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Abstract

Castro, Pedro Henrique Rosado de; Monteiro Ribeiro, Ruy (Advi-
sor). Essays on Empirical Finance. Rio de Janeiro, 2020. 148p.
Tese de doutorado – Departamento de Economia, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

The thesis is composed of two essays on empirical finance. The first
focuses on FX markets and presents measures of interest rates short-
term structure slope changes for the US and other G10 countries using 3-
and 6-month futures contracts. These changes in slopes have immediate
impact on currency returns but also a strong delayed effect over the
following weeks, implying that currencies are predictable both in and out-
of-sample. Investors that condition on slope to tactically trade a long G10
portfolio improve Sharpe ratios to 0.4-0.9, relative to 0.15 for a buy-and-
hold strategy. A dollar-neutral currency portfolio that sorts G10 country
currencies on the cross-section slope also deliver higher Sharpe ratios than
other currency strategies, such as the carry trade. These findings are
compatible with delayed currency market reaction to information in interest
rates. The second essay proposes a novel measure that solely use cross-
sectional dispersion information on CAPM betas to forecast aggregate
market returns for the US. This choice of predictors is based on simple
theoretical arguments that measures associated with the dispersion of
CAPM betas, in some settings, should be related with expected future
market returns. We find that these dispersion measures do indeed forecast
market risk premium over multiple horizons and deliver high in-sample and
out-of-sample predictive power: out-of-sample 𝑅2 reaches up to 10% at the
annual frequency (0.7% monthly) and are robust to different estimation
windows. Unlike most measures in the literature, ours is not a price- or
valuation-based ratio. Our approach is also an alternative to models that
use the cross-section of valuation ratios to infer the conditional market
risk premium. Our measures vary with the business cycle and correlate
with other commonly used forecasting variable such as dividend-price or
consumption-wealth ratios, but they provide explanatory power above and
beyond the standard predictors. Our findings provide additional evidence
that the betas dispersion across time is a function of time varying risk
premium.
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Resumo

Castro, Pedro Henrique Rosado de; Monteiro Ribeiro, Ruy. En-
saios em Finanças Empíricas. Rio de Janeiro, 2020. 148p. Tese
de Doutorado – Departamento de Economia, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Esta tese é composta por dois ensaios sobre finanças empíricas. O
primeiro se concentra nos mercados de câmbio e apresenta medidas de
mudanças na inclinação da estrutura de curto prazo das taxas de juros
para os EUA e outros países de G10, usando contratos de futuros de 3 e 6
meses. Essas mudanças na inclinação têm impacto imediato nos retornos da
moeda e também forte efeito retardado nas semanas seguintes, o que implica
que as moedas são previsíveis tanto dentro quanto fora da amostra. Os
investidores que condicionam na inclinação para negociar taticamente uma
carteira comprada em moedas G10 contra o Dólar americano melhoram
os índices de Sharpe para 0,4-0,9, em relação a 0,15 de uma estratégia
de buy and hold. Uma carteira de moeda neutra em dólares que classifica
as moedas dos países do G10 de acordo com a inclinação no cross-section
também oferece índices de Sharpe mais altos do que outras estratégias de
moeda como o carry trade. Essas descobertas são compatíveis com uma
reação defasada do mercado de câmbio às informações sobre taxas de juros.
O segundo ensaio propõe uma nova medida que usa apenas informações
de dispersão cross-section de betas do modelo CAPM para prever retornos
agregados de mercado para os EUA. Esta escolha de preditores é baseada em
argumentos teóricos simples de que as medidas associadas à dispersão dos
betas do CAPM, em alguns cenários, devem ser relacionadas aos retornos
futuros de mercado esperados. Essas medidas de dispersão de fato prevêem
o prêmio de risco de mercado em vários horizontes e fornecem alto poder
preditivo dentro e fora da amostra. O 𝑅2 fora da amostra atinge até 10%
na frequência anual (0,7% mensal) e são robustos a diferentes janelas de
estimação. Ao contrário da maioria das medidas encontradas na literatura,
a nossa não é baseado em preço ou valuation ratios. Nossas medidas variam
com o ciclo econômico e se correlacionam com outras variáveis de previsão
comumente usadas, como razões de dividendo-preço e consumo-riqueza, mas
fornecem poder explicativo acima e além dos preditores padrão. Nossos
resultados fornecem evidências adicionais de que a dispersão dos betas
ao longo do tempo é função da variação temporal do prêmio de risco de
mercado.
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1
Currency Returns and Short-Term Interest Rate Slopes

1.1
Introduction

In no-arbitrage affine term structure models with complete markets, any
variable that prices the domestic yield curve potentially predicts exchange rate
risk premium. The foreign exchange risk premium is a function of differences
in the conditional volatility of the domestic and foreign stochastic discount
factor (Backus et al., 2001). Therefore, factors that drive the relative dynamics
of the yield curve of two different countries also drive the relative currency risk
premium. Moreover, the difference between two countries short-term interest
rates, i.e. carry, is the most widely known currency factor, that relies on interest
rates to forecast currency returns (Verdelhan et al., 2007): countries with higher
interest rates, contrary to what the uncovered interest parity condition predicts
(UIP), typically deliver higher currency returns. In addition, Ang & Chen
(2010) show that variables that predict yield curve movements, besides carry,
like term spreads, short-term interest rate changes and interest rate volatility,
also significantly predict excess foreign exchange.

Currency realized returns, when considering a simple present value
relation as in Engel & West (2016), are a function of: (i) interest rates
differential today, the carry (ii) expected futures rates differential and (iii)
currency risk premium. Similar to Campbell & Shiller (1988), we can interpret
current and future interest rates differentials – current and future carry – as the
cash flow component of a currency investment strategy. However, information
extracted from the term structure of long-term bonds, like the term spread,
contain both an expected future rates differential component and exchange rate
risk. In contrast, one may argue that short-term interest rates futures markets
could be more closely related to the future short-term path of monetary policy
and present minor changes in risk premium. Neuhierl & Weber (2019) show
that, for the US, this short-term slope of futures interest rates contracts,
or monetary slope, contains information about the speed of future monetary
policy tightening and loosening, predicts future changes in the FED funds rate
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Chapter 1. Currency Returns and Short-Term Interest Rate Slopes 16

and also revisions of professional forecasters1.1.
In this paper, we test the relation between currency returns and the short-

term interest rate futures curves of G10 countries1.2. Our findings suggest that
changes in 3- and 6-month interest futures slope, the monetary policy slope,
predict individual currency returns in a panel setting and also a portfolio that
is long G10 currencies and short the US dollar, also known in the literature
as the Dollar Portfolio. Changes in short-term structure slope have immediate
impact on currency returns, but also a delayed effect over the following weeks.
Contrary to the prevailing literature that struggles to demonstrate empirically
currency predictability (Rossi, 2013; Ma & Zhang, 2019), we find strong evi-
dence of out-of-sample weekly currency predictability: investors that condition
on international term structure slope to tactically trade the long G10 portfolio
improve annualized Sharpe ratios to 0.5, relative to 0.12 of a buy-and-hold
strategy. We also construct a dollar-neutral currency portfolio by sorting G10
country currencies based on the cross-section of term structure slope measures,
that delivers Sharpe ratios above and beyond other currency strategies, like
the carry trade. Currency predictability is robust to several short-term struc-
ture slope measures and survives the inclusion of slope constructed from longer
bond yields, like a 10-year minus 3-month bond yield spread. Predictability is
present in alternative sub-samples and it is not restricted to FOMC weeks, im-
proving substantially when focusing on weeks with large shifts in G10 interest
futures term structures.

So what drives this particular currency return predictability? As previ-
ously noted, currency realized returns are related to (i) risk premium and (ii)
expectations of future interest rate changes. Our empirical findings suggest
that a higher monetary slope for a given currency predict positive currency
returns both in the current and subsequent weeks. In a single country setting,
like Neuhierl & Weber (2019), slope measure seems to be capturing mostly in-
formation about the expected path of monetary policy. In this paper we show
that this result also holds in a cross-section of G10 countries: we find sup-
porting evidence that relative changes in slope are capturing more information
about changes in the expected future path of relative monetary policy between

1.1Neuhierl & Weber (2019) also show that this short-term slope extracted from US interest
rates futures contracts also forecasts one-week ahead returns for the S&P500 stock index.
slope not only predicts future changes in the FED funds rate and revisions of professional
forecasters but is correlated with a linguistic analysis of speeches by Federal Reserve
Board members: a hawkish speech, as defined in their linguistic approach, is correlated
with increases in slope, that is, an increase in the short-term slope is compatible with a
communication of a faster monetary policy tightening in the future

1.2In our setting instead of using long-term bond prices and yields, as in the case of Ang &
Chen (2010), we follow the idea of Neuhierl & Weber (2019) and construct a similar measure
of slope from short-term interest rates futures contracts for all available G10 countries
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Chapter 1. Currency Returns and Short-Term Interest Rate Slopes 17

G10 countries, or the future cash flow component of the currency investment
strategy. If it were the case that they were capturing only expected future
changes in relative risk premium, a higher short-term slope should forecast
lower currency realized returns because of an increase in the expected risk or
discount factor component of the currency investment.

We construct several measures of the monetary slope, or simply slope,
using international interest rates futures contracts at different short-run hori-
zons for all G10 countries. One such simple measure considers the difference
of k-month minus 1-month futures implied rates changes1.3. Alternative mod-
ified measures perform regressions of changes in k-month interest futures on
changes in 1-month futures implied rates. These measures control for the cor-
relation between changes in the slope and the level of each individual country
short-run term structure. This methodology follows Neuhierl & Weber (2018),
extending their measure to a cross-country setting1.4.

Our evidence that slope explains current and predicts future individual
currency returns against the US dollar arises both in panel regressions, that
exploit the whole cross-section information of G10 currency returns across
time, and in the context of currency portfolios, like a portfolio of equally-
weighted long G10 currencies against the US dollar, typically referred in the
literature as the Dollar portfolio. We also find supporting evidence of a delayed
reaction in currencies to a slope change: an increase in the slope difference
between country 𝑖 and the US leads to a positive impact both on current week
and up to 4-week ahead currency 𝑖 returns against the US dollar.

We use this delayed reaction evidence to construct two novel currency
portfolios. The first strategy conditions on international slope to tactically
trade the Dollar portfolio: depending on relative slope differences between
the US and a synthetic G10 average on a given week, it goes either long
or short the US Dollar on the subsequent week. The predictability of this
strategy is economically significant, delivering an annualized Sharpe ratio,
when implemented on all weeks, of 0.4 adjusting for transaction costs. As
a comparison, in our sample, Sharpe ratios reach 0.3 for the carry-trade and
for 0.15 the Dollar portfolio buy-and-hold strategy. Other papers with a more

1.3One natural candidate for changes in the slope of the term structure is the simple
difference between a k-month and 1-month futures implied rates (Δ𝑓𝑓𝑘

𝑡 − 𝑓𝑓1
𝑡 ). One of the

problems with this measure is that it is correlated to changes in the level of the interest rate
1.4We consider several versions of this modified slope measure. One example is a simple

extension of Neuhierl & Weber (2019) to an international setting: we define slope for country
𝑖 as the residual of the following regression: Δ𝑓𝑓3

𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖
1 · Δ𝑓𝑓1

𝑖,𝑡 + slope𝑖
𝑡. Another

example is a version for country 𝑖 slope that is completely orthogonal to US futures rates:
Δ𝑓𝑓3

𝑖,𝑡 = 𝛼𝑛 + 𝛽𝑖
1 · Δ𝑓𝑓1

𝑖,𝑡 + 𝛽𝑛
2 · Δ𝑓𝑓1

𝑢𝑠,𝑡 + 𝛽𝑛
3 · Δ𝑓𝑓1

𝑢𝑠,𝑡 + slope𝑛⊥𝑢𝑠
𝑡 . We use both 3-month

and 6-month horizon interest rates futures contracts in our setting. In our paper we refer to
slope or monetary slope generically since we are considering a wide range of measures
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Chapter 1. Currency Returns and Short-Term Interest Rate Slopes 18

complete data set of countries, not restricted to G10 currencies, like Hassan &
Mano (2019), present gross Sharpe ratios (not adjusted for transaction costs)
of 0.5 and 0.16 for the carry and Dollar trade portfolios, respectively. Out-of-
sample weekly predictability of the US Dollar portfolio using slope measured
by R-squared statistics is also high, specially when considering the literature
on currency predictability and the general difficulty in forecasting currency
returns using macroeconomic variables1.5.

The second strategy constructs a US dollar-neutral currency portfolio
by sorting G10 country currencies based on each country’s slope measure.
With individual country panel regressions, we find evidence that a country
with a positive (negative) slope has on average a positive (negative) currency
return against the US dollar up to four weeks ahead. Following this result, we
construct a long-short dollar neutral strategy that sorts currencies into High
slope and Low slope bins, based on each country’s slope measure. While a carry-
trade strategy sorts countries based on interest rate differentials, our proposed
strategy sorts on slope. This long-short individual country slope portfolio, or
simply long-short slope, delivers Sharpe ratios that are above and beyond other
currency strategies. We find that this strategy has a statistically significant
alpha that is not explained by the exposures to both carry and dollar risk
factors.

Predictability of future currency returns by slope is robust to a series of
changes. It remains significant after the inclusion of lagged currency returns,
of slope extracted from long-run interest rates, like the term spread between a
10-year and a 3-month bond yield, and other controls. Predictability is present
for several slope definitions, like using 6-month maturities instead of 3-month,
individual G10 slope measures orthogonal to US slope or even using US slope
only. Results are robust to different sub-samples, like weeks with no FOMC
meetings or a pre-2008 sample to evaluate the impact of Quantitative Easing
on our results. Sharpe ratios increase even further if we focus on specific weeks,
like sub-samples of large slope movements, FOMC Weeks or No-FOMC weeks
with large moves. Table B.1 on the Appendix B below summarizes some of our

1.5For the large-slope sub-sample weeks, out-of-sample 𝑅2 range from 0.1% to 0.3%. Using
insights from Cochrane (2009) these out-of-sample statistics suggest that an active investor
who condition on slope can increase annualized weekly Sharpe ratios from 0.27 (the Sharpe
ratio for a buy-and-hold long US Dollar strategy implemented only on the these weeks,
see Table B.1) on the Appendix B up to 0.48, a 70% increase. Just as a comparison, in
their paper Neuhierl & Weber (2019), find a weekly out-of-sample R-squared of 0.27% when
forecasting equity returns in the US, which delivers a 23.3% increase in annualized Sharpe
ratio considering the same methodology. Out-of-sample currency return predictability using
international slope from short-term is an order of magnitude higher, which is even more
striking considering the difficulty in forecasting currency returns
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findings1.6.
Our work contributes to the existing literature in four ways. Our first con-

tribution is related to the large literature on currency predictability. Exchange
rates are stubbornly disconnected from macroeconomic fundamentals. Since
Meese & Rogoff (1983), empirical attempts to forecast currency returns using
macroeconomics prices and quantities usually fall-short of a simple random
walk, suggesting that macro related variables are not relevant to forecasting
currencies. In a recent paper, Ma & Zhang (2019) document that the ratio of
residential-to-nonresidential investment, a macro variable, is a strong in-sample
and out-of-sample predictor for for US Dollar returns1.7. Currencies returns are
also hard to predict. Rossi (2013) show, in a survey of empirical papers that
have tried to forecast exchange rates, that even for macro predictors or models
that seem to exhibit forecastability in-sample, it is usually present for only a
sub-set of countries and samples, is unstable out-of-sample and does not beat
the random-walk benchmark. Therefore, Meese & Rogoff (1983) puzzle does
not seem to be convincingly overturned. Our paper contributes directly to this
literature since we find a variable strongly related to expectations about future
monetary path of G10 countries relative to the US with strong out-of-sample
predictive power. Slope information is relevant in the time-series dimension:
conditioning on slope to tactically go long or short all G10 currencies against
the US dollar significantly increase returns adjusted for risk. Moreover, slope is
also relevant in the cross-section dimension: our long-short portfolio based on
individual country slope information exploits this predictability and delivers
Sharpe ratios above and beyond other currency strategies, like the carry-trade.
In that sense, our empirical findings help to add another layer of evidence into
this long standing debate in international finance and macroeconomics.

Second, we document that currency return predictability using slope
measures is not restricted to weeks with regular policy decisions. A large
literature, starting with Bernanke & Kuttner (2005), documents that asset
prices respond directly and immediately to monetary policy actions. More
recent papers have shown that stock market returns and Sharpe ratios are
significantly higher on macroeconomic announcement days (Savor & Wilson,
2013). While this evidence is mostly studied for equity returns, a few papers

1.6We use as benchmark for large slope weeks ones in which the absolute modified
term structure slope is higher than 0.5, it’s unconditional standard deviation. Formally,
when looking at Long G10 portfolio we include weeks for which |slope difference𝐺10,𝑡| >
𝜇diff + 0.5 · 𝜎diff

1.7Their measure is different from most existing predictors based on prices, flows, and
sentiments, as reviewed by Rossi (2013) and links directly exchange rates and macroeconomic
quantities. Out-of-sample predictability of their proposed measure is significant: for the
broad nominal Dollar index out-of-sample 𝑅2 reaches up to 2.75% for the 1-quarter ahead
horizon
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focus on currencies. Karnaukh (2020) document that the US dollar appreciates
(depreciates) over the two day before FOMC tightening (easing) decisions, with
FED funds futures anticipating these returns. Salehi et al. (2017) document
larger excess returns and a pre-announcement drift for individual and portfolios
of currencies on days with scheduled FOMC meetings, relating these findings
to a compensation that investors demand for monetary policy uncertainty risk.

The evidence above suggest not only a reaction to monetary and other
macro news shocks, but also that this response is concentrated. But uncertainty
about future policy is present not only during meeting weeks. Policy makers
often highlight that deliberations happen on a continuous basis. Speeches by
governors, increased transparency and communication and forward guidance
are all examples of efforts pursued by monetary authorities to shape expecta-
tions of future actions. Consistent with this view, Neuhierl & Weber (2019)
show evidence that shifts in the short-end of term structure of US interest
rates future forecast equity returns one-week ahead. They argue that, since
the whole future path of interest rates is relevant for future equity returns, the
FOMC releases information also outside scheduled FOMC meetings. In a cur-
rency setting, this also seems to be the case, since currency returns react both
to changes in the US and G10 monetary slope independently of the considered
sub-sample.

Our third contribution is to connect the vast literature that documents
the impact of macroeconomic variables and news, monetary policy shocks and
interest rates changes on the term structure of interest rates, with the currency
return predictability literature. We provide additional empirical evidence that
relative shifts in international interest rates futures term structure help predict
currency movements. Our paper is not the first to relate currency returns to
interest rates. There is a large literature on the empirical failure of covered
interest rate parity hypothesis and the ability of the carry component of a
currency to forecast future returns, like in Verdelhan et al. (2007), Verdelhan
et al. (2011) and Menkhoff et al. (2017).

Our paper is not the first to use relative information embedded in the
term structure of interest rates of different countries, other that the level
of short-term rates differential, to predict currency returns. Our results are,
however, quite different. Ang & Chen (2010) derive several term structures
models and use them to implement different currency strategies that sort on
different variables constructed from the term structure of interest rates. They
show empirically that, besides the level of short-term rates differential (the
carry), changes in short-term rates, the term spread of long-term bond yields
and also changes in the long-term spread all have predictive power for one
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month-ahead and up to 12-month ahead currency returns: as an example,
sorting currencies into a long-short portfolio that conditions on the long-term
slope of the yield bond curve leads to negative realized returns and Sharpe
ratios in their paper.

Our paper contributes to their finding by showing that the changes in the
short-term slope of interest rates futures, in theory more related to the expected
monetary policy path, also predict currency returns over shorter horizons. Our
empirical findings complement theirs in the sense that a higher short-term
slope or monetary slope for a given currency predict positive, not negative,
future currency returns. It seems to be the case that, in a cross-section of G10
countries, relative changes in short-term slope are capturing more information
about the relative expected path of future monetary policy rather than changes
in risk premium. Since Ang & Chen (2010) constructs slope from 10-year bonds,
their measure potentially captures more information about relative currency
risk premia. Is is worth mentioning that our forecastability results survive in-
sample the inclusion of the term spread of longer horizon bond yields, the
sorting variable used in their paper. Additionally, our proposed novel tactical
Dollar portfolio, that goes either long or short the US Dollar, using relative
information from US slope and a synthetic G10 average slope, delivers high
Sharpe ratios. This finding, not present in their paper, suggest that, for the US
Dollar risk premium, it is relevant to condition not only on US term structure
information, but also on other G10 countries short-term structure information.
Even though short-term structure slopes have a common component, relative
shifts are important to explain the US Dollar exchange rate returns against
other G10 countries.

Finally, our findings of a strong delayed or lagged effect of changes in
the slope of the short-term structure of interest rates futures are compatible
with behavioral interpretations such as under-reaction to news. Our empirical
evidence supports that currency markets tend to react with a delay to
information embedded in the interest rate futures market. An increase in slope
difference between country 𝑖 and the US leads to a positive impact currency 𝑛

returns against the US dollar both on current week and up to 4-week ahead.
This lagged and persistent effect survives the inclusion of lagged returns as
a control variable and it is not restricted to weeks with scheduled FOMC
meetings. Quiet the opposite: conditioning on No-FOMC weeks with large
slope changes tend to increase the persistence of slope on currency return
predictability up to 4-weeks ahead. This evidence for currency markets provide
additional anecdotal evidence in line with models of market segmentation such
as in Greenwood et al. (2018) and extends the findings of delayed response of
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equity returns to slope shocks in the US (Neuhierl & Weber, 2019). That this
under reaction arise in the interaction of foreign exchange rates markets for
G10 countries, the worlds largest and most liquid financial market with a daily
trading over 5 trillion US dollars, and G10 interest rate futures, also a very
liquid and active market, is an interesting phenomenon.

1.2
Term Structure of Interest Rates and FX Returns

In this section, we present basic definitions of currency returns. We also
derive the relation between currency returns and the stochastic discount factor
of different countries in a complete markets setting. Following Ang & Chen
(2010), we present a simple term structure model of interest rates to show
the link between currency returns and the term structure of interest rates,
besides the level of interest rate differential (the carry). We then present
our proposed measure of short-term slope derived from interest rates futures
contracts showing why this measure is, according to Neuhierl & Weber (2019),
more correlated to the expected path of monetary policy rather than risk.
Finally, we present all the empirical measures used in this paper for the
international interest rate short-term structure slope derived from interest rates
futures contracts, simply slope or monetary policy slope.

1.2.1
Currency Returns: Basic Definitions

We must first define the return of a currency: the log excess return of
purchasing a foreign currency 𝑖 in the forward market and then selling it in the
spot market after one month, following Verdelhan et al. (2011) and Verdelhan
et al. (2014), is:

𝑟𝑥𝑖
𝑡+1 = 𝑓 𝑖

𝑡 − 𝑠𝑖
𝑡+1,

where 𝑠𝑖
𝑡 is the (log) spot exchange rate of country 𝑖 against the US dollar,

𝑓 𝑖
𝑡 denote the one month (log) forward rate. Currency is defined as one unit

of foreign currency against one US dollar so that, an increase in 𝑠𝑖
𝑡, means a

depreciation of country 𝑖 currency and an appreciation of the US dollar.
This excess return can also be stated as the log forward discount minus

the change in the spot rate: 𝑟𝑥𝑖
𝑡+1 = 𝑓 𝑖

𝑡 − 𝑠𝑖
𝑡 − Δ𝑠𝑖

𝑡+1· If we assume that
covered interest rate parity (CIP) holds, then the interest rate differential
between country 𝑖 and the US can be measured by the forward discount:
𝑟𝑖

𝑡 − 𝑟𝑢𝑠
𝑡 ≈ 𝑓 𝑖

𝑡 − 𝑠𝑖
𝑡. Here 𝑟𝑖 and 𝑟𝑢𝑠 are, respectively, the foreign nominal risk-

free rate and domestic (US) nominal risk-free rate over the maturity of the
contract.
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𝑟𝑥𝑖
𝑡+1 = 𝑓 𝑖

𝑡 − 𝑠𝑖
𝑡 − Δ𝑠𝑖

𝑡+1 ≈ 𝑟𝑖
𝑡 − 𝑟𝑢𝑠

𝑡 − Δ𝑠𝑖
𝑡+1 (1.1)

1.2.2
Currency Returns in a Complete Markets Setting

Under no-arbitrage conditions, there exists a stochastic discount factor,
or pricing kernel (𝑀𝑡+1), which prices any payoff 𝑃𝑡+1 at time 𝑡 + 1 so that the
price of any security at time 𝑡 satisfies the basic asset pricing Euler equation1.8:

𝑃𝑡 = 𝐸𝑡[𝑀𝑡+1 𝑃𝑡+1]

In particular, the price of a n-period zero coupon bond 𝑃
(𝑛)
𝑡 is given by:

𝑃
(𝑛)
𝑡 = 𝐸𝑡

[︁
𝑀𝑡+1 𝑃

(𝑛−1)
𝑡+1

]︁
The price of a one-period zero coupon bond is the risk free rate: 𝑃

(1)
𝑡 =

𝐸𝑡[𝑀𝑡+1 · 1] = 𝑒𝑥𝑝(−𝑟𝑡), since 𝑅𝑓
𝑡 = 1/𝑃

(1)
𝑡 . We defined 𝑟𝑡 as the (log) risk

free-rate (𝑅𝑓
𝑡 ).

The stochastic discount factor embodies risk premium that is potentially
time-varying. Several theoretical representative agent models in asset pricing
take structural approaches to model this time variation in risk and, more
specifically, time-varying exchange rate risk premium. One such example is
Verdelhan (2010). We follow a reduced form approach as in Backus et al.
(2001), Verdelhan et al. (2014) and Ang & Chen (2010) to incorporate multiple
factors.

Suppose the stochastic discount factor takes the form below. We assume
that the same pricing kernel functional form hold both for the home country,
in our example the US and the US dollar, and for the foreign country 𝑖.

𝑀 𝑖
𝑡+1 = 𝑒𝑥𝑝

(︁
− 𝑟𝑖

𝑡 − 1/2(𝜆𝑖)2
𝑡 − 𝜆𝑖

𝑡 𝜖𝑖
𝑡+1

)︁
(1.2)

where 𝜆𝑖
𝑡 is a time varying parameter that prices the shock to the short rate

(𝜖𝑖
𝑡+1). We assume that all shocks are 𝑁(0, 1). The price of risk 𝜆 is potentially

driven by multiple factors and is related to time-varying risk premia.
The spot exchange rate 𝑆𝑖

𝑡 is expressed as the amount of foreign currency
per one unit of the US dollar. An increase in 𝑆 represents a depreciation of
the foreign currency and an appreciation of the US Dollar. Consider an US

1.8More generally, the SDF is a positive random variable that satisfies this pricing relation
for any return R on all traded assets, and whose existence is both necessary and sufficient for
an economy that does not admit risk-less arbitrage opportunities. Additionally, if such an
economy has complete markets for state-contingent claims, 𝑀 is the unique solution to the
above equation. Otherwise, there exist a large number of random variables 𝑀 that satisfy
the pricing relation for returns on all traded assets (Backus et al., 2001)
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investor that is willing to invest one US dollar in any asset 𝑛, for which the
return in US dollars is 𝑅𝑛

𝑡+1. The fundamental asset pricing equation states
that:

𝐸𝑡[𝑀𝑢𝑠
𝑡+1𝑅

𝑛
𝑡+1] = 1 (1.3)

Alternatively, a foreign investor can convert his currency to US dollars at
a rate 1/𝑆𝑖

𝑡 , invest in the same asset 𝑛 and convert back the dollar amount to
his home currency after one period for the spot exchange rate 𝑆𝑖

𝑡+1, satisfying
the Euler equation below:

𝐸𝑡

[︁
𝑀 𝑖

𝑡+1
𝑆𝑖

𝑡+1
𝑆𝑖

𝑡

· 𝑅𝑛
𝑡+1

]︁
= 1 (1.4)

Under the assumption that the economy has complete markets for state-
contingent claims, the stochastic discount factor is unique. For equations (1.3)
and (1.4) to hold simultaneously, it must be the case that 𝑀𝑢𝑠

𝑡+1 = 𝑆𝑖
𝑡+1/𝑆𝑖

𝑡 ·𝑀 𝑖
𝑡+1

(Backus et al., 2001). Therefore, the exchange rate between the US Dollar and
country 𝑖 is the ratio of the stochastic discount factors:

𝑀𝑢𝑠
𝑡+1

𝑀 𝑖
𝑡+1

= 𝑆𝑖
𝑡+1
𝑆𝑖

𝑡

Taking logs and denoting with lower case letter 𝑙𝑜𝑔(𝑀 𝑖
𝑡 ) = 𝑚𝑖

𝑡, substitute
for the price kernel of the US and the foreign country 𝑖 in equation (1.2):

Δ𝑠𝑖
𝑡+1 = 𝑚𝑢𝑠

𝑡+1 − 𝑚𝑖
𝑡+1

=
(︁
𝑟𝑖

𝑡 − 𝑟𝑢𝑠
𝑡

)︁
+ 1/2

[︁
(𝜆𝑖)2

𝑡 − (𝜆𝑢𝑠)2
𝑡

]︁
+

[︁
𝜆𝑖

𝑡𝜖
𝑖
𝑡+1 − 𝜆𝑢𝑠

𝑡 𝜖𝑢𝑠
𝑡+1

]︁
(1.5)

If we substitute in equation (1.1), currency 𝑖 expected excess returns
against the US dollar can be approximated, if the covered interest rate (CIP)
parity holds and 𝐸𝑡(𝜖𝑢𝑠

𝑡+1) = 𝐸𝑡(𝜖𝑖
𝑡+1) = 0, by:

𝐸𝑡

[︁
𝑟𝑥𝑖

𝑡+1

]︁
= 𝑟𝑖

𝑡 − 𝑟𝑢𝑠
𝑡 − 𝐸𝑡Δ𝑠𝑖

𝑡+1 = 1/2
[︁
(𝜆𝑢𝑠)2

𝑡 − (𝜆𝑖)2
𝑡

]︁
(1.6)

The exchange risk premium is defined as the expected currency return.
The uncovered interest rate parity condition (UIP) assumes that the right
hand side of equation (1.6) is zero. If the expected excess return is zero, then
the expected change in the exchange rate is exactly equal to the interest rate
differential between country 𝑖 and the US. Investing in a foreign currency
has a high expected excess return when the difference between the variance
of us price kernel and the foreign price kernel is large. When domestic risk
premium is large relative to foreign risk premium a US investor holding foreign
assets must be compensated for this excessive risk, therefore, the US dollar
(foreign currency) should appreciate (depreciate) in expectation, leading to
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higher returns in equation (1.6).
Any variable that affects the time varying price of risk in both countries

is a potential candidate to forecast the expected exchange rate risk premium
by equation (1.6). We now turn to models of the term structure of interest
rates to shed some light into what information they potentially carry about 𝜆

and, therefore, the currency risk premium.

1.2.3
Currency Returns and the Term Structure of Interest Rates

In this section, we follow Ang & Chen (2010) and motivate under which
conditions information contained in the yield curve of two different countries,
like the short-term interest rate differentials (difference in levels) or differences
in the term spread (slope), have explanatory power for currency expected risk
premium.

We start with a simple one factor model for the price of the stochastic
discount factor, in which the price of risk of a given country is as a function
only of the short-term rate. In this simple model, it can be shown that the
expected return of a currency is only a function of short-term interest rates
differentials, the carry. Assume that the short rate in country 𝑖 (and the US)
follows the process given by equation (1.7) below:

𝑟𝑖
𝑡+1 = 𝜃𝑖 + 𝜌𝑟𝑖

𝑡 + 𝜎𝑟𝜖
𝑖
𝑡+1 (1.7)

We consider, for simplicity, that the parameters 𝜌 and 𝜎𝑟 are equal for all
countries, while only the constant term 𝜃𝑖 and the zero mean and unit variance
shock 𝜖𝑖 are country-specific. The price of a two-period zero coupon bond is:

𝑃
𝑖,(2)
𝑡 = 𝐸𝑡

[︁
𝑀 𝑖

𝑡+1𝑃
𝑖,(1)
𝑡+1

]︁
= 𝐸𝑡

[︁
𝑀 𝑖

𝑡+1𝐸𝑡+1[𝑀𝑡+2]
]︁

= 𝐸𝑡

[︁
𝑒𝑥𝑝

(︁
− 𝑟𝑖

𝑡 − 1/2(𝜆𝑖)2
𝑡 𝜆

𝑖
𝑡𝜖𝑡+1 − 𝑟𝑖

𝑡+1

)︁]︁
(1.8)

where we used the fact that 𝐸𝑡[𝑀 𝑖
𝑡+2] = 1/𝑅𝑖

𝑡+1 = 𝑒𝑥𝑝(−𝑟𝑖
𝑡+1). We also assume

log-normality of the SDF process. Under this assumption we can use the
property that 𝑃

𝑖,(2)
𝑡 = 𝐸𝑡

[︁
𝑒𝑥𝑝(𝑍𝑡)

]︁
= 𝑒𝑥𝑝

[︁
𝐸𝑡(𝑍𝑡) + 1/2𝑉 𝑎𝑟𝑡(𝑍𝑡)

]︁
, where 𝑍 is

simply the information inside the parenthesis in equation (1.8) above. We use
(1.7) to substitute for the short-term interest rate process and take conditional
expectations at time 𝑡 (𝐸𝑡(𝑟𝑖

𝑡+1)) to get:
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𝐸𝑡(𝑍𝑡) = 𝐸𝑡

[︁
− 𝑟𝑖

𝑡 − 1/2(𝜆𝑖)2
𝑡 𝜆

𝑖
𝑡𝜖𝑡+1 − 𝑟𝑖

𝑡+1

]︁
= −𝑟𝑖

𝑡 − 1/2(𝜆𝑖)2
𝑡 − 𝜃𝑖 − 𝜌𝑟𝑖

𝑡

𝑉 𝑎𝑟𝑡(𝑍𝑡) = 𝑉 𝑎𝑟𝑡(−𝜆𝑖
𝑡𝜖𝑡+1 − 𝑟𝑖

𝑡+1)
= (𝜆𝑖)2

𝑡 + 𝑉 𝑎𝑟𝑡(𝑟𝑖
𝑡+1) + 2𝜆𝑖𝐶𝑜𝑣𝑡(𝜖𝑡+1, 𝑟𝑖

𝑡+1)
= (𝜆𝑖)2

𝑡 + 𝜎2
𝑟 − 2𝜆𝑖𝜎𝑟

Using the log-normality assumption and taking logs, we arrive at a the
log-price of the 2-period zero coupon bond:

𝑝
𝑖,(2)
𝑡 = 1/2𝜎2

𝑟 − (1 + 𝜌)𝑟𝑖
𝑡 − 𝜃𝑖 − 𝜆𝑖 · 𝜎𝑟

By definition, the yield of n-period zero coupon bond is 𝑌 𝑛
𝑡 = 1/(𝑃 𝑛

𝑡 )𝑛.
Taking logs, 𝑦𝑛

𝑡 = 1
𝑛
𝑝𝑛

𝑡 . Therefore, the yield of a two-period bond:

𝑦
𝑖,(2)
𝑡 = −1

2𝑝
(2)
𝑡 = −1/4𝜎2

𝑟⏟  ⏞  
jensen’s term

+ 1/2
(︂

(1 + 𝜌)𝑟𝑖
𝑡 + 𝜃𝑖

)︂
⏟  ⏞  

Expectation Hypotheses

+ 1/2𝜆𝑖 · 𝜎𝑟⏟  ⏞  
risk premium

(1.9)

The Expectation Hypothesis states that for the two-period bond 𝑦
(2)
𝑡 =

1/2[𝑟𝑡 + 𝐸𝑡(𝑟𝑡+1)]. The risk premium is captured by the term 𝜆𝑖 · 𝜎𝑟. Ignoring
the Jensen’s term, subtract the short-term rate 𝑟𝑖

𝑡 from both sides to get the
term spread or the slope of the yield curve:

𝑦
𝑖,(2)
𝑡 − 𝑟𝑖

𝑡 = 1/2
(︂

(𝜌 − 1)𝑟𝑖
𝑡 + 𝜃𝑖

)︂
+ 1/2𝜆𝑖 · 𝜎𝑟

A positive risk premium (𝜆𝑖 > 0) is compatible with an upward sloping
yield curve, all else equal. We have shown that both the level of longer term
yields and longer term slopes carry information about the price of risk for
country 𝑖 for any particular time 𝑡, 𝜆𝑖

𝑡. In section 1.2.2 we also show that,
in a complete markets setting, a currency return 𝑛 against the US Dollar
is proportional to the differences in relative variance of the SDFs. Given our
hypothesis for SDF process in equation (1.2), this relative variance difference is
just the difference in the relative prices of risk (see equation (1.6)). Any variable
that contains 𝜆𝑖

𝑡 information is a candidate to forecast currency returns.
For some specific models and conditions, the short-term rate differential

(carry) is the only relevant part of the term structure of interest rates to
forecast currency returns. One such example is the following simple model
similar to Backus et al. (2001). Assume that the price of risk in each country
is driven by a global factor 𝑧𝑡 and by the local short interest rate multiplied
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by a constant, common to all countries, 𝜆:

(𝜆𝑖
𝑡)2 = 𝑧𝑡 − 𝜆𝑟𝑖

𝑡

In this setting, domestic yields reflect both a global common component
and a local price of risk that is proportional to the short-term interest rate.
The foreign exchange risk premium is than given by a linear difference in short
rates, the usual carry-trade predictor. By substituting in equation (1.6) we get
that:

𝐸𝑡

[︁
𝑟𝑥𝑖

𝑡+1

]︁
= 1/2

[︁
(𝜆𝑢𝑠

𝑡 )2 − (𝜆𝑖
𝑡)2

]︁
= 1/2𝜆

[︁
𝑟𝑖

𝑡 − 𝑟𝑢𝑠
𝑡

]︁
(1.10)

Therefore, if this simple model holds, long-term bonds yields carry in-
formation about risk premium but they do not have any explanatory power
for currency risk above and beyond the short rate level. The currency risk
premium is a function of the carry: countries with higher interest rate differen-
tials relative to the US have higher currency expected returns. Several papers
explore this to construct portfolios of currencies sorted on interest rates dif-
ferentials, the carry-trade currency strategy (see Verdelhan et al. (2007) and
Menkhoff et al. (2017)).

Now let us consider a more detailed model for the term structure. We
follow Ang & Chen (2010) and assume that the price of risk is itself a latent
process:

𝜆𝑖
𝑡+1 = 𝜆0 + 𝛿𝜆𝑖

𝑡 + 𝜎𝜆 + 𝑢𝑖
𝑡+1 (1.11)

Let us take a Taylor expansion of the price of risk 𝜆 quadratic term and
evaluate it around the unconditional expectation, 𝐸(𝜆𝑖

𝑡):

(𝜆𝑖
𝑡)2 ≈

(︂
𝐸(𝜆𝑖

𝑡)]
)︂2

+ 2𝐸(𝜆𝑖
𝑡) ·

[︂
𝜆𝑖

𝑡 − 𝐸(𝜆𝑖
𝑡)

]︂

Taking unconditional expectations of the equation (1.11) above we get
that 𝐸(𝜆𝑖

𝑡) = (1 − 𝛿)−1𝜆0. Therefore, (𝜆𝑖
𝑡)2 ≈ constant + 2𝜆0

1−𝛿
· 𝜆𝑖

𝑡. Substituting
this first order approximation into equation (1.6) for the expected currency
returns we arrive at:

𝐸𝑡

[︁
𝑟𝑥𝑖

𝑡+1

]︁
= 1 − 𝛿

𝜆0
·

(︂
𝜆𝑢𝑠

𝑡 − 𝜆𝑖
𝑡

)︂

From equation (1.9), ignoring quadratic terms, subtract the short rate
from both sides to get the relation between term-spreads or the slope of the
yield curve (𝑦𝑖,2

𝑡 − 𝑟𝑖
𝑡) and 𝜆:

𝑦
𝑖,(2)
𝑡 − 𝑟𝑖

𝑡 = 1/2
(︂

(𝜌 − 1)𝑟𝑖
𝑡 + 𝜃

)︂
+ 1/2𝜆𝑖 · 𝜎𝑟
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Since interest rate processes have typically a high auto-correlation (𝜌 ≈
1), the equation above can be simplified to, isolating the 𝜆 term1.9:

𝜆𝑖
𝑡 ≈ 2 · (𝑦𝑖,(2)

𝑡 − 𝑟𝑖
𝑡)

𝜎𝑟

Substitute again into the currency risk premium equation to get:

𝐸𝑡

[︁
𝑟𝑥𝑖

𝑡+1

]︁
= 21 − 𝛿

𝜆0𝜎𝑟

·
[︂
(𝑦𝑢𝑠,(2)

𝑡 − 𝑟𝑢𝑠
𝑡 ) − (𝑦𝑖,(2)

𝑡 − 𝑟𝑖
𝑡)

]︂
(1.12)

What is the economic interpretation of equation (1.12)? An increase in
the US term structure slope (↑ 𝑠𝑙𝑜𝑝𝑒𝑢𝑠

𝑡 = 𝑦
𝑢𝑠,(2)
𝑡 − 𝑟𝑢𝑠

𝑡 )) is an increase in 𝜆𝑢𝑠.
From the stochastic discount factor equation (1.2), it follows that an increase
in the US price of risk leads to a decrease in the US consumer SDF, that
is, ↑ 𝜆𝑢𝑠 =⇒ ↓ 𝑚𝑢𝑠

𝑡+1. Currency adjustments under our complete markets
assumption are related to relative SDFs by the relation Δ𝑠𝑖

𝑡+1 = 𝑚𝑢𝑠
𝑡+1−𝑚𝑖

𝑡+1. So
a decrease in the US SDF (↓ 𝑚𝑢𝑠

𝑡+1) leads to a decrease in 𝑠𝑖
𝑡+1, an appreciation

against the US dollar and, consequently, a positive currency return for that
currency against the US dollar, given the short-term interest rate differential.
Conversely, an increase in country 𝑖 term-structure slope leads to a negative
currency return against the US dollar.

Ang & Chen (2010) also show empirically that sorting currencies into a
long-short portfolio that conditions on their slope of the long term yield curve
leads to a portfolio with negative realized returns. That is exactly what one
would expect given the above relation: a higher slope in country 𝑖 relative to
the US is consistent with negative expected currency returns for that country.
Sorting countries into high-minus-low portfolios would lead to negative returns.

Our paper takes a different approach: we focus on changes in the short-
term structure slope of interest rates futures contracts. According to Neuhierl
& Weber (2019) they have a high correlation to the expected path of monetary
policy in the US: they forecast future changes both in FOMC rate and and for a
survey of professional forecasters. In the next section we define this short-term
slope.

1.9Note that if we do not make this simplification, the currency risk premium would depend
both on interest short-rate differentials, adjusted for the persistence of interest rates, and
also on term structure slope. We take these two limiting cases, when only short rates matter
as in equation (1.10), and only term spread matters, as in equation (1.12) to simplify the
analysis
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1.2.4
Interest Rates Futures and Monetary Policy

The term-structure of long-term yields, like the 10-year minus the 3-
month bill term spread, carry information about the domestic stochastic
discount factor. Relative shifts between two countries term-structures are, as
we show in the previous section, natural candidates to forecast the exchange
rate risk premium. However, long-term yields are not adequate to measure
how shifts in the relative expected future path of monetary policy between two
countries affect currency returns, precisely because they also carry information
about the domestic price of risk.

So why not focus on short-term interest rates futures markets as shorter
maturities could be more likely related to the future path of monetary policy?
In a related paper, Neuhierl & Weber (2019) show that shifts in the short-
end of the term structure of US interest rates futures are mainly driven by
expectations about future monetary policy. Their US slope measure predict
changes in FED fund’s target interest rates in the future, predict revisions
of professional forecasters for the US economy short-term rate and is also
positively correlated to a linguistic analysis of speeches by FOMC board
members1.10. This paper tests the relation between currency returns and the
short end of the yield curve using, instead of bond prices and yields, the
short-term interest rate futures contracts of 3- and 6-month horizons for G10
countries. Therefore, we argue, we are potentially capturing more information
about future monetary policy decisions.

We present the idea using as an example the US federal funds futures
contracts, but the intuition holds for other G10 contracts1.11. Let 𝑓𝑓 1

𝑡 denote
the rate implied by one-month federal funds futures on date 𝑡 and let us assume
that on that given month there is a scheduled FOMC meeting. If 𝑑1 is the day
of the meeting and 𝑚1 is the number of days of that particular month, the
federal fund’s future contract with maturity for that given month is a weighted
1.10They present a linguistic analysis of FED board members speeches, classifying each

speech as hawkish or dovish using simple linguistic word count of predetermined phrases,
sentences and terms associated with a more prudent or hawkish stance by the FED. They
shown that their measure of short-term slope increases (decreases) with hawkish (dovish)
speeches which suggest that the measure is capturing relative shifts in the expected future
path or short-term rates by market participants
1.11The FED funds future CME contract is simply stated as 100 minus the simple average

of the effective federal fund rate in a given month. Therefore, in months when there is a
scheduled FOMC meeting, the contract contains information about the prior effective FED
fund rate and also the new effective rate decided at that particular meeting. For other G10
countries, like EONIA futures for the Eurozone, we can have different pricing conventions,
like exponential averages rather than simple daily averages. We focus, rather, on changes in
futures contracts prices and are not interested in extracting the precise information about
next monetary policy decision implicit in a given contract in a given date
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average of the prior Fed Fund target 𝑟0 and the expected new target after the
meeting 𝑟1:

𝑓𝑓 1
𝑡 = 𝑑1

𝑚1
𝑟0 + 𝑚1 − 𝑑1

𝑚1
𝐸𝑡(𝑟1) + 𝜇1

𝑡 ,

where 𝜇1
𝑡 is a risk premium. Piazzesi & Swanson (2008) show that this risk

premium varies only at business cycle frequencies. Neuhierl & Weber (2019)
assume that 𝜇𝑘

𝑡 = 0 , ∀𝑘. Since we also focus on weekly changes, it is a
reasonable assumption that the risk premium embedded in futures contracts
is, at least approximately, constant between two given weeks. We make this
assumption explicitly for the 1-month contract. The one week change in the
one-month futures implied rate in months with FOMC meetings is:

Δ𝑓𝑓 1
𝑡,𝑡+1 = 𝑚1 − 𝑑1

𝑚1

[︂
𝐸𝑡+1(𝑟1) − 𝐸𝑡(𝑟1)

]︂

We can write the one-week change in a three-month forward implied rates
in months with FOMC meetings in the same way. We make one minor tilt and
assume that for longer futures the risk component is not constant between
weeks so Δ𝜇𝑘

𝑡 ̸= 0, if 𝑘 > 1:

Δ𝑓𝑓 3
𝑡,𝑡+1 = 𝑑3

𝑚3
·

[︂
𝐸𝑡+1(𝑟−

3 ) − 𝐸𝑡(𝑟−
3 )

]︂
+ 𝑚3 − 𝑑3

𝑚3

[︂
𝐸𝑡+1(𝑟3) − 𝐸𝑡(𝑟3)

]︂
+ Δ𝜇3

𝑡

where 𝑟−
3 denotes the federal funds target prevailing right before the FOMC

meeting in month 𝑡 + 3, which in most cases coincides with 𝑟1. If 𝑟−
3 = 𝑟1,

then 𝐸𝑡+1(𝑟−
3 ) − 𝐸𝑡(𝑟−

3 ) = 𝐸𝑡+1(𝑟1) − 𝐸𝑡(𝑟1) and we can substitute and write
changes in 3-month forward as a function of 1-month forwards:

Δ𝑓𝑓 3
𝑡,𝑡+1 = 𝑑3

𝑚3

𝑚1

(𝑚1 − 𝑑1)
· Δ𝑓𝑓 1

𝑡,𝑡+1 + 𝑚3 − 𝑑3

𝑚3

[︂
𝐸𝑡+1(𝑟3) − 𝐸𝑡(𝑟3)

]︂
+ Δ𝜇3

𝑡

Δ𝑓𝑓 3
𝑡,𝑡+1 = 𝛽 · Δ𝑓𝑓 1

𝑡,𝑡+1 + 𝜖3
𝑡,𝑡+1 (1.13)

In equation (1.13), if we perform an OLS regression, we can recover the
residual. We define 𝜖3

𝑡,𝑡+1 as the slope, or monetary slope, recovered from interest
rate futures contract changes, following Neuhierl & Weber (2019). Note that, if
Δ𝜇3

𝑡 ̸= 0, monetary slope contains information about changes in the expected
future path of monetary policy and also changes in risk premium:

𝜖3
𝑡,𝑡+1 = slope3

𝑡,𝑡+1 ≈ 𝛾 ·
[︂
𝐸𝑡+1(𝑟3) − 𝐸𝑡(𝑟3)

]︂
+ Δ𝜇3

𝑡

In the next section we extend the previous framework to an international
setting, and present alternative empirical specifications to estimate slope or
monetary slope.
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1.2.5
Measures of Term Structure of Interest Rates Futures slope

In this paper we use information embedded in interest rates futures
contracts of G10 countries and the US to forecast currency returns. The main
empirical question is as follows: do changes in relative term structure of interest
rate futures contracts between a country 𝑖 and the US, measured by short-term
contracts of up to 6-months, forecast currency 𝑛 returns against the dollar?
Do they explain contemporaneous changes? Can we use the US and other
country’s term structure slope of interest rates futures to forecast returns of
currency portfolios?

One simple way to measure country 𝑖 slope is to use changes in k-month
future interest contract rates minus changes in the 1-month future (the level),
where 𝑓𝑓𝑘,𝑖

𝑡 is the futures contract rate for country 𝑖 of maturity 𝑘 at time 𝑡,
which is equal to assuming 𝛽 = 1 in equation (1.13):

slope𝑘,𝑖
𝑡 = Δ[𝑓𝑓𝑘,𝑖

𝑡 − 𝑓𝑓 1,𝑖
𝑡 ] (1.14)

The main concern with this measure is that, typically, changes in 1-month
futures are correlated with changes in longer horizon futures, therefore, changes
in slope would be correlated to the level of the term structure. Consider, as
an example, a decrease in the 1-month future that coincides with a smaller
decrease in k-month ahead futures. In this scenario, agents could be postponing
and decreasing a previously fixed budget of short-term rate changes to the
future, leading to lower expected rates tightening in the future. However,
change in this simple slope in equation (1.14) would be positive. Practitioners
usually refer to this situations as bear or bull steepening depending on the
direction of the movement.

One way to address this concern is by using a first-stage OLS regression,
controlling changes in k-month futures by 1-month future rates, as suggested
by equation (1.13)1.12. To simplify notation we omit the 𝑡 − 1, 𝑡 term so that
Δ[𝑓𝑓𝑘

𝑖,𝑡] = Δ[𝑓𝑓𝑘
𝑛,(𝑡−1→𝑡)], that is, weekly changes in futures contracts implicit

rates:
Δ[𝑓𝑓𝑘,𝑖

𝑡 ] = 𝛼𝑖 + 𝛽𝑖 · Δ[𝑓𝑓 1,𝑖
𝑡 ] + 𝜖𝑘,𝑖

𝑡 (1.15)
Our slope or monetary slope measure is defined as the residual in the

above first stage regression. Through-out the paper we use slope or monetary
slope as a short for the adjusted slope as defined in equation (1.15). Note that
1.12Alternatively, we could regress the simple slope measure defined in equation (1.14) on

1-month futures changes as in Δ[𝑓𝑓𝑘
𝑖,𝑡 − 𝑓𝑓1

𝑖,𝑡] = 𝛼*,𝑛 + 𝛽*,𝑛 · Δ[𝑓𝑓1,𝑛
𝑡 ] + 𝜖*,𝑘

𝑖,𝑡 . The point
estimate of 𝛽* would be equal to 1 + 𝛽𝑛. We prefer to estimate equation (1.14) because it
measures directly the sensibility of longer futures changes to 1-month changes
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our adjusted slope for changes in 𝑘-maturity future interest contract is defined
for each individual G10 country 𝑖 as slope𝑘,𝑖

𝑡 = 𝜖𝑘,𝑖
𝑡 .

This definition follows Neuhierl & Weber (2019), extending their work
into a cross-country environment. Differently from their setting, which is
concerned with forecasting equity returns in the US, here not only the future
path of the federal funds rates matters, but also the term structure of interest
rates futures of all other countries. However, changes in longer-term futures
contracts contain information about the path of future short-term rate changes,
but may also capture risk premium in rates, as we have shown in equation
(1.13). This key different aspect of our paper is discussed in more detail in the
present value equations for currency returns in section 1.6.

We focus on short-run interest rate futures like a 3 or 6-month contracts.
Formally for a 3-month contract:

Δ𝑓𝑓 3,𝑖
𝑡 = 𝛼𝑖 + 𝛽𝑖

1 · Δ𝑓𝑓 1,𝑖
𝑡 + slope𝑖

𝑡 (1.16)

We consider several alternative versions of slope thorough the paper. For
conciseness we report most results using 3-month futures implied rates, and
present 6-month as robustness results for some specifications. As an additional
robustness test we consider an extended version of slope for G10 countries other
than the US that is orthogonal to all information used to construct the US
slope measure, that is, we control in the first stage regression we also control
for changes in US interest rate futures1.13:

Δ𝑓𝑓 3,𝑖
𝑡 = 𝛼𝑖 + 𝛽𝑖

1 · Δ𝑓𝑓 1.𝑖
𝑡 + 𝛽𝑛

2 · Δ𝑓𝑓 1,𝑢𝑠
𝑡 + 𝛽𝑛

3 · Δ𝑓𝑓 3,𝑢𝑠
𝑡 + slope𝑛⊥𝑢𝑠

𝑡

For in sample predictability results we focus on versions of slope estimated
using all available sample information. One main concern with this measure is
a look-ahead bias since we estimate a first stage regression for slope in equation
(1.16). Therefore, we also construct recursive versions of slope. We use them
to implement the currency strategies and portfolios that condition real time
on slope. We discuss them in more detail on subsequent sections.

For the US, we construct futures from original monthly contracts, rolling
each week recursively using simple linear interpolations1.14. For other G10
1.13We omit results using simple changes in slope as defined in equation (1.14) since they

perform worse empirically. Results are available upon request
1.14By construction, FED funds futures contracts are quoted as the effective average FED

funds rate in a given month. If our main concern was using futures to estimate monetary
shocks around FOMC meetings, it would be necessary to adjust, as in Neuhierl & Weber
(2018), for the day in which the FOMC meeting takes place in a given month. In our setting,
we control for 1-month futures to isolate changes in longer maturity futures from changes
in the level. We are not concerned about capturing precisely weekly changes in expected
movements in FED funds in months with a meeting
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countries we use the automatic rolled futures contracts available from Reuters
(Data Stream)1.15.

Neuhierl & Weber (2019) end their sample in 2008 because of Quanti-
tative Easing (QE) and the zero lower bound (ZLB) in the US. In our in-
ternational setting, since several G10 countries did not experience near zero
interest rates, we can expand the sample. However, we test our results in their
sub-sample as a robustness check as well.

Table B.2 on the Appendix B reports results for regression (1.16), used
to compute the full sample slope or monetary slope for all G10 countries.
The point estimate for 𝛼𝑖 (constant) is indistinguishable from zero for all
countries. For the US, the point estimate for 𝛽𝑢𝑠 is 0.63 and the 𝑅2 reaches
0.44%, indicating that the US slope (the residual) explains roughly 56% of the
variation in 3-month forward changes that is not captured by 1-month forward
changes. These figures are slightly different from results obtained by Neuhierl
& Weber (2019). While their sample ends in 2008, ours spans until 2017. For
other G10 countries, the point estimate for 𝛽1 range from 0.7 for Great Britain
to 1.1 for Japan. In-sample 𝑅2 are also high, ranging from 51.6% in Australia to
66% in Canada. These results point to a strong correlation between movements
in 1-month and longer horizon futures, as previously noted, one of the main
potential advantages of our measure. Results are very similar when estimating
the same equations above using 6-month instead of 3-month interest rates
futures contracts and we omit them for conciseness.

In Figure A.1 on the Appendix A, we plot slope (changes in 3-month
orthogonal to changes in 1-month interest rates futures) for each individual
country in our sample against a synthetic slope average of G10 countries (ex
US). One visually striking feature for all countries is that periods with high
volatility, when changes in the slope of the interest rate futures curve are
frequent, are followed by periods with almost no activity in the term structure.

Also of interest if the cross-section correlation between slope. Table
B.3 presents full-sample correlation between the monetary slope across G10
countries. Typically pair-wise correlations are below 0.5 suggesting that there
is a high idiosyncratic component for weekly changes in interest rate futures
of shorter horizons. One interesting exception is the 0.6 correlation between
Australia and New Zealand slope and also the higher correlation between the
G10 average and Australia and New Zealand.

The auto-correlation of slope measure using the 3-month interest rates
futures range from 0.02 for the US, -0.08 for the Eurozone and 0.05 for
1.15Original monthly contracts for other G10 countries were available in Datastream for a

smaller sub-sample than the data set used in the present paper. Therefore, we opted to use
the automatic rolled contracts provided by Reuters
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New Zealand (all not statistically significant). Therefore, issues of spurious
predictability arising from persistent regressors is of minor concern in our
paper. See for instance Stambaugh (1999)1.16.

1.3
Data

We now describe the data sources for currency returns and interest rate
futures.

1.3.1
Currency Weekly Returns

Define the log excess return of purchasing a foreign currency from country
𝑖 in the forward market and then selling it in the spot market after one month
is 𝑟𝑥𝑖

𝑡+1 = 𝑓 𝑖
𝑡 − 𝑠𝑖

𝑡 − Δ𝑠𝑖
𝑡+1 (Verdelhan et al., 2007, 2011).

To compute currency weekly excess returns we combine the forward
one month discount with weekly (log) exchange rates changes, assuming that
interest rates are earned linearly over the length of the one month forward
contract (see Salehi et al. (2017)). All data are from Reuters Datastream1.17.
We define currency 𝑖 return against the US dollar between week 𝑡 and 𝑡 + 𝑘

as:
𝑟𝑥𝑖

𝑡→𝑡+𝑘 = (𝑓 𝑖
𝑡 − 𝑠𝑖

𝑡) · 𝑘

4 − Δ𝑠𝑖
𝑡+𝑘 (1.17)

To construct currency portfolios, we follow Verdelhan et al. (2011) and
Verdelhan et al. (2007). In the international finance literature, the Dollar
portfolio is typically defined as the return of going short the US dollar and
long an equally weighted average of other currencies (denominated against the
US dollar). It is also a risk factor considered in cross-sectional empirical work
in currencies. In our G10 countries setting, we define it simply as the Long
G10 portfolio: that is, we go long all available G10 currencies and short the
US dollar. Throughout the paper we refer to this strategy both as the Dollar
or the long G10 portfolio.

We construct the long G10 or Dollar portfolio (log) currency return by
averaging out (equal weights) all available G10 (log) currency returns against
1.16We present in-sample regression bootstrapped standard errors in all model specifications

presented in the paper to correct for potential generated regressor bias, since slope is a first
stage residual. We do not perform block bootstrap since persistence of regressors does not
seem to be an issue in our setting. As a robustness, we performed statistical inference for our
in-sample regressions using corrected Newey-West standard errors. The results are roughly
the same both quantitatively and qualitatively and are available upon request
1.17For longer horizon currency returns, like 1-year ahead, we used the appropriate currency

forward discount rate to correctly approximate the interest rate differential for that time
span
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the US dollar for that week:

𝑟𝑥G10
𝑡→𝑡+𝑘 = 𝑁−1 ·

𝑁∑︁
𝑖=1

[︂
(𝑓 𝑖

𝑡 − 𝑠𝑖
𝑡)

𝑘

4 − Δ𝑠𝑖
𝑡+𝑘

]︂
,

where the term 𝑘/4 is the simple linear interpolation term to correct the
interest rate differential, obtained by the forward discount, on a monthly basis.

We also follow the usual definition for the carry-trade portfolio. We
measure G10 countries interest rates differential for each time period and go
long high interest rate countries and short low interest rate countries. As with
the dollar in each bin, returns are averaged out with the same weights. Since
we have few currency pairs, we sort all available currencies in two bins (when
left with odd numbers we put more currencies in the high interest rate bin).

We collect spot currency exchange rates and future currency forward
rates against the US Dollar for 1-, 3-, 6- and 12-month contracts from Reuters
DataStream. The sample period starts in 1994 and spans until December
2017. G10 currency countries are typically defined as the Eurozone1.18, Japan,
Great Britain, Canada, Australia, New Zealand, Switzerland, Norway and
Sweden. We construct weekly currency returns by using end-of-day data from
Wednesday of week 𝑡 to Wednesday of week 𝑡+1. The Wednesday convention is
standard since it minimizes the number of missing observations. For currencies,
we use as a convention the London time zone fixing in order to compare
currency weekly returns using the same information set.

1.3.2
Interest Rate Futures

In this paper, we use interest rate futures for the United States and G10
countries. We collect data for the US, Eurozone, Japan, Great Britain, Canada,
Australia, New Zealand and Switzerland. For interest rate futures contracts
longer than one month, Sweden (SEK) and Norway (NOK) have severe data
limitations in Datastream, so we drop theses countries and use a smaller G10
subset. We use end-of-day data of all futures with maturities of up to one
year, when available. It is worth noting that all these futures contracts for G10
countries face limited counter-party risk due to daily marking to market and
collateral requirements

For the United States, we use Federal funds futures data from Reuters
Datastream. Federal fund futures started trading on the Chicago Board of
Trade in October 1988. These contracts have a face value of USD 5,000,000.
1.18We use the Deutsche Mark before January 1999 introduction of the Euro, as is usual in

the international finance literature
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Prices are quoted as 100 minus the daily average effective federal funds rate as
reported by the Federal Reserve Bank of New York. We construct one-month
to one-year futures using original contracts with end-of-month maturities. We
roll the contracts at the end of each month, so the 3-month forward 𝑓𝑓 3

𝑡 is
a future that reflects, partly, the expectation of the prevailing effective fed
funds rate 3-month ahead from 𝑡. For other G10 countries, data is also from
Reuters DataStream. However, for G10 ex-US, we use the constructed series
from Reuters that roll automatically the contracts forward after expiration.

Our interest rate futures sample period starts in 1994 and spans until
December 2017. For the Fed Funds Futures data we could start the sample
in 1990 but for other G10 countries the start date for futures contracts from
Reuters database varies substantially: as an example, sample starts at 1994 for
the Eurozone, 1991 for Switzerland and 1999 for Great Britain.

We construct weekly slope by using end-of-day data from Wednesday of
week 𝑡 to Wednesday of week 𝑡 + 1 following Neuhierl & Weber (2019). The
Wednesday convention is standard since it minimizes the number of missing
observations. Since we are using end-of-day information and also the currency
London time-zone fixing, 1-month, 3-month and 6-month interest rates futures
changes in the US and Canada on a Wednesday-Wednesday may contain
information that was released after the closing of the FX London market.
One obvious example are FOMC decisions in weeks with meetings, since they
fall usually on Wednesdays in our sample. Bank of Canada monetary policy
decisions would also fall into this category. In order to control for that and
to be sure that we are using only available information up to time 𝑡 when
forming currency portfolios based on slope information, we consider changes
for the US and Canada in forwards interest rates from Tuesday-to-Tuesday
when constructing slope. For other G10 countries, we maintain the Wed-Wed
convention1.19.

1.3.3
Descriptive Statistics

We report descriptive statistics for variables like interest rate futures
levels, weekly changes and slope or monetary slope by country. We also report
descriptive statistics for individual currency and portfolio returns against the
US dollar.
1.19Note that Neuhierl & Weber (2019) considers for the US the Wed-Wed convention

when constructing slope for the US. Since they are interested in local US Equity market
returns, in their setting they are not concerned, as usual in the FX literature, with time
zone and fixings. Dropping Wednesday was the only robustness available since we are not
using intraday information for both currency and interest rates futures contracts
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We report in Table B.4 on the Appendix B, to be concise, only results for
slope estimated using the first stage regression in equation (1.15) for the whole
sample. Recursive slope estimates present very similar unconditional moments.
Figures are in basis points, that is, 25 bps equals 0.25%. As expected, since the
slope measure is constructed as a residual in a first stage regression, the average
is zero for all countries in the sample. For the US the 10% and 90% percentiles
slope reach is -4.1 and 4.9, respectively. This is roughly 20% of a typical federal
funds target change of 25 bps: weekly slope large conditional shifts are of an
order of magnitude of actual interest rate changes. When looking at changes in
1-month and 3-month interest rates futures (Δ𝑓𝑓 3

𝑖,𝑡), the same pattern arises:
average weekly changes are small, very close to zero.

In Table B.5 we present descriptive statistics for currency returns. All
data are in percentage points and returns are annualized1.20. Average interest
rate differential, as measured by forward discount (𝑓 𝑖

𝑡 − 𝑠𝑖
𝑡), is reported in the

first line of the table. As expected, Australia and New Zealand have the highest
average interest rate differential against the US, 2.0 and 2.61, respectively.
These are typical G10 high yielding currencies. Japan and Switzerland have
the lowest, -2.65 and -1.89, usually referred as funding currencies. We also
consider individual currency returns in our sample. Canada, Great Britain
and Switzerland have unconditional Sharpe ratios close to zero. Typical low
interest rate currencies like the Yen (Japan) experience negative currency
returns: unconditional Sharpe ratio reach -0.23 on average for one-week ahead
returns. As expected from previous papers that document Uncovered Interest
Parity (UIP) failures in the context of the carry trade anomaly (Verdelhan
et al., 2007, 2011, 2014) these currencies express negative average returns and
negative Sharpe ratios. High yielding currencies, on the other hand, like the
AUD (Australia) or the NZD (New Zealand) have Sharpe ratios of 0.27 and
0.20, respectively for one-weej ahead unconditional returns.

Table B.6 presents descriptive statistics for two currency portfolios for
different sub-samples, like FOMC weeks and Large slope weeks. The first is
the long G10 short US dollar portfolio, or the Dollar portfolio. Unconditional
Sharpe ratio reaches 0.15, while conditioning on weeks with large slope move-
ments deliver a 0.21 Sharpe ratio1.21. The second usual currency strategy is the
Carry Trade portfolio, that goes long countries with high interest rate differ-
entials (in the cross-section) and shorts low interest rate differential countries
1.20Annualized returns consider 52 weeks-year to compute compounded returns
1.21Large slope Weeks sub-sample consider weeks where |slope difference𝐺10,𝑡| > 𝜇𝐺10 +

0.5 · 𝜎𝐺10, where slope difference𝐺10,𝑡 is the difference between the average slope of G10 (ex
US) and the US slope, 𝜇𝐺10 and 𝜎𝐺10 are unconditional mean and standard-deviations, here
computed for the whole sample
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(against the US). It is a dollar neutral strategy. In our G10 sample this sim-
ple carry strategy delivers unconditional Sharpe ratio of 0.31. Conditioning on
FOMC weeks increase Sharpe ratio to 0.39, while conditioning on large slope
weeks decrease Sharpe to -0.14.

Our sample consists of G10 currencies countries only. As a further
comparison, other papers with a more complete data set of countries, like
Hassan & Mano (2019), present Sharpe ratios of 0.5 and 0.16 for the carry and
the Dollar (long G10-short US Dollar) portfolios, respectively. A higher carry
return in these other papers is expected since they include emerging economies
that tend to exhibit higher interest rate differentials than G10 countries relative
to the US.

1.4
Impact and Predictability with Individual Currencies

The return of going long a currency of country 𝑖 against the US dollar to-
day is a function of expected future interest rate differentials between country
𝑖 and the US and also expected currency risk (relative to the US) in the future
(Engel & West, 2005). Our slope or monetary slope measure extracted from
term structure of short-term future interest rates markers captures both di-
mensions: it contains information regarding the whole expected future path of
monetary policy (Neuhierl & Weber, 2019) but also carries, potentially, infor-
mation about risk premia in a particular country. Even short-term maturities
may contain inflation risk premium or other compensations for risk embedded
in interest rate futures, as discussed in section 1.2.41.22.

Our main interest is both the impact of slope on currencies and the
predictability of currency returns following those changes. By impact we refer
to the correlation between current week returns and slope, that is, regressing
𝑟𝑥𝑖

𝑡−1→𝑡 = (𝑓𝑛
𝑡−1 −𝑠𝑛

𝑡−1) ·1/4−Δ𝑠𝑖
𝑡 on current week slope. Data are from end of

day on Wednesdays and interest rate differential is fixed one-week before-hand
so all the impact is coming from currency movements.

Predictability refers to future currency returns following changes in slope.
We focus on short-run predictability, of up to 4-week ahead returns (between 𝑡

and 𝑡+4 weeks ahead). Predictability comes from currency future movements:
given the definition of weekly currency returns in equation (1.17) at the
end of time 𝑡 a currency forward discounts (and by approximation) interest
1.22We elaborate more on this topic in 1.6 of the present paper. In that section we start

from a standard present value representation for currency returns (Engel & West, 2005,
2016; Menkhoff et al., 2017) and link it to interest rate futures and to our adjusted term
structure measure
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differentials against the US is fixed1.23.
To make our notation flexible to both impact and predictability we define

currency 𝑖 return as 𝑟𝑥𝑖
𝑡−𝑗→𝑡+𝑘, where 𝑗 = {1, 0} and 𝑘 ∈ [0, 4] . When

measuring impact 𝑗 = 1 and 𝑘 = 0 and when measuring forecastability 𝑗 = 0
and 𝑘 is the relevant weekly horizon we are interested. We consider first a
panel-based based approach with all individual G10 currency returns against
the US dollar. We then turn our attention in the next section to portfolio-based
forecasting regressions, as usual in the international asset pricing literature,
using a long G10-short US dollar portfolio.

1.4.1
Empirical Strategy: Panel Regressions

We estimate panel regressions using individual currency returns for
the same G10 (ex US) countries. We run standard OLS regressions with
country fixed effects in a panel with unbalanced country-week observations.
We consider two alternative specifications for the impact and predictability of
slope or monetary slope measure on currency returns. In the first specification,
we use the slope difference between country 𝑖 against the US a forecasting
variable. Since currency returns are a theoretical function of expected future
interest rates differential and relative currency risk, using slope difference is a
straightforward baseline estimation:

𝑟𝑥𝑖
𝑡−𝑗,𝑡+𝑘 = 𝜑1 · slope difference𝑖

𝑡 + Ω · controls𝑖
𝑡 + 𝜇𝑖 + 𝜖𝑖

𝑡+𝑘, (1.18)

where slope difference𝑖
𝑡 = slope𝑖

𝑡 − slope𝑢𝑠
𝑡 , 𝜇𝑖 are country fixed-effects and 𝑋 𝑖

𝑡

is a vector of controls known at time 𝑡 that can potentially also vary at the
country level1.24.

In the second specification we use both the US slope and country 𝑖

individual slope independently as forecasting regressors:

𝑟𝑥𝑖
𝑡−𝑗,𝑡+𝑘 = 𝜑1 · slope𝑈𝑆

𝑡 + 𝜑2 · slope𝑖
𝑡 + Ω · controls𝑖

𝑡 + 𝜇𝑖 + 𝜖𝑖
𝑡+𝑘, (1.19)

where slope𝑈𝑆
𝑡 and slope𝑖

𝑡 are, respectively, US and individual G10 (ex US)
country 𝑖 slope or monetary slope at time 𝑡.
1.23We adjust approximate monthly interest rate differentials to weekly averages using

linear interpolation, we are testing the slope forecasting power on return as defined by
𝑟𝑥𝑖

𝑡→𝑡+𝑘 = (𝑓 𝑖
𝑡 − 𝑠𝑖

𝑡) · 𝑘/4 − Δ𝑠𝑖
𝑡+𝑘. It is clear that, conditional on information at time 𝑡,

interest rates are fixed and interest rate futures changes have already been incorporated into
interest rate differential extracted from forward discounts
1.24As previously noted we are using London time fixing to compute currency weekly Wed-

to-Wed end of day returns. For the slope measures we consider both for the US and Canada,
which are countries with time zone market closing information after London closing time,
the Tue-to-Tue weekly slope changes to be sure that we are using only available information
up to time 𝑡 to forecast currency returns
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We include as controls changes in the level of the term structure of
interest rates futures contracts measured by changes in 1-month interest rate
futures: Δ𝑓𝑓1𝑈𝑆

𝑡 , which is the weekly change in US 1-month forward interest
rate futures, and Δ𝑓𝑓1𝑖

𝑡, which is the change in country 𝑖 1-month forward
interest future. Other controls include variables like lagged currency returns,
the VIX (implied equity volatility measure by CBOE), the US and country 𝑖

10-year term spread (the spread between short-run interest rates and interest
rate on Government 10-year bonds), the dividend yield for US equities using
CRSP data and the level of the Fed funds target.

The main explanatory variables in these regressions, slope, are estimated
regressors. To address concerns related to constructed variables bias we per-
form inference using boot-strapped standard errors, with a cluster structure
in both time and cross-sectional dimensions1.25. Even though persistence of
regressors is not a major concern in our setting due to low auto-correlation of
slope, as discussed in section 1.2.5, we also performed inference using Newey-
West corrected standard errors and results are robust to that specification.

Baseline in-sample results presented below consider full sample slope
measures estimated using equation (1.16). In order to address potential look
ahead biases, when presenting Portfolio results sorted on slope and out-of-
sample statistics, we consider recursive slope estimates.

1.4.2
Main Results

Table B.7 on the Appendix B reports results that use as slope difference
between country 𝑖 and the US as the forecasting variable: we define the model
that uses equation (1.18) throughout the paper as Model I. First focus on
current week returns (𝑟𝑥𝑖

𝑡−1→𝑡). Point estimates for slope difference are always
positive (𝜑1[slope difference𝑖] > 0): a higher slope difference against the US
leads to a positive currency return in the current week. Point estimates survive
the inclusion of all controls: lagged returns, 1-month futures changes and 10-
year term spreads. In-sample weekly regression 𝑅2 range from 1.2% to 1.8%
(1.1% to 1.6% for adjusted 𝑅2 measures).

What about forecastability? We present results in Table B.8 for one-week
ahead forecasts using slope difference (𝑟𝑥𝑖

𝑡→𝑡+1). We can see that that point
estimates remain positive (𝜑1[slope difference𝑖] > 0) and are roughly 45% of
1.25For each sample we estimate the predictive regression using the slope obtained in the first

stage regression, repeating this process 1000 times to obtain standard errors of the forecasting
variables coefficients. In each iteration, we compute standard errors using cluster-robust
errors both in the time and cross-sectional dimensions to account both for within individual
currency errors correlation and across time country specific error serial correlation
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the impact of slope on current week returns. They also survive the inclusion
of all controls with almost unchanged coefficients. In-sample 𝑅2 range from
0.2% to 0.6% depending on the number of control variables included. This is
strong evidence of in-sample predictability, specially in the context of weekly
currency returns (Rossi, 2013).

Table B.9 presents results for alternative sub-samples. Point estimates
remain positive in all sub-samples. For current week returns the impact of
slope difference range from 0.022 for the full sample to 0.028 for FOMC sub-
sample weeks and 0.018 for no FOMC weeks with large slope. In terms of
forecastability, coefficients for one-week ahead returns range from 55% of the
same week impact coefficient for FOMC weeks, to 40% for No-FOMC with
large slope weeks, which suggests a strong delayed effect robust to all sub-
samples. In-sample 𝑅2 for 1-week ahead returns range from 0.3% for the full
sample to 1.1% in FOMC Weeks.

Point estimates are not only statistical but economically relevant: a slope
difference coefficient of 0.1 for 1-week ahead returns mean that a decrease
of one standard deviation of slope difference (considering all country-week
observations) of 8.0 bps is equivalent to a 0.1% increase in weekly returns
or 4.5% in annualized terms. That is a high number when compared with the
unconditional average annual return of a Long-G10 portfolio of 2.2% (see Table
B.6). slope difference 75th percentile is of 3.3 bps and the 25th percentile is -2.8,
suggesting that on specific weeks slope relative changes can have substantial
economic impact on currency returns.

These findings suggest that the initial impact of slope on current currency
week returns is persistent. There is evidence of a strong delayed reaction of
currency returns to slope or monetary slope: current and future individual
currency returns are positive (negative) following a positive (negative) slope
shock. This evidence suggests that 1-week and 4-week ahead predictability
do not arise from reversals of initial currency movements. On the contrary,
the constantly positive point estimates are compatible with persistence and a
delayed response.

We can also see from Table B.9 that this delayed reaction is even more
present in some sub-samples: when conditioning on weeks with large slope
moves without scheduled FOMC meetings, 4-week ahead returns (𝑟𝑥𝑡→𝑡+4)
remain significant, with point estimates that are of the same magnitude or
even higher than the impact of slope on current week currency returns. On
FOMC weeks this delayed effect is initially more pronounced: point estimates
are 55% of the initial impact for 1-week ahead returns. However, it is less
persistent, fading out after week one.
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1.4.3
Robustness: Alternative Models and slope Specifications

In this section we explore the sensitivity of our empirical findings to
different models and specification of interest rate futures contracts term
structure slope measures.

We consider the alternative model in equation (1.19), that is, regressing
currency returns on each individual slope measure of both the US and individ-
ual countries. As one can see from Table B.10, point estimates are consistent
with previous results given our definition of slope difference (slope difference𝑖

𝑡 =
slope𝑖

𝑡 − slope𝑢𝑠
𝑡 ): the coefficient for the US slope is negative, while for the indi-

vidual G10 country is positive under all specifications. The sum of both point
estimates is larger than slope difference coefficient: for the full sample the com-
bined coefficient adds up to 0.04, almost doubling from the slope difference𝑖

𝑡

coefficient of 0.021 (see Table B.7).
Impact of the US slope measure on current week currency returns is

negative and significant for almost all sub-sample, with exception of FOMC
weeks. This evidence is compatible with US slope information becoming more
important in weeks with No-FOMC decisions that, typically, convey less
specific information and news about future US monetary policy by policy
makers. Karnaukh (2020) shows that the interest rate futures market in the US
typically anticipates well both what happens with rates at the meeting decision
and with the dollar returns 2-day before the decision. That could be related to
the absence of impact of US slope on currency returns on these weeks in our
setting. Current week impact is also driven by information on other countries
slopes, even during FOMC weeks: the G10 slope coefficient is positive and
statistically significant. In-sample 𝑅2 do not increase when considering both
slopes individually. For current week impact both US and G10 individual slope
survive the inclusion of all controls when considering the full available sample
(see Table B.11), with in-sample 𝑅2 increasing to 1.9% from 1.2%.

US slope looses significance for one-week ahead return forecastability
in all sub-samples with the exception of FOMC weeks. Delayed currency
reaction is more present for other G10 countries slopes: in all sub-samples
the point estimate is significant suggesting that, at least in terms of statistical
significance, it is information on other G10 countries that is driving the delayed
reaction of currency returns. In-sample 𝑅2 remain roughly the same and there
is no predictability gain of allowing different coefficients for the US and other
G10 countries. If we control for all other variables considered previously, the US
slope becomes statistically significant for forecasting one-week ahead returns.
That is true for the full sample (see Table B.12) where point estimate for
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the US slope reaches −0.014, significant at 10% level. For the large-slope
week sub-samples the US slope coefficient is significant at 5% level (see Table
B.14). The G10 individual country slope remain statistically significant even
after controlling sequentially for variables like 1-month futures changes, past
week returns, VIX and even longer maturity government bonds, like 10 Year
term spreads, with point estimates almost unchanged from the no control
regressions.

As an additional robustness exercise we present results in Table B.15 that
use 6-month contracts interest futures to construct the slope or monetary slope
measure. Formally we run the 1-st stage regressions to measure slope using
6-month instead of 3-month contracts as the dependent variable: Δ𝑓𝑓 6

𝑖,𝑡 =
𝛼𝑖 + 𝛽𝑖 · Δ𝑓𝑓 1

𝑖,𝑡 + slope6
𝑖,𝑡. The current week Impact, and one-week ahead

forecastability described above are all robust to specifying both US and
individual country G10 slope with longer horizon futures contracts: slope
remains statistically significant and economically relevant in all sub-samples.

We can also define in a multi currency setting the individual G10 country
slope or monetary slope as the residual from a regressions that controls
for local and also US short interest rates futures changes. Formally, the
first stage regression to measure slope orthogonal to US by controlling not
only by Δ𝑓𝑓 1

𝑛, but also to the US 1-month and 3-month futures changes:
Δ𝑓𝑓 3

𝑖,𝑡 = 𝛼𝑛 + 𝛽𝑛
1 · Δ𝑓𝑓 1

𝑖,𝑡 + 𝛽𝑛
2 · Δ𝑓𝑓 1

𝑢𝑠,𝑡 + 𝛽𝑛
3 · Δ𝑓𝑓 3

𝑢𝑠,𝑡 + +slope3
𝑛⊥𝑢𝑠,𝑡. These

results can be seen in Table B.16. In terms of impact on current week returns
results are roughly in line, with both US and G10 individual slope statistically
and economically significant. For one-week ahead return forecastability, in-
sample results are no longer statistically significant for all sub-samples, since
point estimates are a bit lower and standard deviations higher.

1.4.4
Long - Short Individual Country slope Portfolio

In this section we implement a currency strategy that explore results
presented in the previous section. From panel regressions it follows that slope
measured by slope difference𝑖 point estimate is positive and extremely robust
to different specifications. In the models where we add both US and individual
G10 country slope, the point estimate for slope𝑖 is positive while the slope𝑢𝑠 is
negative. We can, therefore, construct a dollar neutral strategy that relies on
the simple intuition given by the point estimates coefficients: conditional on US
slope shocks, a country with a positive (negative) idiosyncratic slope measure
has on average a positive (negative) currency return 1-week to 4-weeks ahead.
We exploit this information to to long-short currencies sorting on their slope
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or monetary slope.
This long-short portfolio is similar, in spirit, to implementing carry-

trade strategies that sort countries conditional on cross-section information on
current interest rate differential, the carry. Our sorting is, alternatively, based
on cross-section information of a country slope relative to it’s peers. For each
week we sort G10 currencies based on their slope measure for that week into two
bins. The high slope (slope𝐻) bin and the low slope bin (slope𝐿). We consider
only weeks with at least four pairs of currency returns and slope observations
(2 currencies on each bin). We then go long the high slope currencies (slope𝐻)
and short the low slope currencies (slope𝐿) from week 𝑡 → 𝑡+1. We re-balance
this portfolio weekly after computing recursively the slope measure.

Table B.17 presents results for implementing this strategy. Sharpe ratios
are high independently of the sub-sample, reaching levels above and beyond
other currency strategies like the (unconditional) carry-trade. The columns
in the table are fixed yearly cut-offs for both the estimation of first stage
slope regression and for the computation of out-of-sample Sharpe ratios of the
conditional long-short slope strategy1.26. The column Average is the simple
average of all yearly cut-off statistics. Sharpe ratios reach on average 0.40 for
the full sample, 0.7 when considering only FOMC weeks, 0.52 on large slope
weeks, and finally, when considering individual country slopes to compute the
large cut-off criteria (instead of a synthetic G10 average), Sharpe reach 0.5.
All Sharpe ratio figures are annualized and control for transaction-costs of
re-balancing weekly the portfolio1.27.

Figure A.3 on the Appendix A presents the Long-Short slope strategy
total cumulative return in panel (a), as well as it’s draw-down in panel (b). We
present results for two training windows for slope computation in the 1-st stage
regression (5 years and 10 years) in order to tackle potential look ahead bias
concerns1.28. Total log-returns from this strategy reach 50% between 2000 and
1.26For each training sample (𝑇𝑠) we estimate the model in equation (1.15) using data up to

𝑇𝑠, save for each country 𝑖 the coefficients of the first stage regression 𝛼𝑛
𝑇 𝑠 and 𝛽𝑛

𝑇 𝑠 estimates
up to 𝑡 = 𝑇𝑠. We then use them to compute slope𝑛

{𝑇 𝑠+1,...,𝑇 } and use this conditional slope
measure to form portfolios of long-short country slope for each week until the end of our
sample. We re-balance each week and calculate Sharpe ratios of this strategy from year
𝑇𝑠 until 2017 (the end of our sample), adjusting for transaction costs of each re-balancing.
This test is therefore implicitly controlling for both a potential instability in the first stage
regression and also of the strategy conditional return and volatility
1.27Sub-samples are formally defined as: (i) all sample weeks, (ii) on FOMC Weeks only;

(iii) on weeks with large G10 average slope (Ḡ10𝑎): weeks with |slope𝐺10
𝑡 | > 𝜇𝑇 + 0.5 · 𝜎𝑇 ,

where slope𝐺10 is a synthetic G10 slope average; (iv) in No-FOMC weeks with large
G10 slope; (v) weeks with large individual country slopes in each bin (long and short):
|slope𝑛

𝑡 | > 𝜇𝑛
𝑇 + 0.5 · 𝜎𝑛

𝑇 ), that is we include all weeks when at least the slope in the long
and short bins are higher than this threshold and (vi) no-FOMC weeks with large individual
slopes
1.28For several training samples 𝑇0 = {2𝑦, 5𝑦, 10𝑦} we run the first stage slope model,
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2017 (the end of our sample) in US dollars. These returns, since are derived
from currency strategies, are already excess returns relative to the risk-free
rate. Draw-downs reach at most 25%, specially in the beginning of the sample,
and are lower for the 10-year sample training estimation.

In Figure A.4 we report Sharpe ratios (annualized) from implementing
this strategy, adjusting for transaction costs, for several different training
samples for 1-st stage slope computation. In the X-axis we fix the training
sample and in the Y-axis report the respective Sharpe ratio for the remainder
of the sample. The same information in a more detailed fashion can be seen
in Table B.14. Implementing this strategy in all weeks using this recursive
adjusted slope measure yields Sharpe ratios ranging from 0.32, if we fix 2000
as the start date, to 0.4 (2003 training sample) and numbers as high as 0.075
for 2008 cut off and beyond. It can also be seen both from the figure and the
table that conditioning on specific weeks, like FOMC weeks, weeks with large
average G10 slope moves and so on, can deliver even higher Sharpe ratios (net
of transaction costs).

These Sharpe ratios are significantly higher than other usual currency
strategies: in our sample gross Sharpe ratios (not accounting for transaction
costs) reach 0.30 for the carry-trade and 0.15 the long G10-short US dollar
portfolio (unconditional). Even other papers with a more complete data set of
countries that also include Emerging Markets economies, like Hassan & Mano
(2019), present gross Sharpe ratios of 0.5 and 0.16 for the carry and dollar
trade portfolios, respectively.

Ang & Chen (2010) also construct a long-short currency portfolio sorting,
instead of on the short-term slope, on countries term-spreads measured by 10
year bond yields minus 1-year or 3-month bill yields. They find full sample
annualized Sharpe ratios close to 0.6, using monthly currency returns and not
adjusting for transaction costs, in the sub-sample of G10 countries. Our results
complement their findings in two ways: (i) we are sorting using short-term
interest rates futures in a way that higher slope leads consistently to higher
currency returns. That can be the case only if conditional slope is capturing
more information of future expected monetary policy. Ang & Chen (2010) sort
currencies going long the low long-term slope bin and achieve positive Sharpe
ratios. Therefore, their metric, must be capturing more information about
future relative risk premium. We will revisit this more formally in section 1.6
of the paper; (ii) they are more robust in the sense that we are computing

save coefficients and use them to compute slope measures from (𝑇0 : 𝑇 ). We then apply
the strategy conditioning on each slope country-week measure obtained using this recursive
method
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Sharpe ratios for several yearly windows to test the stability both of the first-
stage slope estimate regression and of the strategy. 1.29.

The profitability of this Long-Short slope currency strategy across dif-
ferent training samples is another evidence of the strong predictive power of
changes in relative short-term structure of interest rates futures contracts for
individual currency returns. This currency strategy profitability can not be
spanned by traditional currency risk factors like the dollar factor and the carry
trade factor (Verdelhan et al., 2011). We perform formal tests in section 1.4.5
to recover the Alpha of all our new currency strategies that condition on slope
information.

1.4.5
Loadings on Currency Risk Factors

Can the Long-Short short-term slope currency strategy in the previous
section be spanned by usual currency risk factors? Verdelhan et al. (2011)
have identified a common risk factor structure in currency returns. Two factors
or mimicking currency portfolio returns, the carry trade portfolio and Dollar
portfolio, account for most of the cross-sectional variation in average currency
excess returns. High interest rate currencies load more on these risk factors
than low interest rate currencies and, therefore, this factor structure help
explain the carry trade and the associated failure of uncovered interest parity.

We implement a time-series regression of returns of the long-short slope
portfolio on the returns of these mimicking portfolios to test if this novel
portfolio deliver a significant alpha relative to these risk factors1.30. The
currency portfolio return factors based on Verdelhan et al. (2011) are available
on a monthly basis. Our empirical results focus on weekly currency returns.
In order to test the spanning, we must combine both data-sets by summing
up our weekly currency returns in a given month. Naturally, this may lead to
significant measurement errors.
1.29Transaction costs for trading highly liquid G10 currencies have reduced dramatically

over the last 15 years. However, to tackle potential transaction costs we rely on estimates
from Karnaukh (2020): from 1994-2002 average cost of buying/selling the dollar against a
basket of the most liquid G10 currencies ranged from 5-10 bps. With improvements in FX
liquidity these costs decreased to a range of 1-3 bps in early 2000. We consider an average
of 7.5 bps before 2000 and 2 bps after when adjusting annualized Sharpe ratios. We use this
estimates both in the Long-Short slope Currency Portfolio and in the dollar conditioning on
slope portfolio presented in the next section. We acknowledge the fact that transactions costs
maybe higher when implementing less liquid currency pairs. These figures are higher than
our own measure of transaction costs that use bid-ask spreads of individual currency pairs.
We opted to use them instead to have an upper bound o Sharpe ratios net of transaction
costs, since average bid-ask spreads on a daily frequency could be biased downward
1.30See Verdelhan et al. (2011). Authors make available data up to 2018 for these currency

portfolios on their website on a monthly basis
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Table B.15 reports results for both risk factors. We consider portfolio
returns based on three different slope rolling recursive computations: 2-,5-
and 10-year training samples (for both the first-stage regression and Sharpe
computation, as previously describe). As we can see from the table, when
considering currency risk factors from Verdelhan et al. (2011), the estimated
alphas for the Long-Short individual country slope strategy are all positive
and statistically significant delivering annualized alphas of around 5%. The
strategy that conditions on cross-section slope information to sort countries
does not seem to have any exposure to the the carry-trade factor or the dollar
factor, since neither coefficient is significant. Also in-sample 𝑅2 are very low,
suggesting low correlation.

Alternatively, we construct the same mimicking portfolio but restricted
to our sample of G10 currencies. We use the unconditional returns of our
G10 sample analogues for Dollar and carry portfolios. The advantage with
this approach is that we compare precisely the same horizon returns. The
disadvantage is that our sample is restricted to G10 countries and can be
less informative of the actual price of risk for each mimicking portfolio, since
Verdelhan et al. (2011) risk factors encompass a sample of over 80 countries,
including emerging markets. Results are roughly the same: alphas are always
statistically significant and range from 4.0% to 5.0% on annualized terms (note
that these 𝛼𝑠 are computed on weekly returns). Loadings on carry and Dollar
risk factors are also not significant. In-sample 𝑅2 are higher that in the previous
exercise with monthly risk factors, but reach at most 5.0%, suggesting that a
significant portion of the time series variation in long-short slope portfolio
returns is not spanned by these factors.

These results suggest that our novel currency strategy that use short-
term slope information in the cross-section to sort countries in a given week is
not spanned by traditional currency risk factors, like carry or Dollar portfolios.

1.5
Impact and Predictability with Dollar Portfolio

1.5.1
Empirical Strategy

In this section, we test the impact and predictability of changes in short-
term structure of interest rates futures contracts slopes, monetary slope or
simply slope, on a currency portfolio that goes long all G10 currencies against
the US dollar: we call this portfolio long-G10 (short US Dollar) or, as is usually
referred in the literature, the Dollar portfolio. The (log) currency return is the
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equally weighted average of all available G10 (log) currency returns against
the US dollar in a given week:

𝑟𝑥G10
𝑡→𝑡+𝑘 = 𝑁−1 ·

𝑁∑︁
𝑖=1

[︂
𝑟𝑥𝑖

𝑡→𝑡+𝑘

]︂
,

where the term 𝑟𝑥𝑖 is the log-return of going long currency 𝑛 against the US
Dollar.

We must also define how to measure a proxy of G10 slope in a portfolio
context. We consider two alternative specifications: (i) the first is the simple
cross-sectional average of the individual country slope estimated using equation
(1.16); (ii) the second first compute cross-section averages of G10 k-month
interest rate forwards changes (𝑁−1 ·∑︀𝑁

𝑖 [Δ𝑓𝑓𝑘
𝑖 ]) before running the first-stage

regression to compute slope. Here we focus on the case where we average the
slope estimates that result from separate country-level regressions, but our
findings are robust to either specification.

We also consider two alternative specifications for the impact (current)
and predictability (future) of short-term structure slope on the Dollar portfolio
returns, as in the panel regression case. In the first specification, we use the
slope difference as a forecasting variable. In the second specification, we use
both the US slope and the synthetic G10 (ex US) separately as explanatory
variables.

Similar to equation (1.18), the first model (Model I) considers the
difference:

𝑟𝑥𝐺10
𝑡−𝑗,𝑡+𝑘 = 𝜑1 · slope difference𝐺10

𝑡 + Ω · controls𝑡 + 𝜖𝑡+𝑘, (1.20)

where 𝑟𝑥𝐺10
𝑡+𝑘 is the Dollar portfolio (long G10 - short dollar) log-return between

period 𝑡 − 𝑗 and 𝑡 + 𝑘, slope difference𝐺10
𝑡 = slope𝐺10

𝑡 − slope𝑢𝑠
𝑡 is the slope

difference. Model II is analogous to the panel specification in equation (1.19).
As in our panel setting, the main explanatory variables in these regressions,
slope, are estimated regressors and we perform in-sample inference using boot-
strapped standard errors to tackle this potential constructed regressor bias1.31.

1.5.2
Main Results

Table B.19 presents results for the baseline model that uses the slope
difference – Model I, following equation (1.20). Point estimates for slope
1.31We also performed inference using Newey-West corrected standard errors and results are

robust. Baseline results consider full sample slope estimation. In order to address potential
look ahead biases, when presenting Portfolio results sorted on slope, we focus on recursive
time-fixed slope estimates
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difference are always positive, suggesting that higher slope differential of the
synthetic G10 average against the US leads to a positive return for the long-
G10 portfolio, that is, a depreciation (appreciation) of the US dollar (average
of G10 currencies) both in the current and up to 4-weeks ahead1.32.

Let us consider first the impact of slope on current week Dollar portfolio
returns (𝑟𝑥𝑖

𝑡−1→𝑡). Coefficients are positive and highly significant for all sub-
samples, except for FOMC meeting weeks. In-sample 𝑅2 for current week
impact range from 1.9% for the full sample, to 2.1% for No-FOMC weeks with
large slope and 4.2% for FOMC weeks1.33. If we control for lagged returns, the
VIX and the term-spread using long-maturity bonds yields results also remain
unchanged (see Table B.20).

The Slope difference between a synthetic G10 and the US also forecasts
the returns of the Dollar portfolio up to 4-weeks ahead in sample. Point
estimates remain positive and are roughly 34% of the current week impact
coefficient. However, results are not statistically significant in some sub-
samples and in sample 𝑅2 are lower than in the panel regressions.

1.5.3
Robustness Analysis

We present results for the alternative model that includes separately
both slope measures (Model II) in Table B.22. Let us consider first the current
week return case. Both slope measures are statistically significant and retain
the same coefficient signal as in the panel specification. Forecastability results
are worse in this specification: letting US slope and G10 slope load on future
returns individually does not increase in-sample 𝑅2, while point estimates loose
significance in some sub-samples for one-week ahead returns. Contrary to the
panel case, the delayed reaction is driven mainly by the US slope coefficiente,
at least in statistical significance terms.
1.32As previously discussed, to compute currency returns we are using the London fixing. In

order to assure that we are not using information unavailable to market participants from
interest rates futures contracts, for both the US and Canada, which are in a timezone of GMT
minus K hours, we consider Tuesday-Tuesday weekly changes of futures rates contracts to
compute slope. For all other G10 countries and currency returns, we consider the Wednesday-
Wednesday convention as in Neuhierl & Weber (2019). In the case of the tactical Dollar
portfolio, this becomes even more important for the strategy sorting since we are using
explicitly the US slope. For the long-short slope portfolio, since it as dollar neutral strategy,
we sorted only using individual currency data
1.33We include two new sub-samples in Table B.17. First a pre-2008 sample, to control for

the Quantitative Easing period in both the US and other Developed economies. Both point
estimates and in-sample 𝑅2 remain the same for current week and future returns. Second
sample is a No-FOMC week with large slope movements that uses a smaller cutoff (1/4 of
slope standard deviation). Results remain roughly unchanged. Considering only No-FOMC
weeks without any cut-off leads to very weak predictability
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We also define the synthetic G10 slope in other ways, similar to the panel
regression section. First we consider a version that is completely orthogonal
to information used to construct the US slope. This G10 synthetic orthogonal
slope remains positive for all horizons, but looses statistical significance for over
one-week returns. Alternatively, we define as the synthetic G10 proxy only the a
simple average of measures for the Eurozone (EUR) and Great-Britain (GBP),
markets that are the most liquid for G10 countries. The slope coefficients
remain positive and become statistically significant at 10% for 1-week ahead
and 5% for 4-week ahead horizons under this alternative specification. Point
estimates also increase for the 4-week horizon, suggesting a stronger delayed
reaction. We can also ignore the synthetic G10 average at all. This is equivalent
to forecast the Dollar portfolio return using only information for the US slope.
However, when US slope has an impact on currency returns in all sub-samples
but has no statistical significant predictive power for Dollar portfolio returns
is present only on FOMC weeks and we find no delayed reaction whatsoever.

In the next section we explore this predictability and delayed reaction
to construct portfolios that trade the US dollar dynamically conditioning on
both US and synthetic G10 slope information.

1.5.4
Tactical Long G10 - Short US Dollar Portfolio Using slope

We develop in this section a novel currency strategy that explores the
delayed reaction of G10 currency returns to slope, using slope difference in the
time-series to tactically go long or short the US Dollar portfolio. The sign of the
conditional slope shock has information about average G10 currency returns
1-week ahead, since point estimate for slope difference is positive (𝜑1 > 0).
Consider the following illustrative example. Form a portfolio long G10 currency
returns with equal weights (the Dollar portfolio). Go long or short this portfolio
from week 𝑡 → 𝑡 + 1 depending on the signal of slope difference in week 𝑡. A
positive slope difference measure at time 𝑡 forecasts a positive long G10 return
1-week ahead. Therefore we form the following portfolio 𝑝.

𝑅𝑝
𝑡+1 = 𝐼

[︁
Δslope difference𝐺10

𝑡 > 0
]︁
·𝑟𝑥𝐺10

𝑡+1 −
(︁
1−𝐼[Δslope difference𝐺10

𝑡 > 0]
)︁
·𝑟𝑥𝐺10

𝑡+1

(1.21)
where 𝐼[Δslope difference𝐺10

𝑡 > 0] is a indicator variable that is one when slope
difference is positive: if slope difference is positive we go long G10 currencies
and if it is negative we go short G10 currencies and long the US dollar. We
define this portfolio as the Tactical Dollar portfolio (conditional on slope).

Full sample slope measures suffer from look ahead bias. To tackle this
issue, we use out-of-sample slope estimates, just as in the long-short slope
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strategy, proceeding in two-steps. First we perform the first stage slope
regression using several training samples ranging from 1998 to 2007. As an
example, for the first training sample we estimate equation (1.16) from 1995-
1998 and save 𝛼98 and 𝛽98. We then compute slope forward from 1998 to the
end of the sample using these fixed coefficients. 1.34.

Table B.1 in the section 1.1 shows that implementing this strategy has
an average annualized Sharpe ratio of 0.4 for the full sample, even after
controlling for approximate transaction costs1.35. Annualized Sharpe ratio
reach, respectively, 0.6 and 0.9 when we implement the strategy only in
weeks with large-slope and No-FOMC with large slope movements. On the
other hand, FOMC weeks present a 0.3 Sharpe ratio. This is consistent with
the evidence in Karnaukh (2020) and Salehi et al. (2017) that document a
pre-FOMC meeting positive return drift for the Dollar Portfolio. Therefore,
conditioning on meeting weeks is potentially less informative because of this
pre-FOMC meeting drift.

We present annualized Sharpe ratios for the tactical Dollar portfolio in
Table B.23, considering several starting sample cut-offs, while adjusting for
transaction costs. In each line we present results for the respective yearly cut-
offs for rolling slope estimates. In each column we present results for different
sub-samples and model specifications we are using to decide either to go long or
short the Dollar portfolio1.36. We focus the analysis on Model I that uses slope
difference and has the best out-of-sample predictability. Annualized Sharpe
ratios range from 0.35 in the 1998 cut-off to around 0.6 on the final sample
cut-offs. Sharpe ratios start at 0.35 for the large-slope week sub-sample, hover
around 0.5 and increase to 0.7 in the last years. Finally the highest Sharpe
ratios attained by the tactical Dollar portfolio are on no-FOMC weeks with
large slope movements: they start at 1.2, decrease to -0.8 the final cut-offs.
1.34For each training sample 𝑇𝑘 = we run the first stage slope model, save coefficients and

use them to compute slope measure from (𝑇𝑘 : 𝑇 ). We then apply the strategy conditioning
on each slope country-week measure obtained using this recursively method
1.35Transaction costs for this simple G10 portfolio have reduced dramatically over the last

15 years. However, to tackle potential transaction costs we rely on estimates from Karnaukh
(2020): from 1994-2002 average cost of buying/selling the dollar against the most liquid
basket of G10 currencies ranged from 5-10 bps. With improvements in FX liquidity these
costs decreased to a range of 1-3 bps in early 2000. We consider an average of 7.5 bps before
2000 and 2 bps after when adjusting annualized Sharpe ratios
1.36Briefly, Model I refers to equation (1.20), that uses slope difference. Model II refers to

equation (1.19) in which we include separately as regressors the synthetic G10 and US slope.
Model III considers only US slope as a conditioning variable. Models I and III cases are
simple to condition down using equation (1.21): just use the slope difference or the US slope
as the variables to go tactically either long or short the Dollar portfolio. Model II has two
variables so we consider only weeks which the direction signaled by both slopes is the same.
That is if slope𝑢𝑠 < 0 AND slope𝐺10 >< 0 we go long the G10 portfolio and short de US
Dollar. We end up, therefore, with fewer weeks than the other two strategies
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Figure A.5 presents the strategy total returns, that reach almost 80%
both for the 5-year and 10-year cut-off training samples. There are two series
in each panel: (i) the first uses Model I and slope difference to go either
long or short the Dollar portfolio; (ii) the second one uses only US slope as
conditioning variable. It is clear from the figure that using even a synthetic
raw measure of other G10 countries slope to decide whether to go long or short
the US dollar greatly improves returns across time. The cumulative return
is, however, uneven: after 2010 the tactical-Dollar strategy performed poorly
up to 2015, when it returned to a positive trend. It is also prone to periods
of jumps followed by periods of stability or negative returns. This is even
more clear for the 10-year training sample. Figure A.6 presents the strategy
draw-downs. In the left-panel we present results for the 5-year training window.
When conditioning on slope difference, that uses G10 synthetic slope, maximum
drawn-down reach 15% in the beginning of the sample and almost 20% after
2010, the period when the strategy performed poorly. When conditioning
only on US slope information the strategy never recovered from it’s post
2010 maximum loss, another evidence of the relevance of the information
contained in short-term slope of G10 interest rates contracts in terms of Dollar
forecastability.

Table B.25 show that the returns of the tactical Dollar traded portfolio
are not spanned by usual currency risk factors. They also present high
and statistically significant alphas. We present results for two alternative
measurements of mimicking portfolio returns for the carry trade and the
dollar risk factors, as previously showed for the long-short slope portfolio.
In panel (a) we use monthly data from Verdelhan et al. (2011) and in panel
(b) we use our weekly return sample to construct returns for the risk factors.
The tactical-dollar strategy conditional on slope has no exposure to either
the carry factor or the Dollar factors. Annualized alphas range from 3.6% to
5% depending on the training-sample considered. In-sample 𝑅2 are also low.
Weekly alphas from G10 risk factors constructed from our data-set are also
high and statistically significant, except for the 2-year training sample. They
range from 2.6% (annualized weekly alphas) to 5.0%, a bit lower than for
Verdelhan et al. (2011) data set of risk factors. In-sample 𝑅2 are also low,
suggesting there is still a lot of time series variation in the tactical-Dollar
strategy not explained by time-variation in these risk factors or mimicking
portfolios. Overall, the tactical Dollar portfolio returns seem not to be spanned
by traditional currency risk factors like carry or unconditional Dollar portfolio
returns.

The tactical Dollar portfolio high returns adjusted for risk and it’s
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robustness to several different sample cut-offs is another evidence supporting
the out-of-sample predictability of currency returns using slope. It also stresses
the importance of considering, in a currency setting, other countries term
structure of interest rates when considering the US dollar risk premium: even
a synthetic average G10 slope increases profitability of this strategy when
compared to using only the US slope as a conditioning variable to go long-
short the Dollar portfolio.

1.5.5
Out-of-Sample Predictability

Our findings suggest that we can create strategies conditioning on
slope information to tactically trade a long-short Dollar portfolio. These
strategies have much larger profitability than the unconditional Sharpe ratio
of 0.12. In this section we present out-of-sample 𝑅2 statistics for 1-week
ahead Dollar portfolio return forecasting equation using slope. This statistic is
a complementary metric to reinforce the predictability of currency returns
using conditional term structure slope of G10 interest rates futures. The
Sharpe ratios from actually implementing these strategies on a real-time basis
presented in the previous section are a more robust empirical evidence of slope
out-of-sample predictability for the Dollar portfolio returns.

We must proceed in 2-steps to generate out-of-sample forecasts, since we
are using a 1-st stage constructed regressor. First, we perform the first stage
slope regression using several training samples ranging from 1998 to 2007. As
an example, for the first 1998 sample cut-off, we estimate equation (1.16) from
1995-1998 and save 𝛼98 and 𝛽98. We then calculate slope forward from 1999
to the end of the sample using these fixed coefficients. Finally, we compute in
the second stage usual out-of-sample 𝑅2 statistics as proposed, for instance,
by Campbell & Thompson (2008b). We estimate the forecasting model using
the slope measure computed above recursively, compute for each iteration the
out-of-sample residual and calculate the out-of-sample (OOS) 𝑅2. We compute
for the training sample from 𝑡 = [1 : 𝑇0] the following statistic:

𝑅2
OOS = 1 −

∑︀𝑇
𝑠=𝑇0

(︂
𝑟𝑥𝐺10

𝑠→𝑠+1 − ̂𝑟𝑥𝐺10
𝑠→𝑠+1

)︂2

∑︀𝑇
𝑡=𝑇0

(︂
𝑟𝑥𝐺10

𝑠→𝑠+1 − 𝑟𝑥𝐺10
𝑠→𝑠+1

)︂2

which is the ratio of the sum of squared residuals from model-based forecasts
(numerator) compared to the sum of squared residuals of using the simple
conditional mean up to 𝑡 = 𝑇0 as the forecasting model. A positive number
is compatible with a superior performance of the model relative to the
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unconditional mean benchmark. We use as the benchmark the conditional
mean model, instead of the random walk hypothesis as usual in the currency
forecastability literature (see Rossi (2013)), following the empirical finance
predictability literature. Our results always beat the random-walk benchmark
out-of-sample and are available upon request.

Table B.24 presents out-of-sample 𝑅2 statistic for the full sample as
well as for the large-slope week sub-sample. If we consider all available weeks
statistic are usually negative. We focus on the large slope week sub-sample for
which results are more robust. Out-of-sample 𝑅2 statistic range from 0.1% to
0.3% for weekly returns when using model I to forecast US dollar against a
basket of equally weighted G10 currencies. Model I (M1) refers to the dollar
currency portfolio forecast model estimated with slope difference measure.
Model II (M2) considers both the US and G10 (average) slope separately. This
model has the worst out-of-sample performance. Model III (M3) uses only the
US slope as the variables to go tactically long or short the Dollar portfolio. It
presents an out-of-sample 𝑅2 statistic that is usually smaller and sometimes
negative. Finally, Model IV uses as a proxy for the G10 synthetic slope the
simple average slope computed for only the Eurozone (EUR) and the United-
Kingdom (GBP). In the first sample cut-offs out-of-sample 𝑅2 are negative
but, starting in year 2002, results are even better than when considering the
synthetic G10 average slope.

We use the methodology proposed by Cochrane (2009) to evaluate the
economic significance of out-of-sample return predictability. It can be shown
that Sharpe ratios of a buy and hold investor 𝑆 and an alternative investor
that conditions of slope predictability are related by 𝑆*:

𝑆* =

⎯⎸⎸⎷𝑆2 + 𝑅2
OOS

1 − 𝑅2
OOS

In our setting the unconditional annualized Sharpe ratio of going long in a
basket of G10 currencies against the USD is 0.12. Since OOS statistic is positive
only for the large-slope week sub-sample, let us consider the unconditional
Sharpe ratio on only these weeks of 0.27 (see table (B.1)). The out-of-sample
statistics above come from weekly predictive regressions, so numbers close to
0.3% are extremely high. Out-of-sample 𝑅2 statistic range from 0.1% to 0.3%
so the proposed method above would increase Sharpe ratio to 0.36 and 0.48,
respectively, in annualized terms for this sub-sample. This is a 30% to 70%
increase in Sharpe ratio and is, partly, related to the low weekly Sharpe ratio
of the unconditional strategy1.37.
1.37Just as a comparison, Neuhierl & Weber (2019) forecast weekly US equity returns using
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Out-of-sample 𝑅2 statistics for 1-week ahead Dollar portfolio return fore-
casting equation using slope is a complementary metric to reinforce the pre-
dictability of currency returns. The Sharpe ratios from actually implementing
these strategies on a real-time basis are a more robust empirical evidence of
slope out-of-sample predictability for the Dollar portfolio returns.

1.5.6
Long-Term Slope Measures

As previously noted, our paper is not the first to use relative information
embedded in the term structure of interest rates of different countries, more
specifically slope, to predict currency returns. Ang & Chen (2010) is one such
example. They show that the term spread of long-term bond yields, or slope,
have predictive power for one month-ahead and up to 12-month ahead currency
returns. Sorting currencies into a long-short portfolio that conditions on the
long-term slope of the yield bond curve leads to negative realized returns and
Sharpe ratios in their paper: countries with a higher 10-year minus 3-month
slope today tend to exhibit negative currency returns going forward.

Our paper focus on changes in the short-term slope of interest rates
futures, in theory more related to the expected monetary policy path. Our
empirical findings suggest the opposite: when focusing on short-term slope, a
higher short-term slope or monetary slope for a given currency predict positive,
not negative, future currency returns. It seems to be the case that, in a cross-
section of G10 countries, relative changes in short-term slope are capturing
more information about the relative expected path of future monetary policy
rather than changes in risk premium.

For robustness, we also construct both the long-short slope and the
tactical-Dollar currency portfolios using, instead of our measures derived from
short-term interest rates futures contracts, the 10-year bond Yield minus a
3-month Bond Yield term spread or slope. Following Ang & Chen (2010)
empirical results, a positive 10-year slope for country 𝑖 leads to negative
currency return against the US dollar over the medium term. We build this
robustness portfolio going long the Low slope bin and go short the High slope
bin. Results are presented in Figure A.7. We see that the long-short slope
portfolio still delivers positive excess-returns over the sample horizon, albeit
much smaller than the portfolio conditioning on our short-term slope measure.

US slope and find a weekly out-of-sample R-squared of 0.27%. Relative to the weekly Sharpe
ratio of the US stock market of 0.073 (0.52 in annualized terms) an improvement in weekly
Sharpe ratio to 0.09 is roughly a 23.3% increase. Therefore, out-of-sample predictability
using international slope from short-term interest rates futures contracts for currencies are
an order of magnitude higher, which is even more striking considering the difficulty in
forecasting currency returns
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For the tactical-Dollar, on the other hand, conditioning on long-term slope
does not deliver any excess returns, quite the opposite.

Overall our short-term slope measure not only delivers better empirical
results but also seems more related to the expected future relative path of
monetary policy between G10 countries and the US. Also, even though US
monetary policy is a major driver of currency returns, our results support
that it is important to condition down on information regarding expected
G10 future interest rates to improve predictability and excess returns of both
currency strategies presented in this paper.

1.6
Linking slope and Currency Returns

We showed in previous sections evidence that currency returns are pre-
dicted by our short-term slope extracted from interest rates futures contracts
of 3- and 6-month maturities. In a single country setting, like Neuhierl & We-
ber (2019), slope measure seems to be capturing mostly information about the
expected path of monetary policy. Also, Piazzesi & Swanson (2008) show that
risk premium extracted from bond prices tends to vary only at business cycle
frequencies. However, in a cross-country setting it can bot be ruled out that
even short-term slope differences are not capturing also relative shifts in risk
premium across countries.

Our empirical findings suggest that a higher monetary slope for a given
currency predict positive currency returns both in the current and subsequent
weeks. This is suggestive evidence that relative changes in slope or monetary
slope are capturing more information about changes in the expected future
path of relative monetary policy between G10 countries, or the future cash
flow component of the currency investment strategy. If it were the case that
they were capturing mostly expected future changes in relative risk premium, a
higher short-term slope should forecast lower currency realized returns because
of an increase in the expected risk or discount factor component of the currency
investment. In this section we formalize this argument using a simple present
value relation for exchange rates.

1.6.1
Exchange Rates Present-Value Formulation

To motivate our discussion, we start from the standard present-value
formulation of exchange rates as in Engel & West (2005) and Engel & West
(2016). From the currency excess return definition in equation (1.1) at 𝑡 − 1,
iterate forward and take conditional expectations at time 𝑡:
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𝑟𝑥𝑖
𝑡 = [𝑟𝑛

𝑡−1 − 𝑟𝑈𝑆
𝑡−1] +

∞∑︁
𝑠=0

𝐸𝑡

[︂
(𝑖𝑛

𝑡+𝑠 − 𝑖𝑢𝑠
𝑡+𝑠)

]︂
⏟  ⏞  

future interest rate differential

−
∞∑︁

𝑠=1
𝐸𝑡

[︂
𝑟𝑥𝑖

𝑡+𝑠

]︂
⏟  ⏞  
FX risk premium

+ 𝑠𝑛
𝑡−1 − [𝑠𝑛

𝑡→∞]⏟  ⏞  
FX long run deviation

,

(1.22)
where 𝑟𝑥𝑖

𝑡 is currency 𝑛 excess return against the US dollar, 𝑖𝑛
𝑡 and 𝑖𝑢𝑠

𝑡 are the
nominal interest rate for country 𝑖 and US, 𝑠𝑛 is the (log) exchange rate for
country 𝑖 in terms of foreign currency per 1 US dollar, so a higher 𝑠𝑡 means a
depreciation).

We can decompose the expected currency return at 𝑡 in three compo-
nents: (1) the expected currency risk premium; (2) the expected path of in-
terest rate differential between country 𝑖 and the US and (3) potential long
run equilibrium deviations of the exchange rate (Menkhoff et al., 2017)1.38.
We relate expected currency returns innovations to innovations in both the
expected path of future interest rate differential and to the expected currency
risk premium. Consider a simple expectation news version of equation (1.22),
in the spirit of Campbell & Shiller (1988):

𝑟𝑥𝑖
𝑡 − 𝐸𝑡−1𝑟𝑥𝑖

𝑡 = (𝐸𝑡 − 𝐸𝑡−1)
[︂
(𝑖𝑛

𝑡 − 𝑖𝑢𝑠
𝑡 ) +

∞∑︁
𝑠=1

(︂ (︁
𝑖𝑛
𝑡+𝑠 − 𝑖𝑢𝑠

𝑡+𝑠

)︁
⏟  ⏞  
rates differential

− 𝑟𝑥𝑖
𝑡+𝑠⏟  ⏞  

FX risk

)︂]︂

So a higher (lower) unanticipated return today is a function of higher
(lower) interest rate differential or lower (higher) FX risk premium. Ex-post
currency returns can be decomposed in:

𝑟𝑥𝑖
𝑡 = 𝐸𝑡 − 𝐸𝑡−1(𝑖𝑛

𝑡 − 𝑖𝑢𝑠
𝑡 ) + IDN𝑛,𝑢𝑠

𝑡 − CRN𝑛,𝑢𝑠
𝑡 + 𝜖𝑛

𝑡 , (1.23)

where:

1. IDN: Innovations in expected future interest rate differential
2. CRN: Innovations in expected excess returns (currency risk premium)
3. Expectational error 𝜖𝑡 = 𝐸𝑡−1𝑟𝑥𝑖

𝑡

We can see both from equations (1.22) and (1.23) that currency returns
today are a function of both expected future interest rate differentials and
future currency risk. However, the expected impact of these variables is differ-
ent: positive innovations in relative expected future interest rate differential,
or 𝐼𝐷𝑁𝑡, lead to positive currency returns. Positive innovations in currency
risk, measured by 𝐶𝑅𝑁𝑡, lead to negative currency returns today against the
US dollar.
1.38Engel & West (2005) work with real exchange rates and real interest rates so they define

the last term as long run deviation from PPP currency. In our setting all we need is that the
stochastic process governing nominal currencies, and thus inflation, is long run stationary
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In the context of our paper, can we say something about which effect
dominates when using slope to predict currency returns? Is it relative currency
risk premium, using the terminology in equation (1.23), CRN (Innovations in
expected currency excess returns)? Or is it relative to IDN, or Innovations in
expected future interest rate differential?

We present a preliminary take to link our empirical findings coefficients
to the innovation version of the present value equation for currencies. We run
regressions of the form:

𝑟𝑥𝑖
𝑡−1→𝑡 = 𝜑0 + 𝜑1 · slope difference𝑖

𝑡 + Ω · controls𝑛
𝑡 + 𝑒𝑛

𝑡+𝑘

We consider the schematics below to help interpret the effect of an
increase in slope difference between country 𝑖 and the US on currency return,
separating both the expected future rates differential and risk channel:

↑ slope difference𝑖
𝑡 →

⎧⎪⎨⎪⎩↑ IDN𝑛,𝑢𝑠
𝑡 ⇒ ↑ 𝑟𝑥𝑖

𝑡

↑ risk𝑖 ⇒↑ CRN𝑛,𝑢𝑠
𝑡 ⇒ ↓ 𝑟𝑥𝑖

𝑡

In our setting 𝜑1 captures what effect dominates: interest rate differential
news, or cash flow news in a currency setting, or relative risk news. If
an increase in slope difference is capturing higher perceived interest rates
differential for country 𝑖 against the US in the future, this should lead to a
positive current week currency return through a currency appreciation against
the US dollar. Conversely, if it is capturing solely an increase in country 𝑖

perceived risk, it should lead to an expected currency depreciation and hence
negative currency return news today.

But what does equation (1.23) tells us about currency predictability?

𝑟𝑥𝑖
𝑡+1 = 𝐸𝑡+1 − 𝐸𝑡(𝑖𝑛

𝑡+1 − 𝑖𝑢𝑠
𝑡+1) + IDN𝑛,𝑢𝑠

𝑡+1 − CRN𝑛,𝑢𝑠
𝑡+1 + 𝜖𝑛

𝑡+1,

If short-term slope is capturing, as we have seen, increased expected
interest rate differentials, or relative carry, it should lead to positive currency
returns on the same week. That is exactly the case of our empirical findings. In
a single country setting, like Neuhierl & Weber (2019), slope measure seems to
be capturing mostly information about the expected path of monetary policy.
Complementary to their finding, we present supporting empirical evidence that
this also holds in a cross-section of G10 countries, since relative changes in slope
or monetary slope are capturing more information about expected future carry
or expected relative shifts in the monetary policy stance between countries.
Additionally this predictability is persistent: agents incorporate only gradually
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this information from future monetary policy shifts between G10 countries
extracted from interest rates futures contracts into currency markets.

1.6.2
Does slope predicts Future Interest Rate Changes?

If the theoretical results derived in the previous section are correct, then
slope measured from short-term interest rates futures contracts should also
forecast future changes in interest rates for a given country. Also slope dif-
ference should forecast future interest rates differences between G10 countries
and the US.

In order to test this empirically we run forecast regressions of future
interest rates changes on current slope. Table B.26 presents results for the US.
We run regressions of future rates changes using several different measures and
4,8,12 and 24-month ahead horizons. We compute future changes using interest
rates on deposits, using future changes in 1-month implied rates from FED
Funds futures contracts and also from future changes in the FED fund effective
rate. For all specifications slope coefficient is positive, that is a higher short-
term slope for the US predicts future higher rates. For future FED funds the
point estimate is 0.66 for a 4-week horizon, similar to the magnitudes found in
Neuhierl & Weber (2019). In-sample 𝑅2 range from 2.1% to 10.8%, suggesting
a high forecastability. A positive coefficient is also what one should expect if
slope forecasting power for future currency returns is coming from information
about future expected monetary policy shifts, rather than expected shifts in
risk premium.

Another empirical test is to run regressions of future interest rate
differentials between G10 countries and the US on current slope difference
information. Table B.27 presents results from future interest rates differentials
changes extracted from currency forward discounts. As in the case of the US
regressions a positive future slope difference today forecast a higher interest
rate difference between all G10 countries and the US up to 12-weeks ahead. For
a 4-week horizon coefficients range from .58 for the EUR to .77 for the JPY.
Point estimates are positive and significant for all horizons and all countries,
thus corroborating our empirical findings that short-term slope predicts with
a positive coefficient future currency returns. The channel trough which this
forecastability emerges seems to be related to future shifts in the effective
interest rate differentials. As agents form expectations about these future rates
changes, even without perfect foresight as assumed in these exercises, currency
future returns are predictable by current shifts in short-term slope or monetary
slope.
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1.7
Concluding Remarks

Currency returns today are a function of both expected future interest
rate differentials and future currency risk. The term structure of G10 countries
interest rates futures, on the other hand, contain information about both
expected interest changes going forward and country risk. We construct an
adjusted term structure slope for all G10 countries and use if to forecast
currency returns. Increases in slope difference between country 𝑖 and the US
predict, in a panel regression setting, positive currency returns ahead. This
pattern also arises when looking at currency portfolios: a synthetic G10 average
slope difference measure also predicts a positive Long G10-short US dollar
return ahead, anticipating a weak US dollar.

Contrary to the literature, we find strong evidence of short-run pre-
dictability both in and out-of-sample. This predictability is robust to several
different slope specifications, the inclusion of other controls. Currency pre-
dictability by slope is not restricted to special moments like FOMC weeks, and
weeks with no meetings but relevant price shifts are even more important.

This predictive power is relevant in economic terms: Sharpe ratios of
currency strategies that use conditional slope information to build portfolios
are above and beyond other currency strategies, like the Carry-trade and a long
G10 (ex US) portfolio. We construct a currency portfolio that goes long-short
currencies by conditioning on individual slope measures in the cross-section,
delivering higher returns adjusted for risk in several time periods and sub-
samples. Also, using slope difference measures between the US and a synthetic
G10 average slope to tactically trade the US dollar against a basket of G10
currencies significantly improves Sharpe ratios. These portfolio returns are not
spanned by traditional currency returns risk factors like the dollar and the
carry-trade factor, delivering statistically and economically significant alphas.

Finally, we document a strong a delayed reaction of currency returns
to slope: the impact of a slope shock on a currency is of the same order
of magnitude and direction both in current and future weeks, which can be
interpreted by behavioral stories of under-reaction to news. That this under-
and delayed-reaction arise in the interaction of G10 foreign exchange markets,
the world’s largest and most liquid financial market with a daily trading over
5 trillion US dollar, and G10 interest rate futures market, also a very liquid
and active market, is an interesting phenomenon.
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2
Beta Dispersion and Market Predictability

2.1
Introduction

Discount rates, risk premium or, equivalently, expected returns vary over
time (Cochrane, 2011). Return predictability, or the absence of it, is one of
the main research topics in empirical finance. Of particular interest is the
predictability of the equity risk premium (ERP) or expected stock market
returns. The challenges faced by the research on market predictability are not
too dissimilar to the ones identified in the cross-sectional literature. There
are hundreds of papers and factors that, potentially, explain the cross section
of expected returns. Cochrane (2011), Harvey et al. (2016) and others refer
to a zoo of factors. Similarly, a zoo of predictors has already been explored
in the time series market predictability literature (Koijen & Nieuwerburgh,
2011): (i) financial ratios and valuation-based metrics, like the dividend-to-
price ratio, the earnings-to-price ratio (Campbell & Shiller, 1988); (ii) interest
rate term spread and credit risk spread measures (Ang & Beakaert, 2007);
(iii) macroeconomic variables like the consumption-to-wealth ratio (Lettau &
Ludvigson, 2001a) or investment and capital expenditure ratios (Cochrane,
1991). Alternatively, Polk et al. (2006) and Kelly & Pruitt (2013) take a
different approach: these papers try to infer the conditional market risk
premium by using cross-sectional information on individual stocks or portfolios
valuation ratios, instead of aggregate variables.

In this paper we take yet another direction: we propose novel forecasting
measures that solely use cross-sectional information on conditional CAPM be-
tas to forecast aggregate market returns. This choice of predictors is based on
simple theoretical arguments that moments of betas, in some settings, should
be associated with expected future market returns. We find that these cross-
section dispersion measures do indeed forecast market risk premium over mul-
tiple horizons, delivering high in-sample and out-of-sample predictive power:
out-of-sample 𝑅2 reaches up to 10% at the annual frequency (0.7% monthly).
This out-of-sample predictability is economically relevant: an investor that
uses cross-sectional beta dispersion to dynamically trade the market increases
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her annualized Sharpe ratio up to 38%, in comparison to unconditional buy-
and-hold strategies. Additionally, these measures are only mildly correlated
with other standard predictors of market returns, like those in Goyal & Welch
(2008). Dispersion of betas appears to correlated with the US business cycle
and NBER recessions: they tend to increase (decrease) when dividend-price ra-
tios are low (high). These empirical findings provide additional evidence that
betas dispersion across time is a function of time varying risk premium.

The standard approach in the predictability literature was to search for
variables that were associated with macroeconomic conditions or stocks market
valuations (price ratios), following present value equations that relate future
returns and cash flows (Campbell & Shiller, 1988). We follow an alternative
direction: we start with a simple theoretical argument that measures associated
with moments of conditional CAPM betas are likely to be good candidates for
conditional variables in the cross-section, in specific settings. We then test
whether they are good predictors of future market returns. Hence, variables
that jointly explain the variation in betas for individual stocks and portfolios
are potential candidates for market predictors. We show that one of these
simple variables is the time series of the cross-sectional dispersion in individual
stocks and portfolio conditional betas.

The standard approach chooses a 𝑧𝑡 based on economic arguments and
tests whether it has forecasting power for future realized market returns,
running regressions of the form 𝑅𝑚,𝑡+𝑘 = 𝑎+ 𝑏 ·𝑧𝑡 + 𝜖𝑡+𝑘. Some papers also test
if 𝑧𝑡 works as a conditioning variable in the cross-section of expected returns.
In order to do so, one of the requirements is to explain the time variation in
betas for a wide range of individual stocks or portfolios.

Our proposed alternative measures try to identify 𝑧𝑡 from the empirical
distribution of conditional CAPM betas. Schematically, we compute our mea-
sure of 𝑧𝑡 using the variation over time of cross-sectional information on CAPM
betas, that is, their empirical distribution 𝑔: 𝑔𝑡({𝛽𝑖

𝑡}) =⇒ 𝑧𝑡 =⇒ 𝐸𝑡[𝑅𝑚,𝑡+1].
But why should time varying CAPM betas contain information about future
expected returns? We show in this paper that, if the conditional CAPM holds,
than both equations below should also hold for a conditioning variable 𝑧. That
is, there should be a common element affecting both betas and the risk pre-
mium:

𝐸𝑡[𝑅𝑚,𝑡+1] = 𝜑0 + 𝜑1 · 𝑧𝑡

𝛽𝑖
𝑡 = 𝜃𝑖

0 + 𝜃𝑖
1 · 𝑧𝑡

We start from this strong assumption that the conditional CAPM model
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holds to show the potential theoretical link between time varying conditional
betas cross-section moments and market returns. But we know from Lewellen
& Nagel (2006) and others that conditional models typically do not work well.
The empirical challenge for any such model is that there is not sufficient time
series variation in betas to explain the differences in the cross-section of returns.
The case we try to make in this paper is that even limited time series variability
in the betas of individual stocks and portfolios may still be informative about
the variation in equity market risk premium.

Among other empirical moments, we consider measures of cross-sectional
dispersion of betas relative to their unconditional time-series mean (𝛽𝑖

𝑡 − 𝛽𝑖
𝑡).

We find that cross-sectional beta dispersion (CSBD) forecast market returns
in-sample, both for one-month and one-year ahead horizons. In-sample 𝑅2 are
significant using a bootstrap procedure to tackle the bias due to persistent
regressors. CSBD also forecasts market returns out-of-sample, delivering out-
of-sample 𝑅2 statistics that range between 5-10% for one-year ahead (0.4-
0.7% for one-month ahead) returns. Additionally, the out-of-sample CSBD
forecasting power is robust to several different training samples and tend
to increase over time (see Figure C.2 on the Appendix C). These levels of
predictability match other recent work, like Kelly & Pruitt (2013), with a
much simpler empirical methodology.

CSBD works independently of measurement, as results are robust to
alternative definitions of cross-section dispersion, like standard deviation,
interquartile ranges and winsorized versions that control for potential outliers.
CSBD is also robust to different rolling window estimation sizes: we consider
time varying betas estimated from rolling CAPM regressions of 24, 36 and 48
months windows. Finally, we also find both in- and out-of-sample predictive
power if we compute cross-section dispersion measures from Fama-French
univariate portfolio sorts on 15 characteristics betas, instead of individual
stock’s betas.

Cross-section dispersion (CSBD) predictability is economically relevant:
a investor that trades dynamically conditioning on CSBD can increase her
annualized Sharpe ratio up to 38% relative to a buy and hold strategy.
Additionally, these measures vary along the business cycle: they tend to
increase before US recessions as indicated by NBER dating, when prices tend to
be high relative to fundamentals, firms, agents and governments are leveraged,
equity risk premium is low and future market returns tend to be negative.
During NBER recessions, CSBD measures tend to fall sharply, exactly when
prices are low relative to fundamentals, risk premia is high. That is, moments
of future higher expected returns.
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Our article has a clear relation to the literature on stock return pre-
dictability, probably one of the most studied topics in empirical asset pric-
ing. As suggested by the present value relationship between prices, discount
rates and future cash flows, several papers document that valuation ratios, like
the dividend-to-price, book-to-market, earnings-to-price and others, are infor-
mative predictive variables (Campbell, 2018; Koijen & Nieuwerburgh, 2011).
However, findings of return predictability face several empirical challenges.
One is that, if returns are regressed on lagged persistent variables, such as the
dividend-to-price ratio, the disturbances in the forecasting equation are cor-
related with the regressor’s innovations. This creates an upward bias in OLS
estimates of the forecasting coefficient, which is increasing in the persistence
of the regressor (Stambaugh, 1999). This persistence is also a major concern
in our setting, since we use to forecast market returns a constructed variable
from rolling regression coefficients (CAPM betas). We try to tackle this issue
in-sample with a bootstrap procedure. We simulate a distribution of in-sample
R-squares generated with the same moments and first-order auto-correlations
as the candidate CSBD regressor. We then check if the in-sample 𝑅2 of our pro-
posed regressor is higher than this boot-strapped simulated placebo regressor,
under the null hypothesis of no-predictability2.1.

The instability of the forecasting relationship is another major empirical
challenge in the ERP predictability literature. Even variables that have in-
sample explanatory power, like the dividend-to-price ratio, tend to fail out-of-
sample, partly because of this time instability of parameters. Goyal & Welch
(2008) document both the instability of in-sample regressor coefficients and the
poor out-of-sample performance for several of these aggregate variables in the
literature. In addition, even when out-of-sample predictability survives, it can
be also extremely sample dependent: in other words, any out-of-sample statistic
result can vary substantially as a function of the training and testing window
cut-off. More recently Kelly & Pruitt (2013) update these tests and continue
to find lack of out-of-sample predictability for several of these candidates.
Our measures have robust out-of-sample predictability when considering the
tests proposed in these papers, which are not subject to specific training and
estimating sample cut-offs.

Our article is not the first to explore information in the cross-section
2.1To compute the bootstrapped simulated series we use first and second sample moments

for each regressor (mean and variance) and also perform a full sample AR1 estimation
model to compute the 1st order auto-correlation coefficient for our forecast candidate. We
then compute in-sample 𝑅2 for each of these simulated data and construct an empirical
distribution of simulated 𝑅2 with these 1000 bootstrap exercises. We present confidence
intervals of 10, 5 and 1% levels. By construction this generated regressors are placebo
regressors and should have no predictive power for market returns
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of individual stocks and portfolios to forecast expected market returns. Polk
et al. (2006) use cross-sectional data of several financial and valuation ratios
and fixed full-sample Betas estimation to construct a variable that captures the
price of risk at each point in time. They then use it to forecast market returns
in the time series. Another example is Kelly & Pruitt (2013), that propose and
implement a new three step econometric estimator to recover a latent common
variable from dividend-to-price and book-to-market data of individual stocks
and portfolios. Their methodology predicts robustly aggregate market returns
both in- and out-of-sample.

The contribution relative to this literature of our novel approach is three-
fold in our view: (i) it is an alternative to models that use the cross-section
of valuation ratios to infer the conditional market risk premium; (ii) because
it is not a price or valuation based ratio it can also be applied to different
asset classes in future work, like currencies, commodities or even housing, for
which there is a higher controversy as to which could be a correct valuation
metric. (iii) It is also a very simple metric with clear relation to the economic
cycle, that does not rely on any statistical filtering or less intuitive methods
like shrinkage or machine learning.

Another related literature explores time series variability and dispersion
in betas across the business cycle. Frazzini & Pedersen (2014) relates the betas
dispersion across time to funding liquidity constraints that arise with limited
leverage by investors. They derive equilibrium relations in a dynamic economy
for which funding liquidity conditions vary over time. This produces variation
in the cross-sectional distribution of betas: an increase (decrease) in the mutual
exposure of all firms to these funding shocks produces a more compressed
(diffuse) distribution of betas. From this model, the dispersion of betas should
be negatively related to aggregate measures of funding conditions, which tend
to be pro-cyclical relative to the business cycle. In their paper the author’s
shown that there is a negative relation between the TED spread, a proxy
of aggregate funding conditions, and the spread between market betas of the
high- and low-betas sorted portfolios. These findings give rise to betting-against
beta portfolio strategies (BAB), that buy high-beta stocks and sell low-beta
stocks. In a related paper, Cederburg & O’Doherty (2016) show, however, that
these BAB strategies hold only unconditionally: the conditional beta for the
high-minus-low beta portfolio covaries negatively with the equity premium.
As a result, the unconditional alpha is a downward-biased estimate of the true
alpha.
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2.2
Related Literature

This paper’s main hypothesis is that we can use time variation in betas to
say something about future market returns. We start from a strong assumption
that the conditional CAPM model holds to show the theoretical link between
time varying conditional CAPM betas moments and market returns. This
section presents related literature that also justifies the use of beta dispersion
as a forecasting variable.

We know from Lewellen & Nagel (2006) and others that conditional
models typically do not work well, because there is simply not sufficient time
series variation in betas to explain the differences in the cross-section of returns.
Our paper is not about the cross-section of stock returns. The case we try to
make is that, even limited time series variability in the betas of individual
stocks and portfolios, has enough informative power to forecast the Equity
Risk Premium.

There is an extensive theoretical and empirical work relating the disper-
sion in betas to the equity risk premium. In this section we explore some of
these papers, linking their findings to our proposed measures, as an additional
motivation to our empirical findings besides the conditional-CAPM relations
derive in the previous sub-sections of the paper.

Different sets of investment opportunities along the economic cycle is
one potential source for dispersion of firm-level log book-to-market ratios
(𝜎𝑡[𝐵𝑀𝑖]). This cross-section and time variation in book-market (and other
financial ratios) can also be related to time variation in betas dispersion.
As documented in Cederburg & O’Doherty (2016), high book-to-market can
be a summary indicator of firm exposure to systematic risk. One important
theoretical link is the presence of frictions, such as costly adjustment to
investments. Zhang (2005) develop a model in which high book-to-market firms
can have higher exposure to systematic risk because they cannot easily scale
back on operations in bad economic times. Alternatively, Carlson et al. (2004)
show that high book-to-market may be related to high operating leverage and
a higher exposure to negative economic shocks that curb access to external
financing.

Firm leverage may also impact equity betas through several mechanisms.
In a Modigliani-Miller setting, in the sense that the capital structure does
not affect investment decisions of a firm, it can be shown that equity beta
is increasing in leverage (Rubinstein, 1973). Making the capital structure an
endogenous firm decision may also impact the observed relation between beta
and leverage. George & Hwang (2010) develop a model in which firms with high
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systematic risk exposure may optimally choose lower leverage in the presence
of distress costs. Other papers that consider joint financing and investment
decisions also point to a positive beta-leverage relation. In Livdan et al. (2009)
leverage reduces the flexibility of financially constrained firms to react to
negative shocks. Alternatively, a negative relation between beta and leverage
can arise if debt is used to finance investments that lower a firm ROE and
it’s average asset beta, as in Choi (2013). To the extent that firm leverage
affects beta, the cross-sectional distribution of betas may be more disperse
when 𝜎𝑡[leverage𝑖] is large. Aggregate and individual leverage correlate with
the business cycles: there is ample empirical evidence that the balance of firms,
families and government tend to deteriorate prior to recessions (Reinhart &
Rogoff, 2009).

Several studies show that a stock’s beta can be influenced by firm-specific
shocks. Babenko et al. (2015) develop a model in which past idiosyncratic
cash flow shocks affect a firm’s current exposure to systematic risk. A firm
cash flow can have different sub-components that are more exposed to firm-
specific or to aggregate systematic risks. A positive (negative) idiosyncratic
shock increases the importance of the idiosyncratic (systematic) component
of firm value, leading to a decrease (increase) in firm beta. In those models
beta dispersion can be negatively related to measures of aggregate volatility,
given that larger firm-specific shocks have lesser impact on beta in times of
high volatility.

Another related literature explores time series variability and dispersion
in betas across the business cycle. Frazzini & Pedersen (2014) relates the betas
dispersion across time to funding liquidity constraints that arise with limited
leverage by investors. They derive equilibrium relations in a dynamic economy
for which funding liquidity conditions vary over time. This produces variation
in the cross-sectional distribution of betas: an increase (decrease) in the mutual
exposure of all firms to these funding shocks produces a more compressed
(diffuse) distribution of betas. From this model, the dispersion of betas should
be negatively related to aggregate measures of funding conditions, which tend
to be pro-cyclical relative to the business cycle. In their paper the author’s
shown that there is a negative relation between the TED spread, a proxy
of aggregate funding conditions, and the spread between market betas of the
high- and low-betas sorted portfolios. These findings give rise to betting-against
beta portfolio strategies (BAB), that buy high-beta stocks and sell low-beta
stocks. In a related paper, Cederburg & O’Doherty (2016) show, however, that
these BAB strategies hold only unconditionally: the conditional beta for the
high-minus-low beta portfolio covaries negatively with the equity premium.
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As a result, the unconditional alpha is a downward-biased estimate of the true
alpha.

There are, additionally, theoretical models under which the time variation
and dispersion in betas are related to investor uncertainty about the state of
the economy. One such example is Chague (2013): in this paper the dynamics
of betas in times of high /low uncertainty about the state of the economy
vary across assets, that is, in the cross-section. This pattern is related to
the asset’s cash flow structure and it’s sensitivity to aggregate economic
uncertainty. In an related paper Ribeiro & Veronesi (2002) present a rational
expectations dynamic equilibrium model where the cross-sectional covariances
and correlations of international market returns increase during bad times, as
a consequence of an endogenous increase in the uncertainty about the state
of global economy. In other words, time variation in aggregate uncertainty
leads to time variation in cross-covariances and correlations. Even though this
paper is built for an international setting, we can think of a limiting case
where all covariances converge to the market beta (𝛽𝑖 = 𝛽𝑚 = 1∀𝑖): increases
in aggregate economic uncertainty lead qualitatively to the same result as in
Frazzini & Pedersen (2014), but with a different theoretical motivation.

2.3
Betas Dispersion and Return Predictability

Our empirical analysis starts from the cross-section distribution of condi-
tional betas to forecast the equity risk premium (ERP). The previous section
explored the likely link between our cross-section betas dispersion measures
(CSBD) and the ERP. We present in this section the empirical approach of this
paper: (i) the data and methodology used to construct the empirical CAPM
betas; (ii) then we give an overview of in-sample predictability results using
CSBD; (iii) we also present out-of-sample results and, (iv) finally, we discuss
the economical interpretation and relevance of our findings.

2.3.1
Data and Empirical Approach

We construct a panel set of all individual firm level data using the CRSP
U.S. Stock database. It contains end-of-month prices on primary listings for the
NYSE, NYSE MKT, NASDAQ, and Arca exchanges, along with basic market
indices. We compute individual monthly stock returns cum dividends starting
in 1925. Additionally, we restrict our analysis to the S&P5002.2 constituent

2.2The Standard and Poor’s 500 is a index of the 500 largest US companies (by market
capitalization). This list can change from month-to-month as market cap varies. For each
month 𝑡 we estimate for the constituent list the rolling betas for 24, 36 and 48-month
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stocks in order to avoid putting excessive weight on small stocks or other
outliers.

For each month in our sample we select the constituent list for the
S&P500. We estimate rolling CAPM betas using the market model in equation
(2.1) below. We perform rolling regressions, as usual in the literature, by
defining a sample size, fixing it and estimating rolling windows Betas. We
perform 3 fixed month sample sizes estimation with 𝑇 = 24, 𝑇 = 36 and
𝑇 = 48 months. For each iteration we discard one month and roll forward the
sample:

𝑅𝑒,𝑖
𝑡+1 = 𝛼𝑖

𝑡 + 𝛽𝑖
𝑡 · 𝑅𝑒,𝑚

𝑡+1 (2.1)
We end up with a monthly panel data set of individual stocks rolling

CAPM Betas, from 1925 up to 2018. Since the S&P500 index constituents
change on a regular basis by the market cap, the panel is unbalanced, by
construction. However we are not interested in specific firm’s characteristics,
rather we focus on cross-sectional moments. Thus, the fact that index mem-
bership is a function of a company’s market cap leaves us with a sample that is
“balanced" in the size dimension, in the sense that we measure the dispersion
in a representative sample of the largest US companies, regardless of the time
period.

We compute for each 𝑡 cross-section betas dispersion measures (CSBD)
for the conditional stock beta relative to it’s unconditional mean: for each
𝑡 in our sample we compute, for instance, for 𝑡 = 𝑇 , CSBD measures for
˜𝛽𝑖,𝑇 = 𝛽𝑖

𝑇 − 𝛽𝑖
𝑇 , where 𝛽𝑖

𝑇 = 𝑇 −1 ∑︀𝑇
𝑠=1(𝛽𝑖

𝑠) is the time series average of
conditional betas for stock 𝑖 up to time 𝑡 = 𝑇 . Using the cross-sectional sample
standard deviation as an example for CSBD, fixing 𝑡 = 𝑇 and 𝑘 stocks in the
sample we get:

𝜎𝛽
𝑇 =

⎯⎸⎸⎷∑︀𝐾
𝑖=1

[︁
𝛽𝑖,𝑇 − 𝛽𝑖

𝑇

]︁2

𝐾

where 𝛽𝑖
𝑇 is the cross-section average of 𝛽𝑖

𝑇 at time 𝑡 = 𝑇 .
We compute several dispersion measures for demeaned CAPM Betas

(𝛽𝑇 ): examples are interquartile ranges for 90-10%, 80-20% and 70-30% per-
centiles, log-dispersion and winsorized versions of dispersion to further control
for potential outliers2.3. We also compute higher moments of 𝛽𝑇 , like cross-

horizons. We estimate betas for all constituents but discard stocks that don’t have at least 12
months of available information when constructing the time series of cross-section dispersion
measures

2.3Winsorization is the transformation of statistics by limiting extreme values in the
statistical data to reduce the effect of possibly spurious outliers. We set all data above
a specific percentile threshold to outliers to a specified percentile of the data; for example,
a 90% winsorization would see all data below the 90th (10th) percentile set to the value of
the 90th (10th) percentile

DBD
PUC-Rio - Certificação Digital Nº 1512861/CA



Chapter 2. Beta Dispersion and Market Predictability 70

sectional skewness and kurtosis.
We sample monthly market returns from the CRSP value-weighted

index including dividends directly from CRSP. The index is an average of
all common stocks trading on NYSE, Amex, or Nasdaq. We then subtract
the risk-free rate to obtain excess returns (𝑅𝑒,𝑚

𝑡+1). We use standard aggregate
market predictors in the literature as controls in our in-sample regressions.
We do this, first, to study the correlation of our CSDB measures to these
variables and, second, to check whether CSDB has explanatory power above-
and-beyond those predictors. Examples are the dividend-price ratio, book-to-
market ratio and the consumption-to-wealth ratio. All data were obtained from
author’s websites on a monthly basis (see Goyal & Welch (2008) and Lettau
& Ludvigson (2001b)).

We also test our CSBD measures using portfolio data to estimate betas,
instead of individual stocks information from the S&P 500, as an additional
robustness check. We use, as common in the empirical finance literature, Fama
and French‘s portfolios data-set, available on the author’s website. We perform
the computation of monthly rolling CAPM betas for the fifteen available uni-
variate portfolio sorts based on characteristics, namely: size, book-to-market,
operating profitability, Investment, Earnings-price, cash-flow-price, dividend-
yield, accruals, market betas, net share issuance, variance and residual variance
and, finally, all sorts based on prior returns (momentum, short term and long
term reversal). We end up with a panel data set of 150 portfolios rolling betas.
We then compute all CSDB metrics discussed above for the cross-section of
FF150 uni-variate portfolios betas. We end um with a sample shorter for this
robustness analysis, starting in 1968, because there is no data prior to 1968
for several uni-variate sorts on characteristics.

We plot the time series of three of our CSBD measures in Figure C.1
on the Appendix C, namely the betas standard deviation in the cross-section,
the 70-th interquartile range and the second method used for winsorizing the
data2.4. We can see from visual inspection that unconditional averages are
very close and that these measures are very correlated across both time and
the business cycle. Table D.1 on the Appendix D presents descriptive statistics
for our proposed CSDB in panel (a) (𝛽𝑖, = 𝛽𝑖,𝑡 − 𝛽𝑖). The standard-deviation
averages 0.46 and range from 0.26 to 0.84, which is a high variation given that
we are controlling for betas unconditional means.

Alternatively, we can compute, following Frazzini & Pedersen (2014),
dispersion of betas around the market beta of one (𝛽* = 𝛽𝑖

𝑡 − 1). In their
2.4sigma winsor2 ) replaces the extreme values using the median absolute deviation as

benchmark
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paper the author’s show that funding shocks have further implications for the
cross-section of asset returns. Specifically, a funding shock makes all security
prices drop together, compressing betas toward one2.5. Table D.1 shows that
this measure has higher dispersion, measured in the cross-section, than our
proposed metric: the standard-deviation is 0.58 with interquartile ranges 0.3-
0.4 higher. Skewness is also higher for this metric.

Table D.2 presents simple correlation (in-sample) for both our proposed
measure and this alternative metric. As expected, correlations between alter-
native measures of CSBD are very high, ranging from 0.89 to 0.96. Correla-
tion between these alternative metrics, albeit lower, range from 0.65 to 0.83,
still a high figure. This suggests that, at least unconditionally, both disper-
sion measures have a strong correlation in-sample. We return to this topic in
the robustness section 2.4, where we present strong evidence of the superior
out-of-sample performance of our metric when forecasting market returns.

2.3.2
In-Sample Regressions

We test the predictability of CSBD measures for the equity risk premium
for 1-month and 12-month ahead returns. We compute aggregate market
cumulative log-returns over 1 month and 12 months horizons over the risk
free rate (𝑟𝑚

𝑡+1,𝑡+𝑘) as follows:

𝑟𝑚
𝑡+1,𝑡+𝑘 =

𝑡+𝑘∑︁
𝑠=𝑡+1

𝑟𝑚
𝑠

where 𝑟𝑚
𝑠 is the (log) excess-return for the market.

We perform linear forecast regressions using equation (2.2). 𝑋𝑡 is a vector
of observable variables at time 𝑡 used to forecast realized market returns.

𝑟𝑚
𝑡+1,𝑡+𝑘 = 𝑎 + 𝑏 · 𝑋𝑡 + 𝜖𝑡+1 (2.2)

Table D.3 on the Appendix D presents in-sample results for the rolling
24-month betas of individual S&P stocks for the whole sample. In each row
it presents regression results for each of the betas cross-section dispersion
measures (CSBD) considered. For example, the cross-section beta standard
deviation has a in-sample 𝑅2 of 0.4% (0.3% for the adjusted 𝑅2) for 1-
month ahead and 3.6% (3.5%) for 1-year ahead horizon forecasts. interquartile
ranges and Winsorized versions of the beta cross-section standard deviation

2.5Proposition 4 of Frazzini & Pedersen (2014) show that when the conditional variance of
the stochastic discount factor rises (falls) the conditional return betas of all securities are
compressed toward one (become more dispersed)
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present typically higher in-sample 𝑅2: for instance, the 70th interquartile range
percentile presents 0.65% and 5.8% for the 1-month and 1-year ahead forecasts,
respectively.

These figures compare well to other usual variables in the predictability
zoo. In a recent paper Kelly & Pruitt (2013) document the performance of
traditional forecasting variables between 1930 and 2010. in-sample 𝑅2 for
1-year ahead returns (1-month) range from 0.49% (0.05%) for default yield
spread, to 3.16% (0.18%) for the dividend-price ratio and 8.8% (0.7%) to the
book-to-market ratio, among others. Their methodology, a 3-step statistical
approach to forecast market returns, deliver an in-sample 𝑅2 of 1.1% on a
monthly basis and 13% on a yearly basis.

Findings of return predictability face several empirical challenges, as we
have previously argued. One is that the correct inference of the coefficient
of interest 𝑏 in equation (2.2) is problematic, because financial ratios and
other predictors considered in the literature are typically extremely persistent
(Koijen & Nieuwerburgh, 2011). The persistence of regressors is a major
concern in our setting, since we are using to forecast market returns a
constructed variable from rolling regression coefficients. We tackle this issue
in-sample in the following way. For each regressor (betas standard deviation,
interquartile ranges etc), we compute a bootstrap simulation generating 1000
series with the same number of observations, moments (mean and variance) and
1st order auto-correlations as the candidate dispersion measure regressor2.6. We
then present the in-sample 𝑅2 empirical confidence intervals of 10, 5 and 1%
levels.

Table D.3 reports this measure for all predictors in columns boot-strap
𝑅2. For the cross-section betas standard deviation in-sample 𝑅2 of 0.4% is
higher than the 95th bootstrapped percentile, but smaller than the 99th of
0.65%: therefore, given the empirical moments and persistence of the cross-
section standard deviation of betas, we can only reject the null of no in-sample
predictability of returns at a 5% confidence level. For winsorized versions of
the standard deviation (that control for outliers) we always reject the null on
no in-sample predictability at 1%. For the 80th and 70th betas interquartile
ranges the we can also reject the null hypothesis of no predictability at the

2.6To compute the bootstrapped simulated series we use first and second sample moments
for each regressor and also perform a full sample AR1 estimation model to compute the 1st
order auto-correlation coefficient for our forecast candidate. We then compute in-sample 𝑅2

for each of these simulated data and construct an empirical distribution of simulated 𝑅2

with these 1000 bootstrap exercises. Note that these simulated variables, by construction,
should have no in-sample predictability for market returns. We present confidence intervals
of 10, 5 and 1% levels. We could alternatively generate the distribution of the F-statistic and
present a formal test of the regression. We could have presented the empirical distribution
of the F-statistic instead of the 𝑅2
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1% confidence level. For one-year ahead forecasts in-sample 𝑅2 are 3.6% for
the standard deviation of betas, significant at 5%. Winsorized versions are all
significant at the 1% level, as well as interquartile ranges.

We also perform multi-variate in-sample regressions combining standard
deviations and interquartile ranges measures. Results are in Table D.4 for the
24-month rolling betas. For one-month ahead returns, in general, adding two
dispersion measures increase only marginally the in-sample 𝑅2 and worsen sta-
tistical significance in our bootstrap methodology. However, for one-year ahead
returns results improve substantially: adding both the standard deviation and
interquartile ranges increase 𝑅2 to 6.46% and up to 8.5% for the winsorized
versions of standard deviations of betas. Results are all significant at least at
a 5% level considering our bootstrap procedure 𝑅2.

Table D.5 presents results for the rolling 36-month betas univariate
forecast regressions. Overall, results are similar. One exception is the standard
deviation without winsorization, now significant only marginally at 10%.
Winsorized versions and interquartile ranges remain significant at 1% level. For
one-year ahead returns results are also similar, albeit the majority of in-sample
𝑅2 remain significant at a 5% confidence level. For multivariate versions, using
a 36-month rolling beta of individual stocks does not change overall results.
Actually, for some model combinations, results even improve in-sample: as one
can see from Table D.6, one such example is the combined standard deviation
with the 80th percentile interquartile range, which increase 𝑅2 to 1.10 versus
0.77, now significant at a 1% level. However, in-sample results are worse if we
increase our estimation window to a 48-months, especially for 1-year ahead
returns: 𝑅2 are on average significant only marginally at 10% under our boot-
strap procedure.

We now turn to the out-of-sample performance of our proposed estimates
of cross-section betas dispersion (CSBD) and their ability to forecast market
returns.

2.3.3
Out-of-Sample Regressions

Another empirical problem that is pervasive in the ERP predictability
literature is that the forecasting relationship, the point estimate 𝑏 in equation
(2.2), exhibit significant instability over time (see Koijen & Nieuwerburgh
(2011)). It is a common feature that forecasting variables, like the dividend-
to-price ratio (𝑑𝑝), even when present in-sample explanatory power, typically
fail out-of-sample. Goyal & Welch (2008) document the failure of several such
candidates to forecast the market returns out-of-sample. Even when out-of-
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sample predictability survives, it can be extremely sample dependent. In other
words, it can be extremely sensitive to the training and testing window cut-
offs. More recently, Kelly & Pruitt (2013) update these out-of-sample tests for
common regressors in the literature and continue to find lack of out-of-sample
predictability for several of these candidates.

We follow closely Goyal & Welch (2008) and Kelly & Pruitt (2013).
We present the out-of-sample 𝑅2 comparing the performance of the proposed
regressor(s) with the up to time 𝑡 sample average as a benchmark. We compute
the mean squared error of the vector of recursive rolling errors of the model and
the conditional mean (𝑀𝑆𝐸𝐴 and 𝑀𝑆𝐸𝑁), respectively. Define the vectors 𝑒𝐴

(𝑒𝑁) recursively, considering a training sample 𝑤 and the full sample 𝑇 :

𝑒𝐴,𝑠 = 𝑟𝑚
𝑠+1,𝑠+𝑘 − ̂︁𝑟𝑚

𝑠+1,𝑠+𝑘̂︁𝑟𝑚
𝑠+1,𝑠+𝑘 = 𝑎[𝑤:(𝑠−1)] + 𝑏[𝑤:(𝑠−1)] · 𝑋𝑠−1 + 𝜖𝑠

𝑒𝐴 = [𝑒𝐴,(𝑤+1), ...., 𝑒𝐴,(𝑇 )]

where ̂︁𝑟𝑚
𝑠+1,𝑠+𝑘 is the market return forecast at time 𝑡 = 𝑠−1 using information

up to that moment, 𝑎[𝑤:(𝑠−1)] and 𝑏[𝑤:(𝑠−1)] are the conditional OLS point
estimates using data from the start of the training sample up to time (𝑡 = 𝑠−1),
as well. Note that 𝑒𝐴 is just a vector that stack all information generated with
this recursive method2.7. The out-of-sample (OOS) statistic computes:

OOS 𝑅2 = 1 − 𝑀𝑆𝐸𝐴

𝑀𝑆𝐸𝑁

where 𝑀𝑆𝐸{𝐴,𝑁} = ∑︀𝑠=𝑇
𝑠=𝑤+1(𝑒{𝐴,𝑁},𝑠)2.

Table D.7 on the Appendix D presents results for the rolling 24-month
betas CSBD measures. We fix the sample split date on 1985 for easiness
of comparison between models. For one-year ahead returns out-of-sample
𝑅2 range between 4.7% for the model with cross-sectional betas standard
deviation, to 9.9% for the 70th interquartile-range and 9.98% for winsorized
version of betas standard deviation. For the one-month ahead returns OOS-
𝑅2 range between 0.35% for the model with cross-sectional betas standard
deviation, to 0.72% for the 70th interquartile-range and 0.71% for winsorized
version of betas standard deviation. Table D.7 also presents multivariate
versions, by combining more than one dispersion measure. For 1-year ahead
horizon OOS-𝑅2 statistics range from 4.9% to 11.06% (0.32% to 0.72% for 1-

2.7For each iteration we estimate the OLS model in equation (2.2) from the start of the
training sample 𝑤 up to time 𝑠 − 1 and compute the one-step ahead forecast error 𝑒𝐴,𝑠 for
the model and also for the conditional sample mean up to time 𝑠, 𝑒𝑁,𝑠. We then roll the
sample forward and compute recursively these errors to form botg vectors 𝑒𝑁 and 𝑒𝐴
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month ahead returns), fixing the sample split date on 1985. Finally, we present
in Table D.8 results for the 36-month rolling betas moments. They remain
robust to this alternative estimation window, albeit with lower out-of-sample
𝑅2 statistics: for one-year ahead statistics range from 1.01% to 8.25% (-0.23%
to 0.70% for one-month ahead returns).

These figures suggest a high out-of-sample predictability. As a compar-
ison, Kelly & Pruitt (2013) 3-step estimator using valuation ratios of 25 and
100 double sort Fama-French portfolios on size and book-value present an out-
of-sample 𝑅2 of 3.5% and 13.1% for one-year ahead returns, respectively2.8.
Other famous candidates from the zoo of predictors usually deliver negative
out-of-sample 𝑅2 figures for 1-month and 1-year horizon returns (see Goyal &
Welch (2008)).

We also present two tests for statistical significance of out-of-sample 𝑅2.
The first is the ENC-T, the test proposed by Diebold & Mariano (2002). The
second is the ENC-New encompassing test statistic by Clark & McCracken
(2001):

ENC-N = MSE𝐹 = (𝑇 − ℎ + 1) · 𝑀𝑆𝐸𝑁 − 𝑀𝑆𝐸𝐴

𝑀𝑆𝐸𝐴

where ℎ is the degree of overlap (ℎ = 1 for no overlap). It tests for equal MSE
of the unconditional forecast (in our case the conditional mean benchmark)
and the conditional forecast (Δ𝑀𝑆𝐸 = 0). Overall, both the univariate and
multivariate models deliver highly significant out-of-sample 𝑅2 for these tests.

Test sample selection can significantly change empirical results and out-
of-sample predictability. One usual approach in the literature is to compute the
statistic for several training sample cut-offs. Figure C.2 presents results for the
betas standard deviation and interquartile ranges for several different training
samples, both 1-year and 1-month ahead forecasts. On the X-axis we have
the different sample date cut-offs for the training sample and on the Y-axis
the out-of-sample 𝑅2 relative to that sample split. As expected, the statistic
changes substantially depending on the training sample selected. However, it
strikes out that overall out-of-sample 𝑅2 remain high, even when out-of-sample
predictability reduces, as in the case of a period between 1972 and 1982 sample
splits. They also increase at the end of the sample splits.

Figure C.3 on the Appendix C presents results for the winsorized version
of cross-section standard deviations2.9. It can be seen that out-of-sample

2.8Their methodology consists of a 3 step statistic filtering method that explores the cross-
section information valuation ratios for these portfolios

2.9Winsorization is a statistical technique that "shrinks" the extreme measures of a
distribution. The first three series simply replace all Betas higher in module than the
equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90}) by the percentile value, the 70,80 and 90th
percentile range of the individual Stocks Betas, respectively. The other methodology (sigma
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predictability of betas CSBD (cross-section dispersion) holds roughly with the
same explanatory power. In Figure C.4 we shown that multivariate versions,
that use both betas cross section standard deviation and interquartile ranges
as combined regressors, also deliver high out-of-sample explanatory power
regardless of the training sample considered. Finally, Figure C.5 presents one-
year ahead statistics for the 36-month beta estimation window, as a robustness
check. We present these results in a more detailed manner in Tables D.9
to D.12, for some of the CSBD measures computed from 24-month window
individual S&P stocks betas. Besides out-of-sample 𝑅2 figures we present
statistics for both tests of no predictability improvement above the conditional
historical mean: both ENC-New and ENC-T. As expected out-of-sample 𝑅2

stats are highly significant, regardless of the sample test period, and robust to
different model specifications.

Our proposed cross-section dispersion measure of demeaned betas
(CSBD) has a high explanatory power for future market returns both in and
out-of-sample2.10. It is also robust to several rolling betas window definitions
and model specifications. The next section discusses the economic relevance of
these predictability results.

2.3.4
Economical Interpretation and Relevance

A simple calculation suggested by Cochrane (2009) show that the Sharpe
ratio 𝑆* earned by an active investor exploiting predictive information based on
a regression R-squared and a simple buy and hold strategy (𝑆0) can be related
by the following equation. We consider, as a benchmark for the unconditional
Sharpe ratio of a buy-and-hold strategy the estimate in Campbell & Thompson
(2008a): dating back to 1871 data on aggregate stock market returns for the
US, they compute Sharpe ratios of 0.108 (monthly) or 0.37 in annualized terms,
respectively.

𝑠* =
√︃

𝑆2
0 + 𝑅2

1 − 𝑅2

The lower bounds of the out-of-sample predictive out-of-sample 𝑅2 are of
0.45% for one-month and 4.70% for one-year ahead, the case of CSBD standard
deviation (see Table D.7). This implies that an active investor exploring this
predictability, in the absence of transaction costs, would increase monthly and
annual Sharpe ratios to 0.125 and 0.443 or 16.1% and 18.4%, respectively.

winsor2 ) replaces the extreme values using the median absolute deviation as benchmark
2.10Remember that we take cross-section moments of demeaned betas: ˜𝛽𝑖,𝑇 = 𝛽𝑖

𝑇 − 𝛽𝑖
𝑇 .

𝛽𝑖
𝑇 = 𝑇 −1 ∑︀𝑇

𝑠=1(𝛽𝑖
𝑠) is the time series average of conditional betas for stock 𝑖 up to time

𝑡 = 𝑇
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Consider now the upper-bound of the out-of-sample 𝑅2 estimates of 0.7%
for one-month ahead and 10% for one year-ahead returns. For these figures,
Sharpe ratios increase to 0.14 (monthly) and 0.52 (annualized) or 27.3%
and 37.9%, respectively. These figures suggest that exploring dynamically the
betas dispersion can improve risk adjusted returns substantially. As a matter
of comparison, Kelly & Pruitt (2013) 3-pass regression filter methodology
increases in monthly Sharpe ratios by roughly 30%, for an out-of-sample 𝑅2

of 0.9% (1-month ahead returns).
What about the point estimates for the CSDB measures predictability

coefficient? Table D.13 present in-sample OLS regression results for one-
year ahead returns for all considered CSBD measures. Each column presents
univariate regression results. Consider first the CSBD standard deviation
measure (𝜎𝑡(𝛽𝑖)): t’s point estimate is −0.331, with an in-sample 𝑅2 of 3.6%.
A negative coefficient means that an increase in CSBD is related to a negative
market return 1-year ahead. As we can infer from the table, point estimates
are negative for all CSBD metrics. The section 2.4 discusses the economic
interpretation of our results.

What about the size of the coefficient and it’s economic relevance?
The unconditional mean of 𝜎𝑡(𝛽𝑖) is 0.44, with a standard deviation of 0.11.
Therefore ,an increase in one standard deviation of this CSBD metric is
associated with a decrease of approximately 3.7% in annualized market returns
for the 1-year ahead horizon (0.11·𝑏 = 0.037). The same calculation for the 70th
interquartile range (an incresase in 1 standard deviation) lead to a decrease
of 4.8% in one-year ahead returns. Regardless of the CSBD metric considered,
point estimates suggest relevant economic impacts on future market returns.

2.4
Robustness and Additional Results

2.4.1
Fama-French 150 univariate Portfolios Betas dispersion

The previous section presented results for market return predictability
using individual stocks betas CSBD measures. This section presents, as a
robustness check, results using portfolio data to estimate betas. We use, as
common in the empirical finance literature, Fama and French‘s portfolios data-
set.

We perform the computation of monthly rolling CAPM betas for the
fifteen available uni-variate portfolio sorts based on characteristics, namely:
size, book-to-market, operating profitability, investment, earnings-price, cash-
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flow-price, dividend-yield, accruals, market betas, net share issuance, variance
and residual variance and, finally, all three sorts based on prior returns
(momentum, short term and long term reversal). There are 15 potential factors
and 10 uni-variate sorts for each factor, for a total of 150 portfolios in the data-
set. There is no data for several uni-variate sorts on these characteristics before
1965 on the authors website.

Rolling regressions use 24, 36 and 48 month windows to compute CAPM
betas for each of the FF portfolios, running time-series regressions of the form:
𝑅𝑒,𝑝

𝑡 = 𝛼𝑝+𝛽𝑚
𝑝 ·𝑟𝑒,𝑚

𝑡 +𝜇𝑝
𝑡 , where 𝑝 indexes the Fama-French uni-variate portfolio.

We end up with a panel data set of portfolio betas, from 1967 to the end of 2018.
We then compute, as in the individual stocks case, cross-sectional moments: for
each 𝑡 we measure the cross-section dispersion (CSBD) for conditional betas
relative to their unconditional means: 𝛽𝑝

𝑇 = 𝛽𝑝
𝑇 −𝛽𝑝

𝑇 , where 𝛽𝑝
𝑇 = 𝑇 −1 ∑︀𝑇

𝑠=1(𝛽𝑝
𝑠 )

is the time-series average of the rolling-beta estimate up to time 𝑡 = 𝑇 .
In-sample predictability results are in Table D.14. For the cross-section

standard deviation of portfolio betas, 𝑅2 reach 0.62% for 1-month ahead
return forecasts and we can reject the null of no predictability at 5%. Other
dispersion measures, like interquartile ranges, have higher explanatory power:
interquartile ranges deliver an in-sample 𝑅2 that range from 1.07% to 1.29%,
all significant at 1% level. Adding more than one variable typically increases
in-sample R-squared as well. One-year ahead return forecasts regressions have
higher 𝑅2, but most of the dispersion measures are significant only at a 5% or
less confidence levels, given the persistence of the regressors.

Out-of-sample predictability is also high when considering the Fama-
French 150 portfolios CSDB. Table D.15 first panel presents a comparison
of the out-of-sample-𝑅2 between models that use one single CSBD measure,
together with encompassing statistics tests for one single sample split date
for sake of brevity (1990): 1-year ahead out-of-sample range from a lower
bound of 0.07% for the cross-section standard deviation of portfolio betas,
not statistically significant. The upper bound reaches 5.55% for the 90th
interquartile range and highly significant. One-month ahead returns statistics
are lower and even negative in some cases, but typically this is a higher bar.
In the bottom panel we can see that a model that uses both the cross-section
standard deviation and the interquartile range delivers higher and significant
results both for the one-month horizon (2.84%) and one-year horizon (11.35%).
Contrary to the individual stock’s case, for the portfolios maybe cross-sectional
variation is better captured by more than one metric alone.

Figure C.9 shows that this out-of-sample forecastability is robust to dif-
ferent training samples. It plots out-of-sample 𝑅2 statistic for the multivariate
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model that uses cross-section standard deviation and the 80th interquartile
range. The out-of-sample 𝑅2 Statistic is positive regardless of the cut-off, rang-
ing for 1-year ahead forecasts, from negative in the beginning of the sample
split dates to 10-14%, then falling again at the end of the training sample split
(2000 and beyond). These figures, even though lower and more unstable than
in the individual stocks case, provide additional evidence that combining cross-
section dispersion with time variation in betas relative to their unconditional
mean has strong predictive power for the equity risk premium.

What about the relative performance of our proposed CSBD to simple
factor spreads? The value-spread, or the difference between betas of high
and low book-to-market firms, is one of the several regressors tested in the
zoo of predictability (Zhang, 2005). We compute a synthetic mean value
spread of all the high-minus-low spreads of each individual 15 univariate
sorts on characteristics (factors): (15−1 · ∑︀15 (𝛽𝐻

𝐹,𝑡 − 𝛽𝐿
𝐹,𝑡)), where 𝐹 represents

each individual FF univariate portfolio. Factor spreads has a good relative
performance relative to other CSBD measures considering the univariate
models. However, it has worse out-of-sample results. The bottom panel of D.15
presents a negative out-of-sample statistic for the synthetic factor beta spread
when considered individually, both for 1-month and 1-year ahead horizons.
Multivariate versions that combine it with other CSBD measure can deliver
positive out-of-sample 𝑅2: they 2.08% or even 9.58% for 1-year ahead returns,
but they always lower than those of multivariate regressions that use solely
CSBD.

This section presented evidence of both in-sample and out-of-sample
predictability for our proposed betas dispersion measures (CSBD) using Fama-
French 150 univariate sorts on characteristics betas, instead of individual
S&P500 stocks and. CSBD seems also a better out-of-sample forecaster of
market returns than simple betas spreads, at least for the FF portfolios
considered. We turn in the next section to the relation between CSBD and
other standard predictors in the literature, like the dividend-to-price ration

2.4.2
Betas Dispersion and the Zoo of Predictors

It is a well established empirical fact that several candidates in the zoo
of predictors of market returns, like the dividend-to-price ratio, have typically
poor out-of-sample explanatory power and also unstable in-sample predictabil-
ity (see Kelly & Pruitt (2013) and Goyal & Welch (2008)). Nevertheless, it is
important to understand how our proposed measures correlate to these stan-
dard predictors in the literature. The main reason behind it is the clear the-
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oretical link between valuation ratios and future returns, as given by present
value relations like in Campbell & Shiller (1988)2.11.

We present two exercises to address this question. In the first, we perform
simple OLS regressions using our CSBD measures as the dependent variable
and other usual regressors in the literature as explanatory variables. In the
second, we perform our in-sample forecast regressions controlling additionally
for these other regressors to check if our beta dispersion measures have
explanatory power above and beyond these other candidates, in a horse race
or kitchen sink approach.

We choose as regressors the following variables, all obtained in Goyal
& Welch (2008) website. The first variable considered is the Stock Variance
(svar), computed as the sum of squared daily returns on the S&P 500. The
second is the Cross-Sectional Premium (csp) of Polk et al. (2006): their cross-
sectional beta premium measures the relative valuations of high- and low-beta
stocks. For valuation ratios we consider the following four: (i) dividend-to-
price ratio (d/p), the difference between the log of dividends and the log of
price; (ii) The earnings-to-price ratio (e/p) is the difference between the log
of earnings (12-month moving sums of earnings on the S&P 500 index) and
the log of prices; (iii) The book-to-market ratio (b/m) is the ratio of book
value to market value for the Dow Jones Industrial Average. (iv) The dividend
yield (d/y) is the difference between the log of dividends and the log of lagged
prices. Finally, a typical macro factor considered is the Term Spread (tms), or
the the difference between the long term yield on government bonds and the
Treasury-bill for the US.

The first exercise explores the correlation, in a OLS regression setting, be-
tween the cross-section beta standard deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)) and these candidates.
Remember that point estimates for all dispersion measures in the in-sample
forecasting regressions are negative, see for example Table D.13: an increase
in CSBD leads to negative market returns for all horizons. Are these results
consistent with the correlations in Table D.16? Let us take the 𝑑𝑝 ratio as
an example. We know from the empirical literature that low prices relative to
dividends tend to forecast higher subsequent returns for the market: that is,
in a forecast regression between 𝑑𝑝 and future market returns, the coefficient
is positive. That would, in turn, translate into a potential negative correlation
between 𝑑𝑝 and CSBD measures. This is exactly what we get empirically, as
2.11As Cochrane (2008) suggests, given present value relations, if market returns are not

predictable by valuation ratios, than the dividend growth must be predictable, to generate
the observed variation in divided yields. It is exactly the absence of dividend growth
predictability, rather than any potential finding of return predictability, that gives a stronger
evidence for time variation in the equity risk premium
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we can see from Table D.16. As another example, consider an increase in the
cross-section premium (csp), that leads to higher future market returns, as
shown in Polk et al. (2006). One should expect a negative correlation between
csp and CSBD, also what we get empirically. The only variable that has a
positive correlation to the CSBD in betas is the term-spread (tms), which typ-
ically increases during recessions, when the FED tends to ease monetary policy
aggressively. Finally, the last column presents the correlation to all these other
variables combined together in a single regression: in-sample 𝑅2 reaches only
13%, what suggests that there is still a lot of time series variation in CSBD
that is not captured by these other typical regressors in the literature.

Our second exercise is just a horse race between our proposed betas
CSBD measures and these other regressors. Table D.17 presents results for
one-year ahead return forecasts using the standard deviation of betas as the
CSBD measure. It survives the inclusion of all the above candidates, both in a
pairwise fashion and also when we include all of them together (last column).
Point estimates for 𝜎𝑡(𝛽𝑖) remain negative across the board. in-sample 𝑅2

increase to almost 19% (18% for the adjusted 𝑅2) when controlling for all
alternative regressors.

These correlation results should no be surprising. As noted by Cochrane
(2009) “most of these variables are correlated with each other and correlated
with or forecast business cycle. Expected returns vary over business cycles; it
takes a higher risk premium to get people to hold stocks at the bottom of a
recession. When expected returns go up, prices go down. We see the low prices,
followed by the higher returns expected and required by the market”.

Naturally, we haven’t explored the correlation to all potential factors
in the predictability zoo: Harvey et al. (2016) and Freyberger et al. (2020)
show that there are hundreds of factors that potentially explain the cross-
section of stock returns. And, as our paper suggests, any such variable would
be a good candidate to also forecast the equity risk premium. However, our
simple measure extracted from the cross-section information of betas has at
least explanatory power above and beyond the most traditional valuation and
macro factors in the literature. We next turn to how our proposed CSBD
measures vary along the business cycle.

2.4.3
Betas Dispersion and the Business Cycle

We relate the cross-section dispersion measures (CSBD) to the NBER
Recession indicators, as a first attempt to measure how they vary across the
business cycle. Figure C.7 plots the time series of 𝜎𝑖(𝛽𝑖

𝑡) in the first panel (the
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1st panel from top left to right) since 1930. NBER recession indicators are
shaded areas in the chart. We also plot the time-series of some usual forecasting
variables, like the dividend-to-price ratio (dp), the cross-section premium of
Polk et al. (2006) and the aggregate market book-to-market ratio.

One can see from visual inspection that the CSBD measured by the cross-
sectional standard deviation typically rises prior to recessions and falls sharply
during recessions. The 2002 dot-com recession seems to be the exception, since
CSBD fell only after the end of NBER dating dummy. Figure C.8 plots the
same chart but changing the CSBD metric to the 70th interquartile range. The
same previous pattern seems pervasive in the data, regardless of the metric:
CSBD tend to rise prior to recessions and fall sharply during recessions. These
results are qualitative compatible with our empirical findings. Remember that
CSBD point estimates are negative for future market returns. Therefore, a high
CSBD leading to a recession, when usually valuations are stretched, prices are
high and leverage is high, is suggestive of negative future market returns ahead.
During recessions, CSBD falls, which is empirically consistent with positive
future market returns: recessions are moments of higher risk premium, when
agents demand higher expected future returns to carry increased risk.

One other interesting empirical pattern of the cross-sectional dispersion
in Betas is it’s relation to the dividend-to-price ratio. Figure C.9 plots the
empirical kernel density of 𝜎𝛽

𝑡 on the x-axis for different sub-samples. The first
density plots data for the whole sample period (1930-2017). We also split the
sample in moments of high and low dividend-to-price Ratios (dp)2.12. A high
dp is associated with low prices relative to dividends and bad economic states,
like recessions. During those times, prices are depressed and expected future
market returns are positive because agents demand higher risk premium to
carry increased consumption risk.

One can see from the figure that the CSBD measure shifts left and
becomes more compressed on the sub-sample of high dividend-to-price ratios.
During economic bad times, when prices are low and dp is high, the empirical
distribution of betas standard deviation shifts to the left, that is CSBD tends
to fall. In other words, betas become closer to their "true" unconditional mean
beta and also closer to each other. Conversely, on moments of low dp the
empirical distribution of betas has even two tails. This empirical pattern also
holds when considering the 70th percentile interquartile range (right panel):
the IQR range shifts left in the sub-sample of high dp, that is, in bad times,
individual stock betas become more closer to their unconditional mean and
2.12We split the sample formally into the high-dp bin (low bin) for months for which 𝑑𝑝

higher then the unconditional average of 𝑑𝑝 plus (minus) 1.5 times standard deviation
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the interquartile range decreases.
This empirical pattern is closely related to the beta compression result

of Frazzini & Pedersen (2014): they show in their paper that betas tend to
be compressed towards one in moments when leverage restrictions become
binding. These are typically associated with recessions and bad economic
times, when banks tend to be more conservative in their lending standards2.13.
Our empirical findings suggest that betas also tend to be compressed to their
unconditional mean during bad times. In addition, as the next section shows,
our proposed CSBD metric has a stronger predictive power out-of-sample.

2.4.4
Do other Betas Dispersion Measures forecast the ERP?

This section presents brief empirical results of using the dispersion of
stock’s betas relative to the market beta of one as a forecasting variable
for market returns. Following the intuition in Frazzini & Pedersen (2014),
we compute 𝛽* = 𝛽𝑖

𝑡 − 1 for all stocks and then calculate cross-section
dispersion2.14. As previously pointed out, Table D.2 presents simple correlation
(in-sample) for both metrics, ranging from 0.65 to 0.83: both dispersion
measures have a strong correlation, at least unconditionally.

Figure C.10 presents out-of-sample 𝑅2 statistics for alternative dispersion
measures using 𝛽* for several alternative training samples. As before, on the
X-axis we have the different sample date cut-offs for the training sample and
on the Y-axis the out-of-sample 𝑅2 relative to that sample split. As one can
see from the left panel, even when positive, they reach at most 2% for one-
year ahead returns. The right panel presents results for winsorized versions
of the cross-section dispersion measured by the standard-deviation (𝜎𝑡(𝛽*)):
for them the statistic reach at most 2.5%. All these figures are much lower in
comparison to CSBD out-of-sample 𝑅2 statistics, which is suggestive of our
measure’s greater forecasting power for market returns.

That both measures of cross-section dispersion have predictive power for
the market returns provide additional empirical evidence of return predictabil-
ity and, thus, of time varying equity risk premium. Our findings also present
additional empirical evidence that betas dispersion across time is, by itself, a
function of the same time varying risk premium.
2.13The author’s show that funding shocks have further implications for the cross-section

of asset returns. Specifically, a funding shock makes all security prices drop together,
compressing betas toward one. Proposition 4 of Frazzini & Pedersen (2014) show that when
the conditional variance of the stochastic discount factor rises (falls) the conditional return
betas of all securities are compressed toward one (become more dispersed)
2.14Our CSBD measure is computed for each 𝑡 from conditional CAPM betas deviations

from the stock historical mean up to that moment ( ̃︀𝛽𝑖
𝑡 = 𝛽𝑖

𝑡 − ¯𝑏𝑒𝑡𝑎𝑖
𝑡)
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2.5
Conclusion

We propose novel forecasting variables for aggregate market returns that
solely use cross-sectional information on CAPM betas moments. In a simple
forecasting equation 𝐸𝑡[𝑅𝑚

𝑡+𝑘] = 𝑎 + 𝑏 · 𝑋𝑡 our idea is to identify 𝑧𝑡 from the
empirical distribution of conditional betas. Among other empirical moments,
we consider measures of cross-sectional dispersion of betas relative to their
unconditional mean (𝛽𝑖

𝑡 − 𝛽𝑖
𝑡).

We show in this paper that time varying CAPM betas contain informa-
tion about future expected returns. If the conditional CAPM holds, than there
is a common element affecting both betas and the risk premium. But we know
from Lewellen & Nagel (2006) and others that conditional models typically
do not work well. However, the case we try to make is that even limited time
series variability in the betas of individual stocks and portfolios, combined
with cross-section information and moments, has enough informative power to
forecast the Equity Risk Premium (ERP).

The cross-sectional dispersion of Betas (CSBD) forecast the market risk
premium both in and out-of-sample. In-sample 𝑅2 are significant using a
bootstrap procedure to tackle the persistence of regressors bias. CSBD also
forecasts market returns out-of-sample, delivering out-of-sample 𝑅2 statistics
that range between 4-10% for one-year ahead (0.4-0.7% for one-month ahead)
returns. These levels of predictability match other recent work like Kelly &
Pruitt (2013) with a much simpler and intuitive empirical methodology. CSBD
out-of-sample forecasting power is also robust to several different training
samples and tend to increase over time (see Figure C.2).

CSBD works independently of measurement: results are robust to alter-
native definitions of cross-section dispersion, like standard deviation, interquar-
tile ranges and winsorized versions that control for potential outliers. CSBD
also works when we consider betas of Fama-French univariate portfolio sorts
on 15 characteristics to compute cross-section dispersion measures, instead of
individual stocks.

Unlike most measures in the literature, ours is not a price- or valuation-
based ratio. Our approach is also an alternative to models that use the cross-
section of valuation ratios to infer the conditional market risk premium.

Cross-section dispersion (CSBD) is only mildly correlated with other
standard predictors of market returns, such as dividend-to-price, dividend
yield, book-to-market, market variance, cross-sectional premia. in-sample 𝑅2

of univariate OLS regression on several such variables reach at most 20%,
suggesting that there is still plenty of time variation of CSBD that is not
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captured by these other predictors in the literature. Despite being correlated,
CSBD also has explanatory power above and beyond these standard predictors,
surviving in-sample the inclusion of several of them in a typical horse race
forecasting regression.

CSBD predictability is economically relevant: a investor that trades
dynamically conditioning on CSBD can increase it’s annualized Sharpe ratio
up to 38% relative to buy and hold strategies. They also vary counter-cyclically
with the business cycle: they tend to increase prior to NBER recessions, when
prices are high, dividend-price ratios are low, firms agents and government
tend to be leveraged, and future market returns tend to be negative. During
NBER recessions CSBD tend to fall sharply, exactly when prices are low
relative to dividends, dividend-price ratios and risk premia are high, exactly
moments of future higher expected returns. These empirical findings provide
not only additional evidence of market return predictability and time varying
risk premium, but also that betas dispersion across time is, by itself, a function
of time varying risk.
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Figure A.1
Monetary slope by Country against G10 (average) – Full Sample Estimates

Note: Results presented consider slope first-stage estimation using all available data, using
3-month futures rates. slope3

𝑖,𝑡 is defined as the residual of the regression of weekly changes in
3-month interest rate futures on weekly changes in one-month futures rates for each country.
We run the following regression for each country in our sample using all available data across
𝑡: Δ𝑓𝑓3

𝑖,𝑡 = 𝛼𝑛 +𝛽𝑛 ·Δ𝑓𝑓1
𝑖,𝑡 + 𝜖3

𝑖,𝑡 and define 𝜖3
𝑖,𝑡 = slope3

𝑖,𝑡. We report weekly slope estimates
for all G10 countries (red line) and also the synthetic G10 average (gray line). Sample from
1994-2007.
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Figure A.2
Long - Short Country slope Portfolio Strategy

Note: Long-Short Country slope Portfolio. For each week we sort G10 countries (ex US)
by their previous week point slope measure and divide them into 2 bins: High slope and
Low slope. Following Panel regressions in-sample point estimates (𝜑𝑛 < 0), a positive slope
for country 𝑖 leads to positive currency return against the US dollar up to 4-week ahead.
We go long the High slope bin and go short the Low slope bin. Cumulative portfolio excess
returns in Panel for the whole sample for several measures of Recursive slope estimate
training samples (4,5,6 and 10-year) (cumulative return𝑡 =

∑︀𝑡
𝑠=0 𝑟𝑥𝑠). We re-balance the

portfolio each week. Sharpe ratios are adjusted for transaction costs following the limiting
case estimates in Karnaukh (2020).
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Figure A.3
Long - Short Country slope Portfolio Strategy

(a) Cumulative Returns (b) Strategy Drawdown

Note: Long-Short Country slope Portfolio. For each week we sort G10 countries (ex
US) by their previous week point slope measure and divide them into 2 bins: High
slope and Low slope. Following Panel regressions in-sample point estimates (𝜑𝑛 < 0),
a positive slope for country 𝑖 leads to positive currency return against the US dollar
up to 4-week ahead. We go long the High slope bin and go short the Low slope bin.
Panel (a) present cumulative portfolio excess returns in Panel for the whole sample for
2 measures of Recursive slope estimate: 5-year training sample and 10-year training sample
(cumulative return𝑡 =

∑︀𝑡
𝑠=0 𝑟𝑥𝑠). Panel (b) computes the strategy draw-down up to time 𝑡

(drawdown𝑡 =
∑︀𝑡

𝑠=0 𝑟𝑥𝑠 − max(
∑︀𝑡

𝑠=0 𝑟𝑥𝑠)). We re-balance the portfolio each week. Sharpe
ratios are adjusted for transaction costs following the limiting case estimates in Karnaukh
(2020).
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Figure A.4
Long - Short Country slope Portfolio Strategy – Different Training Samples

(Recursive)

Note: Long-Short Country slope Portfolio annualized Sharpe ratios (Y-Axis). Sharpe ratios
are adjusted for transaction costs following estimates in Karnaukh (2020). The X-Axis refers
to each slope training window 𝑇𝑘: for each window we run the first stage slope model up to
𝑡 = 𝑇𝑘, save coefficients and use them to compute slope measure from (𝑇𝑘 : 𝑇 ). We then
apply the strategy conditioning on each slope point estimate, re-balancing each week, and
compute total Sharpe ratio of that strategy between 𝑡 = [𝑡𝑘, 𝑇 ]. Portfolio formation: for each
week we sort G10 countries (ex US) by their previous week point slope estimate and divide
them into 2 bins: High slope and Low slope. Following Panel regressions in-sample point
estimates (𝜑𝑛 < 0) a positive slope at country 𝑖 leads to a positive currency return against
the US dollar. Therefore we go long the High slope bin and go short the Low slope bin.
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Figure A.5
Tactical Dollar Portfolio Conditioning on slope – Cumulative Returns

(a) 5-year Training Sample

(b) 10-year Training Sample

Note: Long - Short G10 currencies Portfolio conditioning on slope estimates. We present
results for 2 Models: Model I that conditions on slope-difference and Model III that
conditions only on US slope information at 𝑡 − 1. Both panels report strategy portfolio
excess returns up to time 𝑡. Panel (a) presents results for a 5-year training sample and Panel
(b) for a 10-year training sample. Strategies are performed by computing recursive slope
estimates: going either long-short G10 (ex us) currencies conditioning on slope information.
Point estimate for slope-difference in Model I (𝜑difference is positive, suggesting a strategy
that goes long (short) G10 when average G10 slope difference against the US is positive
(negative). We re-balance each week, accordingly. This is the tactical Long-Short Dollar
Portfolio.
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Figure A.6
Tactical Dollar Portfolio Conditioning on slope – Drawdowns

(a) 5-year Training Sample

(b) 10-year Training Sample

Note: Long - Short G10 currencies Portfolio conditioning on slope estimates. We present
results for 2 Models: Model I that conditions on slope-difference and Model III that
conditions only on US slope information at 𝑡−1. Both panels report strategy portfolio excess
returns maximum drawn-down up to time 𝑡: drawdown𝑡 =

∑︀𝑡
𝑠=0 𝑟𝑥𝑠 − max(

∑︀𝑡
𝑠=0 𝑟𝑥𝑠)).

Panel (a) presents results for a 5-year training sample and Panel (b) for a 10-year training
sample. Strategies are performed by computing recursive slope estimates: going either long-
short G10 (ex us) currencies conditioning on slope information. Point estimate for slope-
difference in Model I (𝜑difference is positive, suggesting a strategy that goes long (short) G10
when average G10 slope difference against the US is positive (negative). We re-balance each
week, accordingly. This is the tactical Long-Short Dollar Portfolio.
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Figure A.7
Long-Short Currency Strategy Conditioning on Long-Term Yields slope

(a) Total Return

(b) Maximum Drawn-Down

Note: Long-Short Country slope Portfolio using 10-year Bond Yields minus 3-month slope.
For each week we sort G10 countries (ex US) by their previous week point long-term slope
measure and divide them into 2 bins: High slope and Low slope. Following Ang & Chen
(2010) empirical results, a positive 10-year slope for country 𝑖 leads to negative currency
return against the US dollar over the medium term. Contrary to our empirical findings, we
build this portfolio going long the Low slope bin and go short the High slope bin. Cumulative
portfolio excess returns in the left Panel for both the long-short and also the tactical-
Dollar strategy (cumulative return𝑡 =

∑︀𝑡
𝑠=0 𝑟𝑥𝑠). The right panel computes the strategy

maximum drawn-down. We re-balance the portfolio each week. Sharpe-ratios are adjusted
for transaction costs following the limiting case estimates in Karnaukh (2020).
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Table B.1
Currency Portfolios Sharpe Ratios (Annualized)

Unconditional Currency Strategies
Full Large slope No-FOMC and Large FOMC

Long G10 (Dollar Portfolio) 0.15 0.21 0.13 -0.14
Carry Trade 0.3 0.33 0.23 0.38

slope Conditional Currency Strategies
Full Large slope No-FOMC and Large FOMC

Long-Short Currency slope𝑎 0.38 0.50 0.52 0.68
Tactical Dollar Portfolio𝑏 0.4 0.56 0.90 0.26

Notes: All figures are annualized Sharpe ratios, approximately adjusted for transaction
costs. For all strategies, we compute returns on different sub-samples: all sample weeks,
on FOMC Weeks only, on weeks with large G10 average slope (bigger in absolute values
than 0.5 times the standard deviation, always computed up to the week we are forming
the portfolio), in No-FOMC weeks with large G10 slope. Currency returns are measured
using London fixing (Wed-Wed carry adjusted returns). slope for the US and Canada is
constructed using Tue-Tue weekly data to assure we have all information when forming
portfolios. Measures used to construct slope conditional portfolios are recursively computed.
Long-G10 is the simple the average unconditional return of an equally weighted long G10
currencies and short the US Dollar. The carry-trade is the unconditional carry strategy,
to adjusted for transa in our G10 sub-sample: for each week we sort currencies based on
their interest rate differential relative to the US, going long the high carry and short the
low carry currencies. Novel Currency strategies: (a) strategy that uses individual country
slope information at 𝑡 to construct a long-short portfolio. Panel regressions point estimates
suggest a negative delayed reaction for slope. We use this information to sort countries based
on their slope measure in week 𝑡 into a High and a Low slope bin. We go long the high and
short the low bin each week, re-balancing weekly; (b) we use information on slope difference
between a synthetic G10 average and the US to tactically trade the Dollar portfolio: when
slope difference is positive (negative) we go long (short) the G10 equally weighted currency
portfolio, re-balancing weekly
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Table B.2: Monetary slope Model Estimation by Country

USD EUR JPY GBP CAD AUD NZD CHF
constant −.00 −.00 .00 −.00 −.00 −.00 −.00 −.00

(.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00)
Δ𝑓𝑓 1

𝑁 .63*** .79*** 1.12*** .70*** .78*** .81*** .73*** .86***

(.04) (.07) (.09) (.08) (.06) (.10) (.03) (.05)
R2 .42 .57 .58 .59 .57 .51 .56 .54
Adj. R2 .42 .57 .58 .59 .57 .51 .56 .54
Num. obs. 1157 1216 1253 824 1253 1253 1174 1253

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. We report boot-strapped
standard errors in parentheses to account for constructed regressor bias. Results presented
consider slope first-stage estimation using all available data, using 3-month futures rates.
slope3

𝑖,𝑡 is defined as the residual of the regression of weekly changes in 3-month interest
rate futures on weekly changes in one-month futures rates for each country. We run
the following regression for each country in our sample using all available data across 𝑡:
Δ𝑓𝑓3

𝑖,𝑡 = 𝛼𝑛 + 𝛽𝑛 · Δ𝑓𝑓1
𝑖,𝑡 + 𝜖3

𝑖,𝑡 and define 𝜖3
𝑖,𝑡 = slope3

𝑖,𝑡.

Table B.3
Full Sample Adjusted slope Correlation: Δ𝑓𝑓 3

𝑖,𝑡 = 𝛼𝑛 + 𝛽𝑛 · Δ𝑓𝑓 1
𝑖,𝑡 + slope3

𝑖,𝑡

G10 (avg) EURGBP (avg) EUR JPY GBP CAD AUD NZD CHF
G10 1 0.53 0.50 0.32 0.03 0.48 0.76 0.71 0.62

EURGBP 0.53 1 0.67 0.82 0.07 0.11 0.12 0.12 0.29
EUR 0.50 0.67 1 0.13 0.01 0.26 0.22 0.12 0.29
GBP 0.32 0.82 0.13 1 0.10 0.06 0.01 0.07 0.17
JPY 0.03 0.07 0.01 0.10 1 0.05 0.08 0.08 0.01
CAD 0.48 0.11 0.26 0.06 0.05 1 0.15 0.14 0.10
AUD 0.76 0.12 0.22 0.01 0.08 0.15 1 0.60 0.41
NZD 0.71 0.12 0.12 0.07 0.08 0.14 0.60 1 0.30
CHF 0.62 0.29 0.29 0.17 0.01 0.10 0.41 0.30 1

Notes: Simple pairwise correlation coefficient for slope (slope3
𝑖,𝑡), estimated using all

available data. G10 synthetic slope is a cross-sectional average computed for each 𝑡 using
individual country slope measures. EURGBP is the simple average of the Euro area and
Great Britain slope estimates, the most liquid and traded interest futures markets.
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Table B.4
Interest Rate Futures and Monetary slope Descriptive Statistics by Country

Variable Stat USD EUR JPY GBP CAD AUD NZD CHF
slope3

𝑖,𝑡 𝜇 0 0 0 0 0 0 0 0
𝑃10% −4.04 −4.68 −3.03 −5.26 −8.84 −11.21 −9.68 −7.71
𝑃90% 4.96 4.58 2.31 5.50 7.92 10.83 8.96 7.60

𝜎 0.16 0.15 0.11 0.23 0.28 0.32 0.19 0.20
slope3

𝑖,𝑡 𝜇 0 0 0 0 0 0 0 0
𝑃10% −5.35 −6.42 −3.75 −11.45 −11.39 −7.05 −5.47 −4.81
𝑃90% 4.91 5.96 3.90 10.80 10.84 7.54 5.51 4.50
Std 0.16 0.21 0.12 0.38 0.31 0.20 0.25 0.14

𝑓𝑓1
𝑖,𝑡 𝜇 2.59 2.49 0.45 3.01 3.05 4.80 5.27 1.18

𝜎 0.07 0.05 0.01 0.07 0.05 0.05 0.07 0.04
𝑓𝑓 1

3,𝑡 𝜇 2.61 2.45 0.51 2.45 3.18 4.94 5.35 1.35
𝜎 0.07 0.06 0.02 0.07 0.06 0.05 0.06 0.04

Δ𝑓𝑓1
𝑖,𝑡 𝜇 −0.15 −0.51 −0.14 −0.58 −0.19 −0.25 −0.57 −0.36

𝜎 0.22 0.22 0.11 0.38 0.41 0.40 0.41 0.26
Δ𝑓𝑓 3

𝑖,𝑡 𝜇 −0.30 −0.69 −0.13 −0.65 −0.22 −0.27 −0.47 −0.31
Std 0.21 0.23 0.17 0.35 0.42 0.45 0.41 0.30

Notes: All data are in basis points (percentage points * 100). 𝜇 and 𝜎 are the cross-sectional
(country) mean and standard deviation across 𝑡. 𝑃10% and 𝑃90% are the 10th and 90th
percentile across 𝑡 for each metric. 𝑓𝑓1

𝑖,𝑡 and 𝑓𝑓3
𝑖,𝑡 are, respectively, the 1-month and 3-

month future interest rate level. Δ𝑓𝑓1
𝑖,𝑡 is the weekly change in futures. Short-term structure

slope or monetary slope (slope3,6
𝑈𝑆,𝐺10) is defined as the residual of the regression of weekly

changes in 3-6 month interest rate futures on weekly changes in one-month futures rates
for each country. We run the following regression: Δ𝑓𝑓3

𝑖,𝑡 = 𝛼 + 𝛽 · Δ𝑓𝑓1
𝑖,𝑡 + 𝜖3

𝑖,𝑡 and define
𝜖3

𝑖,𝑡 = slope3
𝑖,𝑡) for each G10 country

Table B.5
G10 (ex US) Currency Returns – Descriptive Statistics by Country

Variable Stat EUR JPY GBP CAD AUD NZD CHF
𝑓 𝑖

𝑡 − 𝑠𝑖
𝑡 ≈ 𝑖𝑛

𝑡 − 𝑖𝑢𝑠
𝑡 𝜇 −0.63 −2.65 0.70 0.07 2.00 2.61 −1.89

𝜎 0.04 0.06 0.03 0.03 0.05 0.04 0.04
𝑟𝑥𝑖

𝑡→𝑡+1 𝜇 2.49 −2.47 0.24 0.34 2.46 3.43 −0.25
𝜎 3.59 2.20 1.84 1.73 2.47 2.61 2.32

Sharpe Ratio 0.14 −0.23 0.03 0.04 0.20 0.27 −0.02
𝑟𝑥𝑖

𝑡→𝑡+4 𝜇 2.50 −2.83 0.32 0.22 2.58 3.72 −0.44
𝜎 1.77 1.14 0.90 0.81 1.22 1.27 1.14

Sharpe Ratio 0.14 −0.26 0.04 0.03 0.22 0.30 −0.04
𝑟𝑥𝑖

𝑡→𝑡+52 𝜇 2.06 −2.70 −0.01 0.02 2.06 2.85 −0.55
𝜎 0.47 0.32 0.25 0.23 0.38 0.41 0.28

Sharpe Ratio 0.13 −0.25 −0.001 0.002 0.16 0.21 −0.06

Notes: Interest rates and returns data are presented in annualized terms and percentage
points. Sharpe ratio is unconditional buy-and-hold full sample strategy annualized return
𝜇 is the simple cross-sectional arithmetic mean and 𝜎 is the standard deviation (across 𝑡).
Currency (log) excess returns for country n from week 𝑡 to 𝑡 + 𝑘 is defined as 𝑟𝑥𝑖

𝑡→𝑡+𝑘 =
𝑓 𝑖

𝑡 −𝑠𝑖
𝑡 −Δ𝑠𝑖

𝑡+1, where 𝑓 𝑖
𝑡 is the (log) currency forward rate and 𝑠𝑖

𝑡 is the (log) exchange rate
against the dollar, so that an increase in 𝑠𝑡 means a depreciation of the foreign currency
against the dollar. Interest rate differential against the US is measured by the forward
discount (𝑓 𝑖

𝑡 − 𝑠𝑖
𝑡 ≈ 𝑖𝑛

𝑡 − 𝑖𝑢𝑠
𝑡 ). All currency-returns are measured against the US dollar
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Table B.6
Currency Portfolios Returns – Descriptive Statistics

Portfolio Stats Full Large slope No-FOMC and Large FOMC
Long G10 (Dollar) Sharpe ratio 0.15 0.21 0.13 −0.14

𝜇 2.28 3.59 2.18 −2.26
p-val 0.49 0.54 0.73 0.80

𝜎 108.77 120.99 119.06 116.60
N 1, 065 431 356 170

Carry G10 Sharpe ratio 0.31 0.33 0.23 0.38
𝜇 7.33 8.91 5.97 9.50

p-val 0.16 0.34 0.55 0.49
𝜎 171.63 193.65 189.73 179.77
N 1, 063 430 355 170

Notes: All returns are in basis-points (bps), Weekly observations. Sharpe Ratio in annual-
ized terms. 𝜇 is the unconditional mean return across 𝑡, 𝜎 is the standard deviation of the
mean (across 𝑡). N is the number of weekly observations for that portfolio and sub-sample.
The long G10-short US dollar portfolio (Dollar portfolio) goes long all available G10 cur-
rencies in a given week against the US dollar (simple weighted average). The carry G10
is a carry trade portfolio restricted to our sample of countries: a strategy that goes long
countries with high interest rate differentials (in the cross-section) and shorts low interest
rate differential countries, against the US. We re-balance the carry-trade portfolio weekly.
All returns are gross of transaction costs but are excess returns relative to the risk-free rate.
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Table B.7: Panel of G10 Countries Full Sample – Current Week Impact

Current-Week Return - Model I (𝑟𝑥𝑖
𝑡−1→ 𝑡 = 𝜑1 · slope difference𝑖,𝑡 + Ω𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑖,𝑡))

[1] [2] [3] [4] [5] [6] [7] [8]

slope𝑖,Δ𝑓𝑓3
𝑑𝑖𝑓𝑓 .021*** .022*** .021*** .021*** .021*** .021*** .021*** .021***

(.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005)
Δ𝑓𝑓 𝑖,1

difference .000* −.000
(.000) (.000)

𝑟𝑥𝑖
𝑡−1 −.017 −.019

(.014) (.016)
VIX −.000 −.000

(.000) (.000)
ts𝑢𝑠10yr .000 −.001

(.000) (.001)
ts𝑖10yr .000 .002**

(.000) (.001)
dp −4.451 −4.278

(3.099) (3.018)
ff target −.000 −.002*

(.000) (.001)
R2 .012 .013 .013 .014 .013 .013 .013 .018
Adj. R2 .011 .012 .012 .013 .012 .012 .012 .016
Num. obs. 7640 7640 7623 7573 7359 7573 7640 7343

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly
panel regressions of the form: 𝑟𝑥𝑖

𝑡−1→𝑡 = 𝜑1 · slope difference𝑖,𝑡 + Ω𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑛,𝑡+𝑘,
where 𝑟𝑥𝑖

𝑡−1→𝑡 is the individual country currency return against the USD in the current
week, slope difference𝑖,𝑡 is the slope difference measure (slope𝑖,𝑡 − slope𝑈𝑆,𝑡) estimated in
the first stage regressions, 𝜇𝑖 are individual country fixed effects and 𝑋𝑖,𝑡 is a vector of
controls that vary across time and (potentially) across country. Country G10 currency
returns data built from Thomson Reuters. Currency (log) excess returns for country n
from week 𝑡 to 𝑡 + 𝑘 is defined as 𝑟𝑥𝑖

𝑡→𝑡+𝑘 = 𝑓 𝑖
𝑡 − 𝑠𝑖

𝑡 − Δ𝑠𝑖
𝑡+1, where 𝑓𝑡 is the (log)

currency forward rate and 𝑠𝑡 is the (log) exchange rate against the dollar (an increase in 𝑠𝑡

means a depreciation of the foreign currency against the dollar). Full Sample slope measure
obtained from the first stage regression Δ𝑓𝑓3

𝑖,𝑡 = Δ𝑓𝑓1
𝑖,𝑡 + slope3

𝑖,𝑡) for each country using
full-sample available data. Additional Controls: we include changes to one-month futures
rates differential (Δ𝑓𝑓1

𝑖 − Δ𝑓𝑓1
𝑈𝑆), lagged individual country returns (𝑟𝑥𝑖

𝑡−1), the VIX as a
volatility measure, the US 10 year bond term spread (𝑡𝑠𝑈𝑆10𝑦𝑟), the country 10 year bond
term spread (𝑡𝑠𝑁10𝑦𝑟), US Equity dividend-price ratio (CRSP) (𝑑𝑝), and the federal fund
rates target (ff target).
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Table B.8: Panel of G10 Countries Full Sample – Forecastability
(1-week Ahead Returns)

1-Week Ahead Return - Model I (𝑟𝑥𝑖
𝑡→ 𝑡+1 = 𝜑1 · slope difference𝑖,𝑡 + Ω𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑖,𝑡))

[1] [2] [3] [4] [5] [6] [7] [8]

slope𝑖,Δ𝑓𝑓3
𝑑𝑖𝑓𝑓 .009*** .009*** .009*** .009*** .010*** .009** .009*** .010***

(.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003)
Δ𝑓𝑓 𝑖,1

difference .000 −.000
(.000) (.000)

𝑟𝑥𝑖
𝑡−1 −.014 −.019

(.019) (.020)
VIX −.000 −.000

(.000) (.000)
ts𝑢𝑠10yr .000* −.001

(.000) (.001)
ts𝑖10yr .000 .001

(.000) (.001)
dp −3.132 −2.693

(3.206) (3.087)
ff target −.000 −.001

(.000) (.001)
R2 .002 .003 .002 .002 .004 .002 .003 .006
Adj. R2 .001 .002 .001 .001 .003 .001 .001 .005
Num. obs. 7632 7632 7615 7566 7353 7566 7632 7337

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly
panel regressions of the form: 𝑟𝑥𝑖

𝑡→𝑡+1 = 𝜑1 · slope difference𝑖,𝑡 + Ω𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑛,𝑡+𝑘,
where 𝑟𝑥𝑖

𝑡→𝑡+1 is the one-week ahead individual country currency return against the USD,
slope difference𝑖,𝑡 is the slope difference measure (slope𝑖,𝑡 − slope𝑈𝑆,𝑡) estimated in the first
stage regressions, 𝜇𝑖 are individual country fixed effects and 𝑋𝑖,𝑡 is a vector of controls
that vary across time and (potentially) across country. Country G10 currency returns data
built from Thomson Reuters. Currency (log) excess returns for country n from week 𝑡 to
𝑡 + 𝑘 is defined as 𝑟𝑥𝑖

𝑡→𝑡+𝑘 = 𝑓 𝑖
𝑡 − 𝑠𝑖

𝑡 − Δ𝑠𝑖
𝑡+1, where 𝑓𝑡 is the (log) currency forward

rate and 𝑠𝑡 is the (log) exchange rate against the dollar (an increase in 𝑠𝑡 means a
depreciation of the foreign currency against the dollar). Full Sample slope measure obtained
from the first stage regression Δ𝑓𝑓3

𝑖,𝑡 = Δ𝑓𝑓1
𝑖,𝑡 + slope3

𝑖,𝑡) for each country using full-
sample available data. Additional Controls: we include changes to one-month futures rates
differential (Δ𝑓𝑓1

𝑖 − Δ𝑓𝑓1
𝑈𝑆), lagged individual country returns (𝑟𝑥𝑖

𝑡−1), the VIX as a
volatility measure, the US 10 year bond term spread (𝑡𝑠𝑈𝑆10𝑦𝑟), the country 10 year bond
term spread (𝑡𝑠𝑁10𝑦𝑟), US Equity dividend-price ratio (CRSP) (𝑑𝑝), and the federal fund
rates target (ff target).
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Table B.9: Predictive Regressions Panel of G10 Countries
Model I: 𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘 = 𝜑1 · slope differenceΔ𝑓𝑓3
𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑡+𝑘

Selected Sub-Samples

Full Sample Large slope Weeks
𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

slopeΔ𝑓𝑓3
𝑑𝑖𝑓𝑓 .022*** .009*** .007 .021*** .009*** .007

(.005) (.003) (.005) (.005) (.003) (.005)
Δ𝑓𝑓 𝑖,1

difference .000* .000 .001** .000 .000 .001
(.000) (.000) (.000) (.000) (.000) (.000)

R2 .013 .003 .002 .016 .003 .001
Adj. R2 .012 .002 .001 .014 .001 -.001
Num. obs. 7640 7632 7611 3875 3877 3876

FOMC Weeks No-FOMC and Large Weeks*

𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

slopeΔ𝑓𝑓3
𝑑𝑖𝑓𝑓 .028*** .015*** .000 .018*** .007** .010**

(.005) (.003) (.005) (.005) (.003) (.005)
Δ𝑓𝑓 𝑖,1

difference .001*** .000 −.000 .000 .000 .001**

(.000) (.000) (.000) (.000) (.000) (.000)
R2 .038 .011 .000 .011 .002 .003
Adj. R2 .032 .005 -.007 .009 -.001 .000
Num. obs. 1211 1211 1211 3323 3324 3323

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports
weekly panel regressions for different horizons (𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘): (i) impact on current week
(𝑟𝑥𝑡 = 𝑟𝑥𝑡−1→ 𝑡, where 𝑗 = 1 and 𝑘 = 0), (ii) forecast 1 and 4-weeks ahead (𝑟𝑥𝑡+𝑘 =
𝑟𝑥𝑡→ 𝑡+𝑘, where 𝑗 = 0 and 𝑘 = {1, 4}). Selected Sub-samples: (i) Full sample (all country-
week observations), unbalanced panel; (ii) Large slope Weeks (weeks with |slope diff𝑖,𝑡| >
[𝜇𝑛

slope diff + 0.5 · 𝜎𝑛
slope diff]); (iii) FOMC Weeks only and (iv) No FOMC and Large slope

weeks (unconditional 𝜇𝑛 and 𝜎𝑛 computed excluding FOMC weeks). Panel regressions of
the form: 𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘 = 𝜑1 ·slope difference𝑖,𝑡 +𝜇𝑖 +𝜖𝑛,𝑡+𝑘, where 𝑟𝑥𝑖
𝑡−𝑗→𝑡+𝑘 is the individual

country currency return against the US, slope difference𝑖,𝑡 is the slope difference measure
(slope𝑖,𝑡 − slope𝑈𝑆,𝑡) estimated in the first stage regressions, 𝜇𝑖 are individual country fixed
effects. These regressions don’t control for additional variables (𝑋𝑖,𝑡). Country G10 currency
returns data built from Thomson Reuters. Currency (log) excess returns for country n from
week 𝑡 to 𝑡 + 𝑘 is defined as 𝑟𝑥𝑖

𝑡→𝑡+𝑘 = 𝑓 𝑖
𝑡 − 𝑠𝑖

𝑡 − Δ𝑠𝑖
𝑡+1, where 𝑓𝑡 is the (log) currency

forward rate and 𝑠𝑡 is the (log) exchange rate against the dollar (an increase in 𝑠𝑡 means a
depreciation of the foreign currency against the dollar). Full Sample slope measure obtained
from the first stage regression Δ𝑓𝑓3

𝑖,𝑡 = Δ𝑓𝑓1
𝑖,𝑡 + slope3

𝑖,𝑡) for each country using full-sample
available data.
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Table B.10: Predictive Regressions Panel of G10 Countries
Model II: 𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘 = 𝜑1 · slopeΔ𝑓𝑓3
𝑢𝑠,𝑡 + 𝜑2 · slopeΔ𝑓𝑓3

𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑡+𝑘

Selected Sub-Samples

Full Sample Large slope Weeks
𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

slopeΔ𝑓𝑓3
𝑈𝑆 −.020** −.010 −.003 −.019* −.011 −.004

(.010) (.007) (.012) (.010) (.007) (.012)
slopeΔ𝑓𝑓3

𝐺10 avg .022*** .009*** .007 .021*** .008*** .008*

(.007) (.003) (.005) (.007) (.003) (.005)
R2 .012 .002 .000 .016 .003 .001
Adj. R2 .011 .001 -.001 .014 .001 -.002
Num. obs. 7640 7632 7611 3875 3877 3876

FOMC Weeks No-FOMC and Large Weeks*

𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡0 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

slopeΔ𝑓𝑓3
𝑈𝑆 −.007 −.029*** .020* −.021** −.005 −.011

(.010) (.007) (.012) (.010) (.007) (.012)
slopeΔ𝑓𝑓3

𝐺10 avg .034*** .011*** .006 .017** .008*** .009*

(.007) (.003) (.005) (.007) (.003) (.005)
R2 .040 .016 .002 .011 .002 .001
Adj. R2 .033 .009 -.005 .009 -.001 -.002
Num. obs. 1211 1211 1211 3323 3324 3323

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly panel
regressions for different horizons (𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘): (i) impact on current week (𝑟𝑥𝑡 = 𝑟𝑥𝑡−1→ 𝑡,
where 𝑗 = 1 and 𝑘 = 0), (ii) forecast 1 and 4-weeks ahead (𝑟𝑥𝑡+𝑘 = 𝑟𝑥𝑡→ 𝑡+𝑘, where
𝑗 = 0 and 𝑘 = {1, 4}). Selected Sub-samples: (i) Full sample (all country-week observations),
unbalanced panel; (ii) Large slope Weeks (weeks with |slope difference𝑖,𝑡| > [𝜇𝑛

slope difference +
0.5 · 𝜎𝑛

slope difference]); (iii) FOMC Weeks only and (iv) No FOMC and Large slope weeks
(unconditional 𝜇𝑛 and 𝜎𝑛 computed excluding FOMC weeks). Panel regressions of the
form: 𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘 = 𝜑1 · slope difference𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑛,𝑡+𝑘, where 𝑟𝑥𝑖
𝑡−𝑗→𝑡+𝑘 is the individual

country currency return against the US, slope difference𝑖,𝑡 is the slope difference measure
(slope𝑖,𝑡 − slope𝑈𝑆,𝑡) estimated in the first stage regressions, 𝜇𝑖 are individual country fixed
effects. These regressions don’t control for additional variables (𝑋𝑖,𝑡). Country G10 currency
returns data built from Thomson Reuters. Currency (log) excess returns for country n from
week 𝑡 to 𝑡 + 𝑘 is defined as 𝑟𝑥𝑖

𝑡→𝑡+𝑘 = 𝑓 𝑖
𝑡 − 𝑠𝑖

𝑡 − Δ𝑠𝑖
𝑡+1, where 𝑓𝑡 is the (log) currency

forward rate and 𝑠𝑡 is the (log) exchange rate against the dollar (an increase in 𝑠𝑡 means a
depreciation of the foreign currency against the dollar). Full Sample slope measure: obtained
from the first stage regression Δ𝑓𝑓3

𝑖,𝑡 = Δ𝑓𝑓1
𝑖,𝑡 + slope3

𝑖,𝑡) for each country using full-sample
available.
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Table B.11: Panel of G10 Countries Full Sample – Current Week Impact

Model II (𝑟𝑥𝑖
𝑡−1→ 𝑡 = 𝜑1 · slope𝑢𝑠,𝑡 + 𝜑2 · slope𝑖,𝑡 + Ω𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑖,𝑡))

[1] [2] [3] [4] [5] [6] [7] [8] [9]

slopeΔ𝑓𝑓3
𝑈𝑆 −.013 −.020** −.020** −.020** −.021** −.019* −.019* −.020** −.022**

(.011) (.010) (.010) (.010) (.009) (.010) (.010) (.010) (.009)
slopeΔ𝑓𝑓3

𝑖 .022*** .022*** .022*** .022*** .022*** .022*** .022*** .021***

(.007) (.007) (.007) (.007) (.007) (.007) (.007) (.007)
Δ𝑓𝑓 1

𝑖 .000 −.000
(.000) (.000)

Δ𝑓𝑓 1
𝑈𝑆 −.000* .005

(.000) (.004)
𝑟𝑥𝑖

𝑡−1 −.017 −.019
(.014) (.016)

VIX −.000 −.000
(.000) (.000)

ts𝑢𝑠10yr .000 −.001
(.000) (.001)

ts𝑖10yr .000 .002**

(.000) (.001)
dp −4.461 −3.957

(3.111) (3.064)
ff target −.000 −.007*

(.000) (.004)
R2 .002 .012 .013 .013 .014 .013 .013 .013 .019
Adj. R2 .001 .011 .012 .011 .012 .012 .012 .012 .017
Num. obs. 8072 7640 7640 7623 7573 7359 7573 7640 7343

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly
panel regressions for current-week returns. Panel regressions of the form: 𝑟𝑥𝑖

𝑡−1→𝑡 ==
𝜑1·slope𝑢𝑠,𝑡+𝜑2·slope𝑖,𝑡+Ω𝑋𝑖,𝑡+𝜇𝑖+𝜖𝑛,𝑡+𝑘, where 𝑟𝑥𝑖

𝑡→𝑡+1 is the individual country currency
return against the US one week ahead, slope 𝑖,𝑡 is the slope for country 𝑖 measure and
slope𝑈𝑆,𝑡) is the US measure, both estimated in the first stage regressions. 𝜇𝑖 are individual
country fixed effects and 𝑋𝑖,𝑡 is a vector of controls that vary across time and (potentially)
across country. Country G10 currency returns data built from Thomson Reuters. Full Sample
slope measure: obtained from the first stage regression Δ𝑓𝑓3

𝑖,𝑡 = Δ𝑓𝑓1
𝑖,𝑡 + slope3

𝑖,𝑡) for each
country using full-sample available. Additional Controls: we include changes to one-month
futures rates differential (Δ𝑓𝑓1

𝑖 − Δ𝑓𝑓1
𝑈𝑆), lagged individual country returns (𝑟𝑥𝑖

𝑡−1), the
VIX as a volatility measure, the US 10 year bond term spread (𝑡𝑠𝑈𝑆10𝑦𝑟), the country 10
year bond term spread (𝑡𝑠𝑁10𝑦𝑟), US Equity dividend-price ratio (CRSP) (𝑑𝑝), and the
federal fund rates target (ff target).
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Table B.12: Panel of G10 Countries Full Sample – Forecastability
(1-week Ahead Returns)

Model II (𝑟𝑥𝑖
𝑡→ 𝑡+1 = 𝜑1 · slope𝑢𝑠,𝑡 + 𝜑2 · slope𝑖,𝑡 + Ω · 𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑖,𝑡))

slopeΔ𝑓𝑓3
𝑈𝑆 −.007 −.010 −.010 −.010 −.010 −.013* −.009 −.010 −.014*

(.006) (.007) (.007) (.007) (.008) (.007) (.008) (.007) (.008)
slopeΔ𝑓𝑓3

𝑖 .009*** .009*** .009*** .009*** .008*** .008*** .009*** .008***

(.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003)
Δ𝑓𝑓 1

𝑖 .000 −.000
(.000) (.000)

Δ𝑓𝑓 1
𝑈𝑆 −.000 −.003

(.000) (.006)
𝑟𝑥𝑖

𝑡−1 −.014 −.020
(.019) (.020)

VIX −.000 −.000
(.000) (.000)

ts𝑢𝑠10yr .001* −.001
(.000) (.001)

ts𝑖10yr .000 .001
(.000) (.001)

dp −3.128 −2.794
(3.214) (3.151)

ff target −.000 .002
(.000) (.006)

R2 .001 .002 .003 .002 .002 .005 .002 .003 .007
Adj. R2 -.000 .001 .002 .001 .001 .003 .001 .001 .005
Num. obs. 8064 7632 7632 7615 7566 7353 7566 7632 7337

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly
panel regressions for 1-week ahead returns. Panel regressions of the form: 𝑟𝑥𝑖

𝑡→𝑡+1 =
𝜑1·slope𝑢𝑠,𝑡+𝜑2·slope𝑖,𝑡+Ω𝑋𝑖,𝑡+𝜇𝑖+𝜖𝑛,𝑡+𝑘, where 𝑟𝑥𝑖

𝑡→𝑡+1 is the individual country currency
return against the US one week ahead, slope 𝑖,𝑡 is the slope for country 𝑖 measure and
slope𝑈𝑆,𝑡) is the US measure, both estimated in the first stage regressions. 𝜇𝑖 are individual
country fixed effects and 𝑋𝑖,𝑡 is a vector of controls that vary across time and (potentially)
across country. Country G10 currency returns data built from Thomson Reuters. Full Sample
slope measure: obtained from the first stage regression Δ𝑓𝑓3

𝑖,𝑡 = Δ𝑓𝑓1
𝑖,𝑡 + slope3

𝑖,𝑡) for each
country using full-sample available. Additional Controls: we include changes to one-month
futures rates differential (Δ𝑓𝑓1

𝑖 − Δ𝑓𝑓1
𝑈𝑆), lagged individual country returns (𝑟𝑥𝑖

𝑡−1), the
VIX as a volatility measure, the US 10 year bond term spread (𝑡𝑠𝑈𝑆10𝑦𝑟), the country 10
year bond term spread (𝑡𝑠𝑁10𝑦𝑟), US Equity dividend-price ratio (CRSP) (𝑑𝑝), and the
federal fund rates target (ff target).
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Table B.13: Panel of G10 Countries Large slope Weeks – 1-Week Returns

Model I (𝑟𝑥𝑖
𝑡→ 𝑡+1 = 𝜑1 · slope difference𝑖,𝑡 + Ω · 𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑖,𝑡))

[1] [2] [3] [4] [5] [6] [7] [8] [9]

slope𝑖,Δ𝑓𝑓3
𝑑𝑖𝑓𝑓 .009*** .009*** .009*** .009*** .010*** .009*** .009*** .010***

(.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003)
Δ𝑓𝑓 𝑖,1

difference .000 −.000
(.000) (.000)

𝑟𝑥𝑖
𝑡−1 −.029 −.035*

(.019) (.020)
VIX −.000 −.000

(.000) (.000)
ts𝑢𝑠10yr .000 −.001

(.000) (.001)
ts𝑖10yr −.000 .001

(.000) (.001)
dp −1.668 −.002

(3.206) (3.087)
ff target −.000 −.001

(.000) (.001)
R2 .003 .003 .004 .003 .006 .003 .003 .010
Adj. R2 .001 .001 .002 .001 .003 .001 .001 .006
Num. obs. 3877 3877 3868 3853 3700 3853 3877 3692

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly
panel regressions for current-week returns, Large slope Weeks sub-sample (weeks with
|slope difference𝑖,𝑡| > [𝜇𝑛

slope difference + 0.5 · 𝜎𝑛
slope difference]). Panel regressions: 𝑟𝑥𝑖

𝑡→𝑡+1 =
𝜑1 · slope𝑖,𝑡 + 𝜑2 · slope𝑢𝑠,𝑡 + Ω · 𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑛,𝑡+𝑘, where 𝑟𝑥𝑖

𝑡→𝑡+1 is the individual country
currency return against the US one week ahead, slope𝑖,𝑡 is the slope measure estimated in the
first stage regressions, 𝜇𝑖 are individual country fixed effects and 𝑋𝑖,𝑡 is a vector of controls
that vary across time and (potentially) across country. Country G10 currency returns data
built from Thomson Reuters. Currency (log) excess returns for country n from week 𝑡 to
𝑡+𝑘 is defined as 𝑟𝑥𝑖

𝑡→𝑡+𝑘 = 𝑓 𝑖
𝑡 −𝑠𝑖

𝑡 −Δ𝑠𝑖
𝑡+1, where 𝑓𝑡 is the (log) currency forward rate and

𝑠𝑡 is the (log) exchange rate against the dollar (an increase in 𝑠𝑡 means a depreciation of the
foreign currency against the dollar). Additional Controls: we include changes to one-month
futures rates differential (Δ𝑓𝑓1

𝑖 − Δ𝑓𝑓1
𝑈𝑆), lagged individual country returns (𝑟𝑥𝑖

𝑡−1), the
VIX as a volatility measure, the US 10 year bond term spread (𝑡𝑠𝑈𝑆10𝑦𝑟), the country 10
year bond term spread (𝑡𝑠𝑁10𝑦𝑟), US Equity dividend-price ratio (CRSP) (𝑑𝑝), and the
federal fund rates target (ff target).

DBD
PUC-Rio - Certificação Digital Nº 1512861/CA



Appendix B. Tables of Chapter 1 108

Table B.14: Panel of G10 Countries Large slope Weeks – Forecastability
(1-week Ahead Returns)

Model II (𝑟𝑥𝑖
𝑡→ 𝑡+1 = 𝜑1 · slope𝑢𝑠,𝑡 + 𝜑2 · slope𝑖,𝑡 + Ω · 𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑖,𝑡))

[1] [2] [3] [4] [5] [6] [7] [8] [9]

slopeΔ𝑓𝑓3
𝑈𝑆 −.008 −.011 −.011 −.011 −.012 −.014* −.011 −.011 −.016**

(.006) (.007) (.007) (.007) (.008) (.007) (.008) (.007) (.008)
slopeΔ𝑓𝑓3

𝑖 .008*** .008*** .009*** .008*** .008*** .008*** .008*** .008***

(.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003)
Δ𝑓𝑓 1

𝑖 .000 −.000
(.000) (.000)

Δ𝑓𝑓 1
𝑈𝑆 −.000 −.004

(.000) (.006)
𝑟𝑥𝑖

𝑡−1 −.029 −.036*

(.019) (.020)
VIX −.000 −.000

(.000) (.000)
ts𝑢𝑠10yr .000 −.001

(.000) (.001)
ts𝑖10yr −.000 .001*

(.000) (.001)
dp −1.645 −.280

(3.214) (3.151)
ff target −.000 .003

(.000) (.006)
R2 .001 .003 .004 .004 .004 .006 .003 .004 .012
Adj. R2 -.001 .001 .001 .002 .001 .003 .001 .001 .007
Num. obs. 4103 3877 3877 3868 3853 3700 3853 3877 3692

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly
panel regressions for current-week returns, Large slope Weeks sub-sample (weeks with
|slope difference𝑖,𝑡| > [𝜇𝑛

slope difference + 0.5 · 𝜎𝑛
slope difference]). Panel regressions: 𝑟𝑥𝑖

𝑡→𝑡+1 =
𝜑1 · slope𝑖,𝑡 + 𝜑2 · slope𝑢𝑠,𝑡 + Ω · 𝑋𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑛,𝑡+𝑘, where 𝑟𝑥𝑖

𝑡→𝑡+1 is the individual country
currency return against the US one week ahead, slope𝑖,𝑡 is the slope measure estimated in the
first stage regressions, 𝜇𝑖 are individual country fixed effects and 𝑋𝑖,𝑡 is a vector of controls
that vary across time and (potentially) across country. Country G10 currency returns data
built from Thomson Reuters. Currency (log) excess returns for country n from week 𝑡 to
𝑡+𝑘 is defined as 𝑟𝑥𝑖

𝑡→𝑡+𝑘 = 𝑓 𝑖
𝑡 −𝑠𝑖

𝑡 −Δ𝑠𝑖
𝑡+1, where 𝑓𝑡 is the (log) currency forward rate and

𝑠𝑡 is the (log) exchange rate against the dollar (an increase in 𝑠𝑡 means a depreciation of the
foreign currency against the dollar). Additional Controls: we include changes to one-month
futures rates differential (Δ𝑓𝑓1

𝑖 − Δ𝑓𝑓1
𝑈𝑆), lagged individual country returns (𝑟𝑥𝑖

𝑡−1), the
VIX as a volatility measure, the US 10 year bond term spread (𝑡𝑠𝑈𝑆10𝑦𝑟), the country 10
year bond term spread (𝑡𝑠𝑁10𝑦𝑟), US Equity dividend-price ratio (CRSP) (𝑑𝑝), and the
federal fund rates target (ff target).
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Table B.15: Panel Regressions (G10) – slope measure using 6-month futures
Model II: 𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘 = 𝜑1 · slopeΔ𝑓𝑓6
𝑢𝑠,𝑡 + 𝜑2 · slopeΔ𝑓𝑓6

𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑡+𝑘

Selected Sub-Samples

Full Sample Large slope Weeks
𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

slopeΔ𝑓𝑓6
𝑈𝑆 −.014 −.007 −.001 −.012 −.008 −.001

(.011) (.006) (.011) (.011) (.006) (.011)
slopeΔ𝑓𝑓6

𝐺10 .021*** .009*** .008 .020*** .009*** .009*

(.008) (.003) (.005) (.008) (.003) (.005)
R2 .012 .002 .000 .015 .003 .001
Adj. R2 .010 .001 -.001 .012 .001 -.001
Num. obs. 7640 7632 7611 3875 3877 3876

FOMC Weeks No-FOMC and Large Weeks*

𝑟𝑥𝑡0 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡0 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

slopeΔ𝑓𝑓6
𝑈𝑆 .003 −.026*** .022* −.017 −.003 −.008

(.011) (.006) (.011) (.011) (.006) (.011)
slopeΔ𝑓𝑓6

𝐺10 .035*** .013*** .010** .016** .007** .008*

(.008) (.003) (.005) (.008) (.003) (.005)
R2 .040 .018 .002 .010 .002 .001
Adj. R2 .033 .011 -.004 .008 -.001 -.002
Num. obs. 1211 1211 1211 3323 3324 3323

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly
panel regressions for different horizons (𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘): (i) impact on current week (𝑟𝑥𝑡 =
𝑟𝑥𝑡−1→ 𝑡, where 𝑗 = 1 and 𝑘 = 0), (ii) forecast 1 and 4-weeks ahead (𝑟𝑥𝑡+𝑘 = 𝑟𝑥𝑡→ 𝑡+𝑘,
where 𝑗 = 0 and 𝑘 = {1, 4}). Selected Sub-samples: (i) Full sample (all country-week
observations), unbalanced panel; (ii) Large slope Weeks (weeks with |slope difference𝑖,𝑡| >
[𝜇𝑛

slope difference +0.5 ·𝜎𝑛
slope difference]); (iii) FOMC Weeks only and (iv) No FOMC and Large

slope weeks (unconditional 𝜇𝑛 and 𝜎𝑛 computed excluding FOMC weeks). Panel regressions
of the form: 𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘 = 𝜑1 · slopeΔ𝑓𝑓6
𝑢𝑠,𝑡 + 𝜑2 · slopeΔ𝑓𝑓6

𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑡+𝑘, where 𝑟𝑥𝑖
𝑡−𝑗→𝑡+𝑘

is the individual country currency return against the US, slopeΔ𝑓𝑓6
𝑖,𝑡 is the slope measure

for country 𝑖 constructed using 6-month interest rates futures changes in the first stage
regression, slopeΔ𝑓𝑓6

𝑢𝑠,𝑡 is the US slope measure. 𝜇𝑖 are individual country fixed effects. These
regressions don’t control for additional variables (𝑋𝑖,𝑡). Country G10 currency returns data
built from Thomson Reuters. Currency (log) excess returns for country n from week 𝑡 to
𝑡+𝑘 is defined as 𝑟𝑥𝑖

𝑡→𝑡+𝑘 = 𝑓 𝑖
𝑡 −𝑠𝑖

𝑡 −Δ𝑠𝑖
𝑡+1, where 𝑓𝑡 is the (log) currency forward rate and

𝑠𝑡 is the (log) exchange rate against the dollar (an increase in 𝑠𝑡 means a depreciation of
the foreign currency against the dollar). Full Sample slope measure: obtained from the first
stage regression Δ𝑓𝑓6

𝑖,𝑡 = Δ𝑓𝑓1
𝑖,𝑡 + slope3

6,𝑡) for each country using full-sample available.
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Table B.16: Panel Regressions (G10) – slope measure using US-Orthogonal
Slope

Model II: 𝑟𝑥𝑖
𝑡−𝑗→𝑡+𝑘 = 𝜑1 · slopeΔ𝑓𝑓3

𝑢𝑠,𝑡 + 𝜑2 · slopeΔ𝑓𝑓3
𝐺10⊥𝑈𝑆 + 𝜇𝑖 + 𝜖𝑡+𝑘

Selected Sub-Samples

Full Sample Large slope Weeks
𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

slopeΔ𝑓𝑓3
𝑈𝑆 −.019* −.007 .000 −.010 −.010* .009

(.010) (.005) (.012) (.010) (.005) (.012)
slopeΔ𝑓𝑓3

𝐺10⊥𝑈𝑆 .010** −.002 −.005 .003 −.002 −.008
(.005) (.004) (.006) (.005) (.004) (.006)

R2 .004 .001 .000 .001 .001 .001
Adj. R2 .003 -.001 -.001 -.001 -.001 -.002
Num. obs. 6645 6637 6616 3171 3171 3170

FOMC Weeks No-FOMC and Large Weeks*

𝑟𝑥𝑡0 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡0 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

slopeΔ𝑓𝑓3
𝑈𝑆 −.032*** −.007 .017 −.008 −.011** .001

(.010) (.005) (.012) (.010) (.005) (.012)
slopeΔ𝑓𝑓3

𝐺10⊥𝑈𝑆 .013*** −.001 .006 .003 −.003 −.009
(.005) (.004) (.006) (.005) (.004) (.006)

R2 .011 .000 .001 .001 .002 .001
Adj. R2 .003 -.007 -.007 -.002 -.001 -.002
Num. obs. 1054 1053 1053 2710 2711 2710

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly
panel regressions for different horizons (𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘): (i) impact on current week (𝑟𝑥𝑡 =
𝑟𝑥𝑡−1→ 𝑡, where 𝑗 = 1 and 𝑘 = 0), (ii) forecast 1 and 4-weeks ahead (𝑟𝑥𝑡+𝑘 = 𝑟𝑥𝑡→ 𝑡+𝑘,
where 𝑗 = 0 and 𝑘 = {1, 4}). Selected Sub-samples: (i) Full sample (all country-week
observations), unbalanced panel; (ii) Large slope Weeks (weeks with |slope difference𝑖,𝑡| >
[𝜇𝑛

slope difference +0.5 ·𝜎𝑛
slope difference]); (iii) FOMC Weeks only and (iv) No FOMC and Large

slope weeks (unconditional 𝜇𝑛 and 𝜎𝑛 computed excluding FOMC weeks). Panel regressions
of the form: 𝑟𝑥𝑖

𝑡−𝑗→𝑡+𝑘 = 𝜑1 · slopeΔ𝑓𝑓6
𝑢𝑠,𝑡 + 𝜑2 · slopeΔ𝑓𝑓6

𝑖,𝑡 + 𝜇𝑖 + 𝜖𝑡+𝑘, where 𝑟𝑥𝑖
𝑡−𝑗→𝑡+𝑘

is the individual country currency return against the US, slopeΔ𝑓𝑓6
𝑖,𝑡 is the slope measure

for country 𝑖 constructed using 6-month interest rates futures changes in the first stage
regression, slopeΔ𝑓𝑓6

𝑢𝑠,𝑡 is the US slope measure. 𝜇𝑖 are individual country fixed effects. These
regressions don’t control for additional variables (𝑋𝑖,𝑡). Country G10 currency returns data
built from Thomson Reuters. Currency (log) excess returns for country n from week 𝑡 to
𝑡+𝑘 is defined as 𝑟𝑥𝑖

𝑡→𝑡+𝑘 = 𝑓 𝑖
𝑡 −𝑠𝑖

𝑡 −Δ𝑠𝑖
𝑡+1, where 𝑓𝑡 is the (log) currency forward rate and

𝑠𝑡 is the (log) exchange rate against the dollar (an increase in 𝑠𝑡 means a depreciation of
the foreign currency against the dollar). Full Sample slope measure: obtained from the first
stage regression Δ𝑓𝑓6

𝑖,𝑡 = Δ𝑓𝑓1
𝑖,𝑡 + slope3

6,𝑡) for each country using full-sample available.
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Table B.17
Long-Short Country slope Portfolio Sharpe Ratio

Training Sample for Rolling slope Estimation
Sub-Sample Weeks Avg* 2000 2001 2002 2003 2004 2005 2006 2007 2008

Full Sample 0.374 0.319 0.281 0.277 0.362 0.258 0.256 0.274 0.594 0.742
FOMC Weeks 0.682 0.748 0.474 0.799 0.637 0.598 0.452 0.848 0.923 0.659

Large slope (US, Ḡ10) 0.517 0.402 0.393 0.255 0.348 0.329 0.428 0.486 0.92 1.095
No FOMC and Large (US, Ḡ10𝑎) 0.235 0.344 0.393 -0.049 0.018 0.032 0.142 0.088 0.509 0.641

Large slope ((slope𝑛)𝑏) 0.496 0.42 0.336 0.343 0.402 0.282 0.36 0.274 0.823 1.226
No FOMC and Large ((slope𝑛)𝑏) 0.518 0.384 0.382 0.308 0.345 0.263 0.336 0.181 0.774 1.686

Notes: Table reports Sharpe ratios (annualized) adjusted for Transaction Costs of a strategy that uses individual country monetary slope
information at 𝑡 to construct a long short portfolio. Panel regressions point estimates suggest a positive momentum for individual country slopes:
when slope𝑖,𝑡 > 0, that is the change in interest rate futures term structure slope is positive, there is a positive return for the currency over 1-4
weeks ahead in addition to the positive impact observed on current weeks. We sort currencies by their slope point estimate every week, going
long the currencies with higher slope and short currencies with lower slope estimates. We re-balance this portfolio every week. The columns in
the table are fixed yearly cut-offs for both the estimation of first stage regression and for the computation of out-of-sample Sharpe ratios of
the conditional long-short slope strategy: for each training sample (𝑇𝑠) we estimate the model in equation (1.15) using data up to 𝑇𝑠, save for
each country 𝑖 the coefficients of the first stage regression 𝛼𝑛

𝑇 𝑠 and 𝛽𝑛
𝑇 𝑠 estimates up to 𝑡 = 𝑇𝑠. We then use them to compute slope𝑛

{𝑇 𝑠+1,...,𝑇 }
and use this conditional slope measure to form portfolios of long-short country slope for each week until the end of our sample. We re-balance
each week and calculate Sharpe ratios of this strategy from year 𝑇𝑠 until 2017 (the end of our sample), adjusting from approximate transaction
costs of each re-balancing. This test is therefore implicitly controlling for both a potential instability in the first stage regression and also of the
strategy conditional return and volatility. * The column Average is the simple average of all yearly cut-off Sharpe ratios. We also implement this
strategy on different sub-samples: (i) all sample weeks, (ii) on FOMC Weeks only; (iii) on weeks with large G10 average slope (Ḡ10𝑎): weeks with
|slope𝐺10

𝑡 | > 𝜇𝑇 + 0.5 · 𝜎𝑇 , where slope𝐺10 is a synthetic G10 slope average; (iv) in No-FOMC weeks with large G10 slope; (v) weeks with large
individual country slopes in each bin (long and short): |slope𝑛

𝑡 | > 𝜇𝑛
𝑇 + 0.5 · 𝜎𝑛

𝑇 ), that is we include all weeks when at least the slope in the long
and short bins are higher than this threshold and (vi) no-FOMC weeks with large individual slopes
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Table B.18
Long-Short Country slope Portfolio Loadings on Currency Risk-Factors

(a) Monthly Currency Risk-Factors based on Verdelhan et al. (2011)

Rolling slope 2-Year Rolling slope 5-Year Rolling slope 10-Year

Monthly 𝛼𝑗 .0037* .0041* .0037* .0034* .0036** .0034* .0044** .0044*** .0044**

(.0021) (.0021) (.0021) (.0018) (.0016) (.0018) (.0017) (.0016) (.0017)
Carry-Trade Factor (HmL) .0571 .0690 .0459 .0405 −.0211 −.0066

(.0829) (.0915) (.0860) (.0914) (.0890) (.1079)
Dollar Factor −.0274 −.0541 .0364 .0213 −.0452 −.0421

(.1025) (.1139) (.0939) (.1005) (.0982) (.1196)
R2 .0017 .0002 .0025 .0019 .0008 .0022 .0005 .0016 .0017
Adj. R2 -.0023 -.0038 -.0055 -.0027 -.0038 -.0071 -.0055 -.0043 -.0103
Num. obs. 253 253 253 218 218 218 170 170 170

(b) Weekly G10 Sample Currency Risk Factors

Rolling slope 2-Year Rolling slope 5-Year Rolling slope 10-Year

Weekly 𝛼𝑗 .0009* .0009** .0009* .0008** .0008** .0008** .0010*** .0010*** .0010***

(.0005) (.0004) (.0004) (.0004) (.0004) (.0004) (.0003) (.0003) (.0003)
Carry-Trade Factor (G10 weekly HmL) .0429 −.0092 −.0537 −.0623* −.0155 −.0092

(.0346) (.0558) (.0346) (.0353) (.0387) (.0419)
Dollar Factor (G10 weekly) −.2977 −.2993 −.0092 −.0409 .0332 .0273

(.2452) (.2628) (.0419) (.0410) (.0481) (.0523)
R2 .0023 .0461 .0458 .0075 .0001 .0089 .0010 .0016 .0019
Adj. R2 .0014 .0452 .0440 .0064 -.0010 .0068 -.0004 .0002 -.0009
Num. obs. 1096 1098 1096 940 942 940 734 734 734

Notes: Long-short slope portfolio spanning by other currency risk factors. Panel (a) monthly returns of two risk factors in the currency literature:
the carry trade factor and the dollar factor. Data for these factors returns are based on Verdelhan et al. (2007) and Verdelhan et al. (2011)
updated version on the author’s website. We combine our weekly portfolio data-set with monthly factor data by summing our weekly returns based
strategies in a given month. Naturally this may lead to measurement error. In panel (b) We use as risk factors the carry-trade portfolio and the
Dollar portfolio from our weekly return data set for G10 countries. Long-Short slope portfolio sort currencies by their slope point estimate every
week, going long the currencies with lower slope and short currencies with higher slope estimates. We re-balance this portfolio every week. Results
reported for recursively Adjusted slope Measures: for each training sample (2-year, 5-year and 10-year) we estimate the model in equation (1.15),
compute for each country 𝑖 estimates up to 𝑡 = 𝑇𝑠 and use them to compute slope𝑛

{𝑇 𝑠+1,...,𝑇 }. We then use this conditional slope measure to form
portfolios of long-short country slope, re-balancing for each week until the end of our sample
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Table B.19: Predictive Regressions Dollar Portfolio
Model I: 𝑟𝑥𝐺10

𝑡−𝑗→𝑡+𝑘 = 𝜑1 · slope differenceΔ𝑓𝑓3
𝐺10,𝑡 + 𝜖𝑡+𝑘

Selected Sub-Samples

Full Sample Large slope Weeks No-FOMC and Large Weeks
𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

constant .000 .000 .001 .000 .000 .002** .000 −.000 −.000
(.000) (.000) (.001) (.000) (.000) (.001) (.001) (.001) (.002)

slope𝑖,Δ𝑓𝑓3
𝑑𝑖𝑓𝑓 .025*** .010* .007 .025*** .010* .005 .016** .014 .026*

(.007) (.006) (.011) (.008) (.006) (.012) (.008) (.010) (.016)
R2 .019 .003 .000 .026 .005 .000 .021 .010 .010
Adj. R2 .018 .002 -.001 .025 .003 -.001 .015 .004 .004
Num. obs. 1157 1156 1153 638 638 638 173 173 173

FOMC Weeks Pre-2008 Weeks No-FOMC and Large Weeks**

𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

constant .001 −.000 .000 .000 .000 .001 .001 .000 .001
(.001) (.001) (.002) (.000) (.000) (.001) (.001) (.001) (.001)

slope𝑖,Δ𝑓𝑓3
𝑑𝑖𝑓𝑓 .033 .021 .009 .019** .008 .003 .015** .006 .014

(.023) (.014) (.025) (.008) (.006) (.012) (.007) (.007) (.015)
R2 .042 .017 .001 .015 .003 .000 .010 .002 .002
Adj. R2 .037 .011 -.005 .013 .001 -.001 .007 -.001 -.001
Num. obs. 183 183 183 714 714 714 321 321 321

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly predictive regressions
of the long G10 currencies (Short US dollar). Models use the slope difference measure (slope difference𝐺10,𝑡 =
slope𝐺10,𝑡−slope𝑈𝑆,𝑡)). Table presents different return horizons :(i) impact on current week (𝑟𝑥𝑡 = 𝑟𝑥𝑡−1→𝑡,
(ii) forecast 1 and 4-weeks ahead (𝑟𝑥𝑡+𝑘 = 𝑟𝑥𝑡→ 𝑡+𝑘. Selected Sub-samples: (i) Full sample; (ii) Large slope
Weeks (weeks with |slope difference𝐺10,𝑡| > [𝜇𝐺10

slope difference + 0.5 · 𝜎𝐺10
slope difference]); (iii) No FOMC and

Large slope weeks (𝜇𝐺10 and 𝜎𝐺10 computed excluding FOMC weeks); (iv) FOMC Weeks only, (v) Pre 2008
sample (to exclude Quantitative easing period in the US and other developed countries) and (vi) No Fomc
and Large, a cut that considers 1/4 of slope standard deviation rather than 1/2. Variables: 𝑟𝑥𝐺10

𝑡−𝑗→𝑡+𝑘 is the
long G10 currency portfolio (short dollar), estimated in the first stage regressions. These regressions don’t
control for additional variables (𝑋𝑡). Dollar portfolio (log) excess returns computed using equal weighted
averages: 𝑟𝑥𝐺10

𝑡→𝑡+𝑘 = 𝑁−1
∑︀𝑖(𝑓 𝑖

𝑡 − 𝑠𝑖
𝑡 − Δ𝑠𝑖

𝑡+𝑘), where 𝑓 𝑖
𝑡 is the (log) currency forward rate and 𝑠𝑖

𝑡 is
the (log) exchange rate against the dollar (an increase in 𝑠𝑡 means a depreciation of the foreign currency
against the dollar). Full Sample slope measure: obtained from the first stage regression for each country
using full-sample. slope G10 is the simple cross-section average of individual country slopes

DBD
PUC-Rio - Certificação Digital Nº 1512861/CA



Appendix B. Tables of Chapter 1 114

Table B.20: Regressions of Long G10 Portfolio Full Sample – Current Week
Impact

slope Difference and Controls (Model I) - Current Week Return (𝑟𝑥𝑡−1→𝑡)
[1] [2] [3] [4] [5] [6] [7] [8]

constant .000 .000 .000 .002* −.001 .001* .001 .003
(.000) (.000) (.000) (.001) (.001) (.000) (.000) (.002)

slopeΔ𝑓𝑓3
𝑑𝑖𝑓𝑓 .025*** .026*** .025*** .026*** .026*** .025*** .026*** .028***

(.007) (.007) (.007) (.007) (.007) (.007) (.007) (.007)
Δ𝑓𝑓 1

difference .001 .002
(.004) (.004)

𝑟𝑥𝐺10
𝑡−1 .015 .005

(.031) (.031)
VIX −.000 −.000

(.000) (.000)
ts US10yr .000* −.001

(.000) (.001)
ts G1010yr .000 .002**

(.000) (.001)
dp −4.288 −4.528

(3.127) (3.181)
ff target −.000 −.002*

(.000) (.001)
R2 .019 .019 .019 .023 .022 .021 .019 .033
Adj. R2 .018 .017 .017 .021 .019 .019 .018 .026
Num. obs. 1157 1157 1157 1146 1144 1146 1157 1144

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly
Impact regressions of the Dollar Portfolio (a Long G10 currencies and Short Dollar,
simple weighted) for one current week returns, using the Full Sample: 𝑟𝑥𝐺10

𝑡−1→𝑡 = 𝜑1 ·
slope difference𝐺10,𝑡 + Ω𝑋𝑖,𝑡 + 𝜖𝐺10,𝑡+𝑘, where 𝑟𝑥𝐺10

𝑡→𝑡+1 is the Dollar portfolio return1-week
ahead, slope difference𝐺10,𝑡 is the slope difference measure (slope𝐺10,𝑡 − slope𝑈𝑆,𝑡) estimated
in the first stage regressions and 𝑋𝑖,𝑡 is a vector of controls that vary across time. Country
G10 currency returns data built from Thomson Reuters. Full Sample slope measure: obtained
from the first stage regression Δ𝑓𝑓3

𝐺10,𝑡 = Δ𝑓𝑓1
𝐺10,𝑡+slope3

𝐺10,𝑡) where Δ𝑓𝑓1
𝐺10,𝑡 is the simple

average of changes in 1-week forwards at week 𝑡. Additional Controls: we include changes to
one-month futures rates differential (Δ𝑓𝑓1

𝐺10 − Δ𝑓𝑓1
𝑈𝑆), lagged individual country returns

(𝑟𝑥𝐺10
𝑡−1 ), the VIX as a volatility measure, the US 10 year bond term spread (𝑡𝑠𝑈𝑆10𝑦𝑟), the

average G10 10 year bond term spread (𝑡𝑠𝐺1010𝑦𝑟), US Equity dividend-price ratio (CRSP)
(𝑑𝑝), and the federal fund rates target (ff target)
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Table B.21: Regressions of Long G10 Portfolio Full Sample –
Forecastability (1-week Ahead Returns)

slope Difference and Controls (Model I) - One-Week Ahead Returns (𝑟𝑥𝑡→𝑡+1)
[1] [2] [3] [4] [5] [6] [7] [8]

constant .000 .000 .000 .000 −.001 .001 .001 .001
(.000) (.000) (.000) (.001) (.001) (.001) (.001) (.002)

slopeΔ𝑓𝑓3
𝑑𝑖𝑓𝑓 .010* .010* .010* .010* .011* .010* .010* .011*

(.006) (.006) (.006) (.006) (.006) (.006) (.006) (.006)
Δ𝑓𝑓 1

difference −.001 −.000
(.004) (.004)

𝑟𝑥𝐺10
𝑡−1 −.001 −.008

(.033) (.033)
VIX −.000 −.000

(.000) (.000)
ts US10yr .000 −.001

(.000) (.001)
ts G1010yr .000 .001

(.000) (.001)
dp −2.854 −3.380

(3.280) (3.353)
ff target −.000 −.001

(.000) (.001)
R2 .003 .003 .003 .003 .005 .004 .004 .008
Adj. R2 .002 .001 .001 .001 .002 .002 .002 .001
Num. obs. 1156 1156 1156 1145 1143 1145 1156 1143

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports
weekly predictive regressions of the Dollar Portfolio (a Long G10 currencies and Short
Dollar, simple weighted) for one week ahead returns, using the Full Sample: 𝑟𝑥𝐺10

𝑡→𝑡+1 =
𝜑1·slope difference𝐺10,𝑡+Ω𝑋𝑖,𝑡+𝜖𝐺10,𝑡+𝑘, where 𝑟𝑥𝐺10

𝑡→𝑡+1 is the Dollar portfolio return1-week
ahead, slope difference𝐺10,𝑡 is the slope difference measure (slope𝐺10,𝑡 − slope𝑈𝑆,𝑡) estimated
in the first stage regressions and 𝑋𝑖,𝑡 is a vector of controls that vary across time. Country
G10 currency returns data built from Thomson Reuters. Full Sample slope measure: obtained
from the first stage regression Δ𝑓𝑓3

𝐺10,𝑡 = Δ𝑓𝑓1
𝐺10,𝑡+slope3

𝐺10,𝑡) where Δ𝑓𝑓1
𝐺10,𝑡 is the simple

average of changes in 1-week forwards at week 𝑡. Additional Controls: we include changes to
one-month futures rates differential (Δ𝑓𝑓1

𝐺10 − Δ𝑓𝑓1
𝑈𝑆), lagged individual country returns

(𝑟𝑥𝐺10
𝑡−1 ), the VIX as a volatility measure, the US 10 year bond term spread (𝑡𝑠𝑈𝑆10𝑦𝑟), the

average G10 10 year bond term spread (𝑡𝑠𝐺1010𝑦𝑟), US Equity dividend-price ratio (CRSP)
(𝑑𝑝), and the federal fund rates target (ff target)
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Table B.22: Predictive Regressions Dollar Portfolio
Model II: 𝑟𝑥𝐺10

𝑡−𝑗→𝑡+𝑘 = 𝜑1 · slopeΔ𝑓𝑓3
𝑈𝑆,𝑡 + 𝜑2 · slopeΔ𝑓𝑓3

𝐺10,𝑡 + 𝜖𝑡+𝑘

Selected Sub-Samples

Full Sample Large slope Weeks No-FOMC and Large Weeks
𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

constant .000 .000 .001 .000 .000 .002** .000 .000 −.000
(.000) (.000) (.001) (.000) (.000) (.001) (.001) (.001) (.002)

slopeΔ𝑓𝑓3
𝑈𝑆 −.023*** −.010* −.004 −.022*** −.011* −.002 −.018** −.012 −.022

(.007) (.006) (.011) (.007) (.007) (.012) (.008) (.010) (.019)
slopeΔ𝑓𝑓3

𝑖 .031*** .011 .014 .031** .009 .009 .002 .023 .048
(.011) (.008) (.016) (.012) (.008) (.016) (.011) (.015) (.031)

R2 .020 .003 .001 .028 .005 .001 .034 .014 .016
Adj. R2 .018 .001 -.001 .025 .002 -.003 .023 .002 .004
Num. obs. 1157 1156 1153 638 638 638 173 173 173

FOMC Weeks Pre-2008 Weeks No-FOMC and Large Weeks**

𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4 𝑟𝑥𝑡 𝑟𝑥𝑡+1 𝑟𝑥𝑡+4

constant .001 −.000 .000 .000 .000 .001 .001 .000 .001
(.001) (.001) (.002) (.000) (.000) (.001) (.001) (.001) (.001)

slopeΔ𝑓𝑓3
𝑈𝑆 −.015 −.028* .020 −.018** −.009 −.000 −.018** −.006 −.010

(.019) (.014) (.032) (.007) (.006) (.011) (.007) (.008) (.014)
slopeΔ𝑓𝑓3

𝑖 .059* .010 .006 .020* .007 .007 .006 .007 .027
(.032) (.019) (.034) (.012) (.008) (.018) (.009) (.011) (.023)

R2 .077 .023 .004 .015 .003 .000 .014 .002 .004
Adj. R2 .067 .012 -.007 .012 .000 -.003 .008 -.005 -.002
Num. obs. 183 183 183 714 714 714 321 321 321

Notes: Significance Values ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1. This table reports weekly predictive regressions
of the long G10 currencies (Short US dollar). Models use the both slope measures (slope𝐺10,𝑡) and slope𝑈𝑆,𝑡).
Table presents different return horizons :(i) impact on current week (𝑟𝑥𝑡 = 𝑟𝑥𝑡−1→𝑡, (ii) forecast 1 and 4-
weeks ahead (𝑟𝑥𝑡+𝑘 = 𝑟𝑥𝑡→𝑡+𝑘. Selected Sub-samples: (i) Full sample; (ii) Large slope Weeks (weeks with
|slope difference𝐺10,𝑡| > [𝜇𝐺10

slope difference + 0.5 · 𝜎𝐺10
slope difference]); (iii) No FOMC and Large slope weeks

(𝜇𝐺10 and 𝜎𝐺10 computed excluding FOMC weeks); (iv) FOMC Weeks only, (v) Pre 2008 sample (to
exclude Quantitative easing period in the US and other developed countries) and (vi) No Fomc and Large,
a cut that considers 1/4 of slope standard deviation rather than 1/2. Variables: 𝑟𝑥𝐺10

𝑡−𝑗→𝑡+𝑘 is the long G10
currency portfolio (short dollar), estimated in the first stage regressions. These regressions don’t control
for additional variables (𝑋𝑡). Dollar portfolio (log) excess returns computed using equal weighted averages:
𝑟𝑥𝐺10

𝑡→𝑡+𝑘 = 𝑁−1
∑︀𝑖(𝑓 𝑖

𝑡 −𝑠𝑖
𝑡−Δ𝑠𝑖

𝑡+𝑘), where 𝑓 𝑖
𝑡 is the (log) currency forward rate and 𝑠𝑖

𝑡 is the (log) exchange
rate against the dollar (an increase in 𝑠𝑡 means a depreciation of the foreign currency against the dollar).
Full Sample slope measure: obtained from the first stage regression for each country using full-sample. slope
G10 is the simple cross-section average of individual country slopes
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Table B.23
Long-Short Dollar Portfolio Conditioning on Monetary slope

Sharpe Ratio – Rolling slope Estimates

Full Sample Large slope Weeks FOMC Weeks No-FOMC and Large
Train Sample M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
Mean 0.398 -0.148 -0.262 0.56 0.321 0.444 0.26 0.192 0.309 0.901 0.519 0.275
Rolling:1998 0.342 -0.08 -0.152 0.344 0.104 0.106 0.151 -0.04 -0.005 1.181 0.729 0.519
Rolling:1999 0.466 0.077 -0.005 0.488 0.22 0.505 0.273 0.175 0.42 1.179 0.687 0.318
Rolling:2000 0.431 -0.123 -0.018 0.585 0.154 0.602 0.374 0.113 0.562 1.165 0.457 0.377
Rolling:2001 0.331 -0.609 -0.516 0.57 0.111 0.374 0.321 0.071 0.318 0.865 -0.246 0.101
Rolling:2002 0.318 -0.55 -0.563 0.514 0.252 0.41 0.102 0.045 0.171 0.787 -0.066 0.157
Rolling:2003 0.311 -0.43 -0.42 0.565 0.409 0.72 0.16 0.151 0.511 0.721 0.243 0.338
Rolling:2004 0.509 0.081 -0.146 0.777 0.456 0.52 0.452 0.368 0.536 0.766 0.942 0.059
Rolling:2005 0.491 -0.021 -0.177 0.842 0.685 0.703 0.52 0.484 0.633 0.823 0.815 0.258
Rolling:2006 0.521 0.086 -0.18 0.783 0.74 0.637 0.4 0.487 0.434 0.67 0.909 0.574
Rolling:2007 0.545 0.204 -0.238 0.505 0.534 0.287 0.139 0.435 0.089 0.78 1.031 0.266

Notes: Table reports Sharpe ratios (annualized) adjusted for Transaction Costs of a strategy
that uses slope difference information at 𝑡 to go long or short the Dollar Portfolio. Point
estimates suggest a positive momentum for the US slope and a negative for G10 average
slope. We re-balance this portfolio every week. We implement this strategy on different
sub-samples: all sample weeks, on FOMC Weeks only, on weeks with large G10 average
slope (bigger in absolute values than 0.5 times the standard deviation, always computed
up to the week we are forming the portfolio) and in No-FOMC weeks with large G10 slope
(|slope𝐺10

𝑡 | > 𝜇𝐺10
𝑇 + 0.5 · 𝜎𝐺10

𝑇 ). Recursively Adjusted slope Measures: for each training
sample (𝑇𝑠) we estimate the model in equation (1.15), compute the 𝛼𝐺10,𝑢𝑠

𝑇 𝑠 and 𝛽𝐺10,𝑢𝑠
𝑇 𝑠

estimates up to 𝑡 = 𝑇𝑠 and use them to compute slope𝐺10,𝑢𝑠
{𝑇 𝑠+1,...,𝑇 }. We present here results

for the baseline models: M1 uses slope difference (slope difference𝐺10); M2 both US and G10
slope to condition (since 𝜑𝑈𝑆

1 > 0 and 𝜑𝐺10
2 < 0 we consider weeks when either US slope

measure is positive or G10 slope measure is negative to go long the US dollar and short
other G10 currencies); M3 use only US monetary slope estimated from 3-month forwards)
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Table B.24
Out-of-Sample R-Squared Dollar Portfolio – Baseline Models

Full Sample Large slope Weeks
Stats N M1 M2 M3 M4 N M1 M2 M3 M4

IS R-Squared 1154 0.18 0.19 0.12 0.71 616 0.34 0.36 0.23 1.31
IS Adj.R-Squared 1154 0.1 0.02 0.04 0.53 616 0.18 0.04 0.07 1.69

slope Rolling: 12-1998 910 -0.77 -1.03 -0.94 -1.02 349 0.1 -0.49 -0.32 -0.4
slope Rolling: 12-1999 859 -0.39 -0.65 -0.59 -0.67 324 0.09 -0.45 -0.29 -0.47
slope Rolling: 12-2000 807 -0.27 -0.47 -0.41 -0.67 303 0.14 -0.24 -0.09 -0.23
slope Rolling: 12-2001 755 -0.38 -0.49 -0.44 -0.5 272 0.22 0.02 0.12 0.01
slope Rolling: 12-2002 703 -0.54 -0.62 -0.57 -.39 239 0.23 0.1 0.21 0.47
slope Rolling: 12-2003 651 -0.71 -0.79 -0.74 -0.55 215 0.18 0.03 0.15 0.43
slope Rolling: 12-2004 599 -0.74 -0.82 -0.78 -0.55 202 0.19 0.06 0.2 0.48
slope Rolling: 12-2005 547 -0.78 -0.86 -0.82 -0.56 175 0.28 0.12 0.25 0.6
slope Rolling: 12-2006 495 -1.02 -1.1 -1.05 -0.78 153 0.29 0.15 0.3 0.61
slope Rolling: 12-2007 443 -1.36 -1.44 -1.37 -1.09 115 0.22 0.08 0.26 0.62

Notes: Out-of-sample R-squared statistic from Campbell and Thompson (2008). Weekly
rolling predictive regressions of the Dollar Portfolio (a Long G10 currencies and Short
Dollar) for one week ahead returns. FX Portfolio weekly return data built using individual
G10 country currency returns from Thomson Reuters. For each Training Sample 𝑡 = [1 : 𝑇0]
we estimate the slope model until 𝑇0. We then use the estimated coefficients up to 𝑇0
compute out-of-sample slope point estimates from 𝑡 = [𝑇0, 𝑇 ] and compute recursively the
out-of-sample R-squared statistic. We present here results for the baseline models: M1 uses
the slope differential (slopediff = slopeΔ𝑓𝑓3

𝐺10 − slopeΔ𝑓𝑓3
𝑈𝑆 ), M2 uses both US slope and G10

(avg) and M3 uses only US monetary slope to forecast currency returns out-of-sample. We
present results for the full sample and also for the large slope sub-sample and No-FOMC
Weeks and Large slope sub-sample (| slope𝑛

𝑡 |> 𝜇𝑛(slope𝑛
𝑡 ) + 0.5 × 𝜎𝑛(slope𝑛

𝑡 )))
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Table B.25
Dynamically Traded Long G10-Short US dollar Portfolio Loadings on Currency Risk-Factors

(a) Monthly Currency Risk-Factors based on Verdelhan et al. (2011)

Rolling slope 2-Year Rolling slope 5-Year Rolling slope 10-Year

Monthly 𝛼𝑗 .0023 .0021 .0023 .0039** .0041*** .0040** .0031 .0033* .0032
(.0017) (.0015) (.0017) (.0018) (.0015) (.0017) (.0021) (.0018) (.0020)

Carry-Trade Factor (HmL) −.0703 −.0342 −.0286 .0250 −.0798 .0509
(.0860) (.0879) (.0886) (.1050) (.1126) (.1405)

Dollar Factor −.1719 −.1582 −.1941 −.2038 −.3348** −.3595*

(.1374) (.1461) (.1303) (.1535) (.1460) (.1874)
R2 .0053 .0180 .0191 .0008 .0244 .0250 .0051 .0676 .0694
Adj. R2 .0012 .0140 .0111 -.0040 .0198 .0157 -.0009 .0620 .0579
Num. obs. 248 248 248 213 213 213 166 166 166

(b) Weekly G10 Sample Currency Risk Factors

Rolling slope 2-Year Rolling slope 5-Year Rolling slope 10-Year

Weekly 𝛼𝑗 .0005 .0005 .0005 .0009** .0009** .0009** .0007* .0007* .0007*

(.0003) (.0003) (.0003) (.0004) (.0004) (.0004) (.0004) (.0004) (.0004)
Carry-Trade Factor (G10 weekly HmL) −.0454 −.0395 −.0388 −.0417 −.0668* −.0339

(.0351) (.0375) (.0370) (.0371) (.0399) (.0390)
Dollar Factor (G10 weekly) .0515 .0344 .0111 −.0142 .1657** .1441*

(.1081) (.1143) (.0773) (.0791) (.0833) (.0866)
R2 .0051 .0027 .0062 .0041 .0001 .0043 .0125 .0276 .0303
Adj. R2 .0041 .0017 .0043 .0030 -.0010 .0021 .0111 .0262 .0275
Num. obs. 1042 1044 1042 908 910 908 705 705 705

Notes: Dynamically traded long G10 Portfolio spanning by other currency risk factors. Panel (a) monthly returns of two risk factors in the currency
literature: the carry trade factor and the dollar factor.Data for these factor returns are based on Verdelhan et al. (2007) and Verdelhan et al. (2011)
updated version on the author’s website. We combine our weekly portfolio data-set with monthly factor data by summing our weekly returns based
strategies in a given month. Naturally this may lead to measurement error. In panel (b) We use as risk factors the carry-trade portfolio and the
Dollar portfolio using our weekly return data set. Tactical Dollar portfolio: we use average G10 slope difference (against the US) information at 𝑡 to
go long or short an average of G10 currencies against the US dollar, re-balancing weekly according to slope signal. Results reported for recursively
Adjusted slope Measures: for each training sample (2-year, 5-year and 10-year) we estimate the model in equation (1.15), compute for each country
𝑖 estimates up to 𝑡 = 𝑇𝑠 and use them to compute slope𝑛

{𝑇 𝑠+1,...,𝑇 }. We then use this conditional slope measure to form portfolios of long-short
country slope, re-balancing for each week until the end of our sample
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Table B.26
US Slope Predicts Future US Rates Changes

𝑖𝑢𝑠
𝑡+𝑘 = 𝜃0 + 𝜃1 · slope3,6

𝑈𝑆,𝑡 + 𝜇𝑡+𝑘

Interest Rate on Deposits One-Month Interest Rates Futures Future FED Funds
𝑖𝑢𝑠
𝑡+4 𝑖𝑢𝑠

𝑡+8 𝑖𝑢𝑠
𝑡+12 𝑖𝑢𝑠

𝑡+24 𝑓𝑓1,𝑢𝑠
𝑡+4 𝑓𝑓 1,𝑢𝑠

𝑡+8 𝑓𝑓 1,𝑢𝑠
𝑡+12 𝑓𝑓 1,𝑢𝑠

𝑡+24 fed𝑡+4 fed𝑡+12

constant −.011* −.023** −.035*** −.086*** −.011** −.023*** −.035*** −.085*** −.001 −.001
(.006) (.009) (.013) (.021) (.005) (.008) (.012) (.021) (.012) (.021)

slopeΔ𝑓𝑓3
𝑈𝑆 1.163*** 1.751*** 2.157*** 3.129*** .983*** 1.621*** 2.282*** 3.265*** 0.659*** 2.010***

(.111) (.167) (.229) (.387) (.084) (.152) (.211) (.379) (.194) (.337)
R2 .087 .087 .072 .055 .108 .091 .093 .062 .017 .051
Adj. R2 .087 .086 .071 .054 .107 .090 .092 .061 .016 0.049
Num. obs. 1151 1147 1143 1131 1151 1147 1143 1131 656 656

Notes: This table reports weekly predictive regressions of changes in future realized US interest rates on short-term US slope extracted from 3-month interest rates
futures contracts. We compute forward-looking future 4,8,12 and 24-months changes for several interest rates measures: the first is derived from interest-rates on
deposits. The second is derived directly from future changes in the 1-month future FED Funds contract k-months ahead. The third is the future change in the
Effective Fed Fund
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Table B.27
Slope Difference Predicts future Interest Rates Differential

[𝑖𝐺10
𝑡+𝑘 − 𝑖𝑢𝑠

𝑡+𝑘] = 𝜃0 + 𝜃1 · [slope3
𝐺10,𝑡 − slope3

𝑈𝑆,𝑡] + 𝜇𝑡+𝑘

4-Week Ahead Interest Rate Differential (𝑖𝐺10
𝑡+4 − 𝑖𝑢𝑠

𝑡+4)
EUR JPY GBP CAD AUD NZD CHF

constant −.010* .003 −.016** −.008 −.008 −.013 −.002
(.006) (.005) (.008) (.007) (.008) (.009) (.006)

slope differenceΔ𝑓𝑓3
𝑖 .579*** .770*** .660*** .325*** .422*** .249*** .423***

(.086) (.081) (.099) (.076) (.076) (.092) (.077)
R2 .039 .074 .054 .016 .026 .007 .026
Adj. R2 .038 .073 .053 .015 .025 .006 .025
Num. obs. 1112 1135 787 1135 1135 1085 1135

8-Week Ahead Interest Rate Differential (𝑖𝐺10
𝑡+8 − 𝑖𝑢𝑠

𝑡+8)
EUR JPY GBP CAD AUD NZD CHF

constant −.020** .009 −.029** −.011 −.014 −.024* −.007
(.010) (.009) (.012) (.010) (.012) (.014) (.010)

slope differenceΔ𝑓𝑓3
𝑖 .919*** 1.107*** .918*** .321*** .737*** .395*** .536***

(.143) (.138) (.154) (.097) (.111) (.140) (.118)
R2 .036 .053 .043 .009 .037 .007 .018
Adj. R2 .035 .053 .042 .009 .036 .006 .017
Num. obs. 1121 1144 783 1144 1144 1091 1144

12-Week Ahead Interest Rate Differential (𝑖𝐺10
𝑡+12 − 𝑖𝑢𝑠

𝑡+12)
EUR JPY GBP CAD AUD NZD CHF

constant −.023* .016 −.043*** −.012 −.011 −.031* −.007
(.013) (.012) (.016) (.011) (.016) (.018) (.012)

slope differenceΔ𝑓𝑓3
𝑖 1.385*** 1.443*** 1.246*** .410*** .953*** .568*** .760***

(.194) (.189) (.200) (.114) (.142) (.183) (.147)
R2 .044 .049 .048 .011 .039 .009 .023
Adj. R2 .043 .048 .046 .011 .038 .008 .022
Num. obs. 1100 1123 776 1123 1123 1073 1123

Notes: This table reports weekly predictive regressions of changes in future realized interest rates differentials
between G10 countries and the US using as regressors current slope difference extracted from 3-month interest
rates futures contracts from G10 and the US. We compute forward-looking future 4,8 and 12-months changes
for interest rates differences extracted from currency futures discounts (𝑖𝐺10

𝑡+𝑘 ≈ 𝑠𝑖
𝑡+𝑘+1 − 𝑓 𝑖

𝑡+𝑘).
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Figure C.1
Cross-Section Beta Dispersion Measures (CSBD) Time Series

Note: Time Series for Cross-Section Dispersion Measures (CSBD) for CAPM Rolling 24-
month betas. Variables in the chart correspond to: (i) sd cross-section standard-deviation
(𝜎𝑡(𝛽𝑚

𝑖,𝑡)), (ii) 𝐼𝑄𝑅80 and 𝐼𝑄𝑅70 are 80-th and 70th Betas interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚
𝑖,𝑡),

(iii) sd winsor2 is one of the winsorized versions of Betas standard deviation (statistical
technique that "shrinks" the extreme measures of a distribution): this winsorizationversion
replaces the extreme values using the median absolute deviation as benchmark.
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Figure C.2
S&P 500 Individual Stocks Betas – Simple Dispersion Measures:

Out-of-sample R-squared by Sample Split Date – Rolling Betas (24 Months)

(a) One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)

(b) One-Month Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1)

Note: out-of-sample Statistics for Market Return Predictions 1-year ahead (ℎ𝑝𝑟𝑡→𝑡+12) and
1-Month ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1) using Individual Stocks Betas Dispersion Measures. In
the X-Axis we present out-of-sample statistic for each training window split, recursively
forecasting returns going forward. Sample Split starts in 1950. The Y-axis is the value of
the out-of-sample statistic (in percentage points) measuring forecast improvement relative
to the historical mean as in Goyal & Welch (2008). We present statistics for four different
Betas dispersion measures: (i) sigma is the cross-section standard deviation of rolling Betas
estimation. For each 𝑡 we compute for the 𝑁 individual stocks betas the cross-section
standard deviation; (ii) 𝐼𝑄𝑅{𝑃 70,𝑃 80,𝑃 90} are the cross-sectionals 70,80 and 90th percentile
range of the individual Stocks Betas. Betas for each individual stocks in the S&P 500 are
computed using monthly data with a 24, 36 and 48 Month Rolling Window Estimate. In
these charts we report results using the 24-Month window.
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Figure C.3
S&P 500 Individual Stocks Betas Standard Deviation Controlling for

Outliers: OOS R-squared by Sample Split Date – Rolling Betas (24 Months)

(a) One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)

(b) One-Month Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1)

Note: out-of-sample Statistics for Market Return Predictions 1-year ahead (ℎ𝑝𝑟𝑡→𝑡+12) and
1-Month ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1) using Individual Stocks Betas Dispersion Measures,
controlling for Outliers using Winsorizing Methods (more below). In the X-Axis we present
out-of-sample statistic for each training window split, recursively forecasting returns going
forward. Sample Split starts in 1950. The Y-axis is the value of the out-of-sample statistic
(in percentage points) measuring forecast improvement relative to the historical mean as in
Goyal & Welch (2008). We present statistics for the cross-section Beta standard deviation
sigma of rolling Betas estimation. For each 𝑡 we compute for the 𝑁 individual stocks betas
the cross-section standard deviation. Betas for each individual stocks in the 𝑆&𝑃500 are
computed using monthly data with a 24, 36 and 48 Month Rolling Window Estimate. In
these charts we report results using the 24-Month window. Winsorization is a statistical
technique that "shrinks" the extreme measures of a distribution. The first three series simply
replace all Betas higher in module that the equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90}) by
the percentile value, the 70,80 and 90th percentile range of the individual Stocks Betas,
respectively. The other methodology (sigma winsor2 ) replaces the extreme values using the
median absolute deviation as benchmark.
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Figure C.4
S&P 500 Individual Stocks Betas Dispersion Multivariate Models: OOS

R-squared by Sample Split Date – Rolling Betas (24 Months)

(a) One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)

(b) One-Month Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1)

Note: out-of-sample Statistics for Market Return Predictions 1-year ahead (ℎ𝑝𝑟𝑡→𝑡+12) and
1-Month ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1) using Individual Stocks Betas Dispersion Measures. In
the X-Axis we present out-of-sample statistic for each training window split, recursively
forecasting returns going forward. Sample Split starts in 1950. The Y-axis is the value of the
out-of-sample statistic (in percentage points) measuring forecast improvement relative to the
historical mean as in Goyal & Welch (2008). We present statistics for multivariate models
of dispersion measures. For all models we include the standard deviation and additional
an interquartile range: (i) sigma is the cross-section standard deviation of rolling Betas
estimation. For each 𝑡 we compute for the 𝑁 individual stocks betas the cross-section
standard deviation; (ii) 𝐼𝑄𝑅{𝑃 70,𝑃 80,𝑃 90} are the cross-sectionals 70,80 and 90th percentile
range of the individual Stocks Betas. Betas for each individual stocks in the 𝑆&𝑃500 are
computed using monthly data with a 24, 36 and 48 Month Rolling Window Estimate. In
these charts we report results using the 24-Month window.
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Figure C.5
S&P 500 Individual Stocks Betas - Simple Dispersion Measures:

Out-of-sample R-squared by Sample Split Date – One-Year Ahead Returns
(ℎ𝑝𝑟𝑡→𝑡+12) – Rolling Betas (36 Months)

(a) 𝜎𝑡(𝛽𝑚
𝑖,𝑡) and interquartile Ranges

(b) 𝜎𝑡(𝛽𝑚
𝑖,𝑡) Controlling for Outliers

Note: out-of-sample Statistics for Market Return Predictions 1-year ahead (ℎ𝑝𝑟𝑡→𝑡+12)
(ℎ𝑝𝑟𝑡→𝑡+1) using Individual Stocks Betas Dispersion Measures. In the X-Axis we present
out-of-sample statistic for each training window split, recursively forecasting returns going
forward. Sample Split starts in 1950. The Y-axis is the value of the out-of-sample statistic
(in percentage points) measuring forecast improvement relative to the historical mean as in
Goyal & Welch (2008). We present statistics for four different Betas dispersion measures:
(i) sigma is the cross-section standard deviation of rolling Betas estimation. For each 𝑡
we compute for the 𝑁 individual stocks betas the cross-section standard deviation; (ii)
𝐼𝑄𝑅{𝑃 70,𝑃 80,𝑃 90} are the cross-sectionals 70,80 and 90th percentile range of the individual
Stocks Betas. Betas for each individual stock in the S&P 500 are computed using in this
chart with the 36-Month window. Winsorization is a statistical technique that "shrinks"
the extreme measures of a distribution. The first three series simply replace all Betas
higher in module that the equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90}) by the percentile
value, the 70,80 and 90th percentile range of the individual Stocks Betas, respectively. The
other methodology (sigma winsor2 ) replaces the extreme values using the median absolute
deviation as benchmark.
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Figure C.6
Dispersion Measures of FF 150 univariate Portfolio Betas:

Out-of-sample R-squared by Sample Split Date

(a) One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)

(b) One-Month Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1)

Note: out-of-sample Statistics for Market Return Predictions 1-year ahead (ℎ𝑝𝑟𝑡→𝑡+12) and 1-
Month ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1) using Fama-French 150 uni-variate Sorts Betas Dispersion
Measures based on 15 characteristics. In the X-Axis we present out-of-sample statistic
for each training window split, recursively forecasting returns going forward. Sample Split
starts in 1950. The Y-axis is the value of the out-of-sample statistic (in percentage points)
measuring forecast improvement relative to the historical mean as in Goyal & Welch (2008).
We present statistics for multivariate models of dispersion measures. For all models we
include the standard deviation and additionally an interquartile range: (i) sigma is the
cross-section standard deviation of rolling Betas estimation. For each 𝑡 we compute for the
𝑁 individual stocks betas the cross-section standard deviation; (ii) 𝐼𝑄𝑅{𝑃 70,𝑃 80,𝑃 90} are
the cross-sectionals 70,80 and 90th percentile range of the individual Stocks Betas. Betas for
each individual stocks in the 𝑆&𝑃500 are computed using monthly data with a 24, 36 and
48 Month Rolling Window Estimate. In these charts we report results using the 24-Month
window.
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Figure C.7

Note: Time Series for Cross-Section Dispersion Measures (CSBD) for CAPM Rolling 24-
month betas. Shaded areas represent US recessions as measured by the NBER indicator.
Variables in the chart correspond to, from top left to right-bottom: (i) sd cross-section
standard-deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)); (ii) dividend-to-price Ratio (d/p), the difference between the
log of dividends and the log of price; (iii) Cross-Sectional Premium (csp) of Polk et al. (2006):
their cross-sectional beta premium measures the relative valuations of high- and low-beta
stocks and (iv) The book-to-market ratio (b/m) is the ratio of book value to market value
for the Dow Jones Industrial Average. Other regressors obtained in Goyal & Welch (2008)
website.
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Figure C.8

Note: Time Series for Cross-Section Dispersion Measures (CSBD) for CAPM Rolling 24-
month betas. Shaded areas represent US recessions as measured by the NBER indicator.
Variables in the chart correspond to, from top left to right-bottom: (i) 𝐼𝑄𝑅70 is 70th Betas
interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚

𝑖,𝑡), (ii) dividend-to-price Ratio (d/p), the difference between
the log of dividends and the log of price; (iii) Cross-Sectional Premium (csp) of Polk et al.
(2006): their cross-sectional beta premium measures the relative valuations of high- and low-
beta stocks and (iv) The book-to-market ratio (b/m) is the ratio of book value to market
value for the Dow Jones Industrial Average. Other regressors obtained in Goyal & Welch
(2008) website
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Figure C.9
Kernel Density Plot – CSBD Measures in High/Low Dividend-to-Price

sub-samples

(a) Betas Cross-Sectional Standard deviation (𝜎𝑖(𝛽𝑖
𝑡))

(b) Betas Cross-Sectional 70th interquartile range deviation (IQR𝑖
70(𝛽𝑖

𝑡))

Note: Empirical kernel density plot of 𝜎𝛽
𝑡 (left panel) and 70th interquartile-range of CAPM

individual stocks betas on the x-axis for different sub-samples. The first density plots data
for the whole sample period (1930-2017). We also split the sample in moments of high and
low Dividend-to-Price Ratios (dp). We split the sample formally into the high-dp bin (low
bin) for months for which 𝑑𝑝 higher then the unconditional average of 𝑑𝑝 plus (minus) 1.5
times standard deviation. A high dp can be associated with low prices relative to dividends
and bad economic states, like recessions, when prices are depressed and expected future
market returns are positive because agents demand higher risk premium to carry increased
consumption risk.
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Figure C.10
Alternative Dispersion Measure of S&P 500 Individual stock betas difference relative to

the Market Beta of 1 (𝛽𝑖
𝑡 − 𝛽𝑚) – Out-of-sample R-squared by Sample Split Date

One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12) – Rolling Betas (24 Months)

(a) 𝜎𝑡(𝛽𝑚
𝑖,𝑡) and interquartile Ranges

(b) 𝜎𝑡(𝛽𝑚
𝑖,𝑡) Controlling for Outliers

Note: out-of-sample Statistics for Market Return Predictions 1-year ahead returns
(ℎ𝑝𝑟𝑡→𝑡+12) (ℎ𝑝𝑟𝑡→𝑡+1) using an alternative individual stocks betas dispersion measure,
relative to the market beta of one. For each 𝑡 we compute 𝛽* = 𝛽𝑖

𝑡 − 1 and then calcu-
late cross-section dispersion, following the intuition in Frazzini & Pedersen (2014). In the
X-Axis we present out-of-sample statistic for each training window split, recursively fore-
casting returns going forward. Sample Split starts in 1950. The Y-axis is the value of the
out-of-sample statistic (in percentage points) measuring forecast improvement relative to the
historical mean as in Goyal & Welch (2008). We present statistics for four different Betas
dispersion measures: (i) sigma is the cross-section standard deviation of rolling Betas esti-
mation. For each 𝑡 we compute for the 𝑁 individual stocks betas the cross-section standard
deviation; (ii) 𝐼𝑄𝑅{𝑃 70,𝑃 80,𝑃 90} are the cross-sectionals 70,80 and 90th percentile range of
the individual Stocks Betas. Betas for each individual stock in the S&P 500 are computed
using monthly data with a 24-month window in this chart. Winsorization is a statistical
technique that "shrinks" the extreme measures of a distribution. The first three series sim-
ply replace all Betas higher in module that the equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90})
by the percentile value, the 70,80 and 90th percentile range of the individual Stocks Betas,
respectively. The other methodology (sigma winsor2 ) replaces the extreme values using the
median absolute deviation as benchmark.
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Table D.1
Descriptive Time-series Statistics of S&P500 Individual Stocks Cross-Section

Betas Moments

Beta Metric Dispersion Measure Mean Median sd Max Min
(a) CSBD [𝛽 = 𝛽𝑖

𝑡 − 𝛽] 𝜎𝑡(𝛽𝑚
𝑖,𝑡) 0.46 0.44 0.11 0.84 0.26

N = 1111 𝐼𝑄𝑅90,𝑡(𝛽𝑚
𝑖,𝑡) 1.09 1.06 0.26 1.83 0.53

𝐼𝑄𝑅80,𝑡(𝛽𝑚
𝑖,𝑡) 0.69 0.68 0.16 1.16 0.32

𝐼𝑄𝑅70,𝑡(𝛽𝑚
𝑖,𝑡) 0.42 0.42 0.10 0.81 0.20

Winsor 2[𝜎𝑡 𝛽] 0.40 0.39 0.09 0.68 0.22
skewness 0.35 0.28 0.60 3.03 −1.15
kurtosis 4.63 4.07 2.34 21.37 2.25

(b) Alternative (𝛽* = 𝛽𝑖
𝑡 − 1) 𝜎𝑡(𝛽𝑚

𝑖,𝑡) 0.58 0.55 0.16 1.13 0.31
N = 1111 𝐼𝑄𝑅90,𝑡(𝛽𝑚

𝑖,𝑡) 1.41 1.33 0.35 2.69 0.72
𝐼𝑄𝑅80,𝑡(𝛽𝑚

𝑖,𝑡) 0.92 0.88 0.22 1.57 0.47
𝐼𝑄𝑅70,𝑡(𝛽𝑚

𝑖,𝑡) 0.57 0.55 0.14 1.01 0.28
Winsor 2[𝜎𝑡 𝛽] 0.52 0.49 0.11 0.85 0.28

skewness 0.61 0.50 0.46 2.33 −0.43
kurtosis 4.05 3.79 1.40 13.76 1.86

Notes: Descriptive Statistics in the time series for cross-sectional dispersion measures and
moments of the market-betas of Individual S&P500 Stocks rolling 24-month regressions. We
consider two alternative Beta metrics. The first is our proposed CSBD, that computes cross-
section moments of stocks Betas relative to their unconditional time series mean: 𝛽 = 𝛽𝑖

𝑡 −𝛽.
The second follows Frazzini & Pedersen (2014) and compute moments for the dispersion of
betas around one (the market beta). For each 𝑡 we compute for both metrics: (i) the cross-
section standard-deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)), (ii) the 90-th, 80-th and 70th Betas interquartile-range
(𝐼𝑄𝑅𝑡(𝛽𝑚

𝑖,𝑡), (iii) Winsorized Betas standard deviation: statistical technique that "shrinks"
the extreme measures of a distribution, the first three series replace all Betas higher in
module that the equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90}) by the percentile value. The
other methodology (sigma winsor2 ) replaces the extreme values using the median absolute
deviation as benchmark; (iv) skewness and kurtosis are also measured in the cross-section
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Table D.2
Correlation S&P500 Individual Stocks Cross-Section Betas Moments

Alternative (𝛽* = 𝛽𝑖
𝑡 − 1) CSBD ([𝛽 = 𝛽𝑖

𝑡 − 𝛽])

𝜎𝑡(𝛽*
𝑖,𝑡) 𝐼𝑄𝑅90,𝑡(𝛽*

𝑖,𝑡) 𝐼𝑄𝑅80,𝑡(𝛽*
𝑖,𝑡) 𝐼𝑄𝑅70,𝑡(𝛽*

𝑖,𝑡) 𝜎𝑡(𝛽𝑖,𝑡) 𝐼𝑄𝑅90,𝑡(𝛽𝑖,𝑡) 𝐼𝑄𝑅80,𝑡(𝛽𝑖,𝑡) 𝐼𝑄𝑅70,𝑡(𝛽𝑖,𝑡)

𝜎𝑡(𝛽*
𝑖,𝑡) 1 0.97 0.91 0.83 0.83 0.77 0.72 0.69

𝐼𝑄𝑅90,𝑡(𝛽*
𝑖,𝑡) 0.97 1 0.94 0.87 0.77 0.73 0.69 0.66

𝐼𝑄𝑅80,𝑡(𝛽*
𝑖,𝑡) 0.91 0.94 1 0.95 0.72 0.70 0.69 0.67

𝐼𝑄𝑅70,𝑡(𝛽*
𝑖,𝑡) 0.83 0.87 0.95 1 0.66 0.65 0.66 0.65

𝜎𝑡(𝛽𝑖,𝑡) 0.83 0.77 0.72 0.66 1 0.95 0.92 0.89
𝐼𝑄𝑅90,𝑡(𝛽𝑖,𝑡) 0.77 0.73 0.70 0.65 0.95 1 0.96 0.91
𝐼𝑄𝑅80,𝑡(𝛽𝑖,𝑡) 0.72 0.69 0.69 0.66 0.92 0.96 1 0.96
𝐼𝑄𝑅70,𝑡(𝛽𝑖,𝑡) 0.69 0.66 0.67 0.65 0.89 0.91 0.96 1

Notes: Simple in-sample Correlation coefficients for two alternative dispersion measures of the Market-Betas of Individual S&P500 Stocks
rolling 24-month regressions. We consider two alternative Beta metrics. The first is our proposed CSBD that computes cross-section
moments of stocks Betas relative to their unconditional time series mean: 𝛽 = 𝛽𝑖

𝑡 − 𝛽. The second follows Frazzini & Pedersen (2014)
and compute moments for the dispersion of betas around one (the market beta). For each 𝑡 we compute: (i) the cross-section standard-
deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)), (ii) the 90-th, 80-th and 70th Betas interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚
𝑖,𝑡), (iii) Winsorized Betas standard deviation:

statistical technique that "shrinks" the extreme measures of a distribution, the first three series replace all Betas higher in module that
the equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90}) by the percentile value. The other methodology (sigma winsor2 ) replaces the extreme
values using the median absolute deviation as benchmark
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Table D.3
Model Comparison S&P500 Individual Stocks Betas Dispersion Measures –

Rolling 24 Months

One-Month Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1)
In-Sample Statistics bootstrap R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡(𝛽𝑚

𝑖,𝑡) 0.40 0.30 4.20 0.04 0.25 0.34 0.65 −3, 199.33
𝐼𝑄𝑅90,𝑡(𝛽𝑚

𝑖,𝑡) 0.38 0.29 4.02 0.04 0.25 0.34 0.60 −3, 199.16
𝐼𝑄𝑅80,𝑡(𝛽𝑚

𝑖,𝑡) 0.66 0.56 6.95 0.01 0.26 0.39 0.61 −3, 202.07
𝐼𝑄𝑅70,𝑡(𝛽𝑚

𝑖,𝑡) 0.65 0.55 6.84 0.01 0.28 0.40 0.58 −3, 201.96
Winsor[𝜎𝑡 𝛽] 𝑃80 0.64 0.55 6.80 0.01 0.27 0.37 0.60 −3, 201.92
Winsor[𝜎𝑡 𝛽] 𝑃70 0.62 0.52 6.51 0.01 0.25 0.35 0.64 −3, 201.64
Winsor 2[𝜎𝑡 𝛽] 0.59 0.50 6.26 0.01 0.22 0.31 0.54 −3, 201.38

𝑙𝑜𝑔[𝜎𝑡 𝛽] 0.45 0.35 4.72 0.03 0.25 0.36 0.55 −3, 199.85
𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡 𝛽] 0.64 0.54 6.73 0.01 0.24 0.35 0.60 −3, 201.86
𝑙𝑜𝑔[𝐼𝑄𝑅70,𝑡 𝛽] 0.58 0.48 6.09 0.01 0.28 0.38 0.60 −3, 201.22

One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)
In-Sample Statistics bootstrap R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡(𝛽𝑚

𝑖,𝑡) 3.61 3.52 39.08 0 1.84 2.59 4.26 −483.22
𝐼𝑄𝑅90,𝑡(𝛽𝑚

𝑖,𝑡) 3.54 3.45 38.32 0 1.79 2.61 4.16 −482.49
𝐼𝑄𝑅80,𝑡(𝛽𝑚

𝑖,𝑡) 5.73 5.64 63.43 0 1.86 2.74 4.56 −506.48
𝐼𝑄𝑅70,𝑡(𝛽𝑚

𝑖,𝑡) 5.82 5.73 64.48 0 1.83 2.63 4.40 −507.46
Winsor[𝜎𝑡 𝛽] 𝑃80 5.64 5.55 62.33 0 2.07 2.96 4.53 −505.44
Winsor[𝜎𝑡 𝛽] 𝑃70 5.52 5.43 60.97 0 1.67 2.60 4.34 −504.15
Winsor 2[𝜎𝑡 𝛽] 5.43 5.34 59.87 0 1.80 2.41 4.15 −503.11

𝑙𝑜𝑔[𝜎𝑡 𝛽] 3.94 3.85 42.77 0 2.04 2.71 4.55 −486.78
𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡 𝛽] 5.26 5.17 57.96 0 1.98 2.77 4.48 −501.30
𝑙𝑜𝑔[𝐼𝑄𝑅70,𝑡 𝛽] 5.30 5.21 58.39 0 1.88 2.54 5.00 −501.71

Notes: In-Sample One-Month and One-Year Ahead Market Excess Returns Forecast Re-
gressions: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼+Φ·𝑋𝑡 +𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log) excess return
of the market between months 𝑡 and 𝑡 + 𝑘; 𝑋𝑡 is a vector of one cross-sectional dispersion
measure of the Market-Betas of Individual S&P500 Stocks. We perform rolling regressions
using 24 to 48 months to compute Market-Betas for each of the S&P500 stocks time-series
regressions of the form: 𝑅𝑖

𝑡 = 𝛼𝑖+𝛽𝑚
𝑖 ·𝑟𝑚

𝑡 +𝜇𝑖
𝑡. Results in this table are for 24-month window.

For each 𝑡 we compute: (i) the cross-section standard-deviation (𝜎𝑡(𝛽𝑚
𝑖,𝑡)), (ii) the 90-th, 80-th

and 70th Betas interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚
𝑖,𝑡), (iii) Winsorized Betas standard deviation:

statistical technique that "shrinks" the extreme measures of a distribution, the first three se-
ries replace all Betas higher in module that the equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90})
by the percentile value. The other methodology (sigma winsor2 ) replaces the extreme val-
ues using the median absolute deviation as benchmark. The bootstrapped 𝑅2 is designed to
tackle the potential spurious predictability arising from time-series persistence of regressors.
For each model we simulate 1000 bootstrapped samples using an estimated Arima (1,0,0)
with the original regressors and then compute the 90, 95 and 99 percent cut-offs for these
1000 in-sample R2 empirical distribution. AIC is the Akaike information criteria
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Table D.4
Model Comparison S&P500 Individual Stocks Betas Multivariate Models –

Rolling 24 Months

One-Month Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1)
In-Sample Statistics bootstrap R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡 + 𝐼𝑄𝑅90,𝑡(𝛽) 0.40 0.21 2.11 0.12 0.42 0.54 0.85 −3, 197
𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 0.77 0.58 4.05 0.02 0.42 0.58 0.92 −3, 201
𝜎𝑡 + 𝐼𝑄𝑅70,𝑡(𝛽) 0.69 0.50 3.62 0.03 0.45 0.56 0.85 −3, 200.38

winsor P90𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 1.00 0.81 5.29 0.005 0.45 0.58 0.84 −3, 203
winsor P80𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 0.67 0.48 3.54 0.03 0.45 0.58 0.91 −3, 200

winsor 2𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 0.68 0.49 3.58 0.03 0.42 0.54 0.78 −3, 200
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅90,𝑡(𝛽)] 0.47 0.28 2.47 0.08 0.41 0.53 0.80 −3, 198
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡(𝛽)] 0.67 0.48 3.53 0.03 0.43 0.54 0.78 −3, 200

One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)
In-Sample Statistics bootstrap R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡 + 𝐼𝑄𝑅90,𝑡(𝛽) 3.66 3.48 19.82 0 3.20 4.01 6.07 −481.80
𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 6.46 6.28 36.00 0 3.04 4.27 6.35 −512.60
𝜎𝑡 + 𝐼𝑄𝑅70,𝑡(𝛽) 6.14 5.96 34.06 0 3.15 4.01 6.21 −508.96

winsor P90𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 8.45 8.28 48.11 0 3.23 4.09 6.17 −535.08
winsor P80𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 5.79 5.61 32.02 0 3.37 4.32 6.99 −505.11
winsor 2 : 𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 5.75 5.56 31.76 0 3.23 4.05 5.85 −504.62
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅90,𝑡(𝛽)] 3.96 3.77 21.47 0 3.16 4.05 5.83 −484.99
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡(𝛽)] 5.38 5.20 29.62 0 3.22 4.35 5.98 −500.57

Notes: In-Sample One-Month and One-Year Ahead Market Excess Returns Forecast Re-
gressions: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼+Φ·𝑋𝑡 +𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log) excess return
of the market between months 𝑡 and 𝑡+𝑘; 𝑋𝑡 is a pair of cross-sectional dispersion measures
of the Market-Betas of Individual S&P500 Stocks. We perform rolling regressions using 24
to 48 months to compute Market-Betas for each of the S&P500 stocks time-series regressions
of the form: 𝑅𝑖

𝑡 = 𝛼𝑖 + 𝛽𝑚
𝑖 · 𝑟𝑚

𝑡 + 𝜇𝑖
𝑡. The models in this table consider Multivariate model

that use cross-sectional statistics to measure the dispersion in Betas at each point in time,
combining two-metrics at a time. For each 𝑡 we compute: (i) the cross-section standard-
deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)), (ii) the 90-th, 80-th and 70th Betas interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚
𝑖,𝑡),

(iii) Winsorized Betas standard deviation: statistical technique that "shrinks" the extreme
measures of a distribution, the first three series replace all Betas higher in module that the
equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90}) by the percentile value. The other methodology
(sigma winsor2 ) replaces the extreme values using the median absolute deviation as bench-
mark. The bootstrapped 𝑅2 is designed to tackle the potential spurious predictability arising
from time-series persistence of regressors. For each model we simulate 1000 bootstrapped
samples using an estimated Arima (1,0,0) with the original regressors and then compute the
90, 95 and 99 percent cut-offs for these 1000 in-sample R2. AIC is the Akaike information
criteria
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Table D.5
Model Comparison S&P500 Individual Stocks Betas Dispersion Measures –

Rolling 36 Months

One-Month Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1)
In-Sample Statistics bootstrap R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡(𝛽𝑚

𝑖,𝑡) 0.31 0.22 3.28 0.07 0.26 0.34 0.57 −3, 198.41
𝐼𝑄𝑅90,𝑡(𝛽𝑚

𝑖,𝑡) 0.32 0.23 3.39 0.07 0.24 0.33 0.55 −3, 198.52
𝐼𝑄𝑅80,𝑡(𝛽𝑚

𝑖,𝑡) 0.79 0.70 8.34 0.004 0.25 0.34 0.55 −3, 203.46
𝐼𝑄𝑅70,𝑡(𝛽𝑚

𝑖,𝑡) 0.43 0.34 4.53 0.03 0.23 0.34 0.68 −3, 199.66
Winsor[𝜎𝑡 𝛽] 𝑃80 0.75 0.65 7.88 0.005 0.25 0.36 0.58 −3, 203.00
Winsor[𝜎𝑡 𝛽] 𝑃70 0.41 0.31 4.27 0.04 0.24 0.35 0.56 −3, 199.40
Winsor 2[𝜎𝑡 𝛽] 0.64 0.55 6.77 0.01 0.24 0.33 0.53 −3, 201.90

𝑙𝑜𝑔[𝜎𝑡 𝛽] 0.39 0.29 4.08 0.04 0.23 0.31 0.50 −3, 199.22
𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡 𝛽] 0.72 0.63 7.65 0.01 0.27 0.38 0.61 −3, 202.77
𝑙𝑜𝑔[𝐼𝑄𝑅70,𝑡 𝛽] 0.42 0.32 4.37 0.04 0.25 0.36 0.65 −3, 199.50

One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)
In-Sample Statistics bootstrap R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡(𝛽𝑚

𝑖,𝑡) 1.18 1.09 12.48 0 2.00 2.88 4.63 −457.21
𝐼𝑄𝑅90,𝑡(𝛽𝑚

𝑖,𝑡) 1.36 1.27 14.42 0 1.85 2.50 4.09 −459.13
𝐼𝑄𝑅80,𝑡(𝛽𝑚

𝑖,𝑡) 3.22 3.13 34.69 0 1.94 2.68 4.86 −478.97
𝐼𝑄𝑅70,𝑡(𝛽𝑚

𝑖,𝑡) 3.58 3.48 38.70 0 1.70 2.56 4.29 −482.85
Winsor[𝜎𝑡 𝛽] 𝑃80 3.15 3.06 33.93 0 2.15 3.03 4.80 −478.23
Winsor[𝜎𝑡 𝛽] 𝑃70 3.38 3.29 36.53 0 1.72 2.48 4.33 −480.76
Winsor 2[𝜎𝑡 𝛽] 2.84 2.75 30.50 0 1.80 2.56 3.96 −474.90

𝑙𝑜𝑔[𝜎𝑡 𝛽] 1.48 1.38 15.66 0 1.95 2.67 4.44 −460.36
𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡 𝛽] 2.98 2.88 31.99 0 2.08 2.80 4.37 −476.36
𝑙𝑜𝑔[𝐼𝑄𝑅70,𝑡 𝛽] 3.03 2.94 32.62 0 2.04 2.81 4.80 −476.96

Notes: In-Sample One-Month and One-Year Ahead Market Excess Returns Forecast Re-
gressions: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼+Φ·𝑋𝑡 +𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log) excess return
of the market between months 𝑡 and 𝑡 + 𝑘; 𝑋𝑡 is a vector of one cross-sectional dispersion
measure of the Market-Betas of Individual S&P500 Stocks. We perform rolling regressions
using 24 to 48 months to compute Market-Betas for each of the S&P500 stocks time-series
regressions of the form: 𝑅𝑖

𝑡 = 𝛼𝑖+𝛽𝑚
𝑖 ·𝑟𝑚

𝑡 +𝜇𝑖
𝑡. Results in this table are for 36-month window.

For each 𝑡 we compute: (i) the cross-section standard-deviation (𝜎𝑡(𝛽𝑚
𝑖,𝑡)), (ii) the 90-th, 80-th

and 70th Betas interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚
𝑖,𝑡), (iii) Winsorized Betas standard deviation:

statistical technique that "shrinks" the extreme measures of a distribution, the first three se-
ries replace all Betas higher in module that the equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90})
by the percentile value. The other methodology (sigma winsor2 ) replaces the extreme val-
ues using the median absolute deviation as benchmark. The bootstrapped 𝑅2 is designed to
tackle the potential spurious predictability arising from time-series persistence of regressors.
For each model we simulate 1000 bootstrapped samples using an estimated Arima (1,0,0)
with the original regressors and then compute the 90, 95 and 99 percent cut-offs for these
1000 in-sample R2. AIC is the Akaike information criteria
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Table D.6
Model Comparison S&P500 Individual Stocks Betas Multivariate Models –

Rolling 36 Months

One-Month Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1)
In-Sample Statistics bootstrap R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡 + 𝐼𝑄𝑅90,𝑡(𝛽) 0.33 0.14 1.72 0.18 0.42 0.54 0.75 −3, 196.57
𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 1.10 0.92 5.85 0.003 0.41 0.54 0.80 −3, 204.80
𝜎𝑡 + 𝐼𝑄𝑅70,𝑡(𝛽) 0.43 0.24 2.27 0.10 0.41 0.56 0.92 −3, 197.67

winsor P90𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 1.64 1.45 8.70 0 0.41 0.49 0.72 −3, 210.44
winsor P80𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 0.92 0.73 4.85 0.01 0.42 0.54 0.73 −3, 202.82
winsor 2 : 𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 0.88 0.69 4.66 0.01 0.39 0.50 0.73 −3, 202.44
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅90,𝑡(𝛽)] 0.39 0.20 2.04 0.13 0.41 0.50 0.77 −3, 197.22
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡(𝛽)] 0.83 0.64 4.40 0.01 0.40 0.53 0.80 −3, 201.93

One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)
In-Sample Statistics bootstrap R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡 + 𝐼𝑄𝑅90,𝑡(𝛽) 1.37 1.18 7.22 0.001 3.33 4.17 6.05 −457.16
𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 4.73 4.55 25.89 0 3.50 4.42 5.97 −493.46
𝜎𝑡 + 𝐼𝑄𝑅70,𝑡(𝛽) 4.73 4.55 25.89 0 3.21 4.21 5.65 −493.46

winsor P90𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 6.62 6.44 36.91 0 3.26 4.12 5.87 −514.32
winsor P80𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 3.28 3.09 17.66 0 3.44 4.35 6.22 −477.61
winsor 2 : 𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 3.31 3.13 17.84 0 3.13 4.08 5.62 −477.97
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅90,𝑡(𝛽)] 1.49 1.30 7.88 0 3.25 4.14 6.43 −458.48
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡(𝛽)] 3.59 3.40 19.39 0 3.08 3.96 6.64 −480.97

Notes: In-Sample One-Month and One-Year Ahead Market Excess Returns Forecast Re-
gressions: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼+Φ·𝑋𝑡 +𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log) excess return
of the market between months 𝑡 and 𝑡 + 𝑘; 𝑋𝑡 is combines two cross-sectional dispersion
measures of the Market-Betas of Individual S&P500 Stocks. We perform rolling regressions
using 24 to 48 months to compute Market-Betas for each of the S&P500 stocks time-series
regressions of the form: 𝑅𝑖

𝑡 = 𝛼𝑖+𝛽𝑚
𝑖 ·𝑟𝑚

𝑡 +𝜇𝑖
𝑡. Results in this table are for 36-month window.

The models in this table consider Multivariate model that use cross-sectional statistics to
measure the dispersion in Betas at each point in time. For each 𝑡 we compute: (i) the cross-
section standard-deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)), (ii) the 90-th, 80-th and 70th Betas interquartile-range
(𝐼𝑄𝑅𝑡(𝛽𝑚

𝑖,𝑡), (iii) Winsorized Betas standard deviation: statistical technique that "shrinks"
the extreme measures of a distribution, the first three series replace all Betas higher in
module that the equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90}) by the percentile value. The
other methodology (sigma winsor2 ) replaces the extreme values using the median absolute
deviation as benchmark. The bootstrapped 𝑅2 is designed to tackle the potential spurious
predictability arising from time-series persistence of regressors. For each model we simulate
1000 bootstrapped samples using an estimated Arima (1,0,0) with the original regressors
and then compute the 90, 95 and 99 percent cut-offs for these 1000 in-sample R2. AIC is
the Akaike information criteria
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Table D.7
Out-of-Sample R2 Model Comparison S&P500 Individual Stocks Betas –

Rolling 24 Months

(a) Univariate Models - Training Sample Split 1985
One-Year Ahead Return(ℎ𝑝𝑟𝑡→𝑡+12) One-Month Ahead Return(ℎ𝑝𝑟𝑡→𝑡+1)

Model OOS-𝑅2 ENC-N ENC-T OOS-𝑅2 ENC-N ENC-T
𝜎𝑡(𝛽𝑚

𝑖,𝑡) 4.70 22.10 19.21 0.35 2.48 1.36
𝐼𝑄𝑅90,𝑡(𝛽𝑚

𝑖,𝑡) 5.80 23.63 24.02 0.46 2.57 1.82
𝐼𝑄𝑅80,𝑡(𝛽𝑚

𝑖,𝑡) 8.21 34.20 34.87 0.55 3.44 2.17
𝐼𝑄𝑅70,𝑡(𝛽𝑚

𝑖,𝑡) 9.91 34.78 42.89 0.72 3.28 2.82
Winsor[𝜎𝑡 𝛽] 𝑃90 7.03 26.43 29.50 0.55 2.81 2.15
Winsor[𝜎𝑡 𝛽] 𝑃80 8.91 34.26 38.13 0.62 3.37 2.45
Winsor[𝜎𝑡 𝛽] 𝑃70 9.98 33.73 43.22 0.71 3.14 2.81
Winsor 2[𝜎𝑡 𝛽] 6.74 32.13 28.18 0.47 3.42 1.86

𝑙𝑜𝑔[𝜎𝑡 𝛽] 3.00 20.29 12.07 0.24 2.43 0.94
𝑙𝑜𝑔[𝐼𝑄𝑅90,𝑡 𝛽] 4.48 19.16 18.29 0.38 2.02 1.49
𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡 𝛽] 6.79 27.97 28.39 0.52 2.97 2.03
𝑙𝑜𝑔[𝐼𝑄𝑅70,𝑡 𝛽] 8.23 28.61 34.97 0.68 2.78 2.69

(b) Multivariate Models - Training Sample Split 1985
Model One-Year Ahead Return(ℎ𝑝𝑟𝑡→𝑡+12) One-Month Ahead Return(ℎ𝑝𝑟𝑡→𝑡+1)
Model OOS-𝑅2 ENC-N ENC-T OOS-𝑅2 ENC-N ENC-T

𝜎𝑡 + 𝐼𝑄𝑅90,𝑡(𝛽) 4.87 22.70 19.98 0.32 2.45 1.25
𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 10.47 37.30 45.58 0.68 3.34 2.69
𝜎𝑡 + 𝐼𝑄𝑅70,𝑡(𝛽) 11.06 36.60 48.50 0.72 3.10 2.82

𝜎𝑡[winsor P90] + 𝐼𝑄𝑅80,𝑡(𝛽) 8.66 35.14 36.98 0.21 2.68 0.80
𝜎𝑡[winsor P80] + 𝐼𝑄𝑅80,𝑡(𝛽) 4.25 31.28 17.30 0.14 3.30 0.53
𝜎𝑡[winsor P70] + 𝐼𝑄𝑅80,𝑡(𝛽) 7.81 34.66 33.03 0.44 3.32 1.72

𝜎𝑡[winsor 2] + 𝐼𝑄𝑅80,𝑡(𝛽) 7.86 33.48 33.27 0.53 3.26 2.10
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅90,𝑡(𝛽)] 2.53 19.34 10.13 0.13 2.24 0.52
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡(𝛽)] 7.02 28.35 29.45 0.57 2.93 2.22
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅70,𝑡(𝛽)] 7.39 28.63 31.10 0.53 2.79 2.08

Notes: out-of-sample Statistics for Market Return Predictions. Out-of-sample procedure in
this table split the sample in 1985 as a training window and recursively forecast returns
going forward. Results for a wide range of sample splits are presented in Figures C.2 and
C.3. We report test statistics for the out-of-sample 𝑅2 under the alternative assumption of
no forecast improvement against the historical mean: ENC-New is the Clark and McCraken’s
(2001) encompassing test statistic and ENC-T Model is the Diebold and Mariano (1995).
Models: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼 + Φ · 𝑋𝑡 + 𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log) excess
return of the market between months 𝑡 and 𝑡 + 𝑘; 𝑋𝑡 is a vector of the S&P500 Index
Individual Stocks Betas Dispersion Measures. Models in this table consider both Univariate
in panel (a) and Multivariate models in panel (b) that use cross-sectional dispersion in
Betas for a rolling 24-month window. For each 𝑡 we compute: (i) the cross-section standard-
deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)), (ii) the 90-th, 80-th and 70th Betas interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚
𝑖,𝑡),

(iii) Winsorized Betas standard deviation: statistical technique that "shrinks" the extreme
measures of a distribution, the first three series replace all Betas higher in module that the
equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90}) by the percentile value. The other methodology
(sigma winsor2 ) replaces the extreme values using the median absolute deviation as
benchmark; (iv) we take logs of the simple dispersion measures
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Table D.8
Out-of-Sample R2 Model Comparison S&P500 Individual Stocks Betas –

Rolling 36 Months

Univariate Models Forecast Regressions - Training Sample Split 1985
One-Year Return(ℎ𝑝𝑟𝑡→𝑡+12) One-Month Return(ℎ𝑝𝑟𝑡→𝑡+1)

Model OOS-𝑅2 ENC-N ENC-T OOS-𝑅2 ENC-N ENC-T
𝜎𝑡(𝛽𝑚

𝑖,𝑡) 1.72 7.89 6.82 −0.22 1.12 −0.86
𝐼𝑄𝑅90,𝑡(𝛽𝑚

𝑖,𝑡) 1.21 7.54 4.79 −0.12 1.15 −0.47
𝐼𝑄𝑅80,𝑡(𝛽𝑚

𝑖,𝑡) 3.12 17.14 12.56 −0.03 2.97 −0.13
𝐼𝑄𝑅70,𝑡(𝛽𝑚

𝑖,𝑡) 5.45 21.20 22.49 0.52 2.10 2.03
Winsor[𝜎𝑡 𝛽] 𝑃90 2.00 9.52 7.97 0.05 1.63 0.20
Winsor[𝜎𝑡 𝛽] 𝑃80 3.79 17.42 15.36 0.19 2.98 0.75
Winsor[𝜎𝑡 𝛽] 𝑃70 5.58 20.37 23.03 0.56 2.03 2.18
Winsor 2[𝜎𝑡 𝛽] 1.76 14.59 7.00 −0.28 2.34 −1.09

𝑙𝑜𝑔[𝜎𝑡 𝛽] 1.13 8.10 4.45 −0.50 0.96 −1.95
𝑙𝑜𝑔[𝐼𝑄𝑅90,𝑡 𝛽] 1.07 6.71 4.21 −0.18 0.90 −0.71
𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡 𝛽] 2.73 14.21 10.93 −0.07 2.28 −0.28
𝑙𝑜𝑔[𝐼𝑄𝑅70,𝑡 𝛽] 4.63 16.51 18.91 0.43 1.77 1.69

Multivariate Models Forecast Regressions - Training Sample Split 1985
One-Year Return(ℎ𝑝𝑟𝑡→𝑡+12) One-Month Return(ℎ𝑝𝑟𝑡→𝑡+1)

Model OOS-𝑅2 ENC-N ENC-T OOS-𝑅2 ENC-N ENC-T
𝜎𝑡 + 𝐼𝑄𝑅90,𝑡(𝛽) 1.01 6.86 3.99 −0.23 1.11 −0.91
𝜎𝑡 + 𝐼𝑄𝑅80,𝑡(𝛽) 5.91 19.51 24.52 0.70 3.50 2.74
𝜎𝑡 + 𝐼𝑄𝑅70,𝑡(𝛽) 8.64 26.57 36.88 0.14 1.81 0.56

𝜎𝑡[winsor P90] + 𝐼𝑄𝑅80,𝑡(𝛽) 8.25 29.61 35.09 0.54 4.25 2.11
𝜎𝑡[winsor P80] + 𝐼𝑄𝑅80,𝑡(𝛽) −1.15 12.45 −4.45 −2.22 1.04 −8.46
𝜎𝑡[winsor P70] + 𝐼𝑄𝑅80,𝑡(𝛽) 3.82 18.70 15.49 −1.53 1.18 −5.86

𝜎𝑡[winsor 2] + 𝐼𝑄𝑅80,𝑡(𝛽) 3.33 16.55 13.44 0.20 2.80 0.80
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅90,𝑡(𝛽)] 1.03 7.89 4.07 −0.54 0.89 −2.10
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅80,𝑡(𝛽)] 4.45 15.04 18.18 0.26 2.36 1.00
𝑙𝑜𝑔[𝜎𝑡(𝛽)] + 𝑙𝑜𝑔[𝐼𝑄𝑅70,𝑡(𝛽)] 5.52 17.75 22.80 −0.37 1.18 −1.42

Notes: out-of-sample Statistics for Market Return Predictions. Out-of-sample procedure in
this table split the sample in 1985 as a training window and recursively forecast returns
going forward. Results for a wide range of sample splits are presented in Figures C.2 and
C.3. We report test statistics for the out-of-sample 𝑅2 under the alternative assumption of
no forecast improvement against the historical mean: ENC-New is the Clark and McCraken’s
(2001) encompassing test statistic and ENC-T Model is the Diebold and Mariano (1995).
Models: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼 + Φ · 𝑋𝑡 + 𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log) excess
return of the market between months 𝑡 and 𝑡 + 𝑘; 𝑋𝑡 is a vector of the S&P500 Index
Individual Stocks Betas Dispersion Measures. Models in this table consider both Univariate
in panel (a) and Multivariate models in panel (b) that use cross-sectional dispersion in
Betas for a rolling 36-month window. For each 𝑡 we compute: (i) the cross-section standard-
deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)), (ii) the 90-th, 80-th and 70th Betas interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚
𝑖,𝑡),

(iii) Winsorized Betas standard deviation: statistical technique that "shrinks" the extreme
measures of a distribution, the first three series replace all Betas higher in module that the
equivalent percentile (IQR{𝑃70, 𝑃80, 𝑃90}) by the percentile value. The other methodology
(sigma winsor2 ) replaces the extreme values using the median absolute deviation as
benchmark; (iv) we take logs of the simple dispersion measures.
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Table D.9
Out-of-sample 𝑅2 CSBD Model 𝜎𝑡 – Rolling Betas (24 Months)

Train-sample One-Year Returns (ℎ𝑝𝑟𝑡→𝑡+12) One-Month Returns (ℎ𝑝𝑟𝑡→𝑡+1) 𝑃/𝑅 = 𝜋

Split OOS 𝑅2 ENC-N ENC-T OOS 𝑅2 ENC-N ENC-T
1950-12-01 5.22 41.26 44.62 0.67 5.00 5.46 3.36
1955-12-01 4.11 33.11 32.14 0.65 4.62 4.88 2.64
1960-12-01 4.54 32.71 32.80 0.66 4.40 4.61 2.01
1965-12-01 4.12 27.77 27.08 0.67 4.09 4.25 1.57
1970-12-01 4.83 28.36 28.95 0.66 3.82 3.77 1.24
1975-12-01 1.64 18.31 8.52 0.32 2.78 1.61 0.99
1976-12-01 1.71 17.97 8.69 0.34 2.78 1.69 0.94
1977-12-01 1.55 17.03 7.66 0.27 2.54 1.31 0.90
1978-12-01 1.66 16.75 7.99 0.31 2.63 1.49 0.86
1979-12-01 1.48 15.79 6.95 0.30 2.56 1.38 0.82
1980-12-01 1.59 15.87 7.28 0.31 2.59 1.38 0.78
1981-12-01 1.10 14.95 4.86 0.25 2.45 1.12 0.75
1982-12-01 3.15 19.81 13.86 0.35 2.64 1.50 0.71
1983-12-01 3.69 20.82 15.87 0.32 2.52 1.35 0.68
1984-12-01 4.20 21.36 17.64 0.34 2.52 1.38 0.65
1985-02-01 4.27 21.43 17.85 0.34 2.51 1.36 0.62
1985-12-01 4.70 22.10 19.21 0.35 2.48 1.36 0.59
1986-12-01 4.63 21.50 18.37 0.32 2.45 1.23 0.56
1987-12-01 5.25 22.52 20.28 0.38 2.71 1.40 0.53
1988-12-01 4.57 19.87 16.93 0.34 2.51 1.21 0.51
1989-12-01 5.60 21.22 20.30 0.25 2.27 0.87 0.48
1990-12-01 5.44 20.27 18.97 0.26 2.29 0.86 0.46
1991-12-01 5.46 19.61 18.37 0.27 2.29 0.85 0.43
1992-12-01 5.79 19.36 18.80 0.34 2.32 1.05 0.41
1993-12-01 5.30 17.23 16.47 0.51 2.41 1.51 0.39
1994-12-01 6.72 18.38 20.31 0.32 1.97 0.89 0.37
1995-12-01 8.11 19.86 23.84 0.60 2.26 1.64 0.35
1996-12-01 10.04 22.03 28.81 0.73 2.31 1.89 0.33
1997-12-01 10.91 22.56 30.12 0.72 2.23 1.79 0.31
1998-12-01 10.78 21.34 28.27 0.66 2.20 1.56 0.29
1999-12-01 10.91 20.56 27.19 0.70 2.21 1.57 0.27
2000-12-01 10.41 19.90 24.41 0.38 1.82 0.80 0.25

Notes: out-of-sample Statistics for Market Return Predictions using Individual Stocks Betas
Dispersion Measures: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼 + Φ · 𝑋𝑡 + 𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log)
excess return of the market between months 𝑡 and 𝑡 + 𝑘. The model in this table uses as
explanatory variable 𝑋𝑡 the cross-section standard deviation in betas 𝜎𝑡 computed for each
𝑡. Out-of-sample procedure in this table split the sample in several training windows (in
each row) and recursively forecast returns going forward. Results for a wide range of sample
splits are presented in . 𝜑 = 𝑃/𝑅 is the number of recursive out-of-sample forecasting periods
divided by the training period) close to 1. We report test statistics for the out-of-sample 𝑅2

under the alternative assumption of no forecast improvement against the historical mean:
ENC-New is the Clark and McCraken’s (2001) encompassing test statistic and ENC-T Model
is the Diebold and Mariano (1995). Rolling regressions betas window 24-months for S&P500
individual stocks time-series regressions of the form: 𝑅𝑖

𝑡 = 𝛼𝑖 + 𝛽𝑚
𝑖 · 𝑟𝑚

𝑡 + 𝜇𝑖
𝑡
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Table D.10
Out-of-sample 𝑅2 CSBD Model 𝐼𝑄𝑅𝑡(𝛽70

𝑖,𝑡) – Rolling Betas (24 Months)

Train-sample One-Year Returns (ℎ𝑝𝑟𝑡→𝑡+12) One-Month Returns (ℎ𝑝𝑟𝑡→𝑡+1) 𝑃/𝑅 = 𝜋

Split OOS 𝑅2 ENC-N ENC-T OOS 𝑅2 ENC-N ENC-T
1950-12-01 8.21 57.19 72.48 1.11 7.17 9.10 3.36
1955-12-01 7.13 47.05 57.58 1.03 6.34 7.78 2.64
1960-12-01 7.96 47.19 59.67 1.02 5.91 7.14 2.01
1965-12-01 7.66 41.35 52.27 1.02 5.37 6.49 1.57
1970-12-01 8.63 41.72 53.84 1.04 5.08 6.02 1.24
1975-12-01 6.10 31.59 33.16 0.73 3.95 3.75 0.99
1980-12-01 6.33 28.26 30.42 0.80 3.81 3.63 0.78
1981-12-01 5.75 26.64 26.73 0.70 3.52 3.10 0.75
1982-12-01 7.83 31.76 36.16 0.71 3.49 3.05 0.71
1983-12-01 8.64 33.26 39.15 0.67 3.32 2.80 0.68
1984-12-01 9.03 33.35 39.92 0.70 3.34 2.85 0.65
1985-02-01 9.15 33.50 40.29 0.70 3.31 2.82 0.62
1985-12-01 9.91 34.78 42.89 0.72 3.28 2.82 0.59
1986-12-01 9.95 34.03 41.78 0.68 3.20 2.59 0.56
1987-12-01 10.58 34.86 43.31 0.77 3.50 2.83 0.53
1988-12-01 9.98 31.83 39.27 0.74 3.29 2.66 0.51
1989-12-01 11.14 33.40 42.87 0.67 3.06 2.31 0.48
1990-12-01 10.92 31.86 40.46 0.68 3.05 2.26 0.46
1991-12-01 10.87 30.58 38.77 0.60 2.89 1.93 0.43
1992-12-01 11.37 30.25 39.25 0.72 2.93 2.20 0.41
1993-12-01 10.92 27.68 36.03 0.87 2.98 2.58 0.39
1994-12-01 12.39 29.02 39.87 0.73 2.61 2.07 0.37
1995-12-01 14.03 30.83 44.06 1.05 2.92 2.87 0.35
1996-12-01 15.88 32.83 48.70 1.12 2.86 2.92 0.33
1997-12-01 16.57 32.81 48.85 1.13 2.80 2.82 0.31
1998-12-01 16.63 31.43 46.69 1.03 2.69 2.42 0.29
1999-12-01 16.89 30.37 45.13 1.17 2.78 2.62 0.27
2000-12-01 16.56 29.31 41.67 0.70 2.18 1.48 0.25

Notes: out-of-sample Statistics for Market Return Predictions using Individual Stocks Betas
Dispersion Measures: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼 + Φ · 𝑋𝑡 + 𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log)
excess return of the market between months 𝑡 and 𝑡 + 𝑘. The model in this table uses
as explanatory variable 𝑋𝑡 the cross-section interquartile-ranges using the 70th Percentile
(𝐼𝑄𝑅𝑡(𝛽70

𝑖,𝑡) computed for each 𝑡. Out-of-sample procedure in this table split the sample
in several training windows (in each row) and recursively forecast returns going forward.
Results for a wide range of sample splits are presented in . 𝜑 = 𝑃/𝑅 is the number of
recursive out-of-sample forecasting periods divided by the training period) close to 1. We
report test statistics for the out-of-sample 𝑅2 under the alternative assumption of no forecast
improvement against the historical mean: ENC-New is the Clark and McCraken’s (2001)
encompassing test statistic and ENC-T Model is the Diebold and Mariano (1995). Rolling
regressions betas window 24-months for S&P500 individual stocks time-series regressions of
the form: 𝑅𝑖

𝑡 = 𝛼𝑖 + 𝛽𝑚
𝑖 · 𝑟𝑚

𝑡 + 𝜇𝑖
𝑡
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Table D.11
Out-of-sample 𝑅2 CSBD Model 𝜎(𝛽)𝑖,𝑡winsorized P70 – Rolling Betas (24

Months)

Train-sample One-Year Returns (ℎ𝑝𝑟𝑡→𝑡+12) One-Month Returns (ℎ𝑝𝑟𝑡→𝑡+1) 𝑃/𝑅 = 𝜋

Split OOS 𝑅2 ENC-N ENC-T OOS 𝑅2 ENC-N ENC-T
1950-12-01 8.05 54.08 70.92 1.06 6.74 8.65 3.36
1955-12-01 6.99 44.46 56.37 0.98 5.96 7.39 2.64
1960-12-01 7.74 44.42 57.85 0.97 5.54 6.77 2.01
1965-12-01 7.49 39.13 50.99 0.97 5.04 6.15 1.57
1970-12-01 8.48 39.73 52.84 1.00 4.79 5.75 1.24
1971-12-01 8.48 38.82 51.73 1.01 4.75 5.71 1.19
1972-12-01 7.72 35.51 45.68 0.99 4.55 5.44 1.13
1973-12-01 6.83 33.58 39.12 0.87 4.16 4.67 1.08
1974-12-01 6.43 31.79 35.87 0.70 3.76 3.70 1.03
1975-12-01 6.30 30.77 34.32 0.71 3.74 3.63 0.99
1980-12-01 6.58 27.68 31.68 0.78 3.60 3.52 0.78
1981-12-01 6.07 26.22 28.33 0.69 3.34 3.03 0.75
1982-12-01 8.01 30.97 37.09 0.70 3.32 3.00 0.71
1983-12-01 8.80 32.41 39.94 0.66 3.16 2.76 0.68
1984-12-01 9.17 32.46 40.59 0.70 3.18 2.82 0.65
1985-02-01 9.28 32.58 40.89 0.69 3.16 2.79 0.62
1985-12-01 9.98 33.73 43.22 0.71 3.14 2.81 0.59
1986-12-01 10.01 32.95 42.04 0.68 3.06 2.58 0.56
1987-12-01 10.61 33.71 43.44 0.77 3.36 2.85 0.53
1988-12-01 10.03 30.78 39.45 0.75 3.15 2.67 0.51
1989-12-01 11.16 32.32 42.98 0.69 2.94 2.36 0.48
1990-12-01 10.96 30.84 40.62 0.70 2.94 2.32 0.46
1991-12-01 10.91 29.60 38.93 0.63 2.78 2.02 0.43
1992-12-01 11.37 29.25 39.24 0.73 2.82 2.25 0.41
1993-12-01 10.93 26.84 36.08 0.87 2.86 2.59 0.39
1994-12-01 12.33 28.10 39.65 0.74 2.52 2.12 0.37
1995-12-01 13.89 29.79 43.56 1.05 2.82 2.88 0.35
1996-12-01 15.61 31.57 47.71 1.11 2.75 2.89 0.33
1997-12-01 16.25 31.49 47.72 1.12 2.68 2.78 0.31
1998-12-01 16.31 30.15 45.60 1.03 2.59 2.43 0.29
1999-12-01 16.57 29.15 44.09 1.16 2.67 2.60 0.27
2000-12-01 16.37 28.30 41.11 0.71 2.09 1.49 0.25

Notes: out-of-sample Statistics for Market Return Predictions using Individual Stocks Betas
Dispersion Measures: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼 + Φ · 𝑋𝑡 + 𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log)
excess return of the market between months 𝑡 and 𝑡 + 𝑘. The model in this table uses as
explanatory variable 𝑋𝑡 is the cross-section winsorized standard deviation of individual betas
𝜎(𝛽)𝑖,𝑡winsorized P70 computed for each 𝑡: it simply replaces all betas higher in module
than the 70th-percentile (IQR{𝑃70}) by the percentile value. Out-of-sample procedure
in this table split the sample in several training windows (in each row) and recursively
forecast returns going forward. Results for a wide range of sample splits are presented in .
𝜑 = 𝑃/𝑅 is the number of recursive out-of-sample forecasting periods divided by the training
period) close to 1. We report test statistics for the out-of-sample 𝑅2 under the alternative
assumption of no forecast improvement against the historical mean: ENC-New is the Clark
and McCraken’s (2001) encompassing test statistic and ENC-T Model is the Diebold and
Mariano (1995). Rolling regressions betas window 24-months for S&P500 individual stocks
time-series regressions of the form: 𝑅𝑖

𝑡 = 𝛼𝑖 + 𝛽𝑚
𝑖 · 𝑟𝑚

𝑡 + 𝜇𝑖
𝑡

DBD
PUC-Rio - Certificação Digital Nº 1512861/CA



Appendix D. Tables of Chapter 2 143

Table D.12
Out-of-sample 𝑅2 CSBD Multivariate Models 𝜎(𝛽)𝑖,𝑡 + 𝐼𝑄𝑅𝑡(𝛽70

𝑖,𝑡 – Rolling
Betas

(24 Months)

Train-sample One-Year Returns (ℎ𝑝𝑟𝑡→𝑡+12) One-Month Returns (ℎ𝑝𝑟𝑡→𝑡+1) 𝑃/𝑅 = 𝜋

Split OOS 𝑅2 ENC-N ENC-T OOS 𝑅2 ENC-N ENC-T
1950-12-01 8.60 58.02 76.25 0.94 6.27 7.65 3.36
1955-12-01 7.65 48.39 62.10 0.91 5.72 6.88 2.64
1960-12-01 8.54 48.62 64.43 0.90 5.24 6.23 2.01
1965-12-01 8.29 42.80 56.97 0.90 4.80 5.74 1.57
1970-12-01 9.32 43.19 58.59 0.98 4.69 5.63 1.24
1975-12-01 7.00 33.22 38.40 0.74 3.79 3.79 0.99
1980-12-01 7.27 29.76 35.29 0.82 3.67 3.74 0.78
1981-12-01 6.76 28.21 31.78 0.72 3.38 3.19 0.75
1982-12-01 8.92 33.53 41.70 0.71 3.29 3.03 0.71
1983-12-01 9.76 35.08 44.79 0.67 3.12 2.78 0.68
1984-12-01 10.15 35.11 45.41 0.70 3.15 2.84 0.65
1985-02-01 10.27 35.26 45.78 0.70 3.13 2.81 0.62
1985-12-01 11.06 36.60 48.50 0.72 3.10 2.82 0.59
1986-12-01 11.13 35.84 47.35 0.68 3.01 2.58 0.56
1987-12-01 11.78 36.67 48.89 0.76 3.28 2.80 0.53
1988-12-01 11.22 33.65 44.73 0.74 3.11 2.64 0.51
1989-12-01 12.37 35.23 48.29 0.68 2.91 2.35 0.48
1990-12-01 12.17 33.63 45.72 0.68 2.89 2.28 0.46
1991-12-01 12.11 32.26 43.80 0.58 2.68 1.87 0.43
1992-12-01 12.61 31.89 44.17 0.69 2.73 2.13 0.41
1993-12-01 12.18 29.33 40.78 0.80 2.74 2.38 0.39
1994-12-01 13.58 30.60 44.32 0.72 2.49 2.05 0.37
1995-12-01 15.15 32.29 48.23 1.00 2.76 2.74 0.35
1996-12-01 16.69 33.75 51.68 1.02 2.65 2.65 0.33
1997-12-01 17.14 33.25 50.89 1.05 2.61 2.60 0.31
1998-12-01 17.34 32.10 49.10 0.93 2.49 2.19 0.29
1999-12-01 17.66 31.07 47.61 1.10 2.63 2.48 0.27
2000-12-01 17.53 30.23 44.64 0.63 2.02 1.33 0.25

Notes: out-of-sample Statistics for Market Return Predictions using Individual Stocks Betas
Dispersion Measures: ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼 + Φ · 𝑋𝑡 + 𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log)
excess return of the market between months 𝑡 and 𝑡 + 𝑘. The model in this table uses
as explanatory variable 𝑋𝑡 is the multivariate version that uses both cross-section standard
deviation of individual betas 𝜎(𝛽)𝑖,𝑡 and the 70th interquatile range of betas 𝐼𝑄𝑅𝑡(𝛽70

𝑖,𝑡, both
computed for each 𝑡. Out-of-sample procedure in this table split the sample in several training
windows (in each row) and recursively forecast returns going forward. Results for a wide
range of sample splits are presented in . 𝜑 = 𝑃/𝑅 is the number of recursive out-of-sample
forecasting periods divided by the training period) close to 1. We report test statistics for the
out-of-sample 𝑅2 under the alternative assumption of no forecast improvement against the
historical mean: ENC-New is the Clark and McCraken’s (2001) encompassing test statistic
and ENC-T Model is the Diebold and Mariano (1995). Rolling regressions betas window 24-
months for S&P500 individual stocks time-series regressions of the form: 𝑅𝑖

𝑡 = 𝛼𝑖+𝛽𝑚
𝑖 ·𝑟𝑚

𝑡 +𝜇𝑖
𝑡
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Table D.13
In-Sample Regressions: Dispersion Measures of S&P Individual Stocks Betas

– Rolling 24 Months

One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

constant .217*** .222*** .269*** .268*** .233*** .268*** .262*** .273*** −.064*** −.011
(.021) (.022) (.023) (.022) (.022) (.023) (.022) (.023) (.019) (.013)

𝜎𝑡(𝛽𝑖) −.331***

(.046)
𝐼𝑄𝑅𝑃 90

𝑡 (𝛽𝑖) −.145***

(.021)
𝐼𝑄𝑅𝑃 80

𝑡 (𝛽𝑖) −.296***

(.036)
𝐼𝑄𝑅𝑃 70

𝑡 (𝛽𝑖) −.481***

(.055)
𝜎𝑡(𝛽𝑖)winsor P90 −.484***

(.067)
𝜎𝑡(𝛽𝑖

winsor P80) −.769***

(.093)
𝜎𝑡(𝛽𝑖

winsor P70) −1.092***

(.129)
𝜎𝑡(𝛽𝑖

winsor 2) −.522***

(.061)
𝑙𝑜𝑔[𝜎𝑡] −.160***

(.021)
𝑙𝑜𝑔[𝐼𝑄𝑅𝑃 80

𝑡 ] −.190***

(.024)

R2 .036 .035 .057 .058 .040 .056 .055 .054 .039 .053
Adj. R2 .035 .035 .056 .057 .039 .055 .054 .053 .038 .052
Num. obs. 1045 1045 1045 1045 1045 1045 1045 1045 1045 1045

Notes: In-Sample One-Month Ahead Market Excess Returns Forecast Regressions:
ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼 + Φ · 𝑋𝑡 + 𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log) excess return of
the market between months 𝑡 and 𝑡+𝑘; 𝑋𝑡 is a vector of cross-sectional dispersion measures
of the Market-Betas of the S&P 500 Stocks. We perform rolling regressions using 24,36 and
48 months to compute Market-Betas for each of the individual stocks running time-series
regressions of the form: 𝑅𝑖

𝑡 = 𝛼𝑖 + 𝛽𝑚
𝑖 · 𝑟𝑚

𝑡 + 𝜇𝑖
𝑡. The models in this table consider simple

cross-sectional statistics to measure the dispersion in Betas at each point in time. For each
𝑡 we compute: (i) the cross-section standard-deviation of individual stocks betas (𝜎𝑡(𝛽𝑚

𝑖,𝑡)),
(ii) the 90-th, 80-th and 70th 150 interquartile-ranges (𝐼𝑄𝑅𝑡(𝛽𝑚

𝑖,𝑡), (iii) winsorized versions
of the Betas standard deviation and (iv) logs of the standard deviation and IQRs. Standard
errors in parentheses are computed using Newey-west corrections. For a more rigorous test
of statistical significance for each model report to Table D.2 where we present the boot-
strapped 𝑅2,designed to tackle the potential spurious predictability arising from time-series
persistence of regressors
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Table D.14
Model Comparison: Dispersion Measures of FF 150 univariate Portfolio Betas

– Rolling 24 Months

One-Month Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+1)
In-Sample Statistics bootstrapped R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡(𝛽𝑚

𝑖,𝑡) 0.62 0.46 3.98 0.05 0.36 0.49 0.80 −2, 159.68
𝐼𝑄𝑅90,𝑡(𝛽𝑚

𝑖,𝑡) 1.29 1.13 8.37 0.004 0.39 0.59 1.01 −2, 164.04
𝐼𝑄𝑅80,𝑡(𝛽𝑚

𝑖,𝑡) 1.07 0.91 6.92 0.01 0.42 0.58 0.88 −2, 162.61
𝐼𝑄𝑅70,𝑡(𝛽𝑚

𝑖,𝑡) 1.13 0.98 7.33 0.01 0.38 0.52 0.86 −2, 163.02
𝐼𝑄𝑅80,𝑡 + 𝜎𝑡 2.68 2.38 8.82 0 0.66 0.84 1.15 −2, 171.20

𝐼𝑄𝑅90,𝑡 + 𝐼𝑄𝑅80,𝑡 + 𝜎𝑡 2.89 2.43 6.34 0 0.88 1.05 1.40 −2, 170.56

𝜇𝑡

(︁
𝛽𝐻

𝐹,𝑡 − 𝛽𝐿
𝐹,𝑡

)︁
0.44 0.29 2.89 0.09 0.42 0.67 1.09 −2, 207.62

𝜎𝑡(𝛽𝑚
𝑖,𝑡) + 𝜇𝑡

(︁
𝛽𝐻

𝐹,𝑡 − 𝛽𝐿
𝐹,𝑡

)︁
0.80 0.49 2.58 0.08 0.72 0.94 1.33 −2, 158.87

𝐼𝑄𝑅80,𝑡 + 𝜎𝑡 + 𝜇𝑡 2.83 2.38 6.21 0 0.93 1.15 1.52 −2, 170.19

One-Year Ahead Returns (ℎ𝑝𝑟𝑡→𝑡+12)
In-Sample Statistics bootstrapped R2

Model 𝑅2 Adj-𝑅2 F-stat F-pval P90 P95 P99 AIC
𝜎𝑡(𝛽𝑚

𝑖,𝑡) 3.17 3.02 20.65 0 3.77 4.79 7.97 −485.63
𝐼𝑄𝑅80

𝑡 (𝛽𝑚
𝑖,𝑡) 5.83 5.68 39.03 0 3.62 5.20 8.38 −503.25

𝐼𝑄𝑅90
𝑡 (𝛽𝑚

𝑖,𝑡) 5.55 5.40 37.03 0 3.68 4.94 8.46 −501.35
𝐼𝑄𝑅70

𝑡 (𝛽𝑚
𝑖,𝑡) 4.00 3.84 26.21 0 3.69 5.13 8.06 −491.02

𝐼𝑄𝑅80,𝑡 + 𝜎𝑡 10.24 9.96 35.89 0 6.18 7.53 9.88 −531.55
𝐼𝑄𝑅90,𝑡 + 𝐼𝑄𝑅80,𝑡 + 𝜎𝑡 12.47 12.05 29.83 0 8.18 9.47 13.03 −545.46

𝜇𝑡

(︁
𝛽𝐻

𝐹,𝑡 − 𝛽𝐿
𝐹,𝑡

)︁
5.58 5.43 37.90 0 3.48 4.89 7.81 −522.80

𝜎𝑡(𝛽𝑚
𝑖,𝑡) + 𝜇𝑡

(︁
𝛽𝐻

𝐹,𝑡 − 𝛽𝐿
𝐹,𝑡

)︁
6.64 6.34 22.35 0 6.24 7.86 10.68 −506.65

𝐼𝑄𝑅80,𝑡 + 𝜎𝑡 + 𝜇𝑡 13.42 13.01 32.46 0 8.00 9.73 12.47 −552.35

Notes: In-Sample one-month and one-year ahead Market excess returns forecast regressions:
ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼 + Φ · 𝑋𝑡 + 𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log) excess return of the
market between months 𝑡 and 𝑡+𝑘; 𝑋𝑡 is a vector of cross-sectional dispersion measures of the
Market-Betas of Fama-French univariate Portfolio sorts. We consider sorts on all potential
risk factors: Size, Value (book-to-market), Operating Profitability, Investment, Earnings-to-
Price, Cashflow-to-Price, Dividend-Yield, Accruals, Market Beta, Net Share Issues, Daily
Variance, Daily Residual Variance and portfolios formed on past performance (momentum,
short-term and long-term reversal). We have 15 potential factors and 10 univariate sorts for
each factor for a total of 150 portfolios. We perform rolling regressions using 24 months to
compute Market-Betas for each of the FF portfolios running time-series regressions of the
form: 𝑅𝑖

𝑡 = 𝛼𝑖+𝛽𝑚
𝑖 ·𝑟𝑚

𝑡 +𝜇𝑖
𝑡. The models in this table consider simple cross-sectional statistics

to measure the dispersion in Betas at each point in time. For each 𝑡 we compute: (i) the
cross-section 150 Portfolios standard-deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)), (ii) the 90-th, 80-th and 70th 150
Portfolio Betas interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚

𝑖,𝑡), (iii) The mean Factor beta spread, measured
as the cross-sectional mean of all 15 Factors High minus low Beta portfolio. Formally for
each 𝑡 we compute 𝜇𝑡

(︀
𝛽𝐻

𝐹,𝑡−𝛽𝐿
𝐹,𝑡

)︀
, where 𝐹 is the corresponding Fama-French univariate sort

factor mimicking portfolio. The bootstrapped 𝑅2 is designed to tackle the potential spurious
predictability arising from time-series persistence of regressors. For each model we simulate
1000 bootstrapped samples using an estimated Arima (1,0,0) with the original regressors
and then compute the 90, 95 and 99 percent cut-offs for these 1000 in-sample R2. AIC is
the Akaike information criteria
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Table D.15
Dispersion Measures of FF 150 univariate Portfolio Betas – Summary of

out-of-sample Statistics

Betas Rolling 24 Months
One-Year Returns (ℎ𝑝𝑟𝑡→𝑡+12) One-Month Returns (ℎ𝑝𝑟𝑡→𝑡+1)

Moments OOS 𝑅2 ENC-N OOS 𝑅2 ENC-N
𝜎𝑡(𝛽𝑚

𝑖,𝑡) 0.07 0.24 −1.12 −3.73
𝐼𝑄𝑅80

𝑡 (𝛽𝑚
𝑖,𝑡) 3.92 13.75 0.31 1.05

𝐼𝑄𝑅90
𝑡 (𝛽𝑚

𝑖,𝑡) 5.55 19.80 0.22 0.74
𝐼𝑄𝑅70

𝑡 (𝛽𝑚
𝑖,𝑡) 1.04 3.54 −0.97 −3.24

𝜇𝑡

(︁
𝛽𝐻

𝐹,𝑡 − 𝛽𝐿
𝐹,𝑡

)︁
−1.84 −6.09 −0.44 −1.48

𝜇𝑡

(︁
𝛽𝐻

𝐹,𝑡 − 𝛽𝐿
𝐹,𝑡

)︁
+ 𝐼𝑄𝑅80

𝑡 (𝛽𝑚
𝑖,𝑡) 2.08 7.16 −0.33 −1.11

𝐼𝑄𝑅80,𝑡 + 𝜎𝑡 11.35 43.15 2.84 9.85
𝐼𝑄𝑅90,𝑡 + 𝐼𝑄𝑅80,𝑡 + 𝜎𝑡 14.97 59.33 2.59 8.96
𝐼𝑄𝑅80,𝑡 + 𝜎𝑡 + 𝜇𝑡 9.58 35.71 2.69 9.32

Notes: out-of-sample Statistics for Market Return Predictions. Out-of-sample procedure
in this table split the sample in 1990 as a training window and recursively forecast returns
going forward. The 1990 split was chosen to keep R/P (the number of recursive out-of-sample
periods divided by the training period) close to 1. We report test statistics for the out-of-
sample 𝑅2 under the alternative assumption of no forecast improvement against the historical
mean: ENC-New is the Clark and McCraken’s (2001) encompassing test statistic. Models:
ℎ𝑝𝑟𝑡→𝑡+𝑘 = 𝛼 + Φ · 𝑋𝑡 + 𝜖𝑡+1 , where ℎ𝑝𝑟𝑡→𝑡+𝑘 is the cumulative (log) excess return of the
market between months 𝑡 and 𝑡 + 𝑘; 𝑋𝑡 is a vector of Beta cross-section dispersion measures
for the FF150 univariate sorts portfolios. For each 𝑡 we compute: (i) the cross-section 150
Portfolios standard-deviation (𝜎𝑡(𝛽𝑚

𝑖,𝑡)), (ii) the 90-th, 80-th and 70th 150 Portfolio Betas
interquartile-range (𝐼𝑄𝑅𝑡(𝛽𝑚

𝑖,𝑡), (iii) The mean Factor beta spread, measured as the cross-
sectional mean of all 15 Factors High minus low Beta portfolio within that univariate sort.
Formally for each 𝑡 we compute 𝜇𝑡

(︀
𝛽𝐻

𝐹,𝑡 − 𝛽𝐿
𝐹,𝑡

)︀
, where 𝐹 is the corresponding Fama-French

univariate sort factor mimicking portfolio. Rolling regressions for betas using 24 60 months
to compute Market-Betas for each of the FF portfolios running time-series regressions of the
form: 𝑅𝑖

𝑡 = 𝛼𝑖 + 𝛽𝑚
𝑖 · 𝑟𝑚

𝑡 + 𝜇𝑖
𝑡
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Table D.16
Individual Stocks Betas Dispersion – Standard Deviation Regression on ERP

Standard Regressors

Dependent variable: Standard Deviation of Betas (𝜎𝑡(𝛽𝑚
𝑖,𝑡))

(1) (2) (3) (4) (5) (6) (7) (8)
svar −2.01*** −3.80***

(0.62) (1.11)

csp −5.79*** 2.57
(1.68) (2.05)

dp −0.09*** 0.17**

(0.01) (0.09)

ep −0.09*** −0.06***

(0.01) (0.02)

tms 1.52*** 1.66***

(0.27) (0.35)

bm −0.14*** 0.10***

(0.01) (0.04)

dy −0.09*** −0.24***

(0.01) (0.09)

Constant 0.46*** 0.44*** 0.15*** 0.22*** 0.43*** 0.54*** 0.14*** −0.03
(0.004) (0.004) (0.02) (0.02) (0.01) (0.01) (0.02) (0.09)

Observations 1,044 788 1,044 1,044 1,044 1,044 1,044 788
R2 0.01 0.01 0.15 0.11 0.03 0.12 0.15 0.13

Notes: In-Sample Regression of individual stocks betas dispersion measure defined as the
cross-section betas standard deviation on all standard return forecast regressors. We run
𝜎𝑡(𝛽𝑚

𝑖,𝑡) = 𝛼 + 𝛽𝑘𝑋𝑡, where 𝑋𝑡 are: Stock Variance (svar), Cross-Sectional Premium (csp)
of Polk et al. (2006), dividend-to-price Ratio (d/p), the earnings-to-price ratio (e/p), the
book-to-market ratio (b/m) is the ratio of book value to market value for the Dow Jones
Industrial Average and the dividend yield (d/y) and the Term Spread (tms). See Goyal &
Welch (2008)
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Table D.17
Return Forecast Regression using Individual Stocks Betas Dispersion

One-Year Ahead Return Forecast Regression (ℎ𝑝𝑟𝑡→𝑡+𝑘)
(1) (2) (3) (4) (5) (6) (7) (8)

𝜎𝑡(𝛽𝑚
𝑖,𝑡) −0.32*** −0.29*** −0.24*** −0.26*** −0.39*** −0.22*** −0.24*** −0.21***

(0.05) (0.05) (0.06) (0.06) (0.05) (0.06) (0.06) (0.05)

svar 1.77* −0.58
(1.08) (1.56)

csp 1.37 −9.07***

(2.43) (2.87)

dp 0.06*** 0.10
(0.01) (0.12)

ep 0.06*** 0.11***

(0.01) (0.03)

tms 3.24*** 2.96***

(0.47) (0.50)

bm 0.14*** −0.18***

(0.02) (0.05)

dy 0.06*** 0.03
(0.01) (0.12)

Constant 0.21*** 0.19*** 0.37*** 0.34*** 0.19*** 0.08** 0.37*** 0.94***

(0.03) (0.02) (0.04) (0.04) (0.02) (0.03) (0.04) (0.13)
Observations 1,044 788 1,044 1,044 1,044 1,044 1,044 788
R2 0.04 0.04 0.05 0.05 0.08 0.07 0.05 0.19

Notes: In-Sample market return forecast regression using, in addition to individual stocks
betas dispersion measure, other usual regressors in the literature in a kitchen sink approach.
We run 𝑟𝑚

𝑡+1→𝑡+12 = 𝛼+𝛾·𝜎𝑡(𝛽𝑚
𝑖,𝑡)+Ω𝑋𝑡, where 𝑋𝑡 are the following variables: Stock Variance

(svar), Cross-Sectional Premium (csp) of Polk et al. (2006), dividend-to-price Ratio (d/p),
the earnings-to-price ratio (e/p), the book-to-market ratio (b/m) is the ratio of book value
to market value for the Dow Jones Industrial Average and the dividend yield (d/y) and the
Term Spread (tms). See Goyal & Welch (2008)
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