribution with 1 dof

(τ1, τ2) α = 0.1 0.075 0.05 0.025 0.001

(0,0.5) 0.1049 0.0682 0.0413 0.0224 0.0066
(0.33,0.66) 0.1096 0.0673 0.0396 0.0205 0.0048
(0.25,0.75) 0.1279 0.0822 0.0519 0.0305 0.0108
(0.2,0.8) 0.1344 0.0931 0.0616 0.0404 0.0163

(0.15,0.85) 0.1807 0.1278 0.0932 0.0598 0.0220
(0.1,0.9) 0.2419 0.1777 0.1301 0.0887 0.0603
‖ · ‖∞ 0.0916 0.0673 0.0438 0.0188 0.0071
‖ · ‖2 0.1231 0.0963 0.0626 0.0282 0.0115

Uniform distribution

(τ1, τ2) α = 0.1 0.075 0.05 0.025 0.001

(0,0.5) 0.1045 0.0664 0.0403 0.0216 0.0058
(0.33,0.66) 0.1141 0.0691 0.0391 0.0198 0.0045
(0.25,0.75) 0.1342 0.0896 0.0560 0.0342 0.0110
(0.2,0.8) 0.1443 0.0976 0.0664 0.0419 0.0172

(0.15,0.85) 0.1775 0.1273 0.0882 0.0616 0.0249
(0.1,0.9) 0.2376 0.1745 0.1280 0.0900 0.0615

NB: T = 100 observations, T0 = 50 (λ0 = 0.5). n = 4 units. 10000 Monte-Carlo
simulations per case. All disturbances are normalised to mean zero and unit
variance for each of the distributions considered
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Table C.8: Critical Vales for Unknown Intervention Time Inference: P(‖S‖p >
c) = 1− α

Confidence Level

Λ = [λ, λ̄] α = 0.2 0.15 0.1 0.05 0.0025 0.001

p = 1 [0.5, 0.95] 2.5679 2.7824 3.0732 3.5457 3.9844 4.5346
[0.1, 0.9] 2.4332 2.6569 2.9550 3.4530 3.9218 4.4805

[0.15, 0.85] 2.3786 2.6164 2.9375 3.4482 3.9138 4.4728
[0.2, 0.8] 2.3366 2.5833 2.9167 3.4399 3.9115 4.4655

p = 2 [0.5, 0.95] 3.0633 3.2814 3.5706 4.0228 4.4378 4.9674
[0.1, 0.9] 2.8230 3.0441 3.3340 3.8138 4.2602 4.7792

[0.15, 0.85] 2.7052 2.9400 3.2448 3.7391 4.1859 4.7235
[0.2, 0.8] 2.6169 2.8579 3.1795 3.6787 4.1466 4.7159

p =∞ [0.5, 0.95] 8.6192 9.1867 9.9400 11.1562 12.2190 13.5604
[0.1, 0.9] 6.4807 6.8974 7.4353 8.2781 9.0400 10.0020

[0.15, 0.85] 5.6000 5.9506 6.4041 7.1014 7.7328 8.5187
[0.2, 0.8] 5.0630 5.3815 5.7957 6.4303 7.0047 7.7473

NB: All critical values were obtained as the quantile of the empirical distribution using
100,000 draws from a multivariate normal distribution with covariance ΣΛ via a grid of
500 points between λ and λ̄ inclusive.

Table C.9: Analized Cases of Change in Corporate Governance Regime

Treated Segment Migration Date /Level Peers T λ0 = T0
T

BBAS3 Banking 28-Jun-2006 (NM) ITUB 280 0.46
BBDC4
SANB4

ETER3 Construction 2-Mar-2005 (N2) CCHI3 150 0.67
Material HAGA4

SBSP3 Sewage and 24-Apr-2002 (NM) SAPR4 135 0.54
Water Dist. HAGA4

CABB3

RSID3 Building and 27-Jan-2006 (NM) GEN4 127 0.43
Incorporation CYRE3

NB: T is the sample size, whenever possible we try to trim the sample size to have the
intervention in the middle (minimum variance as described above); T0 is the time of the
intervention.

Table C.10: Estimation Resutls (r̂ = τ̂2 − τ̂1)

Coverage Probability (τ1, τ2)

(0,0.5) (0.15, 0.85) (0.2, 0.8) (0.25, 0.75) (0.33, 0.66)
r0 = τ2 − τ1 0.5 0.70 0.6 0.5 0.33

BBAS3 0.4636 0.8477 0.7152 0.6556 0.3907
(0.5426) (0.0071) (0.0493) (0.0093) (0.2804)

NB: p-value in parentheses. Standard error estimation using under iid assumption.


