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Abstract

We use machine learning (ML) models, namely Random Forest (RF), Complete Sub-

set Regression (CSR), LASSO, adaLASSO, Elatic Net and Ridge to forecast Brazilian

yearly CPI inflation. In particular, our goal is to determine whether accumulating pre-

dictor variables enhances the accuracy of inflation forecasts. We compare these models

with the random walk (RW) and, mainly, with a survey of expectations from the Central

Bank of Brazil called Focus. We show that the Random Forest beats the Focus con-

sensus in all possible datasets with gains up to 58% in terms of RMSE. On the other

hand, the performance of the shrinkage methods exhibits significant heterogeneity across

different datasets. We show that machine learning models consistently outperform the

benchmarks when predictor variables are not accumulated or accumulated in 12 months.

Finally, we show that the models (especially RF) consistently outperform the benchmarks

during periods when inflation is more volatile.
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1 Introduction

Accurately forecasting inflation is important for several reasons. First of all, modern

central banks calibrate their economic policies based on expected inflation (Iversen et

al, 2016). Therefore, poor forecasts result in ineffective policies with high social costs.

Secondly, many long-term contracts are set in nominal terms and thus bad inflation

forecasts would generate undesired uncertainty. Finally, expectations about future prices

are a key factor for households’ consumption and investment decisions.

In this monograph we use machine learning (ML) methods to forecast 12-month

cumulative Brazilian inflation. Namely, the models used are: random forest (Breiman,

2001), CSR (Elliotti; Gargano; Timmermann, 2013), LASSO (Tibshirani, 1996), elastic

net (Zou; Hastie, 2005), adaLASSO (Zou, 2006) and ridge (Hoerl; Kennard, 1970). We

also compute random walk (RW) forecasts but unlike other papers, we do not use this

model as the main benchmark.

Medeiros et al. (2021) showed that ML models outperformed classical time series

univariate models specially when US inflation was more volatile. In particular, they

showed that Random Forest (RF) improves the root mean squared error (RMSE) by

25% when compared to the RW for 12-month forecasts. A previous work conducted

by Garcia et al. (2017) showed similar results for Brazilian inflation: ”high-dimensional

models, such as shrinkage and complete subset regression, perform very well in the real-

time forecasting of inflation in data-rich environments”.

The aim of this study is to determine whether accumulating explanatory variables

in h = 1, ..., 12 months enhances the 12-month inflation’s forecasts. Unlike traditional

forecasting papers, we are not evaluating multiple horizons but multiple datasets (while

fixing a single horizon of inflation accumulated over 12 months). Recently, Coulombe

et al. (2021) show that transformations in macroeconomic data can enhance forecasts’

accuracy. However, the transformations used by the authors are different from the one

we use. Namely, the transformations they use are moving average factors (MAF) and

moving average rotation (MARX).

We use three different transformations to compute the percentage changes of the

variables during h months. For instance, if one variable is an index and another variable

is a monthly percent change, the ways of computing the percentage change of these

variables during h months are different due to the difference between the variables.
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Unlike other papers, our main benchmark is not an univariate model, but rather

the median (consensus) of the Focus, a Brazilian survey of expectations that includes

expectations for inflation. This report projects many economic variables and it takes

into consideration the forecasts of more than a hundred professional forecasters.

We compare forecasting performance employing three error measures: root mean

squared error (RMSE), mean absolute error (MAE), and median absolute deviation from

the median (MAD). We also compute the rolling RMSEs to investigate the performance

of each model through time.

The period of analysis goes from January 2006 to January 2023 and we compare

rolling and expanding windows forecasts for yearly inflation from January 2014 to January

2023 with the values of yearly inflation. Brazil faced inflationary pressures from 2014 to

2016 due to government intervention in energy prices and from 2020 onward because of

the Covid pandemic.

We show that the random forest beats the Focus consensus with all the twelve

datasets, showing gains up to 58% RMSE. On the other hand, the performance of the

shrinkage methods exhibits significant heterogeneity across the datasets. For instance,

considering all the combinations of models and datasets, the smallest and the highest

RMSEs came from the adaLASSO (when data is accumulated in 10 and 6 months,

respectively).

Our study shows that all the models beat the Focus consensus when data is not ac-

cumulated, that is, when we employ the monthly predictors without transformations. In

addition, the only other dataset for which almost every model beats the main benchmark

is the one where data is accumulated in 12 months. The second result seems intuitive

given that the target variable is also accumulated in 12 months.

After computing the rolling RMSEs, we show that RF, LASSO and adaLASSO achieve

the best results in terms of percentage of times outperforming FOCUS consensus when

data is not accumulated, while CSR, elastic net and ridge achieve the best results when

data is accumulated in 12 months. These results provide a dynamic perspective for why

forecasters should focus on datasets with non-accumulated variables and datasets with

12-month accumulated variables to forecasts yearly inflation. Among all the models, the

random forest with non-accumulated data shows the best results by beating the Focus

80% of the time.

Finally, the models (especially RF) consistently outperform the bechmarks during

periods when inflation is more volatile (2014-2016 and 2020 onward). This finding is in

https://www.bcb.gov.br/publicacoes/focus
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line with previous studies that show that machine learning methods perform well during

periods of volatile inflation.

Bellow, we briefly summarize the sections of this monograph.

Data and method. In Chapter 2, we explain the features of the selected predictor

variables, and how we compute the cumulative percentage changes of the variables.

In addition, we show how the models compute the forecasts, and finally which error

measures are used to evaluate the performance of the models.

Results. In chapter 3, we provide tables and plots to compare the performance of

the models using different error measures. Initially, we analyse the error measures across

the entire window of predictions. Then, we analyse 12-month rolling RMSE.

Conclusion. In chapter 4, we enumerate the main results and we conclude that

forecasters should evaluate forecasts when predictors are accumulated in 12 months as a

robustness exercise after computing the forecasts without accumulating the predictors.



2 Data and Method

2.1 Data

Our data consists of 84 variables, 82 of them extracted from the Time Series Manage-

ment System. This plataform gathers macroeconomic data from various sources such as

the the Brazilian Institute of Geography and Statistics (IBGE) and the Central Bank of

Brazil (BCB). We selected variables related to prices, commodities, economic activity,

employment, electricity, confidence, finance, credit, government, and international trade.

We use data from January 2006 to January 2023 to compute forecasts of inflation from

January 2014 to January 2023.

2.2 Transformations

We aim to analyse how accumulating explanatory variables in h = 1, 2, ..., 12 months

affects the quality of the machine learning models’ forecasts of the 12-month ahead

Brazilian yearly inflation rate. We apply three types of transformations depending on

the features of each variable:

• Transformation 1: Xh
t =

( Xt

Xt−h+1

− 1
)
100

• Transformation 2: Xh
t =

(
Πh

t=1

(
1 +

Xt

100

)
− 1

)
100

• Transformation 3: Xh
t = Xt −Xt−h+1

Transformation 1 computes the percentage change of monthly indexes, such as the

Commodities Index (ICBR), during h months. Transformation 2 computes percentage

changes of variables which are monthly percent change, such as the inflation rate, during

h months. Transformation 3 simply applies differences (in h months). It is applied to

variables such as the unemployment rate (%) and treasury term (months). Appendix A

has a complete table describing the transformations applied to each variable.

https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries
https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries
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2.3 Estimation

We compute 109 forecasts based on rolling and expanding window schemes using five

linear models (CSR, LASSO, ridge, elastic net, adaLASSO) and one non-linear model

(Random Forest). These models present interesting properties such as the shrinkage of

coefficients, selection of variables and non-linearity. The initial specification of the linear

models is:

π12
t+12 = c+ ϕ0π

12
t + ϕ1π

12
t−1 + ϕ2π

12
t−2 + ϕ3π

12
t−3 + ηFOCUS12

t+12|t +XtΘ+ ut+12

where π12
t+12 is the 12-month ahead inflation accumulated in 12 months and FOCUS12

t+12|t

is the median of the Focus survey of inflation expectations at time t for time t+12 and

Θ =


θ1
...

θk

 ,Xt =


Xh

1,t
...

Xh
k,t


where Θ contains the coefficients of Xh

1 , ..., X
h
k observed at time t. Since we use 84

explanatory variables with the Focus consensus being one of the variables, we have that

k = 83. From now on, to simplify notation, the coefficients c, ϕ0, ϕ1, ϕ2, ϕ3, η, θ1, ..., θk

will be referred to as β0, β1, ..., βp with p = k + 5.

2.3.1 Complete Subset Regression

The complete subset regression (Elliotti; Gargano; Timmermann, 2013) consists

of estimating a large number of linear regressions with a fixed number of explanatory

variables and computing the mean of the predictions generated by all the models. Our

datasets have 88 predictors and even if we estimated models with only four variables,

there would be more than 2 million possible combinations of models to be computed. In

addition, we would have to compute all these possibilities for each prediction given that

we estimate the models using rolling and expanding windows.

To deal with the complexity of the models, we use the R-package, HDeconometrics

which has a function that previously selects 20 predictors (based on the t-statistic of

the coefficients of the predictors obtained by estimating regressions) and computes all

possible models with four variables.
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2.3.2 Shrinkage Methods

Shrinkage methods are known for their ability to reduce the out-of-sample mean

square error (MSE) and mitigating problems associated with overfitting. These methods

are able shrink the OLS coefficients by imposing a penalty. All the models within this

class follow this general specification:

β̂(λ) = arg min
β∈Rp

||y −Xβ||22 +
p∑

j=1

p(βj;λ,α)︸ ︷︷ ︸
penalty

The first part of this optimization problem corresponds to the OLS problem. The

second part corresponds to the penalty composed by a non-negative penalty function

p(.), whose arguments are the coefficients β, the regularization parameter λ and hyper-

parameters α (such as weights ω associated to the variables). For all the shrinkage

methods used in this monograph, the value of λ is determined using the BIC criterion

(Schwarz, 1978) as other papers have previously done (Medeiros et al, 2021).

We use four of these models to compute our inflation’s forecasts: LASSO, adaLASSO,

elastic net, and ridge. Figure 1 shows the format of the penalties. The value of the

coefficients is determined by the point of tangency between the contour lines from β̂OLS

and the penalty.

β1

β2

β̂

— Ridge
— Elastic Net
— LASSO

Figure 1 – Regularization Methods for Linear Regression

The penalties from Figure 1 are particular cases of Lp-norms. For p ≥ 1, the Lp-
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norm of x = (x1, ..., xn) is:

||x||p = (|x1|p + |x2|p + ...+ |xn|p)
1
p

I) LASSO

The Least Absolute Shrinkage and Selection Operator (Tibshirani, 1996) is able to

shrink coefficients up to zero and for this reason it is commonly used to select variables.

Its penalty assumes the format of the L1-norm.

β̂LASSO(λ) = arg min
β∈Rp

||y −Xβ||22 + λ||β||1

II) Ridge

The ridge regression (Hoerl; Kennard, 1970) is another method that implements

shrinkage of the coefficients’ values. However, unlike the LASSO, the ridge regression

is not able to implement variable selection. This happens because its shrinkage penalty

assumes the format of a L2-norm.

β̂ridge(λ) = arg min
β∈Rp

||y −Xβ||22 + λ||β||2

III) Elastic Net

The elastic net (Zou; Hastie, 2005) rests in between the LASSO and ridge. It tends

to shrink the values of the coefficients more than the ridge but it cannot make them go

to zero like the LASSO can. Its penalty is a mix of L1 and L2 norms:

β̂elnet(λ1, λ2) = arg min
β∈Rp

||y −Xβ||22 + λ1||β||1 + λ2||β||2

IV) adaLASSO

The adaptive LASSO (Zou, 2006) is an extension of the LASSO that presents theo-

retical advantages when compared to LASSO. In particular, the conditions for consistency

of its variable selection are weaker than the conditions for the LASSO selection. The

adaLASSO incorporates individual weights for each parameter, unlike LASSO which ap-

plies the same weighting to all parameters in the penalty. Irrelevant regressors should

receive larger weights. To determine the values of the weights, we first compute β̂LASSO

and then we define the weights:

wj =
1

|β̂LASSOj
|+ 1√

n

, j = 1, ..., p
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β̂adaLASSO(λ) = arg min
β∈Rp

||y −Xβ||22 + λ

p∑
j=1

wj|βj|

2.3.3 Random Forest

The random forest (Breiman, 2001) is a non-parametric method which applies boot-

strap to regression trees, that allows to deal with non-linearity. Therefore, to explain the

random forest we need to explain what a regression tree is.

Suppose we have a dataset with N observations and K + 1 variables x1, ..., xK , π,

with π being the target variable and x being the predictors. Fix N∗ < N . A decision

tree analyses the first N∗ observations of the variables, providing a tree T ∗(.) which is a

decision rule to forecast the target variable. For instance, the predicted value of πN∗+1

is:

π̂N∗+1 = T ∗(x1
N∗+1, . . . , x

K
N∗+1)

Figure 2 illustrates a decision tree where πi, i = 1, ..., N∗ represents the inflation

at line i, and xj = xj
N∗+1, and ci is a threshold for the decision rule. In this particular

example, we presume that πi ̸= πj,∀i ̸= j. Finally, notice that in our example the

number of thresholds is equal to the number of observations (N∗), however in the

majority of the cases the dependent variable can be explained with much fewer thresholds.

x1 ≤ c1

x1 ≤ c2
π1

x2 ≤ c3
π2

xK−1 ≤ cN∗

π3

πN∗−1
πN∗

Figure 2 – Illustration of a Regression Tree

The random forest applies bootstrap to regression trees. It generates many regres-

sion trees by randomly selecting some variables and some observations. The goal is to
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generate regression trees which are considerably different from each other. Finally, we

take the average of the output of the regression trees. Let B be the total number of

trees. The random forest prediction is given by:

1

B

B∑
b=1

T∗
b(X)

where T∗
1 is the first bootstrap regression tree, T∗

2 is the second, and so on and so forth.

2.4 Error Measures

To measure the performance of our forecasts, we compare the models from three

statistics: root mean squared error (RMSE), mean absolute error (MAE), and median

absolute deviation from the median (MAD). The forecast error from model m at time t

is given by:

êt,m = π12
t − π̂12

t|t−12,m

Then, the error measures are:

RMSEm =

√√√√ 1

T − T0 + 1

T∑
t=T0

ê2t,m

MAEm =
1

T − T0 + 1

T∑
t=T0

|êt,m|

MADm = median
∣∣êt,m −median(êt,m)

∣∣
where T is the time of the last forecast and T0 is the time of the first forecast.

Given we make forecasts from 2014 until 2023, the value of the error measures of

each model in this period can only explain how well each model behaved throughout this

long window. Therefore, it does not evaluate how each model behaved during specific

periods within the window. For this reason, we also compute the rolling RMSE of each

model where each window has 12 months.
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We forecast Brazilian yearly inflation from January 2014 until January 2023, which

means a total of 109 predictions. To compare the performance of each model with

respect to the main benchmark, the median of the Focus survey, we normalize the

values of their error measures by the values of the error measures from Focus. Initially,

we analyse the values of the normalized error measures throughout the entire period of

predictions. In a second moment, we compute RMSEs from 12-month rolling windows

to have a dynamic view of the performance of models. We repeat this procedure for

rolling and expanding windows forecasts. In this chapter, we are going to expose the

results from the rolling window forecasts. The expanding window results can be found

in Appendix C.

Table 1 shows the values of the error measures from the rolling window forecasts

normalized by the Focus RMSE (2.9) and MAE (2.1). When the normalized values are

smaller than 1, the model outperform the Focus consensus. Finally, normalized RMSE

and MAE from the random walk (RW) are 1.13 and 1.23, respectively, showing that the

RW is outperformed by the main benchmark.

Table 1 – RMSE, MAE and MAD for rolling window forecasts

Datasets: Xh, h = 1, ...,12

RMSE/(MAE)/ 1 2 3 4 5 6 7 8 9 10 11 12
{MAD}
RF 0.42 0.62 0.60 0.59 0.60 0.61 0.58 0.56 0.56 0.52 0.52 0.49

(0.49) (0.70) (0.68) (0.68) (0.68) (0.68) (0.66) (0.63) (0.63) (0.59) (0.58) (0.53)
{0.56} {0.85} {0.77} {0.78} {0.85} {0.84} {0.82} {0.76} {0.71} {0.70} {0.68} {0.61}

CSR 0.65 0.74 0.72 0.70 1.51 1.49 1.26 0.63 0.61 0.60 0.59 0.72
(0.72) (0.84) (0.80) (0.78) (0.91) (0.90) (0.86) (0.71) (0.70) (0.69) (0.68) (0.71)
{0.78} {1.01} {0.94} {0.86} {0.88} {0.90} {0.93} {0.93} {0.89} {0.80} {0.74} {0.76}

LASSO 0.44 0.77 2.39 4.15 4.60 7 1.22 5.66 1.99 0.43 2.22 1.67
(0.46) (0.85) (1.18) (1.42) (1.28) (1.46) (0.65) (1.31) (0.72) (0.41) (0.70) (0.67)
{0.51} {0.96} {0.84} {0.74} {0.50} {0.48} {0.47} {0.50} {0.47} {0.41} {0.44} {0.40}

adaLASSO 0.45 0.60 1.63 5.60 4.37 7.24 1.14 4.94 0.51 0.35 1.64 0.46
(0.49) (0.68) (1.06) (1.57) (1.22) (1.48) (0.62) (1.15) (0.45) (0.38) (0.61) (0.46)
{0.57} {0.66} {0.88} {0.67} {0.49} {0.50} {0.47} {0.47} {0.39} {0.38} {0.45} {0.43}

ElNet 0.45 3.23 2.35 4.13 4.50 7.12 1.22 5.46 2.39 0.51 2.68 0.44
(0.50) (1.25) (1.20) (1.40) (1.28) (1.46) (0.67) (1.29) (0.80) (0.45) (0.77) (0.45)
{0.48} {0.96} {0.92} {0.78} {0.56} {0.51} {0.45} {0.50} {0.47} {0.48} {0.43} {0.39}

Ridge 0.52 1.04 1.88 4.05 4.81 5.32 1.90 3.82 3.69 1.40 1.76 0.51
(0.57) (1.24) (1.32) (1.43) (1.27) (1.27) (0.89) (1.14) (0.98) (0.57) (0.67) (0.47)
{0.58} {1.66} {1.15} {0.92} {0.69} {0.54} {0.51} {0.48} {0.48} {0.43} {0.45} {0.35}

The columns represent the datasets. The coloured values correspond to the best result of the models
for each error measure.

The random forest consistently beats the benchmark across all datasets and the gains
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can be as large as 58% in terms of RMSE. The CSR also beats the benchmark with

multiple datasets but unlike the random forest, sometimes it is beaten by the Focus.

The shrinkage methods exhibit significant heterogeneity across datasets. For instance,

when data is accumulated from 3 to 8 months, the shrinkage methods consistently fail

to beat the benchmark. On the other hand, they show significant gains in comparison

to the Focus consensus when data is not accumulated or accumulated in 12 months.

In general, the six models consistently outperform the benchmark when data is not

accumulated or accumulated in 12 months. However, the overall performance of the

models varies across the other datasets. For this reason, our analysis emphasizes the

results obtained with these two datasets.

When regressors are not accumulated, all the models outperform the benchmark

showing gains around 50% in terms of RMSE. In particular, the random forest achieves

the best result.

When regressors are accumulated in 12 months, all the models (except for LASSO)

show significant gains in terms of RMSE (up to 56%) when compared to the Focus. This

result seems reasonable given that we are forecasting a variable that is also accumulated

in 12 months. The operation of accumulating the regressors in 12 months should make

them smoother and this could be an interesting property when forecasting a yearly

variable.

Table 2 shows descriptive statistics about the performance of models across all

datasets. RF and CSR are the only models with an average RMSE smaller than the

benchmark. This result is expected given that in Table 1 we see these two models con-

sistently beating the benchmark across multiple datasets. Finally, we find that adaLASSO

obtains at the same time the lowest and the highest RMSE and MAE across our datasets.

Similarly, ridge shows at the same time the lowest and the highest MAD. These two re-

sults are in line with our previous finding that shrinkage methods performance varies

markedly across different datasets.

Medeiros et al. (2021) showed that ML models (especially the RF) outperformed tra-

ditional times-series univariate models in forecasting US inflation, mainly during volatile

periods. We expect Brazilian inflation to be more volatile in comparison to the US

given that ”emerging markets usually exhibit higher and more volatile inflation” (Garcia;

Medeiros; Vasconcelos, 2017). For this reason, Brazilian data should be an interesting

resource to test machine learning methods (high) performance when inflation is more

volatile.
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Table 2 – Descriptive statistics: rolling window forecasts errors

RMSE MAE MAD maxRMSE maxMAE maxMAD minRMSE minMAE minMAD

RF 0.56 0.63 0.74 0.62 0.70 0.85 0.42 0.49 0.56
CSR 0.85 0.77 0.87 1.51 0.91 1.01 0.59 0.68 0.74

LASSO 2.71 0.92 0.56 7.00 1.46 0.96 0.43 0.41 0.40
adaLASSO 2.41 0.85 0.53 7.24 1.57 0.88 0.35 0.38 0.38

ElNet 2.87 0.96 0.58 7.12 1.46 0.96 0.44 0.45 0.39
Ridge 2.56 0.98 0.69 5.32 1.43 1.66 0.51 0.47 0.35
RW 1.13 1.23 1.04 1.13 1.23 1.04 1.13 1.23 1.04

Our 12-month rolling RMSE computations start in January 2015 and end in January

2023. In Figure 3, we can see that from 2015 until the beginning of 2017 and from

2021 onward the majority of the ML models beat the Focus. This is expected given

that these are two periods when Brazilian inflation grew more than it normally does. In

the first period, the growth of inflation is related to the government’s intervention in

energy prices and, more recently, is related to the Covid. Notice that even though the

pandemic starts in March 2020, it only completely impacts the 12-month accumulated

inflation from February 2021 onward.
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Figure 3 – Rolling RMSE

These plots illustrate a similar result to that shown in Table 1: in general, the

models are more accurate when we do not accumulate the data or accumulate it in 12

months. With these two datasets, the only period of time when the models are generally

outperformed by the Focus is from February 2019 to February 2021. However, when we
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use the other datasets, the group of models presents more heterogeneous results through

time. In addition, we get bigger and more volatile errors through time when we use these

other datasets. The complete version of the plots can be found in the Appendix B.

A desired property for a statistical model is the ability of beating a benchmark as

many times as possible. Table 3 shows the percentage of the times when the rolling

RMSE of each model-dataset pair is smaller than the rolling RMSE of the Focus. The

total number of 12-month rolling RMSEs computed from January 2015 to January 2023

is 97. We show that for all the models, the best results are either obtained when

data is not accumulated or accumulated in 12 months. In particular, the RF with non-

accumulated regressors beats the FOCUS more than 80% of the time.

Table 3 – Percentage of the times when the models beat Focus

1 2 3 4 5 6 7 8 9 10 11 12

RF 80.41 53.61 58.76 59.79 67.01 68.04 70.10 75.26 76.29 75.26 76.29 70.10
CSR 62.89 45.36 48.45 48.45 44.33 43.30 45.36 54.64 55.67 58.76 60.82 69.07

LASSO 73.20 54.64 32.99 41.24 49.48 58.76 65.98 43.30 55.67 73.20 73.20 64.95
adaLASSO 75.26 60.82 36.08 43.30 45.36 53.61 67.01 56.70 76.29 75.26 70.10 75.26

ElNet 74.23 40.21 31.96 39.18 46.39 58.76 55.67 43.30 53.61 75.26 74.23 77.32
Ridge 60.82 28.87 16.49 31.96 45.36 47.42 40.21 35.05 58.76 68.04 67.01 76.29

Percentage of times that 12-month rolling RMSE of a model-dataset pair is smaller than the 12-month
rolling RMSE of the Focus consensus. RW beats the benchmark only about 30% of the time.

Finally, the results from the expanding window forecasts are similar to the results

from the rolling window forecasts. One remarkable difference is that when using ex-

panding window, all the models (except for the RF) obtain the best MAD when data is

accumulated in 12 months.



4 Conclusion

We investigate the performance of six machine learning methods for forecasting 12-

month-ahead yearly inflation, considering the Brazilian case. In particular, we study

whether there are gains from accumulating the regressors in 1 to 12 months. Our

benchmark is the median of the Focus survey of inflation expectations.

Our main findings are:

1. Machine learning models consistently outperform the Focus consensus when data

is not accumulated or it is accumulated in 12 months.

2. Machine learning models (especially RF) consistently outperform the Focus during

periods of more volatile inflation.

3. The random forest (RF) is the only model that outperforms the benchmark in every

dataset. In particular, the best model is the RF without accumulating regressors.

4. The performance of shrinkage methods varies considerably across different datasets.

Following our first finding, we recommend evaluating forecasts when regressors are

accumulated in 12 months as a robustness exercise after computing the forecasts without

applying transformations to the regressors.
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A Table of transformations

The table provides the classification, the code (from the Time Series Management

System), the frequency, the unity of measure, the lags, and finally the transformation

applied to each predictor. When Transformation=0, the variable is not transformed.

Transformations 1, 2, and 3 are explained here.

Group Variable Code Frequency Unity Transformation Lag

1 PRICES ipca 433 M month % var 2 1
2 PRICES ipca ali 1635 M month % var 2 1
3 PRICES ipca hab 1636 M month % var 2 1
4 PRICES ipca resid 1637 M month % var 2 1
5 PRICES ipca vest 1638 M month % var 2 1
6 PRICES ipca transp 1639 M month % var 2 1
7 PRICES ipca comunic 1640 M month % var 2 1
8 PRICES ipca saude 1641 M month % var 2 1
9 PRICES ipca desp 1642 M month % var 2 1
10 PRICES ipca educ 1643 M month % var 2 1
11 PRICES ipc BR 191 M month % var 2 1
12 PRICES igp M 189 M month % var 2 1
13 PRICES igp DI 190 M month % var 2 1
14 PRICES igp10 7447 M month % var 2 1
15 PRICES ipca15 7478 M month % var 2 1
16 PRICES bm broad 1788 M cmu thousand 1 2
17 PRICES bm 1785 M cmu thousand 1 2
18 PRICES m1 1783 M cmu thousand 1 2
19 PRICES m2 1786 M cmu thousand 1 2
20 PRICES m3 27813 M cmu thousand 1 2
21 PRICES m4 27815 M cmu thousand 1 2

22 COMMODITIES icbr 27574 M index 1 1
23 COMMODITIES icbr agr 27575 M index 1 1
24 COMMODITIES icbr metal 27576 M index 1 1
25 COMMODITIES icbr energy 27577 M index 1 1

26 ACTIVITY ibcbr 24363 M index 1 3
27 ACTIVITY pimpf 21859 M index 1 2
28 ACTIVITY pimpf extract 21861 M index 1 2
29 ACTIVITY pimpf manufac 21862 M index 1 2
30 ACTIVITY retail total 1455 M index 1 2
31 ACTIVITY retail fuel 1483 M index 1 2
32 ACTIVITY retail supermarket 1496 M index 1 2
33 ACTIVITY retail clothing 1509 M index 1 2
34 ACTIVITY retail house 1522 M index 1 2
35 ACTIVITY retail drugstore 20099 M index 1 2
36 ACTIVITY retail paper 20101 M index 1 2

https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries
https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries


21 Table of transformations

Group Variable Code Frequency Unity Transformation Lag

37 ACTIVITY retail office 20102 M index 1 2
38 ACTIVITY retail others 20104 M index 1 2
39 ACTIVITY retail building 20105 M index 1 2
40 ACTIVITY retail auto 1548 M index 1 2
41 ACTIVITY prod vehicles 1373 M units 1 1
42 ACTIVITY prod agr mach 1388 M units 1 1
43 ACTIVITY vehicle sales 7389 M barrels day thousand 1 1
44 ACTIVITY tcu 24352 M % 3 1

45 EMPLOYMENT min wage 1619 M cmu 1 2
46 EMPLOYMENT aggreg wage 10790 M R$ 1 0
47 EMPLOYMENT unem NA M % 3 3

48 ELECTRICITY elec 1406 M GWh 1 3
49 ELECTRICITY elec com 1402 M GWh 1 3
50 ELECTRICITY elec res 1403 M GWh 1 3
51 ELECTRICITY elec ind 1404 M GWh 1 3

52 CONFIDENCE cons confidence 4393 M index 1 1
53 CONFIDENCE future expec 4395 M index 1 1

54 FINANCE irf m 12461 D index 1 1
55 FINANCE ima s 12462 D index 1 1
56 FINANCE ima b 12466 D index 1 1
57 FINANCE ima 12469 D index 1 1
58 FINANCE saving deposits 1838 M cmu thousand 1 2
59 FINANCE selic 4390 M % pm 0 1
60 FINANCE cdi 4391 M % pm 0 1
61 FINANCE tjlp 256 M % py 0 1
62 FINANCE ibovespa NA D % pm 0 1

63 CREDIT cred total 28183 M R$ million 1 2
64 CREDIT cred gdp 28215 M % 3 2
65 CREDIT indebt house 19882 19882 M % 3 4
66 CREDIT indebt house 20400 20400 M % 3 4

67 GOVERNMENT net debt gdp 4513 M % 3 2
68 GOVERNMENT net debt 4478 M R$ million 3 2
69 GOVERNMENT net debt fedgov bcb 4468 M R$ million 3 2
70 GOVERNMENT net debt states 4472 M R$ million 3 2
71 GOVERNMENT net debt cities 4473 M R$ million 3 2
72 GOVERNMENT primary result 4649 M R$ million 3 2
73 GOVERNMENT debt fedgov old 4502 M R$ million 1 2
74 GOVERNMENT debt fedgov new 13761 M R$ million 1 2
75 GOVERNMENT treasury emit 4151 M cmu million 1 2
76 GOVERNMENT treasury mkt 4154 M cmu million 1 2
77 GOVERNMENT treasury term 10616 M months 3 2
78 GOVERNMENT treasury dur 10617 M months 3 2

79 INTERNATIONAL reer 11752 M index 1 2
80 INTERNATIONAL usd brl end 3695 M cmu US$ 1 1
81 INTERNATIONAL usd brl avg 3697 M cmu US$ 1 1
82 INTERNATIONAL current account 22701 M US$ million 1 2
83 INTERNATIONAL trade balance 22707 M US$ million 1 2
84 INTERNATIONAL imports 22709 M US$ million 1 2



B Rolling window forecasts: rolling RMSE
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C Expanding Window Results

Table 4 – RMSE, MAE and MAD for expanding window forecasts

Datasets: Xh, h = 1, ...,12

RMSE/(MAE)/ 1 2 3 4 5 6 7 8 9 10 11 12
{MAD}
RF 0.45 0.65 0.62 0.61 0.60 0.59 0.59 0.58 0.57 0.55 0.53 0.50

(0.50) (0.76) (0.73) (0.70) (0.68) (0.66) (0.66) (0.65) (0.63) (0.62) (0.59) (0.54)
{0.56} {0.92} {0.90} {0.93} {0.89} {0.74} {0.78} {0.76} {0.69} {0.73} {0.69} {0.66}

CSR 0.78 0.76 0.75 0.75 0.74 0.74 0.74 0.73 0.72 0.71 0.69 0.80
(0.83) (0.89) (0.87) (0.86) (0.85) (0.84) (0.83) (0.83) (0.83) (0.81) (0.79) (0.86)
{0.93} {1.13} {1.05} {1.00} {0.97} {1.01} {1.02} {1.06} {1.00} {1.00} {0.94} {0.83}

LASSO 0.45 0.66 0.63 0.62 2.04 0.51 0.52 1.56 1.64 1.65 0.49 2.31
(0.50) (0.77) (0.73) (0.73) (0.92) (0.57) (0.54) (0.72) (0.69) (0.64) (0.48) (0.78)
{0.51} {1.04} {0.89} {0.76} {0.77} {0.65} {0.61} {0.48} {0.49} {0.40} {0.50} {0.39}

adaLASSO 0.46 0.59 0.59 0.59 0.56 0.50 0.47 0.64 1.48 1.64 0.42 1.72
(0.52) (0.69) (0.68) (0.69) (0.65) (0.56) (0.50) (0.52) (0.64) (0.64) (0.45) (0.70)
0.49 0.90 0.90 0.83 0.75 0.67 0.55 0.51 0.45 0.43 0.52 0.41

ElNet 0.48 0.68 0.64 0.63 0.64 0.55 0.53 1.63 1.33 1.66 0.47 2.28
(0.54) (0.79) (0.74) (0.73) (0.69) (0.60) (0.56) (0.73) (0.64) (0.64) (0.48) (0.78)
0.53 0.99 0.89 0.82 0.77 0.66 0.64 0.57 0.53 0.45 0.49 0.41

Ridge 0.58 0.98 0.98 1.22 1.86 1.15 0.92 3.16 2.88 1.62 1.01 1.32
(0.63) (1.17) (1.17) (1.16) (1.01) (0.82) (0.74) (1.07) (0.96) (0.68) (0.66) (0.67)
0.59 1.50 1.50 1.37 0.92 0.64 0.65 0.62 0.56 0.52 0.54 0.42

The columns represent the datasets. The coloured values correspond to the best result of the models
for each error measure.

Table 5 – Descriptive statistics: expanding window forecasts errors

RMSE MAE MAD maxRMSE maxMAE maxMAD minRMSE minMAE minMAD

RF 0.57 0.64 0.77 0.65 0.76 0.93 0.45 0.50 0.56
CSR 0.74 0.84 0.99 0.80 0.89 1.13 0.69 0.79 0.83

LASSO 1.09 0.67 0.62 2.31 0.92 1.04 0.45 0.48 0.39
adaLASSO 0.81 0.60 0.62 1.72 0.70 0.90 0.42 0.45 0.41

ElNet 0.96 0.66 0.64 2.28 0.79 0.99 0.47 0.48 0.41
Ridge 1.47 0.89 0.82 3.16 1.17 1.50 0.58 0.63 0.42
RW 1.13 1.23 1.04 1.13 1.23 1.04 1.13 1.23 1.04
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Table 6 – Percentage of the times when the models beat Focus

1 2 3 4 5 6 7 8 9 10 11 12

RF 80.41 53.61 61.86 68.04 70.10 73.20 74.23 73.20 75.26 74.23 76.29 70.10
CSR 55.67 41.24 49.48 50.52 51.55 49.48 49.48 50.52 52.58 55.67 56.70 65.98

LASSO 73.20 65.98 64.95 67.01 57.73 74.23 75.26 50.52 62.89 69.07 71.13 62.89
adaLASSO 74.23 72.16 72.16 70.10 73.20 74.23 78.35 77.32 62.89 69.07 75.26 62.89

ElNet 72.16 59.79 60.82 64.95 71.13 74.23 69.07 62.89 65.98 71.13 73.20 61.86
Ridge 61.86 25.77 25.77 13.40 37.11 43.30 46.39 47.42 51.55 61.86 57.73 61.86

Percentage of times that 12-month rolling RMSE of a model-dataset pair is smaller than the 12-month
rolling RMSE of the Focus consensus. RW beats the benchmark only about 30% of the time.
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25 Expanding Window Results
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