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Abstract

Medeiros Sztutman, Andre; Carvalho, Carlos Viana de (Advisor);
Berriel, Tiago Couto (Co-Advisor). Informationally efficient
markets under rational inattention. Rio de Janeiro, 2017. 52p.
Dissertação de Mestrado – Departamento de Economia, Pontifícia
Universidade Católica do Rio de Janeiro.

We propose a new solution for the Grossman and Stiglitz [1980]
paradox. By substituting a rational inattention restriction for their
information structure, we show that prices can reflect all the information
available without breaking the incentives of market participants to gather
information. This model reframes the efficient market hypothesis and
reconciles opposing views: prices are fully revealing but only for those who
are sufficiently smart. Finally, we develop a method for postulating and
solving Walrasian general equilibrium models with rationally inattentive
agents circumventing previous tractability assumptions.

Keywords
Rational Inattention; Information Aggregation; Walrasian General

Equilibrium; Portfolio Choice;



Resumo

Medeiros Sztutman, Andre; Carvalho, Carlos Viana de; Berriel,
Tiago Couto. Mercados informacionalmente eficientes sob
desatenção racional. Rio de Janeiro, 2017. 52p. Dissertação de
Mestrado – Departamento de Economia, Pontifícia Universidade
Católica do Rio de Janeiro.

Propomos uma nova solução para o paradoxo de Grossman Stiglitz
[1980]. Trocando sua estrutura informacional por uma restrição de
desatenção racional, nós mostramos que os preços podem refletir toda
a informação disponível, sem quebrar os incentivos dos participantes do
mercado em processar informação. Esse modelo reformula a hipótese dos
mercados eficientes e concilia visões opostas: preços são completamente
reveladores, mas apenas para aqueles que são suficientemente espertos.
Finalmente, nós desenvolvemos um método para postular e resolver modelos
de equilíbrio geral Walrasiano que circunscreve hipóteses simplificadoras
anteriores.

Palavras-chave
Desatenção racional; Agregação de informação; Equilíbrio geral

Walrasiano; Escolha de portfolio;
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1
Introduction

Can prices fully reflect costly information? In order to reanalyze that
question we build a model of costly information processing, that is similar in
spirit to (1). In our model, all agents are price takers, prices are fully revealing
- they form a one-to-one map with the states of the world - but there are still
incentives to gather and analyze information.

This paper adds to a literature that has provided different answers to
the Grossman Stiglitz paradox. (2) builds a model where a large trader with
monopoly power may decide on a price function that is not fully revealing. (3)
builds an auction model that makes explicit how prices are formed. In their
model prices in general are partially revealing, but they can be in very special
cases fully revealing. Our model is an alternative answer, which abstracts
from market power and strategic behavior in auctions. In other words, we
do not touch on the question of how prices are explicitly formed. Closer to
our model is (4) and (5). (4) builds an alternative version of (1), with an
additional intertemporal dimension and a finite number of agents. In this
context, he shows that prices can be fully revealing without breaking apart
all the incentives to gather information. But his model has the counterfactual
implication that irrespective of the number of agents in the economy, only one
agent ends up paying for costly information in equilibrium. In our model, every
active market participant processes costly information. Contrary to their claim
that "a continuum of agents is irreconcilable with information acquisition in a
fully revealing financial market equilibrium"(4, p. 468), we show precisely how
can that be the case that information acquisition can be made compatible with
fully revealing prices in a Walrasian setting.

Our resolution also does not rest on the assumption of signals that must
convey bundled information about common and private values as in (5) or (6).

Our results come from modifying (1) informational structure. Instead of
making the random asset supply unknown and prices information processed
at no cost, we assume that those three variables are all freely available
information, but are costly to process. Our novel methodological feature is
building a Walrasian general equilibrium model with rational inattention where
the information content of prices is not assumed to be automatically processed,
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without any costs at all.
This gives another answer to Grossman-Stiglitz paradox: when

information is costly, prices can still reflect all information. However, it is no
trivial task to tell from prices what is the state of the world. For discerning
the state of the world, market participants can process information from
different sources, including but not restricted to the information content of
prices.

Think of asset markets as a chess game. Prices in the chess game are as
signals that tell the place of each piece. However, knowing the prices and the
position of each piece is not enough to make a good move: it is necessary to
think, i.e., process the information available. Alternatively, think of this model
as a miniaturized version of an asset market where there are many different
assets being traded and traders act on public information. But the amount of
public information is so large that one cannot see all the information, even less
process it attentively. In this scenario, traders choose what they pay attention
to, paying partial attention to each source of randomness. In this story it is
emphasized the costly process of seeing the information, while in the first story
it is emphasized the costly process of strategically acting on information. In this
static model of rationally inattentive agents, both costs are indiscernible, and
we can think as the model as expressing both kinds of information processing
constraints. 1

1In rational inattention static models there is an equivalence between signals and actions.
For discussions of this revelation principle see (7), (8) or (9).



2
Model

We build a model that is close to (1).As in their model, agents have
CARA utility, there are a risky and risk-free asset, and the information about
the endowment return is costly.

Differently from their model, we assume that the noisy asset supply and
the endowment return are discretely distributed instead of multivariate normal.
1 Differently from (1), we treat each variable symmetrically. In their model,
making inferences from prices is costless, the endowment return can be known
at a cost, and the noisy asset supply cannot be known at any cost. In our
model, the cost of information from these three variables is the same, as the
agent faces a general mutual information cost as in the rational inattention
literature ((10), (11, 8), (12, 13, 14)).

In the next sections, we describe the model in details, in the following
order: timing, budget constraints, entropies and mutual information, utility
and information choice, equilibrium, distribution of exogenous variables and,
lastly, the numerical strategy.

2.1
Timing

There are three periods. In period 1, agents decide on their informational
strategies, that is, they choose what variables they will pay attention to. They
are not restricted to linear-Gaussian signals (as in (12),(15),(16, 17)), or any
specific parametric distribution of uncertainty. In period two, they observe the
signals and place their orders of buying and selling the risky security. In period
three, intrinsic uncertainty is realized.

2.2
Budget Constraints

As in (1) we assume that each trader is endowed with M̄ and X̄ units of
a risk-free asset and the risky asset respectively.

1We also present a version where the noisy asset supply is normally distributed that
shares the same results we present for the discrete version. The reason for the discreteness
is that it is a natural assumption for solving the model numerically, as will become clearer
in the next sections.
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His period 1 wealth (before payoffs are realized, and before the portfolio
has been placed) is given by:

W1 = PX̄ + M̄

Where X̄ is the agent endowment of the risky asset and M̄ is the agent
endowment of the risk-free asset. P is the price of the risky asset in terms of
the risk-free asset.

His period 2 wealth (before payoffs are realized, and after the portfolio
has been placed) is given by:

W2 = PX +M

which satisfies the budget constraint:

PX̄ + M̄ = PX +M

The agent problem is formulated as a function of Z = X−X̄. This choice
translates the fact that agents are sending orders to buy or sell the risky asset
and those transactions are paid in dollars. Z will be called the agent action,
and also will be called the agent signal. This is so, because of the "revelation
principle"that holds in this class of information choice model.

His period 3 wealth, finally is given by:

W3 = RfM + µX = Z(µ− PRf ) +RfM̄ + µX̄

Where µ = θ + ε is the endowment return, which has two components:
θ denotes the part of return that can be processed and known at information
processing cost an ε denotes intrinsic, uninsurable risk. Further, Rf is the
return on the riskless asset.

2.3
Entropy and Mutual Information

We follow (15), (18),(17), (10), (8, 11), (19), (20), (12, 13, 14), and (21)
in employing the information theoretical concepts of entropy and mutual
information. Those quantities are regarded as “answers to fundamental
questions” ((22)) in the field of information theory.2

Basically, one can see entropy as a measure of uncertainty. For discretely
distributed random variables it is defined as:

2For a detailed introduction to the field see (23) and (22).
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H(Z) =
∑
z

Pr(z)log
(

1
Pr(z)

)

The analog for continuously distributed variables, the differential entropy is
defined as:

H(Z) =
∫
S
f(z)log

(
1

f(z)

)
dz

The mutual information I(Z;Y ) is a measure of dependence between two
vector of random variables. It is zero if and only if they are independent, it is
always nonnegative and it is symmetric. It can be thought as the reduction in
the uncertainty about one random variable (say Y) after seeing another random
variable (Z). Also, it is independent of the scale of variables (which is a desirable
feature absent in applied work common approaches such as postulating costs
functions for information on the basis of the sum of variances). Formally, it is
given by:

I(Z;Y ) = H(Z)−H(Z|Y )

or, equivalently,
I(Z;Y ) = H(Z) +H(Y )−H(Z, Y )

or,
I(Z;Y ) = H(Y )−H(Y |Z)

This definition can be derived from a variety of axioms, and it is the only
measure that satisfies some appealing and intuitive properties. In addition
to those already mentioned, the measure does not depend on the order of
observations:

I(Y ;X,Z) = I(Y ;X|Z) + I(Y ;Z) = I(Y ;Z|X) + I(Y ;X)

If we are willing to adopt a measure of information which has those
properties, then we have no choice left but to adopt Shannon mutual
information I(Z;Y ), and the base on the logarithm is the only arbitrary
assumption we can make. When the base adopted is 2, the unit of measure is
called bits, when the base is e the unit is nats.

2.4
Utility and Information Choice

As we stated before, each agent has identical CARA utility over period
3 wealth:
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EU [W3(Z, Y )] = E [−exp (−aW3(Z, Y ))]

Where, a denotes the absolute risk aversion coefficient. We denote
the vector of random variables that are not under control of the agent as
Y = (θ, P, X̃). X̃ denotes the random asset supply.

The problem of the agent is to choose an information structure, and,
given the information structure and the signal he receives, to choose and
action, a buy or sell order, which can take any real value. In other words
he is able to design an experiment that provides him with an optimal signal S,
but this experiment is bounded by an information constraint. After the signal
is realized, the agent will take an action Z(S), which is the optimal action given
his knowledge about the signal S. As many models of information choice, this
model features a "revelation principle". This means that the choice of signals
can be, without loss of generality, restricted to the choice of signals in the form
of actions. Informally, any signal S is only optimal if they are in bijection with
actions, otherwise they would convey irrelevant information to the decision
maker. This implies that any optimal signal S is equivalent to a signal of the
form S = Z, where Z is the action taken, that is the buy and sell orders. For
more formal discussions of this "revelation principle"see for instance (7), (8) or
(9). Therefore, we can formulate the rational inattention problem of the agent
as choosing conditional distributions f of Z|Y by maximizing expected utility,
subject to an information bound. Formally:

max
f
EU(Z, Y )

s.t. I(Z;Y ) ≤ κ

This formulation of the problem translates the fact that agents are free
to choose any information structure they want. They can look at any of the
exogenous variables and obtain a signal with an unspecified kind of error.
They are not restricted to observing the variable plus a Gaussian noise, not
even signals that have information only about each independent component.
They can obtain signals that are non-linear combinations of variables plus a
noise that has any distributional shape. They can obtain as well direct signals
of the state of the world, instead of looking at signals which explicitly reference
variables.

A similar formulation consists of choosing conditional distributions f of
Z|Y by maximizing expected minus an informational cost that is linear in the
mutual information:
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max
f
EU(Z, Y )− λI(Z;Y )

When the information constraint is binding, the two approaches are, in
a sense, equivalent since λ can be interpreted as the Lagrange multiplier for
the information constraint. This permits employing (24) algorithm for finding
a numerical solution to the program above.

2.5
Equilibrium

Defining and solving Walrasian general equilibrium models with
rationally inattentive agents is no trivial task. Some additional tractability
assumption have been used by the literature. For instance, (20) and (18)
assume that agents perfectly observe prices and perfectly process the
information contained in prices. 3 This assumption was called by (14) a
“schizophrenic compromise”.

We show that we can dispense with this compromise by working with
the following definitions:

Definition: An agent type is defined as an utility function and the
parameters it assumes, prior beliefs about the distribution of exogenous
variables and a solution of the rational inattention problem as defined above.

Definition: A replica of an agent type is an iid drawn from any
stochastic process that is idiosyncratic. In particular, we assume that
information processing is an idiosyncratic process. In other words, replicas
face the same distribution of exogenous variables, have the same utility
function and decide on the same conditional distribution of signals, but have
different draws for idiosyncratic iid processes. 4

Definition: Given a set of types of agents, denote by r the number
of replicas of each type. A Walrasian General Equilibrium with rational
inattention is defined as: i) a price function P (ωA), where ωA denotes the
aggregate state, ii) for each type j ∈ J a solution f ∗j of the rational inattention
problem, such that:

3In the Online Appendix, (18) present a version of their model where the information
content of prices is not assumed to be costless processed, generating the interesting and
disturbing result that under agents would prefer not to observe prices. However, their model
has additional assumptions on the informational structure which we refrain from adopting.
For instance, in their model the information cost is linear in the sum of conditional variances
of the independent risk factors and prices.

4This definition can accommodate asymmetric equilibria by having different types with
the same distribution of exogenous variables and utility function but with different solutions
for the rational inattention problem if there are many.
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lim
r→∞

Pr(
∑
j∈J

r∑
i=1

Zi,j = 0) = 1 for every aggregate state ωA

We need an infinite number of replicas in order for an equilibrium to
exist. In a general environment in the appendix, we prove formal versions of
the last statements and of Theorem below.

Theorem 2.1 (Informally stated) Let there be an endowment economy with
a finite number of goods and assets, where every agent solves the rational
inattention as defined above. With a finite number of agents there is never a
price function that clears the markets with probability one for every aggregate
state. A large number of agents adds just enough regularity for an equilibrium
to exist in great generality.

Proof: See Appendix, sections A.3 and A.4.
We claim that this definition of equilibrium settles down the question over

how to build Walrasian general equilibrium models with rational inattention.
The assumption of a large number of agents is a natural one in a Walrasian
setting, since it justifies agents being price takers and not acting strategically.
Additionally, Theorem 2.1 justifies that an equilibrium exists under a variety
of environments and assumptions, not only the one we discuss in greater detail
in the rest of the paper.

2.6
Distribution of exogenous variables

In order to close the model, what remains to be done is to postulate a
joint distribution for the exogenous variables.

In the next section we first assume, as (1) and much of the literature do,
that there is an exogenous noisy supply of the risky asset. This assumption as
can be thought as an unmodeled liquidity risk and it could be formalized as
wealth risk in a CRRA model.

We keep the structure as simple as possible: let there be four aggregate
states in the world. The endowment return θ can be high (θH) or low (θL) with
equal probability and the noisy asset supply (denoted by X̃), independently,
can be high (X̃H) or low (X̃L) with equal probability. Therefore there are four
aggregate states all with 1/4 probability. In each state the random variables
assume the following values:

{(θH , X̃H), (θH , X̃L), (θL, X̃H), (θL, X̃L)}.

Further, we assume that intrinsic risk ε is N(0,σ2
ε ) independent of θ.
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In the section 4, we build a more tractable and simplified version where
the signals and the disturbance are by hypothesis jointly normal. That is, in
section 4, the optimal signal is not allowed to be of any distributional form,
but is restricted to joint normality. In the Appendix section A.2 we discuss
what happens when we dispense with the random asset supply in this set-up.
Contrary to (20) conjecture, rational inattention by itself does not generate
a noise that substitutes for the exogenous noise assumed by the literature.
However, it does generate a multiplicity of equilibrium prices. This is another
reason to think of this noise in this class of model as an unmodeled liquidity
demand, rather than trade based on weakly informative signals.

In the Appendix section A.7, we propose another structure for the
exogenous variables, which leads us a bit further away from (1). The objective is
to introduce some elasticity on the noisy supply of the risky asset. This is done
by postulating an exogenous risk-free asset supply. This version of the model
has the interesting feature that for different levels of the information capacity,
agents pay attention to different variables. When the information constraint
has a very high shadow cost, only prices and noise receive attention. When
agents have a lower shadow cost and higher information capacity they also
pay attention to the expected endowment return.

2.7
Numerical strategy

We follow (24) in solving the rational inattention problem numerically
and employing a variant of the celebrated (25) algorithm, where there is an
added step for optimizing over the support of actions. We then use Christopher
Sims’ (csolve.m) non-linear solver (quasi-newton with random search) to find
a solution for the system of equations that characterize the equilibrium as
defined in the Equilibrium section above.

We take a somewhat arbitrary set of parameters, presented in table (2.1).
The qualitative results are robust to different choice of parameters, as will be
seen in the sections below.

Table 2.1: Parameters for numerical solution

Rf 1 σ2
ε 1

a 0.5 θH 1.2
κ 0.5 θL 0.8
λ 0.0038 X̃H 0.2
X̄ 1 X̃L -0.2
M̄ 1 Pr(θ, X̃) 0.25 (uniform)
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It is worth restating the meaning of each parameter. Rf is the risk-free rate of
return. a is the absolute risk aversion coefficient. κ is the information capacity
of the agent in bits (or the amount of information the agent uses), λ is
the shadow cost of information (or the linear cost of information in terms
of utility). Fixing κ, λ is an endogenous variable, and fixing λ, κ becomes
an endogenous variable. X̄ is the agent endowment of the risky asset. M̄ is
the agent endowment of the risk-free asset. Since utility is CARA those two
variables do not affect the results. The risky endowment of the agent (X̄) only
matters through the aggregate amount of the risky asset the economy has. σ2

ε

is the intrinsic risk of the risky asset. θH and θL are the values the expected
endowment return assumes and X̃H and X̃L are the values the noisy asset
supply assumes. Those two random variables are uniformly distributed, so
that P (θ, X̃) = 0.25 for every pair (θ, X̃). Lastly, this implies that the entropy
of exogenous variables is equal to two bits. An agent with a informational
capacity equal to or greater than two bits can see and understand perfectly
what is happening in the model.



3
Results

3.1
A counterexample to Grossman and Stiglitz conjecture

We are going to show that our model implies two interesting facts about
costly information in Walrasian general equilibrium, which we state in the form
of two theorems. The first one is in direct contradiction to (1) conjecture that
informationally efficient markets are a logical impossibility.

Theorem 3.1 Define a vector of prices to be fully revealing if they form a
one-to-one map with the aggregate states in the economy. Define information
to be costly if λ > 0. Then, that information is costly does not imply that prices
cannot be fully revealing.

The proof of the theorem above is numerical and it is a counterexample.
Taking the parameters above, we find the following set of equilibrium prices1:

Table 3.1: Equilibrium Prices
Rational Inattention (κ = 0.5) Full Information (κ = 2)

P (θH , X̃L) 0.8364 0.8
P (θH , X̃H) 0.5636 0.6
P (θL, X̃L) 0.4117 0.4
P (θL, X̃H) 0.1883 0.2

The relevant information in the table above is not the particular prices
for each state, but the fact that they form a one-to-one map with the states,
that is, prices are fully revealing.

Full information prices admit a closed form expression, which is derived
in the Appendix section A.1: P =

(
θ − a ¯̄Xσ2

ε

)
1
Rf

where, ¯̄X = X̄ + X̃. This
formula generates the results shown in the third column of table (3.1).

Again, for each state there is a different price. In this sense, prices are
fully revealing. By knowing prices and the model structure, one would perfectly
deduce what are the aggregate states. By assumption, information is costly,

1The full set of routines to generate the results is available in Computational Appendix.
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that is λ > 0. The rational inattention framework highlights that it is costly
to make this kind of inference. Information constrained agents will have both
incentives to gather and process more information and at the same time will
not know everything in spite of the fully revealing character of prices.

Our definition of fully revealing prices does not imply that agents end up
knowing everything. Actually, only a very smart agent, with κ ≥ 2, would be
able to assimilate all the information only looking at prices. The smarter the
agents are, the more information they can extract from prices. However, prices
as a source of information can provide all information there is to be provided.

Our second result says that also the converse is not true.

Theorem 3.2 λ = 0 does not imply that prices form an one-to-one map with
the aggregate states. In other words, that information is costless does not imply
that prices are fully revealing.

Again, the proof is by a counterexample. By carefully choosing
parameters, full information prices cease to be fully revealing. Take for
instance the numerical calibration presented in 2.7, but let the vector of noisy
supplies be given by (X̃H , X̃L) = (0.4,−0.4), that is, twice as before. Then by
applying the formula above, we arrive at full information equilibrium prices
that are not fully revealing, as it can be seen in table (3.2).

Table 3.2: Full Information Prices
are not always fully revealing

P (θH , X̃L) 0.9
P (θH , X̃H) 0.5
P (θL, X̃L) 0.5
P (θL, X̃H) 0.1

Prices reveal whether the economy is in states (θH , X̃L) or (θL, X̃H) but
if P = 0.5, one cannot tell from prices whether the economy is in (θH , X̃H) or
in (θL, X̃L).

While, in this model, the case against full information prices being fully
revealing is knife-edged, relying on the meticulous choice of the parameters,
the case for fully revealing prices under rational inattention is quite general,
as will become clear from the comparative statics presented below.
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3.2
Comparative Statics

3.2.1
Varying the information cost

Our most important comparative statics concern varying the information
cost, since without the information cost our model is just a well-known full
information benchmark of (1). For each of the figures plotted below, we solved
the model for different values of the information cost (λ), from 0 to 0.1 in steps
of 0.001.

Across our numerical explorations we highlight some properties of the
solutions.

First, the information cost acts as an amplifier of the exogenous noise.
The more information constrained the agents are, the more extreme positions
they take in equilibrium, while prices become more extreme and volatile. This
is a non-trivial general equilibrium effect, since the partial equilibrium effect
of inattention (holding prices fixed) is to become more conservative. This can
be seen in figure (1), where the blue solid line plots the support of the actions
taken in equilibrium as a function of the information cost under the vector of
equilibrium prices and the red dashed line plot the support of actions agents
would take if prices were held at the full information benchmark. The red
dashed line quickly converges to zero, that is, rising the information costs
while keeping the prices fixed leads the agents to stop trading and processing
information. The blue solid line diverges, agents take more extreme actions
with less precision. This can happen only because of the behavior of prices as
plotted in figure (2), where we plot the price for each state as a function of the
information cost. As the information cost rises prices are driven away from the
full information benchmark in the direction of becoming more volatile. This
is necessary for the agents to take more extreme positions in equilibrium. On
the other hand, this means that the liquidity demanders pay for the scarce
attention of traders.

Since agents are taking more extreme positions the traded volume rises.
This can be seen in figure (3). As information gets costlier, the amount of
speculative trade rises. That is, the amount of trade based on noisy signals
rises, and traders take opposite bets on the market. Market participants "agree
to disagree", because it is costly to enrich their information sets until all
information they have becomes common knowledge.

Figure (4) highlights the non participation effect we briefly touched
above. As the market gets more informed (in the sense of smaller λ), the
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maximum information cost a single zero-mass agent must have in order to be
willing to trade diminishes. This can be seen in the wedge there is between the
blue solid line and the red dashed line. In other words, the less informed are
pushed away from the trading business, as the market gets more informed.
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Figure 3.5: Correlation of prices to the liquidity demand and the endowment
return

Finally, as information gets costlier, prices become more linearly
correlated to noise, and less to the endowment return, as it can be seen in
figure (5). However, this does not mean that prices convey more information
about noise (or market conditions) and less about the endowment return:
prices, almost always, convey all information about those two variables.

From the behavior of prices we can deduce the behavior of other statistics
that depend on prices. In the appendix section A.6, we show how the moments
of excess returns vary with respect to changes in information cost. In particular,
mean excess returns rises as the information becomes costlier and so does
the standard deviation. This is indicative that risk coming from imperfect
information can explain part of the equity premium. We develop this point
further in the section 3.3.

3.2.2
Varying the information capacity

Many of the comparative statics derived for the information cost hold
to the information cost, but with the opposite sign. The information cost can
be interpreted as the shadow cost of information in equilibrium under the
information capacity restriction. However, it could be the case that as people
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get more informed, the shadow value of information rises. That would
happen if information acquisition were a strategic complement. There would
be a positive relationship between the marginal value of information and the
information capacity of the market. However, as shown above, as people get
more informed, the shadow value of information diminishes, indicating that
information acquisition is a strategic substitute. Actually, the substitutability
effect is so strong that, as people get more informed, expected welfare
diminishes.2 This can be seen on the right panel in figure (6), where we plot
the welfare of the rationally inattentive agent as a function of his information
capacity. On the left panel, we plot the marginal value of information as a
function of information capacity: the marginal value of information smoothly
diminishes as the information capacity rises. However, as we said before, this
does not comes from the fact that prices reveal more, because prices are
almost always fully revealing, in the sense that they form a one-to-one map
with the aggregate states.3 This comes from the fact that there is strategic
substitutability in information acquisition and that traders are understanding
better the environment.

It would be naive to take this welfare effect as a normative prescription
in the sense of prescribing less transparency, since the exogenous liquidity
demand is paying for those welfare gains of inattentive traders. Rather, it is
more appropriate to understand this welfare effect as part of the competition
for supplying liquidity to noise trading, a process by which prices get closer to
the full information benchmark.
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Figure 3.6: Marginal value of information and welfare

Further, is interesting to note that once the information capacity becomes
greater than one bit, the marginal value of information goes to zero. In other
words, there is irrelevant information in the economy. In the Appendix section

2This is true in the κ setup, that is, calculating the expected welfare after the cost of
the information has been sunk. Subtracting the information cost from the utility as in the
λ setup makes the relationship between welfare and the market information cost negative,
but does not change the strategic substitutability effect.

3One can argue however that, from the point of view of agents, prices reveal more the
less information constrained they are. Only a unconstrained agent, that is a agent with
information capacity greater or equal to 2 bits and with λ = 0, can fully understand the
information content of prices.
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A.5, we show formally why the information constraint is not binding when
κ ∈ [1, 2].

In this simple model, it is the information about the endowment return
that becomes irrelevant. The reason for this irrelevance comes from the
complete inelasticity of the liquidity demand (noisy asset supply). If we model
this liquidity demand as elastic to prices, then the information about the
endowment return turns out to be processed in equilibrium. This is shown
in Appendix section A.7, in which we build a simple extension of the model.

3.3
Calibration

Our goal in this calibration exercise is to show that imperfect information,
in the form of rational inattention, can account for high values of risk aversion
necessary to match the data. We do not fully estimate the model, but show that
holding the expectation of excess returns fixed, there is a positive relationship
between the information capacity and the risk aversion coefficient. We illustrate
this finding in figure (7).
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Figure 3.7: Expectation of excess returns are held at 6%

Along the line plotted above, the expectation of excess returns
(E[θ/P −Rf ]) is held at 6%. At the full information benchmark, the
absolute risk aversion coefficient is above 2.3, while by raising the
information cost, the absolute risk aversion coefficient steadily diminishes
down to less than 1.8, when our numerical algorithm starts to take too long
to solve the model. The other parameters are set as in the table below.
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Table 3.3: Other parameters

Rf 1.02 σ2
ε 0.023

a - θH 1.2
κ - θL 0.8
λ - X̃H 0.2
X̄ 1 X̃L -0.2
M̄ 1 Pr(θ, X̃) 0.25 (uniform)

That rational inattention can substitute for a high value of risk aversion
was already shown by (15). Our novelty here is framing this result in a
model where asset prices do not receive a special treatment. Broadly speaking,
informational frictions often appear in the literature as one explanation for the
equity premium puzzle, see for instance (26).



4
A simplified version with Gaussian signals

We build the simplest model with Gaussian signals that can be compared
to the numerical model we developed. As in the numerical example, prices map
one-to-one with the aggregate states, in this sense they are fully-revealing.
But this property does not harm the incentives to process costly information.
Additionally, we can derive many of the properties of the numerical model with
closed form expressions.

We assume that the endowment return is made of µ = θ + ε, where θ is
fixed and ε is N(0, σ2

ε ). The uncertainty we focus on is the uncertainty about
the asset supply.

The budget constraint of the agent is:

W = X(θ + ε− PRf) +W0Rf

We assume that the signal (S) and the noisy asset supply (X̃) are
multivariate normal, that is E(X̃|S) is N(µX̃ , V ar(E(X̃|S))). Finally, we
assume that agents maximize their expected certainty equivalent wealth as
in (20), and (27, 28). That is, they solve at time 1 the problem:

max
V ar(X̃|S)

E(−ln(E(exp(−aW |S)))) s.t. I(S, X̃) ≤ κ

At time 2 (right after the signal is observed), the optimal action is found by
solving:

max
X

E(−exp(−aW (X))|S)

We look for an equilibrium price function of the form: P = A+Bθ+CX̃.
We do not condition the expectation at time 2 on prices, or on prices and S, but
only on S, the optimal multivariate normal signal. This is the Gaussian version
of the crucial assumption of the rational inattention theory: all information is
available, it is processing that is costly. Nevertheless the optimality of jointly
normality of distributions of signals is warranted only under very specific
hypothesis on distribution of uncertainty and the utility function ((24)), we
follow the applied literature in adopting it because of its simplicity ((20),
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(17, 16), (15)). Define the auxiliary variable Φ as:

Φ(X) = −a(W (X)−W0Rf)

Given the signal S, the agent problem can be written as:

max
X
− E[Φ(X)|S]− 1

2V ar[Φ(X)|S]

Solving this problem yields the optimal portfolio holding, conditional on
the signal S:

X = ((1−BRf)θ − CRfE(X̃|S)− ARf)
a(σ2

ε + (CRf)2V (X̃|S))
Now, our equilibrium concept implies that:

lim
r→∞

∑
r

Xr|X̃ = X̃

or equivalently E(X|X̃) = X̃. Where the expectation on the left hand side is
taken with respect to the distribution of signals. Therefore

X̃ = ((1−BRf)θ − CRfX̃ − ARf)
a(σ2

ε + (CRf)2V (X̃|S))

Implying that the price coefficients are B = 1/Rf , A = 0, and C is given
by:

C− =
(
−1− (1− 4a2σ2

εV (X̃|S))1/2

2aRfV (X̃|S)

)
or C+ =

(
−1 + (1− 4a2σ2

εV (X̃|S))1/2

2aRfV (X̃|S)

)

While the full information benchmark is given by: Afull = 0, Bfull =
1/Rf and Cfull = −aσ2

ε

Rf
. We must remark that equilibrium does not exist if

a2σ2
εV (X̃|S) > 1/4. That means that if risk aversion, the intrinsic risk and the

endogenous uncertainty are too high, then there is not an equilibrium. Further
notice that 1− 4a2σ2

εV (X̃|S) < 1, which implies that C < 0.
The most plausible price functional is the one defined by C+, which

is continuous on uncertainty (V (X̃|S)) and has a limit the full information
price function when V (X̃|S) vanishes. One could use the existence of two
price functions consistent with equilibrium to rationalize sudden changes
in volatility. However, I argue that the most sensible use of the model
is to discard the price functional defined by C−, since the coefficient C
approaches minus infinity as one gets closer to full information: such enormous
amount of volatility makes it an implausible discontinuous equilibrium at



Chapter 4. A simplified version with Gaussian signals 30

the neighborhood of the full information benchmark. We discuss below the
properties of both equilibria.

Now we check whether there are incentives to acquire information by
solving the information acquisition part of the problem. This amounts to
taking the solution to X above and plugging it into the utility function
E(−ln(E(exp(Φ|S)))).

E(exp(Φ)|S)) = E

(
exp

(
CRfE(X̃|S)

(σ2
ε + (CRf)2V (X̃|S))

(ε− CRfX̃)
) ∣∣∣∣S

)

Which is the expectation of a log-normal variable. A straightforward
calculation shows:

E(−ln(E(exp(Φ)|S))) = 1
2

(
(CRf)2(µ2

X̃
+ σ2

X̃
− V (X̃|S))

(σ2
ε + (CRf)2V (X̃|S))

)

And the rational inattention problem becomes:

max
V (X̃|S)

(
(CRf)2(µ2

X̃
+ σ2

X̃
− V (X̃|S))

(σ2
ε + (CRf)2V (X̃|S))

)
s.t. 0 ≤ I(X̃, S) ≤ κ

The utility is decreasing in V (X̃|S). Therefore the information constraint
is always binding. Now notice that:

I(X̃, S) = 1
2 log2(2πeσ2

X̃)− 1
2 log2(2πeV (X̃|S)) = 1

2 log2

(
σ2
X̃

V (X̃|S)

)

Which implies that V (X̃|S) = σ2
X̃

2κ . This finishes solving the model, since
we can substitute back the values of V (X̃|S) on the price coefficient C and on
demands. We now discuss some of the model implications.

4.1
Price Volatility

We claim and prove that, in this model, under rational inattention,
price volatility is strictly higher than without rational inattention. To see this,
notice that the variance of prices is given by V ar(P ) = C2σ2

X̃
.Provided that

the capacity is less than the entropy of X̃, that is κ < 1
2 log2(2πeσ2

X̃
), and

4a2σ2
ε

σ2
X̃

2κ < 1, the following inequalities hold:
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C2
− ≥ C2

+ > C2
full

This chain of inequality follow directly from the definitions of C−, C+

and Cfull.

C− =

−1− (1− 4a2σ2
ε

σ2
X̃

2κ )1/2

2aRf σ
2
X̃

2κ

 , C+ =

−1 + (1− 4a2σ2
ε

σ2
X̃

2κ )1/2

2aRf σ
2
X̃

2κ



and Cfull = −aσ
2
ε

Rf

Additionally, it is straightforward to see that dC2
+

dκ
< 0. Which means that

for the price functional defined by C+, as market becomes more informed, prices
become less volatile. Rational inattention smoothly amplifies the fundamental
volatility σ2

X̃
, if we restrict ourselves only to this class of equilibrium functions.

The opposite happens for C−. We have that dC2
−

dκ
> 0, but price volatility

jumps to infinity as we pass from the full information equilibrium to an
equilibrium price function of the form P = θ

Rf
+ C−(κ)X̃ with a near perfect

information capacity, that is, where κ is close to the entropy of exogenous
variables. As the capacity κ falls, then prices become less and less volatile, up
to the point where C− = C+ = −2aσ2

ε

Rf
, if 4a2σ2

εσ
2
X̃
≥ 1. When the information

capacity falls below this point, markets shut down, as it becomes too much a
risky business.

4.2
Welfare and Strategic Substitutability

The welfare of traders is directly related to the price function parameter
C, which as shown before is always negative. As C2 raises, that is, as prices
become more volatile, welfare raises. This coefficient measures how much
traders charge for the liquidity provided to noise traders, so one should not
take this welfare effect as normative. That is, as a lower C warrants better
prices to rationally inattentive traders, liquidity demanders face worse prices
for themselves. The expression for welfare of a single agent as a function of C
and its own κi is:

EU(C2, κi) =

(CRf)2(µ2
X̃

+ σ2
X̃
− σ2

X̃

2κi )

σ2
ε + (CRf)2 σ

2
X̃

2κi


and one can easily check that:
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∂EU(C2, κi)
∂C2 =

(µ2
X̃

+ σ2
X̃
− σ2

X̃

2κi )σ
2
ε

(σ2
ε + (CRf)2 σ

2
X̃

2κi )2
> 0

∂2EU(C2, κi)
∂C2∂κi

=
ln(2)σ2

ε
σX̃2
2κi(

σ2
X̃

2κi (CRf)2 + σ2
ε

)2

1 +
2(CRf)2

(
µ2
X̃

+ σ2
X̃
− σ2

X̃

2κi

)
σ2
X̃

2κi (CRf)2 + σ2
ε

 > 0

The first derivative shows that welfare is increasing in volatility. The
second derivative shows that the marginal value of information is increasing in
volatility.

Since C2 is always greater under rational inattention, welfare is greater for
a fully informed atomistic individual. If we restrict ourselves to the equilibria
characterized by C+, then for an atomistic individual with a given capacity,
welfare is decreasing in the market information capacity and there is strategic
substitutability in information acquisition, as in (1).

The opposite holds in the price functional defined by C−. There is
strategic complementarity in information acquisition. Since the chain of
inequalities C2

− ≥ C2
+ > C2

full holds, volatility is higher and rational
inattentive agents would be better off in this class of equilibrium. 1

4.3
Non participation

Suppose that instead of a fixed capacity in bits, agents have a fixed
linear utility cost for each bit of information. In other words, suppose the
agent problem is to maximize EU − λI, that is the expected utility minus
λ times the mutual information between the distribution of signals and the
distribution of uncertainty. Then there is a positive λ that makes the agents
decide not to actively trade in the market, and instead take a fixed position
which does not vary with the fundamentals. Call the λ that makes the agent
to stop processing information λN . A simple substitution can show that this
λN is given by:

λN =
(CRf)4(µ2

X̃
+ σ2

X̃
+ σ2

ε )
((CRf)2σ2

X̃
+ σ2

ε )2 σ2
X̃ ln(2)

λN is increasing in C2. Under a low volatile equilibrium, the information
cost of a single agent must be lower than in high volatility equilibrium in order
for him to actively trade in the asset markets. More volatile markets attract

1Notice we haven’t allowed for non fundamental volatility, that is switching between C−
and C+, which is an extension left for future work.
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more traders. Restricting ourselves to the equilibrium price functional defined
by P = θ

Rf
+ C+(κ)X̃, as the market κ rises, λN diminishes. That is, as the

market gets more informed, it crowds out uninformed traders. The opposite
happens if we restrict our attention to P = θ

Rf
+ C−(κ)X̃: as the market gets

more informed, volatility rises, and it crowds in more uninformed traders.

4.4
Profits

The agents who have greater information capacity achieve higher average
profits. Profits for an atomistic individual, holding prices fixed, are given by:

E(W (κi)) = 2κi(CRf)2µX̃
a(σ2

ε + (CRf)2σ2
X̃

) +WoRf

Which is increasing in κ. In other words, up to the point of full
information, higher information capacity translates into higher profits.
Additionally, a rational inattention equilibrium makes the rational
inattentive agent richer than in a full information equilibrium. Again, as in
the welfare analysis, this should not be taken as a normative result since the
unmodeled liquidity demand is paying for the wealth of traders.



5
Conclusion

This paper fills a gap by solving rational inattention in Walrasian general
equilibrium, without previous tractability assumptions, claimed by (14) to be
incompatible with rational inattention modeling.

The model revisits the Grossman-Stiglitz paradox, by showing that prices
can form a one-to-one map with the states of the world, but still provide
incentives for information gathering. The key in that model is that agents are
rationally inattentive over the information contained in prices.

Additionally, in this model there is strategic substitutability in
information acquisition and higher information capacity allows agents to
achieve higher profits while a high information cost makes agents not to
participate in the asset markets. Prices are more volatile than the endowment
return and inattention can substitute for a high risk aversion.
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A
Appendix

A.1
Full information prices and demands

Time 2 expected utility is given by

EU [W3i|Zi] = E

[
−exp (−aW3i)

∣∣∣∣∣Z
]

= E

[
−exp

(
−a(Zi(µ− PRf ) +RfM̄ + µX̄)

) ∣∣∣∣∣Zi
]

We assume that ε|Zi is N(0,σ2
ε ) conditionally independent of θ

Therefore we can write:

EU [W3i|Zi] = −E
[
exp

(
−a(Zi(θ − PRf ) +RfM̄ + θX̄)

) ∣∣∣∣∣Zi
]

∗ E
[
exp

(
−a(X̄ + Zi)ε

) ∣∣∣∣∣Zi
]

Then,

EU [W3i|Zi] = −E
[
exp

(
−a(Zi(θ − PRf ) +RfM̄ + θX̄

)
)
∣∣∣∣∣Zi
]

∗ exp
((
a(X̄ + Zi)

)2 σ2
ε

2

)

Suppose θ and P are known. Then the expression above can be written
as:

−exp
(
−a(Zi(θ − PRf ) +RfM̄ + θX̄)

)
∗ exp

((
a(X̄ + Zi)

)2 σ2
ε

2

)
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Taking the log:

−
[(
−a(Zi(θ − PRf ) +RfM̄ + θX̄)

)
+
((
a(X̄ + Zi)

)2 σ2
ε

2

)]

maximizing with respect to Zi

Zi = (θ −RfP )
aσ2

ε

− X̄i

P =
(
θ − a ¯̄Xσ2

ε

) 1
Rf

where, ¯̄X = X̄ + X̃.
�

A.2
Prices without the random asset supply

If we drop out the assumption of an exogenous noisy asset supply, then
there can be sunspost oscillations on equilibrium prices, which do not affect
quantities. This is formalized in the proposition below.

Proposition: There are many equilibria with no information collection
that satisfy the relationship:

−p(θH)exp
(
−aθHX̄

)
[P ∗H − PH ] = p(θL)exp

(
−aθLX̄

)
[P ∗L − PL]

Figure A.1: Multiplicity of equilibria without the exogenous random asset
supply
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Under the κ setup, equilibrium prices are the whole line, characterized
in the proposition.

Under the λ setup equilibrium prices are a segment of the line defined by
the above equation. This can be illustrated in the numerical solution shown in
figure A.2.

Market prices can fluctuate around the efficient market hypothesis in a
such a way that is not profitable for the average trader to pay the informational
cost of being aware of this fluctuation.

This shows that costly information processing can generate noisy
behavior on prices, even without the random asset supply assumption.

Now we prove the proposition above:
Because there is no information collection, the following first order

condition with respect to Z must hold:

∑
j

qj
∂U(Z = 0, Yj)

∂Zi
= 0

Therefore we must have that:

Pr(θH)∂U(Zi = 0, θH)
∂Zi

= −Pr(θL)∂U(Zi = 0, θL)
∂Zi

Which noticing that:

∂U(Zi, Yj)
∂Zi

= −exp
(
−a(Zi(θ − PRf ) +RfM̄ + θX̄ − a(X̄ + Zi)2σ2

ε/2)
)

∗
[
−a(θ − PRf ) + a2(X̄ + Zi)σ2

ε

]
Implies that

− Pr(θH)exp
(
−aθHX̄

) [
−a(θH − PHRf ) + a2X̄σ2

ε

]
=

Pr(θL)exp
(
−aθLX̄

) [
−a(θL − PRf ) + a2X̄σ2

ε

]
Multiply both sides by 1/aRf

− Pr(θH)exp
(
−aθHX̄

) [(θH − PHRf )
Rf

− aX̄σ2
ε

Rf

]
=

Pr(θL)exp
(
aθLX̄

) [(θL − PRf )
Rf

− X̄σ2
ε

Rf

]

Therefore, noticing that:
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P ∗ =
(
θ − aX̄σ2

ε

) 1
Rf

−Pr(θH)exp
(
−aθHX̄

)
[P ∗H − PH ] = Pr(θL)exp

(
−aθLX̄

)
[P ∗L − PL]

�

A.3
Non-existence with a finite number of agents

Definition: A Walrasian General Equilibrium with a finite number of
agents is defined as : i) a price function P (ωA), where ωA denotes the aggregate
state, ii) for each agent k ∈ K a solution f ∗k of the rational inattention problem,
such that:

Pr(
K∑
k=1

Zk = 0) = 1 for every aggregate state ωA

Proposition: Let Y be a vector of random variables as defined before. Let
there be J agents, and Zk denote the vector of net demands of agent k. If
{Z1, Z2, ..., ZJ}|Y are independently distributed (i.e. each agent independently
processes information), agents have strictly positive Shannon capacity and the
information constraint is binding, then there is no price vector and allocation
satisfying the definition above.

Proof : If (Zi|Y )Ji are non-degenerate random variables, then they can
only satisfy ∑J

i=1 Zi|Y = 0 if they are not independently distributed,
contradicting the assumption in the proposition. If (Zi|Y )Ji are degenerate
random variables, then Zi|Y is a function of Y. For that to be the case, the
actions must form a partition of Y. If the information constraint is binding
and the information capacity is strictly positive, this kind of strategy is not
optimal. If the strategy space has one point of support, then no information
is processed, so the agent is not using any amount of capacity, and the
information constraint is not binding. If it has two or more points of support
then, all points of the support of the strategy space have positive density (or
probability) conditional on any possible realization of Y (this is shown in
(11)). Thus, {Z1, Z2, ..., ZJ}|Y cannot satisfy ∑J

i=1 Zi|Y = 0. �

A.4
Existence with an infinite number of replicas

Proposition: Let the number of replicas r of J types of agents grow to
infinity. A general equilibrium must satisfy:
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limr→∞Pr(
rJ∑
i=1

Zi = 0) = 1

We will show that if agents process information independently, under the
usual conditions, ie. preferences are continuous, strictly convex and strongly
monotone and, for each good k ∑rJ

i=1 wik > 0 where wik is the agent i
endowment of good k, there exists a general equilibrium. We will limit ourselves
to the case where number of states is finite and x lies on a finite number of
points. This is the case we numerically solve for.

Proof : We will apply a Weak Law of Large Numbers: if Z1, Z2, ... are 2-2
uncorrelated, with uniformly bounded variances (that is, V arZi ≤ c for some
finite c and for all i), then∑rJ

i=1 Zi will converge in probability to∑J
j=1 E(Zj|Y )

which is analogous to the aggregate excess demand function. Thus, the general
equilibrium will be represented by a system of correspondences such that
0 ∈ Z(P ) = ∑J

j=1 E(Zj|Y ) where Z(P ) = (z1(P ), z2(P ), ..., zk(P )), whose
solution is guaranteed to exist under the following conditions:

i) Z(P) is upper-hemi continuous;
ii) Z(P) is homogeneous of degree zero;
iii) P*Z(P)=0 for all P;
iv) there is an s>0 such that zl(P ) > −s for every commodity l and all

P;
v) if P n → P , where P 6= 0, pl = 0 for some l, then

max{z1(P n), ..., zL(P n)} → ∞

We will show that the variance is uniformly bounded and those five
conditions hold. We assume that given Y, Z1, Z2, ... are independent random
variables.

Lemma 1: V ar(Zi|Y ) is uniformly bounded.
Proof: Each vector of possible consumption bundles belongs to the budget

set, which is compact and convex. Therefore, the vector of net demanded goods,
given Y (where Y includes the realization of endowments and prices), belongs
to a compact and convex set. Therefore, supp(Zi|Y ) is a compact set and
V ar(Zi|Y ) is finite. Take c = max

i
V ar(Zi|Y ) which exists because the number

of types J is finite. Thus V ar(Zi|Y ) ≤ c. �
Lemma 2: E[Zi|Y ] is a upper-hemi continuous correspondence of Y
Proof: Agent problem can be written as:

max
{pij}

∑
ij

pijU(Zi, Yj)
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subject to
∑
ij

pij = qj

I(Z;Y ) = k

This is a jointly continuous objective function subject to a compact
constraint. Therefore, from Berge Maximum theorem, we know that {pij}∗ is
upper hemicontinuous. This in turn implies that E(Z|Y ) is upper
hemicontinuous in P (ω).

�

Lemma 3: Z(P) is homogeneous of degree zero (on P).
Proof: As in the usual perfect information decision problem the relevant

variable for the consumer is the normalized price vector. Thus agents don’t
make any difference between multiples of P. �

Lemma 4: P*Z(P)=0 for all P
Proof: For every i and every realization of (Zi, Y ) the budget constraint

holds. Thus it holds for the conditional expectation of Zi, E(Zi|Y ). Summing
over all agents we get the result above. �

Lemma 5: There is an s>0 such that zl(p) > −s for every commodity l
and all p

Proof: Let wli be the initial endowment of the good l by agent i, and
cli her consumption. Then assuming non negativity of consumption, we have:
zl(P ) = ∑J

i=i zli(P ) = ∑J
i=i(E(cli+wli|Y ) ≥ −∑J

i=1 wli. Choose an s such that
s > max

l

∑J
i=1 wli. �

Lemma 6: if P n → P , where P 6= 0, pl = 0 for some l, then

max{z1(P n), ..., zL(P n)} → ∞

Proof: If for a given Y1, P n is such that there is pl close to 0, then there
will be at least one type of agent whose wealth is on average strictly positive,
and provided his information capacity is greater than zero it will be worth for
him to use his information capacity to know whether pl is close to 0 and get
an amount of utility that converges to ∞ when P n goes to P. �

By Proposition 17.C.1 ((29)) there is a function P (ω) for which 0 ∈ Z(P ).
Thus, there exist a general equilibrium with rational inattentive agents for our
last definition.�

We can extend the proposition above to show that if agents have arbitrary
continuous beliefs over P, provided those beliefs cover the realized prices, then
there is always a Walrasian general equilibrium as we defined it.

Lemmas 1 and 3-6 remain unaltered. We only need in the place of Lemma
2, the following proposition.
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Lemma 2’: E[Zi|Y ] is a continuous function of Y, provided g(Y) is a
continuous function.

Proof:
For the linear quadratic case, the proof is straightforward: If f(z|y) is a

continuous functions of y, then E(Z|Y ) =
∫
zf(z|y)dz is a continuous function.

Thus in the linear quadratic case, where f(z,y) is multivariate normal, E(Z|Y)
is continuous.

Under broader conditions, if g(y) is continuous, then we use the following
proposition ((11)):

If the information constraint is binding and if g(y)>0, then for a realized
y, z is drawn from a conditional distribution with the following pdf:

f(z|y) = eU(z,y)/λ

Eẑ[eU(ẑ,y)/λ]
f(z)
g(y)

Where λ is the Lagrange multiplier on the information constraint.
We had shown above that, for arbitrary beliefs about the distribution of

prices, (provided g(y) is a continuous function and covers the realized price)
there is a vector of prices that clears all the markets.

A.5
Non-binding information constraint

In a full information equilibrium, the demands are given by:

Z = (θ −RfP )
aσ2

ε

− X̄

Prices are given by:

P =
(
θ − a ¯̄Xσ2

ε

) 1
Rf

Therefore, in a full information equilibrium the conditional demands of
each agent are equal to the noisy asset supply at each state, that is Z = X̃

for each state. Conditional on the aggregate state, every agent demands the
exactly quantity that matches the noise demands. This may sound trivial, but
in fact this is not true for each agent when they are information constrained:
they process information imperfectly, and are not sure which state they are in.
Therefore, some agents demand more than the noise supply and some agents
demands less.

The entropy in bits of the distribution of exogenous variables is
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H(Y ) =
∑
ωA∈A

Pr(ωA)log2(1/Pr(ωA)) =
4∑
1

1/4log2(4) = 2 bits

The mutual information I(Z;Y) of the optimal response in equilibrium is
equal to:

I(Z;Y ) = H(Y )−H(Y |Z) = 1 bit

Since the optimal information strategy uses less information than the
amount of exogenous uncertainty as measured by entropy, there is no need to
know perfectly what is the aggregate state of the world, or what are the exactly
values of every variable in Y. In particular, one can economize information by
not processing all the information contained in prices.

The optimal signal can be the random asset supply itself. However, the
optimal signal does not need to be formed with direct reference to the random
asset supply. It can be based on prices, by adopting a signal S∗ and actions Z
of the form:

S∗ =

1 if P =
(
θH − a(X̃H − X̄)σ2

ε

)
1
Rf

or
(
θL − a(X̃H − X̄)σ2

ε

)
1
Rf

0 otherwise

Z∗ =

X̃H if S∗ = 1

X̃L if S∗ = 0

or more generally, the optimal signal is any random variable S such that
in states (θH , X̃H) and (θL, X̃H) is equal to s1 and in states (θH , X̃L) and
(θL, X̃L) is equal to s2, where s1 6= s2.

In equilibrium there is no need to know the value of the endowment
return. This feature however is knife-edged, hinging on the hypothesis of
an exogenous asset supply that is completely inelastic to prices. With some
elasticity, which can be introduced, for instance, if we postulate an exogenous
risk-free asset supply instead of an exogenous risky asset supply, agents do
process in equilibrium information about the endowment return.

A.6
Moments of excess returns

Some moments are straightforward to calculate given the parameters
and the solution for equilibrium prices. Others are not so obvious, so we give
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a complete description of them here.
Mean:

µ = E

[
θ + ε

P
− rf

]
= E

[
θ

P
− rf

]

Let us define:

µ̂ = µ+ rf

Variance:

σ2 = V

[
θ + ε

P

]
= E

(θ + ε

P

)2
− µ̃2

E

(θ + ε

P

)2
 =

∑
{θ,X̃}

Pr({θ, X̃})
∫ (

θ + ε

P

)2

f(ε)dε =
∑
{θ,X̃}

Pr({θ, X̃})
(
θ2 + σ2

ε

P 2

)

Skewness:

E

[
θ+ε
P
− rf − µ
σ

]3

= σ−3 ∑
{θ,X̃}

Pr({θ, X̃})
∫ (

θ + ε

P
− µ̃

)3

f(ε)dε

= σ−3 ∑
{θ,X̃}

Pr({θ, X̃})

∫ (
θ3

P 3 + 3εθ2

P 3 + 3ε2θ

P 3 + ε3

P 3 −
3θ2µ̃

P 2 −
6εθµ̃
P 2 −

3ε2µ̃

P 2 + 3θµ̃2

P
+ 3εµ̃2

P
− µ̃3

)
fεdε

= σ−3 ∑
{θ,X̃}

Pr({θ, X̃})
[
θ3

P 3 + 3σ2
ε θ

P 3 −
3θ2µ̃

P 2 −
3σ2

ε µ̃

P 2 + 3θµ̃2

P
− µ̃3

]

Kurtosis:

E

[
θ+ε
P
− rf − µ
σ

]4

= E

[
θ+ε
P
− µ̃
σ

]4

= σ−4 ∑
{θ,X̃}

Pr({θ, X̃})
∫ (

θ + ε

P
− µ̃

)4

fεdε
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= σ−4 ∑
{θ,X̃}

Pr({θ, X̃})

∫ ( θ4

P 4 + 4εθ3

P 4 + 6ε2θ2

P 4 + 4ε3θ

P 4 + ε4

P 4 −
4θ3µ̃

P 3 −
12εθ2µ̃

P 3

−12ε2θµ̃

P 3 − 4ε3µ̃

P 3 + 6θ2µ̃2

P 2 + 12εθµ̃2

P 2 + 6ε2µ̃2

P 2 −
4θµ̃3

P
− 4εµ̃3

P
+ µ̃4

)
fεdε

= σ−4 ∑
{θ,X̃}

Pr({θ, X̃})

(
θ4

P 4 + 6σ2
ε θ

2

P 4 + 3σ4
ε

P 4 −
4θ3µ̃

P 3 −
12σ2

ε θµ̃

P 3 + 6θ2µ̃2

P 2 + 6σ2
ε µ̃

2

P 2 − 4θµ̃3

P
+ µ̃4

)
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Figure A.2: Moments of the distribution of excess returns

A.7
Risk-free asset random supply

Instead of assuming that the risky asset supply is random, here we assume
that is the risk-free asset supply that is random (Mnoise).

In this version the supply of the risk free asset is exogenously random,
so the noise supply of the risky asset is not inelastic to prices. When the
noise buys the risky asset, it pays with the risk-free assets, so there is a
hidden budget constraint for the noise. This budget constraint implies that
X̃ ∗ P = −Mnoise Therefore, X̃ = −Mnoise/P . This is the simplest way of
introducing some elasticity to prices to the risky asset supply, in this Grossman
and Stiglitz like model. The main change this elasticity introduces is that
agents again now pay attention to endowment return in equilibrium even when
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the information constraint is binding, provided they have a sufficiently high
information capacity.

The figures below illustrate numerical solutions. A expression for full
information equilibrium prices is given in the last section of the Appendix.

A.7.1
Varying the information capacity
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Figure A.3: Prices and volume as a function of the information capacity of
agents
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Figure A.4: Actions and what agents pay attention to
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Figure A.5: Correlation of prices, θ and Mnoise

A.7.2
Varying the information cost
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Figure A.6: Prices and volume as a function of the information cost of agents
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Figure A.7: Actions and what agents pay attention to
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Figure A.8: Correlation of prices, θ and Mnoise

A.7.3
Full information prices under the random risk-free asset supply setup

We have showed that the following expression holds for full information
prices:

P =
(
θ − a ¯̄Xσ2

ε

) 1
Rf



Appendix A. Appendix 51

Where ¯̄X denotes the aggregate amount of the risky asset in the economy.
Noticing that, because noise transactions are paid with the risky-free

asset, the following holds:

−P ∗ X̃ = Mnoise

Therefore, we can write:

P =
(
θ − a(X̄ −Mnoise/P )σ2

ε

) 1
Rf

Which implies in the second-order equation:

P 2 −
(
θ − a(X̄)σ2

ε

) P

Rf

− aσ2
εMnoise

Rf

= 0

Whose solution is:

P =

(
θ − a(X̄)σ2

ε

)
1
Rf
±
√[(

θ − a(X̄)σ2
ε

)
1
Rf

]2
+ 4aσ2

εMnoise

Rf

2



B
Computational Appendix

The archive appendix.rar contains the routines.


	Informationally efficient markets under rational inattention
	Resumo
	Table of contents
	Introduction
	Model
	Timing
	Budget Constraints
	Entropy and Mutual Information
	Utility and Information Choice
	Equilibrium
	Distribution of exogenous variables
	Numerical strategy

	Results
	A counterexample to Grossman and Stiglitz conjecture
	Comparative Statics
	Varying the information cost
	Varying the information capacity

	Calibration

	A simplified version with Gaussian signals
	Price Volatility
	Welfare and Strategic Substitutability
	Non participation
	Profits

	Conclusion
	Appendix
	Full information prices and demands
	Prices without the random asset supply
	Non-existence with a finite number of agents
	Existence with an infinite number of replicas
	Non-binding information constraint
	Moments of excess returns
	Risk-free asset random supply
	Varying the information capacity
	Varying the information cost
	Full information prices under the random risk-free asset supply setup


	Computational Appendix

