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Abstract

Alves, Rafael Pereira; Novaes Filho, Walter (Advisor). Does the Stock
Market reflect the Long-Run Effects of COVID-19?. Rio de
Janeiro, 2022. 63p. Dissertação de Mestrado – Departamento de Econo-
mia, Pontifícia Universidade Católica do Rio de Janeiro.

The existing literature on the effects of Covid on stock returns focuses
on endogenous changes in risk tolerance and on the modeling of rare events.
So far, these attempts have not been able to match the data. In this paper,
I propose an alternative approach to explaining the Covid effects on stock
returns worldwide: disentangling the long-run effects from the short-run effects.
Intuitively, Covid’s long-run effects include disruptions of supply chains and
educational patterns, which, conceivably, will take time to phase out. Exactly
as it happens with the persistent shocks of long-run risks models! A model
that allows for short-run fluctuations and long-run risk shows that persistent
shocks play a role in explaining stock market returns and exchange rates in a
time span that starts in January 2018 and ends in November 2021.

Keywords
Long-Run Risks; COVID-19; Stock Market Returns; Exchange Rates.
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Resumo

Alves, Rafael Pereira; Novaes Filho, Walter. O Mercado Acionário
Reflete os Efeitos de Longo Prazo da COVID-19?. Rio de Ja-
neiro, 2022. 63p. Dissertação de Mestrado – Departamento de Economia,
Pontifícia Universidade Católica do Rio de Janeiro.

A literatura existente sobre os efeitos da Covid nos retornos das ações
concentra-se em mudanças endógenas na tolerância ao risco e na modelagem de
eventos raros. Até agora, essas tentativas não foram capazes de corresponder
aos dados. Neste artigo, proponho uma abordagem alternativa para explicar os
efeitos da Covid nos retornos de ativos em todo o mundo: separar os efeitos de
longo prazo dos efeitos de curto prazo. Intuitivamente, os efeitos de longo prazo
da Covid incluem disrupções nas cadeias produtivas e padrões educacionais,
que, concebivelmente, levarão tempo para serem eliminados. Exatamente como
acontece com os choques persistentes dos modelos de risco de longo prazo! Um
modelo que permite flutuações de curto prazo e risco de longo prazo mostra
que choques persistentes desempenham um papel na explicação dos retornos
do mercado de ações e das taxas de câmbio em um período de tempo que
começa em Janeiro de 2018 e termina em Novembro de 2021.

Palavras-chave
Riscos de Longo Prazo; COVID-19; Retornos do Mercado Acionário;

Taxa de Câmbio.
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There is no terror in the bang, only in the
anticipation of it.

Alfred Hitchcock, Halliwell’s Filmgoer’s Companion.
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1
Introduction

Covid has had an impressive impact on stock markets. Between March 2020
and April 2020, the MSCI World Index lost 34% of its value, while FTSE
All-Share Index fell by 33%.1 As seen in Figure 1.1, the stock market index of
Brazil, Ibovespa, lost around 50% of its value. Besides being the most serious
health crisis since the Spanish Flu in 1918, nearly a century ago, Covid is the
most imposing shock to hit markets since the Great Financial Crisis of 2008.
Given that, it’s entirely expected that this event would attract the attention
of academics, seeking to understand the impact of Covid – and the health
policies implemented during its combat – on economic activity. In particular,
to undertake the difficult task of explaining stock returns during the pandemic.

The literature has tried to explain the 2020 stock market crash and the
market after Covid by relying essentially on two mechanisms: The modelling
of rare events and endogenous changes in risk tolerance. The first approach
models the consumption process being subject to rare, intense short-run
negative shocks, which occur given a definite probability law. Examples of
this type of mechanism include Barro (2006), Gabaix (2012), Martin (2013)
and Wachter (2013). The second relies on sentiments shocks, which affect the
risk preference of economic agents, such as Chau, Deesomsak, and Koutmos
(2016).

As per Davis, Lui and Chang (2021) and Gormsen and Koijen (2020), the
rare disaster model cannot explain the stock market reaction to Covid: The
short-run impact on economic activity, while very impressive, would have to
be an order of magnitude larger to explain stock returns. On the other hand,
Cox, Greenwald and Ludvigson (2020) and Caballero and Simsek (2021) try
the second approach, with moderate success.

There is, however, a problem in relying on an endogenous risk-tolerance
mechanism to explain the Covid stock market: The empirical evidence points
to no changes in risk aversion during the pandemic. Examples in this literature
include Angrisani et al. (2020) and Drichoutis and Naiga (2021). Given that,

1Davis, Jonathan (2020). The Investment Trusts Handbook 2021. Harriman House. p.
96. ISBN 9780857198952.
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Chapter 1. Introduction 14

Figure 1.1: Ibovespa Index - Historical Data and Announcement Dates of
Variants of Concern

it is unreasonable to assume such a mechanism as a possible explanation of
this event.

I propose to tackle this problem by taking into consideration the long-run
effects of Covid and the economic uncertainty promoted by this event. The
long-run risks model of Bansal and Yaron (2004) has this ingredients, since it
incorporates long-run effects on consumption and stochastic volatility as its key
features. Moreover, the LRR model has been successfully applied to a plethora
of different problems in the asset pricing literature. Examples include Piazzesi
and Schneider (2007), which investigate the term structure of the interest rate;
Chen (2010), applying it to the credit spread; Dreschler and Yaron (2011) and
Eraker and Shaliastovich (2008), who develop implications for option pricing.
A summary of this literature and other topics on Macro-Finance can be found
in Cochrane (2017).

So what do I mean by the long-run effects of Covid? There are two
economically motivated intuitions behind this. First, one may think about
the supply chain disruptions during Covid. As a quick anecdote, one has to
wait a few months in line in order to purchase a car in Brazil. Second, there’s
the impacts on human capital acquisition that are due to lockdown policies,
which were necessary to contain the spread of the virus.
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Chapter 1. Introduction 15

Figure 1.2: Total Duration of School Closures

In Figure 1.2 one may see the total duration of school closures around the
world. Two things are immediately noticeable: First, that there’s heterogene-
ity in educational outcomes during Covid. Some countries, like Brazil, had
closures that took over 41 weeks to end, while others adopted this policy for
a much shorter duration. Second, the impact of school closures is very signif-
icant. Given the prior educational structure of each country, human capital
accumulation was heavily affected by social distancing policies. Countries in
Latin America, for instance, have poor basic education infrastructure, and were
much less capable to adapt to online learning. Given that human capital is es-
sential to future economic productivity, this should signify a persistent shock
on consumption.

Apart from the aforementioned facts, there is also a general increase in
economic uncertainty, which has implications both for economic activity and
for the stock market. Figure 1.3 shows the evolution, as a deviation from the
historical average, of uncertainty measures in the Euro Zone. We observe a
very significant increase in uncertainty as a result of the Covid crisis. This
uncertainty surpasses, for almost all measures, the impact of the subprime
crisis.

Another interesting feature of Covid is that it mutates. 2 Outside of the
initial March 2020 shock, the stock market has reacted throughout later
2020 and 2021 to its variants. The vertical lines in Figure 1.1 represent the

2https://www.bbc.com/future/article/20210127-covid-19-variants-how-mutations-are-
changing-the-pandemic
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Chapter 1. Introduction 16

Figure 1.3: Standard deviation of uncertainty measures in the Eurozone.
(Source: ECB Economic Bulletin, Issue 6/2020)

announcements of variants of concern by the World Health Organization
(WHO). One can readily see that variants have been a source of volatility
in the stock market, producing adverse reactions that, while not as intense as
the crash of March 2020, are still quite significant.

There are several difficulties in explaining stock markets during Covid: First,
being a rare event, it imposes a series of statistical problems, such as breaking
of ergodicity. Second, the stock market reaction may be partially explained by
changes in risk tolerance, or myopic investors. Third, the very act of modelling
a stochastic discount factor (SDF) presents a series of difficulties – it is not
obvious what mechanisms could be behind the stock market reaction to Covid.
Finally, the pandemic period in itself is relatively short – only two years of data.

In order to deal with the problems of studying stock market returns during
Covid, I modify the standard long-run risks model to disentangle short-run
business cycle shocks and long-run persistent shocks. The model is able to
capture persistent – yet small – long-run risks and larger, less persistent short-
run business cycle shocks. Moreover, I work with and open economy version of
the model, inspired by Colacito and Croce (2011). This helps, since the impact
of both short and long-run shocks related to Covid are heterogeneous across
countries. This heterogeneity helps to pin down the long-run effects of Covid
implied in data.
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I do a particle Bayesian MCMC estimation of the dynamics of the model,
using data from two countries: Brazil and the United States. For both countries,
I gathered data on market returns, the risk-free rate, inflation rate (to deflate
variables), consumption and dividends yields. The sample consists of monthly
observations, spanning January 2018 to November 2021 for both countries,
giving a total of 47 observations for each variable in a given country.

To solve for asset prices, I rely on two methods: (1) A log-linearized solution
around the steady state, which has been the staple method in the literature
since Bansal and Yaron (2004). (2) A local projection method, first proposed
in Pohl, Schmedders and Wilms (2018). I show that, corroborating the latter,
the local projection method gives a closer fit to returns and exchange rate data.

This model is successful in matching moments of stock market returns, risk-
free returns and exchange rate depreciation in this time period. Given the
persistence of long-run shocks, I show that long-run risks are an important
element driving asset prices. For instance, the half-life of a long-run shock on
consumption increases from 18 months before to 42 months after the pandemic
in Brazil. Moreover, I show that the state variable associated with long-run
consumption risk becomes more correlated between countries during Covid
(from 0.368 to 0.633), which further corroborates the importance of long-run
risks associated with Covid in determining asset prices during the pandemic.
Sadly, the model is unable to track asset return dynamics. However, I show
that including long-run risks improves model performance in this dimension.

Therefore, in this paper I present a long-run risks explanation for the stock
market reaction during Covid. To the best of my knowledge, this is the first
study to employ this model to this particular problem.

This thesis goes on as follows: Section 2 I describe the model framework,
highlighting agents preferences, the underlying dynamics of the economy
and how to derive the exchange rate. Section 3 describes the dataset that
was collected in order to undertake this study. It describes the econometric
framework used to estimate the posterior median of each parameter, and also
the calibration for preference parameters. Section 4 has a presentation of the
results, including posterior medians and standard deviation for each parameter,
and also asset pricing implications of the model under a log-linearized solution
and local projection methods. Section 5 concludes the paper, summarizing its
aims, findings and possibilities for further work.
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2
Model

I consider an economy with two countries: Brazil and the United States. It
is not immediate how one should model their interaction. Countries may be
self-sufficient, which would imply no difference in estimating countries jointly
or separately. They may have perfectly integrated economies, which would
mean that they share the same vector of shocks. Finally, one may consider
that countries are not perfectly integrated, but neither are self-sufficient. In
this case, shocks are cross-country correlated. I choose this last scenario as
my benchmark. Following Colacito and Croce (2011), I name this benchmark
scenario as countries operating under autarky. 1In Section 4.2 I argue that this
base scenario is the one who best fits data.

2.1. Preferences and Stochastic Discount Factor

Agents from both countries have Epstein-Zin-Weil preferences, as in Epstein
and Zin (1989) and Weil (1989). The agent of each country has a utility function
recursively given by:

Ut(C) =
(

(1 − β)C1−θ
t + β

(
Et

[
U1−γ

t+1

]) 1−θ
1−γ

) 1
1−θ

, (2-1)

where Ct is consumption at time t, β is the agents time preference parameter, γ
is his relative risk aversion and 1

θ
is the elasticity of intertemporal substitution

(EIS). These preferences allow for a separation between risk aversion and the
EIS, and have helped reconcile consumption based asset pricing models with
stock market data (see Bansal and Yaron (2004)).

The agent maximize his utility function subject to the following budget
constraint:

Wt+1 = (Wt − Ct)Rw,t+1, (2-2)
where Wt is the agents wealth and Rw,t+1 the return on the wealth portfolio.

1Admittedly, one may find this definition perplexing, and consider that the fist scenario is
the true autarky. I chose to follow this nomenclature – which means that one is not modelling
the endowment process in each economy as containing a common component – just to be
consistent with the literature.
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Chapter 2. Model 19

For any asset a with ex-dividend price Pa,t and dividend Da,t, the standard
Euler equation holds,

Et [Mt+1Ra,t+1] = 1. (2-3)
Where Ra,t+1 = (Pa,t+1 +Da,t+1) /Pa,t is the return of asset a and Mt+1 is the
stochastic discount factor (SDF). The risk-free rate in this economy is given
by Rf,t = 1/Et [Mt+1]. Moreover, the SDF can be written as:

Mt+1 = β(1−γ)/(1−θ)
(
Ct+1

Ct

)−θ(1−γ)/(1−θ)
R

(θ−γ)/(1−θ)
w,t+1 . (2-4)

Epstein and Zin (1991) show that the logarithm of the SDF, mt+1 can be
written as:

mt+1 = 1 − γ

1 − θ
log(β) − 1 − γ

1
θ

− 1∆ct+1 + θ − γ

1 − θ
rc,t+1, (2-5)

where ∆ct+1 is the log consumption growth and rc,t+1 the log return on the
asset that pays consumption.2

In the following section, I specify the exogenous laws of motion for con-
sumption and dividend growth rates in each economy, which completes the
system.

2.2. Consumption and dividend process

The growth rate of consumption in a given country is given by:

∆ct+1 = µc + xt + ∆zt+1 + σtϵc,t+1, (2-6)
where µc is the mean growth of consumption; xt is the long-run risks process,
an AR(1) process with persistence ρx between 0 and 1. zt is the business cycle
component, with persistence ρz, also in the unit interval. Their laws of motion
are given by

xt = ρxxt−1 + φxσtϵx,t

∆zt+1 = ρz∆zt + φz(ϵz,t+1 − ϵz,t).
(2-7)

The first process captures small and highly persistent shocks on consump-
tion, while the other captures short run deviations form potential consumption,
less persistent but frequently larger in magnitude.

2This is equivalent to the log of the return on the wealth portfolio, that is, rc,t+1 = rw,t+1.
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Chapter 2. Model 20

These parameters are crucial for asset pricing dynamics in the model: As
Bansal and Yaron (2004) point out, ρx tells us how truly relevant are long-run
risks. We should expect a value close to one. ρz on the other hand, should be
smaller, given that it capture short-run, less persistent shocks. In Section 4.1
I show that this is indeed the case, and that long-run risks become even more
important for asset pricing dynamics during the pandemic.

State variables determine the dividend process by λx and λz. λx maps the
long-run state variable x, while λz maps the short-run state variable z. µd is
the mean growth of dividends:

∆dt+1 = µd + λxxt + λz∆zt+1 + φdσtϵd,t+1. (2-8)

The consumption growth, dividends and long-run risks are influenced by
stochastic volatility, σ2

t . This process has mean σ2, persistence ρs and captures
the time-varying economic uncertainty in this economy:

σ2
t = σ2 + ρs

(
σ2

t−1 − σ2
)

+ φsϵs,t. (2-9)

Finally, I summarize the vector of shocks in this economy. I use the asterisk
to refer to variables in a foreign country. I allow shocks to be cross-country
correlated,

ξt =
[
ϵc,t, ϵd,t, ϵx,t, ϵz,t, ϵs,t, ϵ

∗
c,t, ϵ

∗
d,t, ϵ

∗
x,t, ϵ

∗
z,t, ϵ

∗
s,t

]
. (2-10)

The shocks on this economy and the full system of equations, 2-5 to 2-10, will
be estimated using data from Brazil and the US, applying particle Bayesian
MCMC methods akin to Fulop et al (2022), which are introduced in Section
3.2 and further described in Appendix B. Bayesian methods are useful in this
setting, since they are robust to small sample size, which is an unavoidable
problem of empirical studies of Covid.

Asset prices are solved for using two different methods: (1) A log-linearized
solution around the steady-state, as proposed in Bansal and Yaron (2004) and
used extensively in the literature (for instance, see Bansal, Kiku and Yaron
(2012); Beeler and Campbell (2012); Schorfheide, Song, and Yaron (2018)).3

(2) A local projection method, as proposed in Pohl, Schmedders and Wilms
(2018), which have shown that log-linearization may lead to large, economically

3The numerical solution for the log-linearized model consists simply of finding a fixed-
point solution for the price-consumption and price-dividend ratio. Given those two variables
and the model parameters, one may find the remaining variables and asset pricing moments.
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significant errors for model-implied returns, given the intrinsically nonlinear
nature of long-run risks models. The local projection method is described in
Section 3.2.2 and Appendix C.

2.3. Exchange Rates

Given that our estimation methodology relies on using data from Brazil and
the United States, we must derive exchange rate dynamics and use them to
evaluate the estimated model. The derivation of the exchange rate depreciation
in this section follows closely Backus, Foresi and Telmer (2001).

Let Et be the real (R$) spot price of one dollar. Let R∗
t be the dollar return

of one asset. It is true that:

Et

[
M∗

t+1R
∗
t+1

]
= 1, (2-11)

Et [Mt+1Rt+1] = 1, (2-12)
where M∗

t is the pricing kernel of the US. We may price the same asset using
the pricing kernel of Brazil, Mt. The return in reais for this asset is given by
Rt+1 = (Et+1/Et)R∗

t+1 and,

1 = Et

[
Mt+1 (Et+1/Et)R∗

t+1

]
. (2-13)

Combining (15) and (17), we get that:

Et

[
M∗

t+1R
∗
t+1

]
= Et

[
Mt+1 (Et+1/Et)R∗

t+1

]
. (2-14)

Notice that pricing kernel M∗
t+1 = Mt+1Et+1/Et trivially satisfies the above

equality.

Given what was stated above, one may write ∆et = m∗
t −mt. Therefore, the

model implied depreciation rate of the real is simply the log difference of the
pricing kernels on the US and Brazil.

In section 4.1 I show that the estimated stochastic discount factor does a
good in pricing assets on both economies.
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2.4. Log-Linearized Solution

I sketch below the approximate log-linearized solution to the model. Its full
exposition can be found in Appendix A. Notice that this log-linearization pro-
cess differs a bit from standard solving methods used in the Macroeconomics
literature.4 Here I rely on the Campbell-Shiller (1988) approximation for the
price-consumption and price-dividend ratios of the economy. Moreover, I use
a Guess and Verify method to conjecture a linear relationship between those
quantities and sources of risk in the model. Combining both elements, I can
arrive at approximate closed form solutions for the asset returns and variances
in this economy.

First, I start by finding the solution for the return on the consumption
claim, rc,t+1. The Campbell-Shiller approximation for this return is given by
rc,t+1 = κ0 +κ1pct+1 −pct +∆ct+1.5 I conjecture that the log price-consumption
ratio follows pct = A0 + A1xt + A2∆zt+1 + A3σ

2
t . We may substitute both on

the Euler condition, recalling that ∆ct+1 = µc + xt + ∆zt+1 + σtϵc,t+1,

Et

[
exp

(
1 − γ

1 − θ
log(β) − 1 − γ

1
θ

− 1∆ct+1 + θ − γ

1 − θ
rc,t+1 + ra,t+1

)]
= 1. (2-15)

Exploring the fact that state variables are conditionally log-normal, one may
find expressions for constants depending entirely on the model parameters.

With the approximate closed form solution for rc,t+1, we may find the SDF
depending entirely on state variables and model parameters:

mt+1 − Et (mt+1) =ζcσtϵc,t+1 − ζxσtex,t+1 − ζz(ez,t+2 − ez,t+1)

− ζsφsϵs,t+1.
(2-16)

Notice that the pricing kernel is simply a function of each source of risk in
this model, where ζi is the market price of risk for each source.

The risk premium for any asset is determined by the conditional covariance
between the return and mt+1. Similar to rc,t+1, I use the Campbell-Shiller

4For instance, log-linearization as used in Smets and Wouters (2007).
5This result is found by doing a first-order Taylor expansion around the mean price-

consumption ratio on the log-return of the consumption claim.
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approximation for the price-dividend ratio to find the market return rt and its
variance. The expression for the Equity Premium is given by:

Et (rt+1 − rf,t) = βpd,xζpd,xσ
2
t +βpd,zζpd,z +βpd,sζpd,sφ

2
s − 0.5 vart (rt+1) . (2-17)

With βpd,i depending on the model parameters. We may interpret those as
the risk loading relating to each source of risk. Notice that it also depends
on the unconditional variance of rt. Thankfully, one may find the close-form
solution for this quantity:6

var (rt) =θ2[var(xt) + var(∆zt+1)] +
[
β2

pd,x + φ2
d

]
σ2

+ β2
pd,z + [A3,pd (ρsκ1 − 1)]2 var

(
σ2

t

)
+ β2

pd,sφ
2
s.

(2-18)

Finally, the risk-free rate can be found using the Euler condition, the variance
of mt+1 and the risk premium of rc,t+1. Its expression is given by:

E (rf,t) = − log(β) + θE(∆c) + (γ − θ)
1 − γ

E [rc,t+1 − rf,t]

− 1 − θ

2(1 − γ)
[(
ζ2

c + ζ2
x

)
E
[
σ2

t

]
+ ζ2

z + ζ2
sφ

2
s

]
.

(2-19)

The unconditional variance of rf,t is

var (rf,t) = θ2[var (xt) + var (∆zt+1)] +
{

(γ − θ)
1 − γ

Q1 −Q2
1 − θ

2(1 − γ)

}2

var
(
σ2

t

)
.

(2-20)

Again, Q1 and Q2 are constants, which depend on the model parameters.
As noted in Bansal and Yaron (2004), for all practical purposes, the variance
of the risk-free rate is determined by the first term.

6A3,pd is a constant, which depends on the model parameters. Its value can be found in
Appendix A.
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3
Data and Econometric Framework

3.1. Data Sources and Calibrated Parameters

I use data from two countries: Brazil and the United States. For both
countries, I gathered data on market returns, the risk-free rate, inflation rate
(to deflate variables), consumption and dividends yields. The sample consists
of monthly observations, spanning January 2018 to 2021 for both countries.

For Brazil, I gathered monthly market returns from IBrX 100,1 collected
from the Reuters Datastream platform. Monthly risk-free (Selic) rates were
found at the BCB (Brazil’s Central Bank) database. From IBGE I collected
the monthly IPCA, the consumer’s price index. I collected the monthly con-
sumption data from Fecomercio SP. This variable proxies monthly consump-
tion data in Brazil using a measure from São Paulo. Sadly, there is no direct
measure of monthly consumption for Brazil, so this compromise was necessary.
Finally, dividend yield data comes from NEFIN, the Center for Research in
Financial Economics of the University of São Paulo.

The United States data also comes from various sources: Monthly market
(S&P 500) returns were collected at the Reuters Datastream platform; the risk-
free rate was collected from Kenneth French’s database. From the US Bureau
of Labor Statistics I extracted monthly CPI rates. Monthly consumption data
can be found at the FRED St.Louis Database. Dividend yield was gathered at
Robert Shiller’s online database.

In order to estimate the model, I calibrate a few parameters, relating to
the agent’s preferences. I chose standard values in the literature, which can be
found in Table 1. One may be curious if the subjective time discount factor can
credibly be that large for Brazil. Given that the model consists of a monthly
decision problem, the parameter is very close to 1. For the year of 2019,2 the
average 1-month realized real interest rate was 0.17%.3 Given that, one may

1The results of this paper are robust to substituting the IBrX 100 with the Ibovespa
Index.

2I choose the year 2019 as the GDP per capita growth was approximately 0 that year.
3The 1-year nominal yearly interest rate was 6,51%, while the yearly inflation rate was

4,02%.
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roughly estimate β̂ = 1
1+it→t+1 = 1

1.0017 ≈ 0.998.

Table 3.1: Calibrated Parameters

Parameter Description Value

β Subjective Discount Factor 0.998
γ Coefficient of Relative Risk Aversion 6
1
θ

Intertemporal Elasticity of Substitution 2

For the Intertemporal Elasticity of Substitution (IES), I chose a value of 2.
This value, being greater than 1, ensures that stock prices rise with expected
future consumption growth and fall with volatility of consumption growth.
There is a lot of disagreement with respect to the IES true value: estimates
range from negative values and up to 10, as shown in Havranek et al (2015).
While this calibration is slightly larger than the value of 1.5 used in Bansal and
Yaron (2004), it is well within the range of empirical estimates found in the
literature. Moreover, this calibration is very similar to the posterior median of
1.97 found in Schorfheide, Song and Yaron (2018), who also utilize Bayesian
methods to estimate a Long-Run Risks model.

3.2. Econometric Framework

It is instructive to think of the methodology applied to this study as
containing two main blocks. First, Bayesian methods are employed in order
to estimate the parameters that govern the dynamics of the economy. As
described in Section 3.1, the subjective discount factor β, the coefficient
of risk aversion γ and the intertemporal elasticity of substitution 1

θ
are

calibrated. Estimated parameters can be summarized (for each country) by
Θ = [ρz, ρx, ρs, µc, µd, σ, φz, φx, φs, φd, λz, λx].

Second, I use the median posterior estimates from the first block, together
with calibrated parameters, in order to see the asset pricing implications of the
model. Here I use two different methods: A log-linear approximation, following
Bansal and Yaron (2004); the local projection method, as proposed in Pohl,
Schmedders and Wilms (2018). They show that log-linearization may lead
to large, economically significant errors for model-implied returns, given the
intrinsically nonlinear nature of long-run risks models. In section 4.1 I show
results that corroborate this claim.
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3.2.1. Bayesian Estimation

Following recent strands in the long-run risks literature, such as Schorfheide,
Song and Yaron (2018), Fulop et al (2022), I employ a particle MCMC
algorithm to identify long-run risks and estimate the parameters that govern
the dynamics of the economy. In this section I give an informal account of the
methodology I used to estimate the posterior distributions of parameters. A
more complete – and technical – exposition is developed in Appendix B.

For T time periods, I denote all observations as y1:T =
{∆ct,∆dt, rt, rf,t,∆et}T

t=1
4 and the latent states as w1:T = {∆zt, xt, σ

2
t }T

t=1 .
5

The objective is to compute the joint posterior distribution of parameters and
latent states, p (Θ, w1:T | y1:T ), which can be decomposed into:

p (Θ, w1:T | y1:T ) = p (w1:T | Θ, y1:T ) p (Θ | y1:T ) , (3-1)
where Θ denotes the parameter set of the long-run risk model. According to
Bayes’ Rule,

p (Θ | y1:T ) ∝ p (y1:T | Θ) p(Θ). (3-2)

In order to characterize the joint posterior, I employ a particle filter to
estimate the parameters that characterize the likelihood p (y1:T | Θ), while
approximating the smoothing distribution of latent states p (w1:T | Θ, y1:T ).

The particle filter draws samples (called particles) from a prior distribution.
Each particle has a likelihood weight assigned to it, representing the probability
of that particle being sampled from the probability density function. Estimates
for the likelihood and smoothing distribution are empirical distributions, which
are found by combining sample observations and pondering them by their
weights.

The main parameters of interest are ρx and ρz. The first parameter gives the
persistence of long-run shocks in this economy. The largest its value, the more
relevant long-run risks will be for asset pricing dynamics. Ideally, its value

4There are five observed variables: the consumption growth rates (∆ct), the dividend
growth rates (∆dt), the market returns (rt), the risk-free returns (rf,t) and the exchange
rate depreciation (∆et).

5There are three state variables for each country: the short-run business cycle fluctuation
zt; the long-run risks component xt and the stochastic volatility component σ2

t .
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should be close to 1. ρz gives the the persistence of short-run business cycle
shocks. One should expect to find a much smaller coefficient for those.

Furthermore, one is interested in assessing if long-run shocks due specifically
to Covid are relevant for asset prices. In order to test for this hypothesis, I
estimate the model using two subsamples: Jan-2018 to Dec-2019 and Jan-
2020 to Nov-2021. Ideally, one should observe that ρx increases in the second
subsample if long-run risks are particularly relevant to the pandemic.

Moreover, one may extract the estimated latent states for each period. If
effects due to Covid are being captured by the econometric methodology,
one should see that latent states between countries become more correlated
during the pandemic. Therefore estimating the model using a sample with two
countries is helping to pin down the effects of Covid, both in the short and
long run.

In order to assess if the autarky assumption (as defined in Colacito and
Croce (2011)) is reasonable, I estimate the model under two limiting cases:
(1) That country dynamics are completely independent; (2) that countries are
perfectly integrated, i.e., they are subject to the same shocks. If (1) is the case,
one should be able to estimate each country separately and arrive at results
for asset pricing dynamics that are better in matching the data comparing
to the benchmark. If (2) is the case, one should be able to impose the same
shocks estimated for the US, for instance, as the underlying shocks for Brazil,
and arrive at the same result as if shocks are allowed to be cross-country
correlated. In Section 4.2 I show the results for both procedures. They imply
that the benchmark case is more appropriate, giving better estimates for asset
pricing moments.

3.2.2. Solving for Asset Prices: Log-Linear and Local Projection Method

In Section 2.4 and Appendix A, I show how to solve for asset prices using
a log-linear approximation, introduced first in Bansal and Yaron (2004). The
numerical solution for the log-linearized model consists simply of finding a
fixed-point solution for the price-consumption and price-dividend ratio in
the linearized system of equations. Given those two variables and the model
parameters, one may find the remaining variables and asset pricing moments.
This is a relatively simple method to implement in practice.
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For the remaining of this section, I give an overview of the Local Projection
Method, following Pohl, Schmedders and Wilms (2018). A more complete
exposition is developed in Appendix C, where I describe its algorithmic
implementation.

Projection methods are a general tool to solve functional equations of the
form (Gz)(w) = 0, where w resides in a (state) space W ⊂ Rl, l ≥ 1, and z is
an unknown solution function with domain w, so z : W → Rm.

The first step of a projection method is to approximate the unknown function
z on its domain w using a linear combination of basis functions. For a set
{Λk}k∈{0,1,...,n} of chosen basis functions, the approximation ẑ of z is

ẑ(w; α) =
n∑

k=0
αkΛk(w), (3-3)

where α = [α0, α1, . . . , αn] are unknown coefficients. Replacing the function z

in equation (3-3) by its approximation ẑ, one can define the residual function
F̂ (w; α) as the error in the original equation,

F̂ (w;α) = (Gẑ)(w;α). (3-4)

Instead of solving equation (3-3) for the unknown function z, one attempts
to choose coefficients α to make the residual F̂ (w; α) zero. Note that instead of
finding an infinite-dimensional vector space, the problem is reduced to looking
for a vector in Rn+1.

This problem is unlikely to have an exact solution, so the second central
step of a projection method is to impose certain conditions on the residual
function, the so-called "projection" conditions, to make the problem solvable.
In other words, the purpose of the projection conditions is to establish a set
of requirements that the coefficients α must satisfy. For a formulation of the
projection conditions, define a "weight function" (term) λ(w) and a set of
"test" functions {gk(w)}n

k=0. Then, define an inner product between the residual
function F̂ and the test function gk,∫

W
F̂ (w; α)gk(w)λ(w)dw. (3-5)

This inner product induces a norm on the function space w. Natural
restrictions for the coefficient vector α are now the projection conditions,∫

W
F̂ (w; α)gk(w)λ(w)dw = 0, k = 0, 1, . . . , n. (3-6)
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In this paper, I use the collocation method. In it, one chooses n+ 1 distinct
nodes in the domain, {wk}n

k=0, and uses Dirac delta functions as the test
functions, gk = δ (w − wk). With a weight term λ(w) ≡ 1, the projection
conditions (3-6) simplify to

F̂ (wk; α) = 0, k = 0, 1, . . . , n. (3-7)

Simply put, the collocation method determines the coefficients in the ap-
proximation (3-3) by solving the square system (3-7) of nonlinear equations.

For the purposes of this paper, I apply the projection method twice. In the
first step, I approximate the log price-consumption ratio p̂c(w) by applying
the projections on the residual function of the wealth-Euler equation,

F̂pc(w; αpc) =
∫

W
[exp(1 − γ

1 − θ
(log β + (θ − γ

1 − θ
)∆c(w′ | w) + pc(w′)

− log(epc(w) − 1))) − 1]dfw.

(3-8)

Once αpc is known, the projections can be applied to the residual function,

F̂pd (w; αpd) =
∫

W

[
exp

(
1 − γ

1 − θ
log β − 1 − γ

1
θ

− 1∆c (w′ | w) + θ − γ

1 − θ
r̂c (w′ | w; αpc)

+ log
(
ep̂d(w) + 1

)
− p̂d(w) (w; αpd) + ∆d (w′ | w)

)
− 1

]
dfw

(3-9)
to solve for the price-dividend ratio p̂d (w;αpd) of any asset. Given those,

we may find returns for any asset using the approximate returns formula:

r (w′ | w) = ln
(
epd(w′) + 1

)
− pd(w) + ∆d (w′ | w) . (3-10)
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4
Results

4.1 Main Results

The prior distributions for each parameter and posterior estimates are found
in Tables 4.1 and 4.2. For most variables, I chose a normal distribution as
a prior, with exceptions given to parameters that have a bounded support,
for which I used either a uniform or truncated normal distribution. I chose
uninformative priors for the estimation procedure, in order not to bias the
results towards a particular desirable conclusion.

In Tables 4.1 and 4.2, the first parameter block gives the persistence of state
variables; the second, moments for the consumption and dividend process, plus
the fist moment of the stochastic volatility; the third, the estimated variance
for each shock in the model; the fourth, the mapping of state variables into
the dividend process.

Noticeably, long-run risks matter for consumption and therefore asset pricing
dynamics in this model: The estimated coefficients for ρx are large for both
countries: 0.795 for the US and 0.914 for Brazil. As noticed in Bansal and Yaron
(2004), long-run risks are as important to asset pricing behavior as large those
coefficients are.
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Table 4.1: Estimated Parameters: Full model on Brazilian data (Jan-2018
to Nov-2021)

Parameter Prior Distribution Median (posterior) Std (Posterior)

ρz Uniform(0,1) 0.288 0.094
ρx Uniform(0,1) 0.914 0.068
ρs Uniform(0,1) 0.801 0.047

µc Normal(1, 0.5) -0.009 0.003
µd Normal(1, 0.5) 0.001 0.001
σ Tr. Normal(1, 0.5) 0.008 0.002

φz Tr. Normal(1, 0.5) 0.127 0.043
φx Tr. Normal(1, 0.5) 0.061 0.009
φs Tr. Normal(1, 0.5) 0.012 0.003
φd Tr. Normal(1, 0.5) 0.084 0.021

λz Normal(2, 1) 4.873 0.133
λx Normal(2, 1) 4.914 0.224

Notes: Here I present the prior distribution and posterior distribution for each
non-calibrated parameter in the LRR model. Results are the median of the pos-
terior distribution and their estimated standard deviation. The first parameter
block gives the persistence of state variables; the second, moments for the con-
sumption and dividend process, plus the fist moment of the stochastic volatility;
the third, the estimated variance for each shock in the model; the fourth, the
influence of state variables in the dividend process.

The short-run business cycle shocks on the other hand are much less persis-
tent: ρz has a estimated value of 0.243 for the US, while Brazil has an estimate
of 0.288. Notice that this was not imposed by prior distributions. I used the
same neutral prior for both processes, and the Bayesian methodology separated
persistent long-run risks and transitory short-run business fluctuations.
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Table 4.2: Estimated Parameters: Full model on US data (Jan-2018 to
Nov-2021)

Parameter Prior Distribution Median (posterior) Std (Posterior)

ρz Uniform(0,1) 0.243 0.083
ρx Uniform(0,1) 0.795 0.097
ρs Uniform(0,1) 0.844 0.052

µc Normal(1, 0.5) 0.002 0.001
µd Normal(1, 0.5) 0.001 0.001
σ Tr. Normal(1, 0.5) 0.003 0.001

φz Tr. Normal(1, 0.5) 0.086 0.037
φx Tr. Normal(1, 0.5) 0.044 0.012
φs Tr. Normal(1, 0.5) 0.008 0.002
φd Tr. Normal(1, 0.5) 0.053 0.013

λz Normal(2, 1) 2.966 0.298
λx Normal(2, 1) 2.754 0.226

Notes: Here I present the prior distribution and posterior distribution for each
non-calibrated parameter in the LRR model. Results are the median of the pos-
terior distribution and their estimated standard deviation. The first parameter
block gives the persistence of state variables; the second, moments for the con-
sumption and dividend process, plus the fist moment of the stochastic volatility;
the third, the estimated variance for each shock in the model; the fourth, the
influence of state variables in the dividend process.

The stochastic volatility component also appears as an important ingredient
for determining asset pricing behavior: ρs is estimated as 0.844 in the US, 0.801
in Brazil. While stochastic volatility seems to be slightly more persistent in the
US, it has a much smaller median compared to Brazil.

In this particular sample, both countries show a small estimated dividend
growth (µd). However, Brazil has a negative median monthly consumption
growth (µc). This should not be entirely surprising. Even before Covid, Brazil
had a period of low economic growth and a stagnant economy. While there’s a
recovery in 2021, it makes sense that the country should present such a result
given sample. Moreover, on Table 4.3 I show that Brazil had a negative risk
premia, which is both consistent with the literature on risk premia in Brazil

DBD
PUC-Rio - Certificação Digital Nº 1912140/CA



Chapter 4. Results 33

and the fact that consumption had such a small estimate in sample.

Brazil also has noticeably higher estimates for λz and λx. These parameters
may be interpreted as financial leverage, and thus are entirely consistent with
studies using international data (see Kalemli-Ozcan, Sorensen and Yesiltas
(2012), for instance). Notice that these variables also are the sensibility of
dividends to state variables in each country, meaning that dividends are more
sensitive both to short-run and long-run shocks in Brazil comparing to the
USA.

I present the asset pricing implications of the model on Tables 4.3 and 4.4.
We can see that the proposed model is able to match quite closely observed
moments in returns and depreciation rate data. My results also give further
evidence to the necessity of applying solution methods that are able to handle
nonlinearities: The log-linear approximation gives estimations to the equity risk
premia (and its variance) that are much smaller compared to data. Noticeably,
the SDF of the United States does a better job: It matches more closely the
mean empirical Sharpe Ratio. The stochastic factors combined are able to
match ∆e reasonably well. The error, however, is larger than with the pricing
of other asset prices: The pricing errors seem to combine rather than cancel
each other.

Table 4.3: Model Comparison: Asset Pricing Statistics in Brazil (Jan-2018 to Nov-
2021)

Statistic Data Local Projection Method Log-Linear Approximation

mean r 0.0022 0.0020 0.0017
mean rf 0.0038 0.0042 0.0047

mean r − rf –0.0017 –0.0021 –0.0029
σ(r) 0.0055 0.0049 0.0042
σ(rf ) 0.0001 0.0001 0.0001

σ(r − rf ) 0.0060 0.0052 0.0044
Sharpe ratio –0.2777 –0.4038 –0.6591

mean ∆e 0.0399 0.0317 0.0294
σ(∆e) 0.3663 0.3226 0.2883

Notes: Asset pricing statistics are presented as monthly average returns and variances. Local
Projection Method refers to results using this method, described in Appendix C. Log-Linear
Approximation refers to results using this method, described in Section 2.4 and Appendix
A. Exchange rates are mean difference in logs and its variance.
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Most studies of asset returns in Brazil present an average negative equity
premium. Carvalho and Oliveira Santos (2020), for instance, find an annual
mean equity premium of -1.75% during the period of 1996-2017 using the
Ibovespa index returns. As shown in Table 4.3, Brazil exhibits a negative equity
risk premium in this sample.

Although no paper focuses on this particular period in data, we may compare
the results in Table 4.4 with other papers in which Bayesian methods are also
employed with the Long-Run Risks model. For instance, Schorfheide, Song and
Yaron (2018) report on their Table VIII similar results. Naturally, errors are
larger in this model, which was estimated on a much smaller dataset from a
time-series perspective. In the conclusion I discuss a few future steps which
may improve upon current results.

Table 4.4: Model Comparison: Asset Pricing Statistics in USA (Jan-2018 to Nov-
2021)

Statistic Data Local Projection Method Log-Linear Approximation

mean r 0.0101 0.0093 0.0085
mean rf 0.0009 0.0011 0.0014

mean r − rf 0.0091 0.0082 0.0071
σ(r) 0.0160 0.0121 0.0095
σ(rf ) 0.0001 0.0001 0.0001

σ(r − rf ) 0.0162 0.0127 0.0095
Sharpe ratio 0.5664 0.6457 0.7474

Notes: Asset pricing statistics are presented as monthly average returns and variances.
Local Projection Method refers to results using this method, described in Appendix C.
Log-Linear Approximation refers to results using this method, described in Section 2.4
and Appendix A.

On Appendix D I show the analogous results for Tables 4.3 and 4.4 under
two subsamples: Jan-2018 to Dec-2019 and Jan-2020 to Nov-2021. As with the
full sample, the model is able to match the market returns, risk-free returns
and exchange rate depreciation moments in data.

Finally, in Table 4.5 we see the influence of long-run risks implied by Covid
on the estimated model: The latent variables estimated in the pandemic period
are much more correlated across countries during this event. Moreover, the
estimates for the persistence of the long-run risk become significantly larger
during Covid, specially in the US. This gives me confidence that I’m being
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able to capture the long-run effects of Covid, and that those are a significant
influence on asset pricing behavior during the pandemic.

Table 4.5: Long-Run Effects Comparison

Sample ρUS
z ρUS

x ρBR
z ρBR

x corr(xUS, xBR) corr(zUS, zBR)

Jan-2018 to Dec-2019 0.232 0.762 0.256 0.848 0.368 -0.318
Jan-2020 to Nov-2021 0.262 0.985 0.324 0.931 0.633 0.112
Jan-2018 to Nov-2021 0.243 0.795 0.288 0.914 0.525 -0.264

Notes: Results are point estimates for the persistence parameters for state variables x and z. corr(., .)
refers to the Pearson correlation coefficient between both variables.

One way of look into these results is to calculate the half-life of a shock given
persistence:

h50% = − ln(2)
ln (|ρ|) . (4-1)

Naturally, shocks relating to z have a half-life that is smaller than one month.
zUS

t has a half-life of 14 days before Covid and zBR
t has a half-life of 15 days.

While these become a little more persistent during Covid, the difference in
dissipating time is very small: zUS

t value goes to 16 days and zBR
t to 18 days.

Shocks relating to x, on the other hand, are much more persistent: ρUS
x of 0.762

means a half-life of 3 months, while 0.985 signifies a half-life of 46 months. ρBR
x

of 0.848 means a half-life of 4 months and 0.931 signifies a half-life of 10 months.

One may also wish to see how long it takes for 95% of a shock to be
dissipated. This value can be found plugging ρ in

h95% = − ln(20)
ln (|ρ|) . (4-2)

Shocks relating to z take about 2 months to dissipate 95% of their value.
More accurately, zUS

t takes 62 days before the pandemic and 67 after, while zBR
t

takes 66 days before and 80 days after the pandemic. Again, the dissipating
time is larger for shocks on x: for the US, 95% of their impact is gone in
11 months before the pandemic and 198 months after. For Brazil, the figures
are 18 months and 42 months. This means that shocks relating to Covid are
much more persistent, and therefore are much more influential in asset pricing
behavior.
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Figure 4.1: State Variables for each Country: xt and zt

This Figure plots the estimated state variables between 2018 and 2021. Dashed
vertical lines represent announcement dates for Variants of Concern (VOCs).

In Figures 4.1 and 4.2 I plot the estimated state variables for each country.
Vertical dashed lines show the dates when Variants of Concern (VOCs)
were announced. We may separate the period in three time windows: Before
Covid plus its initial shock in March 2020; the period after the first VOC
announcement and after the second VOC announcement. Behavior patterns are
overall consistent with the fact that they are able to capture COVID shocks: x
and z fall heavily at the beginning o the pandemic, while σ increases; that is,
consumption suffers both long and short-run negative shocks, while uncertainty
increases. Notice that the virus only arrives in Brazil later as compared to the
US, so Brazil anticipates the shock. When a variant appears, a similar – yet
less pronounced – reaction occurs. Interestingly, the US has an unexpected
behavior between the first and second VOC: Its state variable increases in
value. We may interpret this fact in the following way: The VOC shocks hit
Europe first; Brazil is a small country as compared to Europe, while the US
is not. In the US, the state variables are reacting to stimulus measures, and
the country follows its own dynamic, while Brazil is much more influenced by
events abroad.
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Figure 4.2: State Variables for each Country: σt

This Figure plots the estimated state variables between 2018 and 2021. Dashed
vertical lines represent announcement dates for Variants of Concern (VOCs).

Finally, one may be curious if the model is able to match asset return
dynamics. Sadly, the results in Figures 4.3 and 4.4 indicate otherwise. Figure
4.3 shows the realized and model-implied (dashed line) returns and risk-free
rate. While the model matches closely asset moments, it has some difficulty
in tracking realized trajectories in sample. A similar result holds for exchange
rate variation, as shown in Figure 4.4.
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Figure 4.3: Fitted Returns: Brazil and US

This Figure plots the realized (blue line) and fitted (dashed red line) returns
between 2018 and 2021.

Figure 4.4: Fitted Exchange Rate Variation

This Figure plots the realized (blue line) and fitted (dashed red line) exchange
rate variation between 2018 and 2021.
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Although this model is not able to track data as closely as one would wish,
adding long-run risks helps in this endeavor. Figures 4.5 and 4.6 plot the
realized vs. fitted exchange rates in a model with no long-run risks; that is, only
zt affects the consumption and dividend processes. Comparing these figures
with 4.3 and 4.4, we can see that the inclusion of xt helps in tracking the data
in sample.

Figure 4.5: Fitted Returns: Brazil and US - Without Long-Run Risks

This Figure plots the realized (blue line) and fitted (dashed red line) returns
between 2018 and 2021. In this estimation, xt does not influence the consump-
tion and dividend processes, only zt.
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Figure 4.6: Fitted Exchange Rate Variation - Without Long-Run Risks

This Figure plots the realized (blue line) and fitted (dashed red line) exchange
rate variation between 2018 and 2021. In this estimation, xt does not influence
the consumption and dividend processes, only zt.

4.2 Country Integration

As an additional exercise, I verify if the assumption that countries are
autarkies may interfere with results. For this, first I estimate the model using
the first subsample, Jan-2018 to Dec-2019, with each country being estimated
separately and both together. For this comparison, I use the local projection
method, as it was shown to be more accurate.
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Table 4.6: Verifying Autarky: Asset Pricing Statistics in Brazil
(Jan-2018 to Dec-2019)

Statistic Data Joint Estimation Separate Estimation

mean r 0.0148 0.0137 0.0140
mean rf 0.0050 0.0053 0.0063

mean r − rf 0.0098 0.0084 0.0077
σ(r) 0.0026 0.0022 0.0024
σ(rf ) 0.0001 0.0001 0.0001

σ(r − rf ) 0.0026 0.0023 0.0025
Sharpe ratio 3.7827 3.6522 3.0811

Notes: Asset pricing statistics are presented as monthly average returns
and variances. Joint Estimation refers to results when both countries are
estimated together. These results were found using the Local Projection
Method, described in Appendix C.

Table 4.7: Verifying Autarky: Asset Pricing Statistics in USA (Jan-
2018 to Dec-2019)

Statistic Data Joint Estimation Separate Estimation

mean r 0.0056 0.0053 0.0048
mean rf 0.0016 0.0013 0.0014

mean r − rf 0.0040 0.0040 0.0034
σ(r) 0.0083 0.0075 0.0067
σ(rf ) 0.0001 0.0001 0.0001

σ(r − rf ) 0.0083 0.0076 0.0069
Sharpe ratio 0.4802 0.5263 0.4928

Notes: Asset pricing statistics are presented as monthly average returns
and variances. Joint Estimation refers to results when both countries are
estimated together. These results were found using the Local Projection
Method, described in Appendix C.

As one may readily see on Tables 4.6 and 4.7, estimates for asset pricing
statistics are not as accurate, as a general thing, when we estimate each country
separately, but the difference between using one or both countries is small. This
is consistent with two facts: 1) That exploring the heterogeneity of shocks
across countries should help to pin down asset pricing behavior; 2) that the
autarky assumption, although strong, is not significantly driving the results.
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Table 4.8: Are Countries Perfectly Integrated?: Asset Pricing Statistics in
Brazil (Jan-2018 to Dec-2019)

Statistic Data Baseline Estimation Perfectly Correlated Shocks

mean r 0.0148 0.0137 0.0085
mean rf 0.0050 0.0053 0.0034

mean r − rf 0.0098 0.0084 0.0051
σ(r) 0.0026 0.0022 0.0007
σ(rf ) 0.0001 0.0001 0.0001

σ(r − rf ) 0.0026 0.0023 0.0008
Sharpe ratio 3.7827 3.6522 6.3731

Notes: Asset pricing statistics are presented as monthly average returns and variances.
Baseline Estimation refers to results when shocks are assumed to be cross-country
correlated. These results were found using the Local Projection Method, described in
Appendix C.

Moreover, one may test if it would be reasonable to assume that countries
are perfectly integrated. I impose the same shocks estimated for the US as
the underlying shocks for Brazil, and compare asset pricing statistics with the
baseline case, where I allow for shocks to be cross-country correlated. As one
may see in Table 4.8, the estimates are a great deal worse in this particular
case, thus strongly rejecting that one could assume perfect integration.
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5
Conclusion

In this thesis, I contribute to the macro-based asset pricing literature
developed around Covid. I show that, while previous explanations of asset
pricing behavior during Covid have been unconvincing, it is possible to explain
this behavior by relying on a modified long-run risks model. I separate short-
term business cycle fluctuations and long-run persistent shocks and show that,
by taking the latter into account, one can reasonably explain what happened
to asset prices during the period.

The long-run risks model is able to match data moments on stock market
returns, risk-free returns, exchange rate depreciation in a monthly sample of
two countries, Brazil and the United States. To my knowledge, this is the
first paper that applied a consumption based asset pricing model to explain
exchange rate movements during Covid.

Moreover, I solve for asset prices using two methods: The standard log-
linearization around the steady state and a local projection method, akin to
Judd (1992), Judd (1996) and Fulop et al (2022). I corroborate the findings of
Pohl, Schmedders and Wilms (2018) by showing that local projection methods,
by taking nonlinearities that are intrinsic to long-run risks models into account,
produce more accurate estimates of asset returns during the pandemic.

As to further developments of this work, one might be interested in address-
ing two main points: First, it would be appealing to increase the amount of
countries for which I estimate the model. That could strengthen my claim that
this asset pricing model is able to capture the stock market behavior during
Covid. It is not immediately clear that adding data in the cross-section should
improve results, as the number of parameters to be estimated also increases.
Notice however that the model has both common and idiosyncratic shocks. I
may increase commonalities between countries in order to offset the growth in
the number of parameters. Second, one might be uncomfortable in imposing
autarky, as it is a strong hypothesis. I have aimed to show that imposing it
would not significantly change results. Still, one might prefer to proceed as
Dou and Verdelhan (2015), who model the endowment process in a two coun-
try economy as containing both a country-specific component and a global
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one. Although more realistic, this modelling choice has a tractability trade-off,
which would become particularly poignant as the number of countries increase.
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A
Approximate Log-Linearized Solution

A.1. Stating the Problem

The laws of motion for consumption and dividends in a given country are:1

∆ct+1 = µc + xt + ∆zt+1 + σtϵc,t+1,

∆dt+1 = µd + λxxt + λz∆zt+1 + φdσtϵd,t+1,

∆zt+1 = ρz∆zt + φz(ϵz,t+1 − ϵz,t),

xt = ρxxt−1 + φxσtϵx,t,

σ2
t = σ2 + ρs

(
σ2

t−1 − σ2
)

+ φsϵs,t,

ξt ∼i.i.d. N(0, I),

(A-1)

where ξt =
[
ϵc,t, ϵd,t, ϵx,t, ϵz,t, ϵs,t, ϵ

∗
c,t, ϵ

∗
d,t, ϵ

∗
x,t, ϵ

∗
z,t, ϵ

∗
s,t

]
is the vector of shocks in

this economy.

The SDF (Stochastic Discount Factor) for this economy is given (in logs)
by:

mt+1 = 1 − γ

1 − θ
log(β) − 1 − γ

1
θ

− 1∆ct+1 + θ − γ

1 − θ
rc,t+1. (A-2)

Asset prices are derived using the SDF and the asset pricing condition
Et [Mt+1Ra,t+1] = 1, so

Et

[
exp

(
1 − γ

1 − θ
log(β) − 1 − γ

1
θ

− 1∆ct+1 + θ − γ

1 − θ
rc,t+1 + ra,t+1

)]
= 1 (A-3)

for any asset a with (log) return ra,t+1.

Following Bansal and Yaron (2004), I first start by solving the special case
where ra,t is rc,t, the return on the aggregate consumption claim. Then, I solve
for the market return rt and risk-free rate rf,t.

1Again, I ommit the subscript i from this exposition, since I will assume the same
preferences for each country. Notice that since I allow for shocks to be cross-country
correlated, including countries in the sample would naturally lead to different estimates
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A.2. The Return on the Consumption Claim, rc,t

First, I conjecture that the log price-consumption ratio follows pct =
A0 + A1xt + A2∆zt+1 + A3σ

2
t . We may substitute the Campbell-Shiller ap-

proximation, rc,t+1 = κ0 +κ1pct+1 −pct +∆ct+1
2 into the Euler Equation. The,

notice that ∆c, x, ∆z and σ are all conditionally normal, which makes both
mt and rc,t normal. Exploring this fact, we may write the Euler Equation in
terms of the state variables xt, ∆zt+1 and σt. Since the Euler condition must
hold for all values of state variables, all terms involving xt and ∆zt+1 must
satisfy:

−1 − γ
1
θ

− 1xt + 1 − γ

1 − θ
[κ1A1ρxxt − A1xt + xt] = 0

−1 − γ
1
θ

− 1∆zt+1 + 1 − γ

1 − θ
[κ1A2ρz∆zt+1 − A2∆zt+1 + ∆zt+1] = 0.

(A-4)

It follows that

A1 = 1 − θ

1 − κ1ρx

,

A2 = 1 − θ

1 − κ1ρz

.

(A-5)

Similarly, we may collect terms and solve for A3,

1 − γ

1 − θ

[
κ1ρsA3σ

2
t − A3σ

2
t

]
+ 0.5

[
(1 − γ)2 +

(1 − γ

1 − θ
A1κ1φx

)2]
σ2

t = 0. (A-6)

Then,

A3 =
0.5

[
(1 − γ)2 +

(
1−γ
1−θ

A1κ1φx

)2
]

1−γ
1−θ

(1 − κ1ρs)
. (A-7)

Given the solution above for pct, we may derive the innovation to the
return rc as a function of the evolution of the state variables and the model
parameters:

rc,t+1 − Et (rc,t+1) = σtϵc,t+1 +B1σtex,t+1 +B2(ez,t+2 − ez,t+1) + A3κ1φsϵs,t+1,

(A-8)
2The constants in the Campbell-Shiller approximation are given by κ1 = ep̄c

1+ep̄c and
κ0 = − log

(
(1 − κ1)1−κ1 κκ1

1

)
.p̄c = A0 + A1x̄t + A2 ¯∆zt+1 + A3σ̄2

t .
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where B1 = κ1A1φx and B2 = κ1A2φz. Additionally, the conditional variance
is

vart (rc,t+1) =
(
1 +B2

1

)
σ2

t +B2
2 + (A3κ1)2 φ2

s. (A-9)

A.3. The Stochastic Discount Factor

Now that we have rc,t+1 and ∆ct+1, we may (omitting constants) write the
SDF in terms of the state variables,

mt+1 = 1 − γ

1 − θ
log(β) − 1 − γ

1
θ

− 1∆ct+1 + θ − γ

1 − θ
rc,t+1, (A-10)

Et [mt+1] = m0 − θ(xt + ∆zt+1) + A3 (κ1ρs − 1) (θ − γ

1 − θ
)σ2

t , (A-11)

mt+1 − Et (mt+1) = − γσtϵc,t+1 + (θ − γ

1 − θ
) (A1κ1φx)σtex,t+1

+ (θ − γ

1 − θ
) (A2κ1φz) (ez,t+2 − ez,t+1)

+ (θ − γ

1 − θ
)A3κ1φsϵs,t+1.

(A-12)

Notice that each right hand term accounts for the market price of risk for
each source of risk. Therefore, if we define the market prices of risk as ζc = −γ;
ζx = −( θ−γ

1−θ
) (A1κ1φx); ζz = −( θ−γ

1−θ
) (A2κ1φz) and ζs = −( θ−γ

1−θ
)A3κ1, we may

write Equation (A-12) as

mt+1 − Et (mt+1) =ζcσtϵc,t+1 − ζxσtex,t+1 − ζz(ez,t+2 − ez,t+1)

− ζsφsϵs,t+1.
(A-13)

A.4. The Market Return, rt

The risk premium for any asset is determined by the conditional
covariance between the return and mt+1. Therefore, Et (rt+1 − rf,t) =
− covt [mt+1 − Et (mt+1) , rt+1 − Et (rt+1)] − 0.5 vart (rt+1). Now, I show the
innovation in the market return. The price-dividend ratio is pdt = A0,pd +
A1,pdxt + A2,pd∆zt+1 + A3,pdσ

2
t . Then,
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rt+1 = ∆dt+1 + κ1A1,pdxt+1 − A1,pdxt + κ1A2,pd∆zt+2

− A2,pd∆zt+1 + κ1,pdA3,pdσ
2
t+1 − A3,pdσ

2
t ,

rt+1 − Et (rt+1) = φdσtϵd,t+1 + κ1A1,pdφcσtϵx,t+1

+ κ1A2,pdφz(ϵz,t+2 − ϵz,t+1) + κ1A3,pdφsϵs,t+1

= φdσtϵd,t+1 + βpd,xσtϵc,t+1 + βpd,z(ϵz,t+2 − ϵz,t+1) + βpd,sφsϵs,t+1,

(A-14)
where βpd,x = κ1,pdA1,pdφc, βpd,z = κ1,pdA2,pdφz and βpd,s = κ1,pdA3,pd.
Moreover,

vart (rt+1) =
(
β2

pd,x + φ2
d

)
σ2

t + β2
pd,z + β2

pd,sφ
2
s. (A-15)

Combining the innovations in the market return and the SDF, the expression
for the equity premium is

Et (rt+1 − rf,t) = βpd,xζpd,xσ
2
t +βpd,zζpd,z +βpd,sζpd,sφ

2
s −0.5 vart (rt+1) . (A-16)

To solve for the constants, I use the fact that Et [exp (mt+1 + rt+1)] = 1.
Collecting terms for xt and ∆zt+1, one may find that

−θx+ xκ1,pdA1,pdρx − A1,pdx+ λxx = 0,

−θ∆zt+1 + ∆zt+1κ1,pdA2,pdρz − A2,pd∆zt+1 + λz∆zt+1 = 0,
(A-17)

and those relations imply that

A1,pd = λx − θ

1 − κ1,pdρx

,

A2,pd = λz − θ

1 − κ1,pdρz

.

(A-18)

To solve forA3,pd, I leverage on the fact that exp {Et (mt+1) + Et (rt+1) + 0.5 vart (mt+1 + rt+1)} =
1. By collecting the terms with σt. First, however, notice that

vart (mt+1 + rt+1) = vart[ζcσtϵc,t+1 − ζxσtex,t+1 − ζz(ez,t+2 − ez,t+1)

− ζsφsϵs,t+1 + φdσtϵd,t+1 + βpd,xσt

ϵc,t+1 + βpd,z(ϵz,t+2 − ϵz,t+1) + βpd,sφsϵs,t+1]

= Hpdσ
2
t + [−ζpd,z + βpd,z]2 + [−ζpd,s + βpd,s]2 φ2

s

(A-19)

with Hpd =
[
ζ2

pd,c + (−ζpd,x + βpd,x)2 + φ2
d

]
.
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Now, collecting terms we arrive at the following restriction:

(θ − γ

1 − θ
)A3 (κ1ρs − 1) + A3,pd (κ1,pdρs − 1) + 0.5Hm = 0, (A-20)

which implies that

A3,pd =
(γ−θ

1−θ
)A3 (1 − κ1ρs) + 0.5Hpd

(1 − κ1,pdρs)
. (A-21)

Finally, to find the unconditional variance of returns, notice that

rt+1 − E (rt+1) = − θ(xt + ∆zt) + βpd,xσtϵx,t+1 + βpd,z(ϵz,t+2 − ϵz,t+1)

+ φdσtϵd,t+1 + A3,pd (ρsκ1 − 1)
[
σ2

t − E
(
σ2

t

)]
+ βm,sφsϵs,t+1.

(A-22)

So, the unconditional variance is:

var (rt) =θ2[var(xt) + var(∆zt+1)] +
[
β2

pd,x + φ2
d

]
σ2

+ β2
pd,z + [A3,pd (ρsκ1 − 1)]2 var

(
σ2

t

)
+ β2

pd,sφ
2
s.

(A-23)

A.5. The Risk Free Rate, rf,t

Recall that:

Et

[
exp

(
1 − γ

1 − θ
log(β) − 1 − γ

1
θ

− 1∆ct+1 + θ − γ

1 − θ
rc,t+1 + ra,t+1

)]
= 1. (A-24)

Substitute ra for rf , then

rf,t = − 1 − γ

1 − θ
log(β) + 1 − γ

1
θ

− 1Et [∆ct+1] + (θ − γ

1 − θ
)Etrc,t+1

− 1
2 vart

[
1 − γ
1
θ

− 1∆ct+1 + (θ − γ

1 − θ
)rc,t+1

]
.

(A-25)

Now, subtract both sides by ( θ−γ
1−θ

)rf,t and divide by 1−γ
1−θ

to arrive at:
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rf,t = − log(β) + θEt [∆ct+1] + (γ − θ)
1 − γ

Et [rc,t+1 − rf,t]

− 1 − θ

2(1 − γ) vart

[
1 − γ
1
θ

− 1∆ct+1 + (θ − γ

1 − θ
)rc,t+1

]
.

(A-26)

Note that vart

[
1−γ
1
θ

−1∆ct+1 + ( θ−γ
1−θ

)rc,t+1

]
≡ vart (mt+1) and so vart (mt+1) =(

ζ2
pd,c + ζ2

pd,x

)
σ2

t +ζ2
pd,z +ζ2

pd,sφ
2
s. Moreover, the risk premium for rc,t+1 is simply

given by Et [rc,t+1 − rf,t] = −ζcσ
2
t +ζxB1σ

2
t +ζxB2 +κ1A3ζsφ

2
s −0.5 vart (rc,t+1),

the conditional variance between the return and mt+1. Substituting both
expressions in (A-26) yields:

E (rf,t) = − log(β) + θE(∆c) + (γ − θ)
1 − γ

E [rc,t+1 − rf,t]

− 1 − θ

2(1 − γ)
[(
ζ2

c + ζ2
x

)
E
[
σ2

t

]
+ ζ2

z + ζ2
sφ

2
s

]
.

(A-27)

Finally, the unconditional variance of rf,t is

var (rf,t) = θ2[var (xt) + var (∆zt+1)] +
{

(γ − θ)
1 − γ

Q1 −Q2
1 − θ

2(1 − γ)

}2

var
(
σ2

t

)
,

(A-28)
where Q1 =

(
−ζc + ( θ−γ

1−θ
)B2

1 − 0.5 (1 +B2
1)
)

and Q2 = (ζ2
c + ζ2

x). As noted in
Bansal and Yaron (2004), for all practical purposes, the variance of the risk-free
rate is determined by the first term.
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B
Details on the Econometric Methodology

Following recent strands in the long-run risks literature, such as Schorfheide,
Song and Yaron (2018), Fulop et al (2022), I employ a particle MCMC
algorithm to identify long-run risks and estimate the parameters that govern
the dynamics of the economy.

We can interpret the model in to the framework of nonlinear state-space
models. There are three state variables for each country: the short-run business
cycle fluctuation zt; the long-run risks component xt and the stochastic
volatility component σ2

t .

There are five observed variables: the consumption growth rates (∆ct), the
dividend growth rates (∆dt), the market returns (rt), the risk-free returns (rf,t)
and the exchange rate depreciation (∆et). Assuming that market returns, risk-
free returns and exchange rate depreciation are collected with measurement
errors, the dynamics of market, risk-free returns and exchange rate depreciation
for each country are given by:1

rt = f
(
∆zt, xt, σ

2
t ,∆zt−1, xt−1, σ

2
t−1,∆dt,Θ

)
+ σmηm,t,

rf,t = g
(
∆zt, xt, σ

2
t ,Θ

)
+ σfηf,t,

∆et = h
(
∆zt, xt, σ

2
t ,Θ

)
+ σeηe,t.

(B-1)

Θ denotes the parameter set of the long-run risk model, rt, rf,t and ∆et

are the observed market returns, risk-free returns and depreciation rate. σm,
σf and σe are the standard deviations of the respective measurement errors,
which are assumed to follow independent standard normal distributions.

f(·), g(·) and h(·) are functions determining the model-implied market
returns, risk-free returns and exchange rate depreciation. These functions are
linear when I use the log-linearization method to solve the models, and are
highly nonlinear when I use the projection method.

1Throughout this exposition, I omit the fact that I have a set of latent variables and
observations for each country. I do that only to facilitate the exposition and make the
notation less cumbersome.
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For T time periods, I denote all observations as y1:T =
{∆ct,∆dt, rt, rf,t,∆et}T

t=1 and the latent states as w1:T = {∆zt, xt, σ
2
t }T

t=1 .

The objective is to compute the joint posterior distribution of parameters and
latent states, p (Θ, w1:T | y1:T ), which can be decomposed into:

p (Θ, w1:T | y1:T ) = p (w1:T | Θ, y1:T ) p (Θ | y1:T ) , (B-2)
where p (w1:T | Θ, y1:T ) solves the state smoothing problem, and p (Θ | y1:T )
addresses the parameter inference task. Now, I describe how to use SMC
methods to implement model estimation.

First, one uses an efficient particle filter that approximates the filtering dis-
tribution, providing an unbiased estimate of the likelihood function. For nota-
tional convenience, dependence on Θ is suppressed in most of this exposition.

The basic idea is to approximate the filtering distribution p (wt | y1:t) with
an empirical distribution, denoted as p̂ (wt | y1:t), supported on a number of
particles in the state-space.

Given N samples,
{
w

(i)
t−1; i = 1, 2, . . . , N

}
, approximating the filtering distri-

bution p (wt−1 | y1:t−1) at time t− 1, the recursion

p (wt | y1:t) ∝
∫
p (yt | wt, wt−1) p (wt | wt−1) p (wt−1 | y1:t−1) dwt−1 (B-3)

prompts the following importance sampling strategy: First, draw samples{
w

(i)
t ; i = 1, 2, . . . , N} from a known and easy-to-sample proposal transition

density, nt (wt | wt−1, yt). Second, attach importance weights, αt, to account
for the difference between the target and the proposal, i.e. for i = 1, 2, . . . , N ,

α
(i)
t =

p
(
yt | w(i)

t , w
(i)
t−1

)
p
(
w

(i)
t | w(i)

t−1

)
nt

(
w

(i)
t | w(i)

t−1, yt

) . (B-4)

The normalized weights are given by A
(i)
t = α

(i)
t /

∑N
j=1 α

(j)
t . Finally, to

deal with the particle degeneracy problem, I focus our computational efforts
on the most promising particles by resampling from the weighted particle
approximation whenever the effective sample size, ESSt = 1/∑N

i=1

(
A

(i)
t

)2
,

is smaller than some prespecified threshold.

Writing
{
b

(i)
t ; i = 1, 2, . . . ,M

}
as the sampled ancestor indices, I obtain an

approximation of the filtering distribution p (wt | y1:t) with equally weighted
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samples

p̂ (wt | y1:t) = 1
N

N∑
i=1

δ
w
(b

(i)
t )

t

(wt) , (B-5)

where δz(·) denotes the Dirac measure centred on z.

Particle filters provide an estimate of the likelihood of the observations:

p̂ (y1:t | Θ) =
t∏

l=2
p̂ (yl | y1:l−1,Θ) p̂ (y1 | Θ) , (B-6)

where p̂ (yl | y1:l−1,Θ) = 1
N

∑N
i=1 α

(i)
l . The likelihood estimate produced by a

particle filter is unbiased (Del Moral (2004)).

I use the particle based algorithm of Fulop et al. (2021), which ap-
proximates the optimal proposal transition density, which has the form
n∗

t (∆zt, xt | ∆zt−1, xt−1, yt) = p (∆zt, xt, | ∆zt−1, xt−1, yt). This methods com-
bines the Kalman Filter (KF) for the log-linearized model and the unscented
Kalman Filter ( UKF, as in Li (2011)) to each particle. The algorithm has two
steps:

1. Initialization at t = 0 : draw a set of particles
{
w

(i)
0 ; i = 1, . . . , N

}
from

the initial distribution p (w0) and assign each particle a weight of 1/N ;

2. For time step t = 1, . . . , T and for each particle i = 1, . . . , N :

(a) For log-linearized models, run KF based on w
(i)
t−1 and new observa-

tion yt to obtain mean w̄
(i)
t and variance P (i)

t ;

(b) For nonlinear models, run UKF based on w(i)
t−1 and new observation

yt to obtain mean w̄
(i)
t and variance P (i)

t ;

(c) Sample w(i)
t ∼ N

(
w̄

(i)
t , P

(i)
t

)
;

(d) Update the weight for each particle using Equation (B.4) and
compute the normalized weight;

(e) Resalmple to obtain equally weighted new particles{
w

(i)
t ; i = 1, . . . , N

}
.

Then, I rely on a SMC sampler to estimate the posterior distribution of
the model parameters. According to Bayes’ rule, the posterior distribution of
model parameters is given by

p (Θ | y1:T ) ∝ p (y1:T | Θ) p(Θ), (B-7)
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where the first term on the right-hand side is the likelihood and the second
term is the prior. Define an auxiliary variable ut, which includes all random
variables generated by a particle filter at time t. These include all N proposed
states and ancestor indices from resampling.

Let ψ (u1:T | Θ, y1:T ) denote the corresponding joint distribution of all aux-
iliary variables given fixed parameters Θ. The extended posterior distribution
of model parameters and auxiliary variables is defined as:

p̃ (Θ, u1:T | y1:T ) ∝ p(Θ)p̂ (y1:T | Θ)ψ (u1:T | Θ, y1:T ) . (B-8)

Since the likelihood estimates are unbiased, this extended posterior admits
the desired posterior as a marginal distribution:∫

p̃ (Θ, u1:T | y1:T ) du1:T = p (Θ | y1:T ) . (B-9)

Following Duan and Fulop (2015), I construct a sequence of I distributions
bridging between the extended prior π1 (Θ, u1:T ) = p(Θ)ψ (u1:T | Θ, y1:T ) and
the extended posterior πI (Θ, u1:T ) = p̃ (Θ, u1:T | y1:T ) by defining:

πi (Θ, u1:T ) = γi (Θ, u1:T )
Zi

γi (Θ, u1:T ) = p(Θ)p̂ (y1:T | Θ)ξi ψ (u1:T | Θ, y1:T ) ,
(B-10)

where 0 = ξ1 < ξ2 < · · · < ξI = 1 is a tempering sequence and Zi =∫
γi (Θ, u1:T ) d (Θ, u1:T ) is the normalizing constant for the i = 1, 2, . . . , I

distribution. The last distribution of the sequence is exactly the extended
posterior, p̃ (Θ, u1:T | y1:T ).

I initialize K equally weighted samples
{
Θ(k), u

(k)
1:T

}K

k=1
from π1 (Θ, u1:T ) by

sampling Θ(k) ∼ p(Θ) from the prior, and then running a particle filter with
M state particles to obtain u

(k)
1:T ∼ ψ (u1:T | Θ, y1:T ) for k = 1, 2, . . . , K.

Given K equally weighted samples
{
Θ(k), u

(k)
1:T

}K

k=1
approximating the in-

termediate distribution πi−1 (Θ, u1:T ), for i = 2, 3, . . . , I, I move on to ap-
proximate πi (Θ, u1:T ) by weighting each parameter particle Θ(k) by s

(k)
i =

p̂
(
y1:T | Θ(k)

)ξi−ξi−1 for k = 1, 2, . . . , K. I also estimate the ratio of normaliz-
ing constants Zi/Zi−1 using Ẑi/Zi−1 = 1

K

∑K
k=1 s

(K)
i .

Them, I re-sample from the weighted particle approximation to obtain a new
set of equally weighted samples

{
Θ(k), u

(k)
1:T

}K

k=1
that approximate πi (Θ, u1:T ).
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In order to avoid the particle impoverishment problem, I do a rejuvenation step
using a particle marginal Metropolis-Hastings (PMMH). For each parameter
particle, a PMMH iteration involves proposing a new parameter Θ∗, and
accepting this proposal with a Metropolis-Hastings acceptance probability that
requires estimating the likelihood p (y1:T | Θ∗) with a particle filter.

The output of this method gives a set of equally weighted samples{
Θ(k), u

(k)
1:T

}K

k=1
approximating the extended posterior p̃ (Θ, u1:T | y1:T ) and the

ratio of normalizing constant estimates
{
Ẑi/Zi−1

}I

i=2
. Using the output, I

can approximate expectations of the form E[φ(Θ) | y1:T ] using the empiri-
cal average φ̂ = 1

K

∑K
k=1 φ

(
Θ(k)

)
and estimate the marginal likelihood using

p̂ (y1:T ) = ∏I
i=2 Ẑi/Zi−1.
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C
Local Projection Method

Following Pohl, Schmedders, and Wilms (2018), Fulop et al (2022), I
implement a solution to the model using the collocation projection method
(as in Judd (1992)).

Let w be the current state of the economy (w = {x,∆z, σ2}) and w′ be the
state in the next period. First, I use the projection method to solve the Euler
Equation for the price-consumption ratio, pc. This solution is such that

E
[
exp

(
1 − γ

1 − θ

(
log β +

(
θ − γ

1 − θ

)
∆c (w′ | w) + pc(w′) − log

(
epc(w) − 1

)))
| w
]

= 1,

(C-1)
and the log-return of the consumption claim is:

rc (w′ | w) = pc (w′) − ln
(
epc(w) − 1

)
+ ∆c (w′ | w) . (C-2)

I approximate the solution function by p̂c(w) = ∑n
k=0 αpc,kΛk(w), where

Λk(w), k = 0, . . . , n is a set of (known) basis functions and αpc,k, k = 0, . . . , n
is a set of unknown coefficients, to be determined.

Next, I solve for the price-dividend ratio, pd. The Euler Equation gives:

E
[
exp

(
1 − γ

1 − θ
log β +

(
1 − γ
1
θ

− 1

)
∆c (w′ | w) + (θ − γ

1 − θ
)rc (w′ | w) + r (w′ | w)

)
| w
]

= 1,

(C-3)

where r(w′ | w) is such that

r (w′ | w) = ln
(
epd(w′) + 1

)
− pd(w) + ∆d (w′ | w) . (C-4)

As with the price-consumption ratio, the price-dividend is approximated by
p̂d(w) = ∑n

k=0 αpd,kΛk(w), with αpd,k, k = 0, . . . , n being a set of unknown
coefficients, to be determined.

I solve for the price-consumption and price-dividend ratio using the collo-
cation method; those functions are approximated by using Chebyshev polyno-
mials. The expectations are calculated using Gauss-Hermite quadrature. The
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collocation approach leads to a square system of nonlinear equations, which
can be solved with a standard nonlinear equation solver. Below I describe the
algorithm implemented.

Algorithm 1: Solving Asset Pricing Models with Recursive
Preferences.
22 Initialization: Define the state space W ⊂ Rl; choose the functional

forms for p̂c(w) and p̂d(w);
44 Step 1: Use the wealth-Euler equation together with the

approximated log price-consumption ratio p̂c(w) and the definition of
the return on the consumption claim to derive the residual function
for the return on wealth:

5 F̂pc (w; αpc) =∫
W

[
exp

(
1−γ
1−θ

(
log β +

(
θ−γ
1−θ

)
∆c (w′ | w) + pc(w′) − log

(
epc(w) − 1

)))
− 1

]
dfw.

6 Compute the unknown solution coefficients αpc by imposing the
projections on F̂pc (w; αpc) ;

88 Step 2: Use the solution for the price-consumption ratio p̂c(w) and
the Euler equation for an asset together with the approximated log
price-dividend ratio p̂d(w) and the definition of the return equation
to derive the residual function for an asset:

9 F̂pd (w; αpd) =∫
W

[
exp

(
1−γ
1−θ

log β − 1−γ
1
θ

−1∆c (w′ | w) + θ−γ
1−θ

r̂c (w′ | w; αpc)

10 + log
(
ep̂d(w) + 1

)
− p̂d(w) (w; αpd) + ∆d (w′ | w)

)
− 1

]
dfw

11 Compute the unknown solution coefficients αpd by imposing the
projections on F̂pd (w; αpd) ;

1313 Evaluation: Choose a set of evaluation nodes
We =

{
we

j : 1 ≤ j ≤ me
}

⊂ W and compute approximation errors in
the residual function of the price-consumption ratio and the residual
function of an asset. If the errors do not satisfy a predefined error
bound, start over at Initialization and change the number of
approximation nodes or the degree of the basis functions;

In the Initialization step, one needs to choose a set of basis functions for the
polynomial approximation and a set of nodes. The solution functions pc(w)
and pd(w) are approximated by Chebyshev polynomials. These are obtained
via the recursive relationship

T0(ξ) = 1, T1(ξ) = ξ, Tk+1(ξ) = 2ξTk(ξ) − Tk−1(ξ) (C-5)
with Tk : [−1, 1] → R. Since one needs to approximate functions on the domain
W and the Chebyshev polynomials are defined on the interval [−1, 1], the
argument for the polynomials needs to be transformed. The basis functions for
the approximate solutions p̂c(w) and p̂d(w) are given by
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Λk(w) = Tk

(
2
(

w − wmin

wmax − wmin

)
− 1

)
(C-6)

for k = 0, 1, . . . , n.

The application of a projection method requires a set of nodes, W =
{wj : 0 ≤ j ≤ m} ⊂ W ; I choose the m+ 1 zeros of the Chebyshev polynomial
Tm+1. These points are called Chebyshev nodes,

ξj = cos
( 2j + 1

2m+ 2π
)
, j = 0, 1, . . . ,m. (C-7)

Since all Chebyshev nodes are in the interval [−1, 1] we need to transform
them to obtain nodes in the state space W. This transformation is

wj = wmin + wmax − wmin

2 (1 + ξj) , j = 0, 1, . . . ,m. (C-8)

For the Evaluation step I use me >> m equally spaced evaluation nodes in
W to evaluate the errors in the residual function. In particular, for an asset I
compute the root mean squared errors (RMSE) and maximum absolute errors
(MAE) in the residual function. These errors are

RMSEi =
√√√√ 1
me

me∑
j=1

F̂pd

(
we

j | αpd

)2
, (C-9)

MAEi = max
j=1,2,...,me

∣∣∣F̂pd

(
we

j | αi

)∣∣∣ (C-10)
respectively, with

we
j = wmin + wmax − wmin

me − 1 (j − 1), j = 1, . . . ,me. (C-11)
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D
Additional Results

Table D.1: Model Comparison: Asset Pricing Statistics in Brazil (Jan-2018 to
Dec-2019)

Statistic Data Local Projection Method Log-Linear Approximation
mean r 0.0148 0.0137 0.00128
mean rf 0.0050 0.0053 0.0059

mean r − rf 0.0098 0.0084 0.0069
σ(r) 0.0026 0.0022 0.0019
σ(rf ) 0.0001 0.0001 0.0001

σ(r − rf ) 0.0026 0.0023 0.0020
Sharpe ratio 3.7827 3.6522 3.4544

mean ∆e 0.0314 0.0406 0.0484
σ(∆e) 0.2286 0.1981 0.1699

Notes: Asset pricing statistics are presented as monthly average returns and variances.
Local Projection Method refers to results using this method, described in Appendix C.
Log-Linear Approximation refers to results using this method, described in Section 2.4
and Appendix A. Exchange rates are mean difference in logs and its variance.

Table D.2: Model Comparison: Asset Pricing Statistics in USA (Jan-2018 to Dec-
2019)

Statistic Data Local Projection Method Log-Linear Approximation
mean r 0.0056 0.0053 0.0047
mean rf 0.0016 0.0013 0.0011

mean r − rf 0.0040 0.0040 0.0036
σ(r) 0.0083 0.0075 0.0065
σ(rf ) 0.0001 0.0001 0.0001

σ(r − rf ) 0.0083 0.0076 0.0067
Sharpe ratio 0.4802 0.5263 0.5373

Notes: Asset pricing statistics are presented as monthly average returns and variances.
Local Projection Method refers to results using this method, described in Appendix C.
Log-Linear Approximation refers to results using this method, described in Section 2.4
and Appendix A.
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Table D.3: Model Comparison: Asset Pricing Statistics in Brazil (Jan-2020 to Nov-
2021)

Statistic Data Local Projection Method Log-Linear Approximation
mean r –0.0107 –0.0122 –0.0116
mean rf 0.0027 0.0024 0.0027

mean r − rf –0.0135 –0.0146 –0.0143
σ(r) 0.0085 0.0073 0.0066
σ(rf ) 0.0001 0.0001 0.0001

σ(r − rf ) 0.0098 0.0075 0.0069
Sharpe ratio –1.3714 –1.9467 –2.0724

mean ∆e 0.0534 0.0502 0.0484
σ(∆e) 0.5774 0.5232 0.4772

Notes: Asset pricing statistics are presented as monthly average returns and variances. Local
Projection Method refers to results using this method, described in Appendix C. Log-Linear
Approximation refers to results using this method, described in Section 2.4 and Appendix
A. Exchange rates are mean difference in logs and its variance.

Table D.4: Model Comparison: Asset Pricing Statistics in USA (Jan-2020 to Nov-
2021)

Statistic Data Local Projection Method Log-Linear Approximation
mean r 0.0134 0.0126 0.0119
mean rf 0.0002 0.0005 0.0005

mean r − rf 0.0132 0.0121 0.0114
σ(r) 0.0244 0.0231 0.0202
σ(rf ) 0.0001 0.0001 0.0001

σ(r − rf ) 0.0246 0.0233 0.0205
Sharpe ratio 0.5367 0.5193 0.5591

Notes: Asset pricing statistics are presented as monthly average returns and variances.
Local Projection Method refers to results using this method, described in Appendix C.
Log-Linear Approximation refers to results using this method, described in Section 2.4
and Appendix A.
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