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Abstract

Brito, Diego S; Medeiros, Marcelo Cunha (Advisor); Ribeiro, Ruy
Monteiro (Co-Advisor). Forecasting Large Realized Covari-
ance Matrices: The Benefits of Factor Models and Shrin-
kage. Rio de Janeiro, 2018. 60p. Dissertação de mestrado – Depar-
tamento de Economia, Pontifícia Universidade Católica do Rio de
Janeiro.

We propose a model to forecast very large realized covariance matrices
of returns, applying it to the constituents of the S&P 500 on a daily basis.
To deal with the curse of dimensionality, we decompose the return covari-
ance matrix using standard firm-level factors (e.g. size, value, profitability)
and use sectoral restrictions in the residual covariance matrix. This res-
tricted model is then estimated using Vector Heterogeneous Autoregressive
(VHAR) models estimated with the Least Absolute Shrinkage and Selection
Operator (LASSO). Our methodology improves forecasting precision rela-
tive to standard benchmarks and leads to better estimates of the minimum
variance portfolios.

Keywords
Realized Covariance; Factor Model; LASSO; Forecasting; Portfolio

Allocation; Big Data
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Resumo

Brito, Diego S; Medeiros, Marcelo Cunha; Ribeiro, Ruy Monteiro.
Previsão de Matrizes de Covariância Realizada de Alta Di-
mensão: Os Benefícios de Modelos de Fatores e Shrinkage.
Rio de Janeiro, 2018. 60p. Dissertação de Mestrado – Departamento
de Economia, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho propõe um modelo de previsão de matrizes de covariân-
cia realizada de altíssima dimensão, com aplicação para os componentes do
índice S&P 500. Para lidar com o altíssimo número de parâmetros (maldição
da dimensionalidade), propõe-se a decomposição da matriz de covariância
de retornos por meio do uso de um modelo de fatores padrão (e.g. tamanho,
valor, investimento) e uso de restrições setoriais na matriz de covariância
residual. O modelo restrito é estimado usando uma especificação de vetores
auto regressivos heterogêneos (VHAR) estimados com LASSO (Least Ab-
solute Shrinkage and Selection Operator). O uso da metodologia proposta
melhora a precisão de previsão em relação a benchmarks padrões e leva a
melhores estimativas de portfólios de menor variância.

Palavras-chave
Covariância Realizada; Modelo de Fatores; LASSO; Previsão;

Alocação de Portfólio; Big Data
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1
Introduction

The goal of this paper is to construct models based on economically
motivated factor decompositions and shrinkage methods to forecast large-
dimensional and time-varying realized measures of daily covariance matrices
of returns on financial assets. Realized measures of a covariance matrix are
estimates, based on intraday returns, of the integrated covariance matrix of
a multivariate diffusion process. One example of such an estimator used in
this paper is the composite realized kernel method recently introduced by
(1). Our proposed model is evaluated in terms of both its forecasting ability
and, more importantly, several performance measures in a conditional mean-
variance portfolio allocation problem.

Modeling and forecasting the covariance matrix of financial assets are es-
sential for portfolio allocation and risk management. Moreover, it is an estab-
lished empirical fact that (conditional) covariance matrices vary considerably
over time. A natural way to model such dynamics is to either use multivariate
generalizations of the ARCH/GARCH family of models, as proposed by (2) or
(3), or model directly a given realized measure of the covariance matrices by
usual multivariate time-series models, as in (4), (5) or (6). This is motivated
by the close connection between the conditional covariance matrix and the
integrated covariance of a multivariate diffusion process.

However, when the number of assets increases, the amount of parameters
to be estimated becomes very large. For instance, for a covariance matrix of
N assets, there are N(N + 1)/2 distinct entries to be modeled. If a vector
autoregressive specification of order p, VAR(p), is used, then the total number
of parameters will be (N + 1)(p+ 1)/2. Therefore, the curse of dimensionality
precludes the application of the above referenced methods to moderately large
covariance matrices, and most of the previous studies in the literature focused
on sets of less than ten assets.

More recently, based on the advances of modern statistical tools to
handle high-dimensional models, new alternatives have been proposed in the
literature in order to address a large number of assets. (7) advocate the use
of the least absolute shrinkage and selection operator (LASSO) of (8) and the
adaptive LASSO of (9) to model the dynamics of the realized covariance of
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Chapter 1. Introduction 11

the constituents of the Dow Jones index by a large dimensional VAR model.
However, their modeling strategy cannot handle sets of assets much larger
than the 30 used in their paper. (10) combine nonlinear shrinkage with the
DCC-GARCH model and put forward a methodology in which the dynamic of
huge latent conditional covariance matrices can be modeled. Their approach
makes the estimation of multivariate GARCH-type models feasible even in
large-dimensional cases. Nevertheless, the authors did not consider realized
measures in their models.

In this paper, we propose a method that can be applied to hundreds
or even thousands of assets with the difference that we consider realized
covariance measures rather than latent ones, as in (10). We provide empirical
evidence that our proposed model drastically improves the forecasting ability
and produces portfolios with better performance measures. We apply our
model to the constituents of the S&P 500 using daily information on the
realized covariance matrix. The models based on our framework are able
to improve the quality of the forecasts when compared to the random walk
benchmark, by reducing the `2-forecast error in 15%. On the other hand,
models based on latent volatility are the worst-performing specification in
terms of forecasting ability. Furthermore, our models deliver a significant
reduction in the volatility of minimum variance portfolios, as the the annualized
standard deviation of returns declines by more than 25% relative to the second
best alternative in the literature and to nearly 40% versus the random walk
alternative. We also observe a decline in realized portfolio risk when we consider
longer investment horizons of up to one month and when we introduce portfolio
constraints.

Our model applies a methodology similar to (7) to the elements of
the factor decomposition of realized covariance matrices. Hence, the daily
covariance matrix of returns is first written into a covariance matrix for a
low-dimensional set of factors plus an idiosyncratic covariance matrix that is
(almost) block diagonal. We consider economically motivated factors that are
widely used in the finance literature, based on firm-level characteristics such
as size, value and profitability. The dynamics of the variances and covariances
of the factors are modeled by a VHAR model estimated with LASSO. To
guarantee positive definiteness of the forecasts, we apply the log matrix
transformation of (11). The daily factor loadings (“betas”) are computed
with high-frequency data. We show that these loadings are time varying and
exhibit a high degree of long-range dependence, and we model their dynamics
by an HAR specification as well. Finally, the dynamics of each block of the
idiosyncratic covariance matrix is modeled by a restricted autoregressive model
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Chapter 1. Introduction 12

also estimated by LASSO.
To the best of our knowledge, this is the first model that can describe the

dynamics of realized covariance matrices of such a large dimension. (12) also
considered factors and realized covariances; however, their forecasting model is
just a random walk, and their results are more concerned with the estimation
of the integrated covariance.

In this paper, we do not address the interesting challenges involved in
the construction of realized measures (e.g., how to address microstructure
noise), specially in the multivariate case (e.g., asynchronicity in transactions
of different assets, which bias covariance estimations toward zero). We focus
solely on modeling and forecasting a large realized covariance matrix of returns
on hundreds of financial assets, which are estimated elsewhere.

The remainder of paper is organized as follows. Chapter 2 describes the
proposed model and forecasting framework. In Chapter 4, we present the data
and show a descriptive analysis. Forecasting results and portfolio analysis are
presented, respectively, in Chapter 5 and 6. Finally, Chapter 7 concludes the
paper. Supplementary results are shown in the Appendix.
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2
Model

We base our methodology on the fact that realized covariance matrices
are highly persistent over time, which suggests the use of an autoregressive
model of a large order p, usually larger than 20. Defining yt = vech(Σt),
where vech is the half-vectorization operator returning a vector with the unique
entries of Σt, one possible specification is

yt = ω +
p∑
i=1

Φiyt−1 + εt, (2-1)

where εt is zero-mean random noise.
While this model is sensible for a small number of assets, the number of

parameters grows quadratically as new assets are added (curse of dimensional-
ity). To circumvent this limitation, (7) propose the use of penalized regressions
(LASSO) as a way to address the large number of parameters. However, the
direct use of penalized regressions is unfeasible for hundreds of assets.

To illustrate, assume that the representation in (2-1) is used to model
the covariance matrix for the constituents of the S&P 500 index1 with 10 lags,
that is, p = 10. Since each matrix Σt has N(N + 1)/2 unique entries, this
configuration would result in 125, 250 equations with 10 × 125, 250 variables
each, plus constants. In this case, estimation is unfeasible even with LASSO.

To reduce the dimensionality to a manageable one, we propose the use of
a factor model as well as economic restrictions based on sector classifications
and penalized regressions.

2.1
Factor Model

Following the factor model discussed in (13), the excess return on any
asset i, ri,t, satisfies

rei,t = βi1,tf1,t + · · ·+ βiK,tfK,t + εi,t = β′i,tft + εi,t, (2-2)
1In our application, we restrict the analysis to stocks that remain in the index for the

entire period of our sample. This reduces the number of stocks to 430. In terms of the number
of equations and potential predicting variables, our problem is still subject to the curse of
dimensionality on the same order of magnitude as the illustration.
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Chapter 2. Model 14

where f1,t, · · · , fK,t are the excess returns of K factors, βik,t, k = 1, . . . , K, are
factor loadings for asset i, and εi,t is the idiosyncratic error term. Note that
the factor loadings are variable over time. For N assets, the set of equations
can be written in matrix form:

ret = B′tft + εt, (2-3)

where Bt is a K × N matrix of loadings, rt is an N × 1 vector of excess
returns, and εt is an N × 1 vector of idiosyncratic errors. Throughout, we
assume that (εt|ft) = 0. The factors used in this work are linear combinations
of returns constructed solely with the assets considered here, i.e., long-short
stock portfolios where stocks that are part of our sample are sorted on firm
characteristics. In matrix form, for all K factors,

f1,t
...

fK,t

 =


w1,1 . . . w1,N
... . . . ...

wK,1 . . . wK,N



r1,t
...
rN,t


or

ft = W ′rt,

(2-4)

where weights are calculated based on accounting and market information, as
we describe in Section 4.

2.2
Covariance Decomposition

This section describes how we decompose the realized covariance matrix
of returns for all assets into two components: a factor covariance matrix and
a residual covariance matrix. Let Σt denote the realized covariance matrix
of returns at time t, that is, Σt = cov(rt). By using equation 2-3 and the
assumption (εt|ft) = 0, we have

Σt = cov(B′tft) + cov(εt) = B′tΣf,tBt + Σε,t, (2-5)
where Bt is a K × N matrix of loadings of N assets on K factors, Σf,t is
the K ×K factor covariance matrix and Σε,t is the N ×N residual covariance
matrix, all at time t. Since each factor is a linear combination of returns, factor
covariance matrices can be obtained by using equation 2-4 and the known
values of Σt, that is,

Σf,t = cov(ft) = cov(W ′rt) = W ′ΣtW. (2-6)
Factor loadings Bt are calculated using a similar procedure (see Appendix

A), and the values of Σε,t are simply given by the difference Σt − B′tΣf,tBt. It
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is common to assume that Σε,t is diagonal, but we will be less restrictive in
this work.
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3
Forecasting Methodology

With the decomposition achieved in (2-5), we write the forecasting
equation for the complete covariance matrix Σt by combining separate forecasts
of Bt, Σf,t, and Σε,t. That is,

Σ̂t+1|t = B̂′t+1|tΣ̂f,t+1|tB̂t+1|t + Σ̂ε,t+1|t. (3-1)

3.1
Forecasting Σf,t

Since the number of factors is much smaller than the number of assets,
one could propose the use of an unrestricted VAR model for the factor
covariance matrix dynamics, as in equation (2-1). Despite the reduction in
dimensionality achieved by using a factor model, the number of parameters
in this configuration is still quite large (note that each equation would have
K(K+1)/2+1 parameters). To reduce this number to a more manageable one,
we follow the heterogeneous autoregressive (HAR) model proposed by (14). In
this model, the predictors are obtained from the simple average of daily data,
computed for different horizons (daily, weekly, and monthly). In our case, daily,
weekly, and realized covariance matrices of factors are given by

Σday
f,t = Σf,t

Σweek
f,t = 1

5(Σf,t + Σf,t−1 + · · ·+ Σf,t−4)

Σmonth
f,t = 1

22(Σf,t + Σf,t−1 + · · ·+ Σf,t−21),

(3-2)

where yf,t = vech(Σf,t), ydayf,t = vech(Σday
f,t ), yweekf,t = vech(Σweek

f,t ), and ymonthf,t =
vech(Σmonth

f,t ). Furthermore, the dynamic process for yf,t is defined as

yf,t = ω + Φdayy
day
f,t−1 + Φweeky

week
f,t−1 + Φmonthy

month
f,t−1 + εt, (3-3)

where Φday, Φweek, and Φmonth are M ×M matrices, where M = K(K + 1)/2
is the number of unique entries on the factor covariance matrix. ω is an M × 1
vector of constants.
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Chapter 3. Forecasting Methodology 17

3.1.1
LASSO and adaLASSO

Due to the high number of parameters in equation (3-3), direct estimation
with ordinary least squares (OLS) could result in overfitting, harming the
precision of model forecasts. LASSO shrinks these estimates by imposing a
penalty related to the magnitude of the coefficients. This estimation effectively
sets most estimates to zero ((8)). This methodology has been shown to provide
a higher out-of-sample forecasting precision, while the reduced number of
predictors makes the interpretation of the model easier.

We estimate (3-3) equation by equation. Consider a sample size of T ,
and let Zt =

(
1,yday

′

f,t−1,yweek
′

f,t−1 ,ymonth
′

f,t−1

)′
∈3m+1 be the vector of explanatory

variables and Z = (ZT , . . . , Z1)′ be the T × (3m+ 1) matrix of covariates. Let
yf,i = (yf,T,i, . . . , yf,1,i)′ ∈T be the vector of observations on the ith equation of
(3-3), i = 1, . . . ,M , and εf,i = (εf,T,i, . . . , εf,1,i)′ be the corresponding vector of
error terms. With γf,i = (ωi, β′i)′ being the 3M + 1 vector of true parameters
for equation i, one can write

yf,i = Zγf,i + εf,i, i = 1, . . . ,M, (3-4)

where each vector γf,i is then estimated by minimizing

L(γf,i) = 1
T
||yf,i − Zγf,i||2 + 2λT ||βi||`1 , i = 1, . . . ,M. (3-5)

The penalty parameter λT determines how much penalization is imposed
on the size of the coefficients. In our setup, the value of λT is determined
by minimizing the Bayesian information criterion (BIC). For equation i and
penalty parameter λ, the BIC is given by

BICi(λ) = T × log(ε̂′λ,iε̂λ,i) +
3M∑
j=1

1(β̂λij 6= 0) log(T ), i = 1, . . . ,M, (3-6)

where ε̂λ,i is the estimated vector of error terms for penalty λ.
After obtaining γ̂f,i from equation (3-5), the one-step-ahead forecast is

given by
ŷf,T+1,i = γ̂′f,iZT , i = 1, . . . ,M, (3-7)

which can be used to provide Σ̂f,T+1.
We also consider the adaptive version of LASSO (adaLASSO), as in (9).

adaLASSO is a two-step procedure that consists of estimating the model via
LASSO in the first step and excluding the variables classified as zero from
the second step. The second step estimates the parameters with a slightly
modified objective function that takes into account the size of the parameters
estimated in the first step. To illustrate, consider the set of indices of the
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Chapter 3. Forecasting Methodology 18

coefficients in the ith equation that are different from zero in the first step:
J(β̂i) = {j ∈ R3M : β̂i,j 6= 0}. adaLASSO estimates the vector of parameters
γf,i by minimizing the following objective function:

L(γf,i) = 1
T
||yf,i − Zγf,i||2 + 2λT

∑
j∈J(β̂i)

|βi,j|
|β̂i,j|

, i = 1, . . . ,M. (3-8)

As before, the penalty parameter λT is chosen by minimizing the BIC,
and the one-step-ahead forecasts are computed as in equation (3-7).

3.2
Forecasting Bt

Instead of using unconditional loadings on factors, we assume that betas
change daily and have long-range dependence. In Appendix B, we show the
distribution of the estimates of the fractional integration parameter for the
beta series. The results show that these series present high persistence, similar
to what is observed on realized covariance data. Based on this evidence, and to
maintain consistency with the rest of our methodology, we forecast each series
of betas using HAR models. For each element of Bt, we have

βk,i,t = ω + Φdayβ
day
k,i,t−1 + Φweekβ

week
k,i,t−1 + Φmonthβ

month
k,i,t−1 + εk,i,t, (3-9)

where βk,i,t, the entry k× i in the matrix Bt, is the loading of stock i on factor
k at date t. We estimate the coefficients Φday, Φday, and Φday by OLS.

3.3
Forecasting Σε,t

Since the residual covariance matrix dimension is N × N , the curse of
dimensionality remains a concern when forecasting Σε,t. A factor model may
not explain all the covariances between assets depending on the number and
choice of factors, implying the the covariance matrix of the residuals is not
diagonal. Instead of imposing the common hypothesis that Σε,t is diagonal
(as in (15)), we consider a less restrictive assumption that stocks in the same
sector may still co-vary even after controlling for the standard factors used in
the finance literature.

We assume that Σε,t is block diagonal, where blocks are defined by in-
dustry classification. We assume that there is no contemporaneous correlation
between assets in different sectors after controlling for factor exposure. We
argue that this assumption is not too strong in Section 4.4, where we analyze
residual correlations between stocks in different sectors.
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Chapter 3. Forecasting Methodology 19

We assume that each asset belongs to an industrial sector s, where S
is the total number of sectors and S << N . Without loss of generality, we
can order assets so that the residual covariance matrix has sector covariance
matrices near its diagonal:

Σε,t =


Σ1
ε,t

. . .
ΣS
ε,t

 . (3-10)

Depending on the selected industry classification, the number of assets
on each group s (called N s) can still be quite large, as each block has
M s = N s(N s + 1)/2 unique elements.

Our second assumption is that the dynamics of each block Σs
ε,t depend

only on the elements of the same block at t−1, i.e., only Σs
ε,t−1 predict values in

Σs
ε,t. To further simplify this model, we also consider an additional restriction

that only past variances matter in this prediction. This last assumption relies
on the previous evidence in (7) that past variances are more frequently selected
by LASSO as good predictors of covariance and variance terms.

With the notation ysε,t = vech(Σs
ε,t), we have

ysε,t = ωsε + ΦsΛs
ε,t−1 + usε,t, s = 1, . . . , S, (3-11)

where ωsε is an M s × 1 vector of intercepts, Φs is an M s × N s matrix of
coefficients, Λs

ε,t−1 = diag(Σs
ε,t−1) is an N s×1 vector of past variances, and usε,t

is the vector of errors.
The parameters estimation is done block by block, that is, each equation

in (3-11) is estimated separately. The procedure is the same as the one used for
the factor covariance matrix model: LASSO/adaLASSO regression equation by
equation. We then regroup the one-day ahead forecast for each group, Σ̂s

ε,T+1,
to form the full residual covariance matrix forecast Σ̂ε,T+1.
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4
Data and Descriptive Analysis

The data consist of daily realized covariance matrices of returns for
constituents of the S&P 500 index. These matrices were constructed using 5-
minute returns by the composite realized kernel method (discussed in (1) and
provided by the authors). The full sample comprises all business days between
January 2006 and December 2011. We consider companies that remained in the
index and had balance sheet data available for the full sample period, resulting
in a total of 430 stocks. With these considerations, the dataset consists of 1,495
daily 430× 430 realized covariance matrices of returns.

4.1
Data Cleaning

Our sample spans the 2008 financial crisis as well as the flash crashes from
2010 and 2011. To mitigate the effect of these extreme events, we perform a
light cleaning on the realized covariance matrices, as in (7). For each day, we
verify which (unique) entries are more than 4 standard errors (of the series
corresponding to that entry) away from their sample average up to then. If
more than 25% of the unique entries have extreme values according to this
criterion, we flag that specific day. We replace the matrices corresponding to
the flagged days by an average of the nearest five preceding and five following
non-flagged matrices.

4.2
Factors

We construct each factor as the return time series for a long-short stock
portfolio derived from individual sorts of the underlying stocks on different
signals. Since our approach uses the loading matrixW as an input to calculate
factor covariance matrices and factor loadings, we could not use the widely
available data on financial factors series of returns (such as on Kenneth French’s
website). Instead, we construct our own versions of the standard factors,
ranking our universe of stocks into the different signals to calculate the matrices
W for our sample.
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In total, we use seven factors that have been widely used in the finance
literature. Besides the market factor, we also consider size (SMB) and value
(HML) (16), gross profitability (17), investment (18), asset growth (19), and
accruals (20). We report a detailed description of the construction of each
factor in Appendix C. We use four different combinations of factors with one,
three, five, and seven factors. They are denoted by 1F (market), 3F (market,
size, and value), 5F (3F + gross profitability and investment), and 7F (5F +
asset growth and accruals), respectively.

4.3
Sector Classification

Each stock is classified into one of 10 sectors, following the Standard
Industrial Classification (SIC). Table 4.1 shows the number of companies from
our sample in each sector. Note that some groups are quite large (the group
Others, for instance, has more than 100 stocks). This motivates the use of
additional restrictions we discussed in subsection 3.3.

4.4
Residual Covariance Matrices

In this section, we analyze the sequence of residual covariance matrices for
the four different combinations of factors. We use the previous notation, Σε,t =
Σt−B′tΣf,tBt, for each of the 1,495 days in the sample. To analyze whether these
matrices are approximately block diagonal, we follow the procedure discussed
in (21). First, we transform the covariance matrices into correlation matrices.
We classify a correlation as significant if it is higher than 0.15 in absolute value
in at least 1/3 of the sample. We then plot the significant relations as dots,
while the rest of the points are left blank. Sectors in Table 4.1 are represented
as red squares (in the same order). Figure 4.1 shows the results when we apply
the criterion to the full covariance matrices Σt, before the factor decomposition.
It is clear that most correlations are classified as significant.

When we follow this procedure for the residual covariance matrices
(Figure 4.2), we obtain plots that are much more sparse than previously.
This means that most of the correlations are not significant according to
the criterion. Furthermore, we can see that most of the dots are contained
inside the blocks, meaning that the majority of significant correlations are
between stocks in the same sector. We interpret the three plots as evidence
that we would not lose much information by assuming block diagonality for the
residual covariance matrices. Note that the results are robust across different
factor configurations.
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Table 4.1: Number of Stocks per Sector
The table reports the number of stocks in each of the ten sectors considered. The sector
classification follows the Standard Industrial Classification (SIC).

Sector Number of Stocks
Consumer Non-Durables 31
Consumer Durables 8
Manufacturing 65
Oil, Gas, and Coal Extraction 32
Business Equipment 61
Telecommunications 10
Wholesale and Retail 45
Health Care, Medical Equipments, and Drugs 26
Utilities 36
Others 116

Figure 4.1: Realized Raw Correlations
The blue dots represent the correlations between stocks that are larger than 0.15 in absolute
value in at least 1/3 of the sample days. Red squares represent the groups defined by sector
industrial classification (SIC). The axes have indices that correspond to the 430 stocks in our
sample. The correlations are computed using the sequence of realized covariance matrices
before any factor decomposition.

0

100

200

300

400

0 100 200 300 400

DBD
PUC-Rio - Certificação Digital Nº 1612154/CA



Chapter 4. Data and Descriptive Analysis 23

Figure 4.2: Realized Residual Correlations
The blue dots represent the correlations between stocks that are larger than 0.15 in absolute
value in at least 1/3 of the sample days. Red squares represent the groups defined by sector
industrial classification (SIC). The axes have indices that correspond to the 430 stocks in our
sample. This plot show the results for four series of residual covariance matrices obtained
after using four different factor decompositions.
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5
Forecasting Results

This section reports the forecasting results obtained using the method-
ology described in Section 3. Subsection 5.1 shows the forecasting results for
Σf , while Subsection 5.2 shows the results for the complete covariance matrix
Σ. In both cases, daily forecasts are computed using rolling windows of 1,000
observations. Since we need 22 days to compute the first monthly regressor,
Σmonth
f,t , our out-of-sample forecasts comprise days 1,023 to 1,495 (T1 to T2),

totaling 473 daily forecasts.
We evaluate our forecasts by using the `2-norm for the vector of errors,

that is, ||êT+1|| = ||vech(Σ̂T+1 − ΣT+1)||. We compare different methods by
using the average `2-forecast error:

average `2-forecast error = 1
T2 − T1 + 1

T=T2∑
T=T1

||ε̂T+1||. (5-1)

In all cases, our reference forecast is a random walk model: Σ̂f,T+1 = Σf,T and
Σ̂T+1 = ΣT for the complete covariance matrix.

5.1
Factor Covariance Matrix

Table 5.1 shows the forecast results for the factor covariance matrices,
following the method described in Section 3.1 (we refer to this method as
FHAR, from factor HAR, hereafter). The results are uniformly stronger when
we apply a log-matrix transformation, as proposed by (11). Prior to estimation,
we apply the log-matrix transformation to all data, that is, Ωf,t = log(Σf,t).
We then use the method FHAR to compute Ω̂f,t+1. Finally, we revert the
transformation by applying the exponential-matrix transformation and obtain
our forecasts, that is, Σ̂f,t+1 = exp(Ω̂f,t+1). We also report the results without
applying the log-matrix transformation.

From Table 5.1, we see that the use of the log-matrix transformation
considerably improves the forecasts. After this transformation, variance and
covariance series become smoother than in the original data. This reduces the
weights of outliers when fitting the model and improves forecasting precision.
Another advantage is that the exponential matrix is positive definite by
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construction. This consideration is important, as we will need the inverse of the
covariance matrix Σ when solving the minimum variance problems in Section 6.
Finally, applying adaLASSO to the best performing models does not improve
the results up to the second decimal place.

Since we estimate all equations on a daily basis, we now investigate their
evolution over time1. Figure 5.1 shows the average number of variables selected
by LASSO over the 473 days for the FHAR Log-matrix models. To illustrate,
consider the upper-left panel in this figure. It shows the average model size for
the diagonal equations in the FHAR Log-matrix model with three factors. In
other words, it displays the mean size for the equations of σ2

market, σ2
SMB, and

σ2
HML. Panels on the right show the same results for the covariance equations.

From top to bottom, we vary the number of factors2.

Figure 5.1: Average Number of Selected Variables in FHAR Log-
matrix LASSO models
These panels show the daily average number of variables selected by the LASSO method for
variance and covariance equations on a given day. We sort the panels by number of factors
in the model (increasing from top to bottom) and by variable class (variances on the left
and covariances on the right). Blue lines are local polynomial regressions. The maximum
number of predictive variables for each configuration are 18 (3 factors), 45 (5 factors), and
76 (7 factors).
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In all cases, LASSO reduces the number of selected variables substan-
1The results for average equation size and average change in the number of selected

variables obtained with the adaLASSO estimator are quite similar to the ones obtained via
LASSO estimation. These results are readily available upon request.

2For the 1F configuration, we only have one element to be forecast: σ2
market. In this case,

the equations estimated by LASSO and adaLASSO have only three potential predictors,
which are, in this case, always selected. For this reason, we do not present the average
number of selected variables (constant) or average change in the number of selected variables
(zero) for this case.
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tially. This reduction is most noticeable for the FHAR Log-matrix model with
7 factors, in which the number of selected variables fluctuates around 10 (out
of 76 potential predictors) for the variance equations and even less for the
covariance equations.

Another interesting feature is that average equation sizes are stable over
time. Figure 5.2 shows the average change in the number of selected variables
from one day to the next. We consider parameters changing from zero to non-
zero values or the opposite direction. All results are reported in percentage
(relative to the maximum number of variables in each equation). For the
three-factor models presented, both variance and covariance equations remain
unchanged on most days. Despite the stronger variation in the 5- and 7-factor
configurations, the percentage changes are smaller than 5% on almost all days.
In general, variance equations are slightly more stable. We present results
for the average equation size and average change in the number of selected
variables for the residual covariance matrix forecasts in Appendix E.

Figure 5.2: Average Change in the Number of Selected Variables in
FHAR Log-matrix models
These panels shows the daily average change in the number of variables selected by LASSO
for variance and covariance equations. We count a change as when a variable goes from
being zero to non-zero or from being non-zero to zero. The results are presented as a
percentage relative to the maximum number of variables in each equation. We sort the
panels by the number of factors in the model (increasing from top to bottom) and by variable
class (variances on the left and covariances on the right). Blue lines are local polynomial
regressions.
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Chapter 5. Forecasting Results 27

5.2
Complete Covariance Matrix

Table 5.2 shows the forecast results for the complete covariance matrix
(430 stocks). In this case, VHAR denotes the complete methodology described
in Section 3. We compute all models using Log-matrix transformation and
estimate these models using LASSO and adaLASSO. Table 5.2 also reports
alternative models for comparison purposes:

1. Random walk (RW): the standard reference model throughout this work.

2. Exponentially weighted moving average (EWMA) with smoothing pa-
rameter λ = 0.96, as recommended by the RiskMetrics methodology.

3. The dynamic conditional correlation and BEKK models, both with
nonlinear shrinkage, as proposed by (10). These approaches will be called
DCC-NL and BEKK-NL hereafter.

4. Modified versions of the random walk model (Blocks 1F, 3F, 5F, and
7F). In these cases, we decompose the original realized covariance matri-
ces using factors and impose block diagonality on the residual covariance
matrices. Instead of using VHAR models to forecast future realizations,
we simply use the random walk model with the adjusted covariance ma-
trices as forecasts. By doing this, we try to approximate the methodology
used by (12)3.

Some of the the alternative models use daily returns data, instead of
using realized covariance matrices as inputs. We compare our results to these
models to see whether the use of high-frequency data brings gains in terms of
portfolio performance.

Models based on daily returns do not outperform the benchmark in any
case, with a particularly bad performance for the EWMA. Despite having
performed much better, BEKK-NL and DCC-NL have errors that are almost
2 times larger than the random walk model. Imposing block diagonality on
the residual covariance matrices (Blocks 1F, 3F, 5F, and 7F) improves the
results, relative to the random walk, by 3%. Our methodology is able to beat
the random walk model by up to 15%. In terms of the average `2-forecast error,
there is no difference when estimating the models with LASSO or adaLASSO.

3(12) impose block diagonality when using the high-frequency data for factors and returns
to estimate the integrated covariance. Another difference is that the authors use the GICS
system to classify stocks in sectors. The model used for forecasting and portfolio allocation
is the random walk.
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Chapter 5. Forecasting Results 28

Table 5.1: Forecast Precision for Factor Covariance Matrices
`2 represents the average `2-forecast error over the 473 out-of-sample days, that is,

average `2-forecast error = 1
T2 − T1 + 1

T =T2∑
T =T1

||ε̂T +1||.

`2/`2,RW represents the ratio of the `2-forecast error for other methods to the random walk
value. FHAR stands for the factor heterogeneous autoregressive model described in Section
3.1. Each line represents a different factor configuration. Numbers shown between parenthesis
represent the results obtained with the adaLASSO method.

`2 `2 / `2,RW
Model Random Walk FHAR FHAR, Log-matrix
1F 0.40 0.96 (0.96) 0.92 (0.92)
3F 0.44 0.98 (0.97) 0.90 (0.90)
5F 0.51 0.95 (0.95) 0.89 (0.89)
7F 0.62 0.99 (1.04) 0.86 (0.87)

Table 5.2: Forecast Precision for Complete Covariance Matrices
`2 represents the average `2-forecast error, computed for 473 days, that is,

average `2-forecast error = 1
T2 − T1 + 1

T =T2∑
T =T1

||ε̂T +1||.

`2,RW is the error for the random walk model. `2/`2,RW represents the ratio between the
error values. The column “Latent Covariance Models” displays the results for models based
on daily return data. The columns “VHAR” and “VHAR, Log-matrix” show our results
(without and with log-matrix transformation, respectively). 1F, 3F, 5F, and 7F stand for the
1-factor, 3-factor, 5-factor, and 7-factor configurations for the factor covariance matrix. For
the VHAR (Log-matrix) forecasts, the results are presented for the LASSO and adaLASSO
estimation.

Model (Benchmarks) `2/`2,RW VHAR (Log-matrix) `2/`2,RW
RW 1.00 1F, LASSO 0.86
EWMA (Returns) 6.93 3F, LASSO 0.85
BEKK-NL 1.71 5F, LASSO 0.85
DCC-NL 1.71 7F, LASSO 0.85
Block 1F 0.97 1F, adaLASSO 0.86
Block 3F 0.97 3F, adaLASSO 0.85
Block 5F 0.97 5F, adaLASSO 0.85
Block 7F 0.97 7F, adaLASSO 0.85
Random Walk (RW) `2,RW 341.57
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6
Portfolio Selection

Despite the encouraging results obtained when forecasting covariance ma-
trices, one could argue that our measure of forecast precision is too aggregate,
specially when taking into account the fact that we have more than 90,000
unique entries being forecasted simultaneously. For instance, these estimates
may produce large mistakes in only a few entries but with large implications
when applied to practical problems. To evaluate the economic benefits pro-
vided by our forecasts, we use them to construct daily investment portfolios1.
We construct minimum variance portfolios using the models described in the
previous section. We consider the global minimum variance portfolio (without
any restrictions on weights), the restricted portfolio (limiting long positions
and short-selling) and the long-only portfolios (without any short-selling).

We focus our analysis on variations of the minimum variance problem,
as it is the sole portfolio problem that requires only information on the
covariance matrix. Other portfolio optimization problems, such as finding
tangency portfolios that maximize Sharpe ratios, also require estimates of
expected returns for every single eligible asset. When we analyze the outcomes,
we also focus on risk measures, such as the portfolio standard deviation, as
our aim is to minimize the risk of the portfolio. In finance theory, all efficient
portfolios have higher expected returns and Sharpe ratios than the minimum
variance portfolio. Minimum variance optimizations that are less precise or
biased may, by chance, find portfolios that have higher realized returns and
higher Sharpe ratios. While we should base our assessment of the models on
the risk measures, other measures related to the concentration, trading volume
and even realized return may also provide relevant information.

First, we compute various statistics for indices directly related to our
portfolio exercise. Table 6.1 shows the standard deviation, kurtosis, skewness,
average excess return over the risk-free rate and Sharpe ratio for the daily
series of returns for three S&P 500 indices: minimum volatility, low volatility,
and equal weight. We provide these values as reference points to evaluate our

1In this section, we use daily covariance matrix forecasts to build portfolios for the next
day. These portfolios are rebalanced daily, using the most recent forecasts. We investigate
portfolios formed for longer holding periods in Appendix F. Similar results to this section
hold even with infrequent rebalancing.
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results, as these indices are commonly used by practitioners. According to
the index provider, the first index “is designed to reflect a managed-volatility
equity strategy that seeks to achieve lower total risk, measured by standard
deviation, than the S&P 500 while maintaining similar characteristics.” It is
based on the Northfield Open Optimizer and rebalanced every six months. The
second index is based on risk measures for each asset individually, focusing on
stocks with low volatility.

Table 6.1: S&P Index Performances
Average excess returns are defined as the annualized average excess returns over the risk-free
rate for the index total return series. Standard deviations are calculated for these series and
are also annualized. The Sharpe ratio is computed using these two quantities. The sample is
from 2010/02/12 to 2011/12/29, which corresponds to 473 days considered in the portfolio
exercises.

S&P 500 S&P 500
Min. Vol.

S&P 500
Low Vol.

S&P 500
Equal Weight

Standard Deviation (%) 21.00 16.41 14.84 23.48
Kurtosis 2.88 3.37 3.54 2.67
Skewness -0.35 -0.36 -0.38 -0.34
Average Excess Return (%) 10.51 13.00 13.50 12.78
Cumulative Return (%) 17.11 24.70 26.47 20.93
Sharpe Ratio 0.50 0.79 0.91 0.54

6.1
Global Minimum Variance Portfolios

Consider the problem of an investor at time t = t0, . . . , T − 1 who wishes
to construct a minimum variance portfolio to be held in time t + 1. For this
minimization problem, the investor needs to forecast the future covariance
matrix, Σ̂t+1. The optimization problem consists of choosing a vector of weights
ŵt+1 (dimension N × 1):

ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+11 = 1.
(6-1)

We use our VHAR method with log matrix transformation, as it provides
the best results in terms of forecasting precision. Estimation is done via LASSO
and adaLASSO. We compare our results against the random walk models (RW
and Block models), the EWMA, BEKK-NL, and DCC-NL. We evaluate ex-
post portfolio performance; that is, we use our time t estimated weights, ŵt+1,
with data from t+ 1. In the following, ŵit is the i-th component of ŵt. We also
define r∗pt = (rpt − 1

(T−t0)
∑T
t=t0+1 rpt). We show the following statistics:

1. Standard deviation: σp =
√

1
(T−t0)

∑T
t0+1(r∗pt)2.
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2. Lower partial standard deviation:
√

1∑T

t0+1 I(r∗pt<0)

∑T
t0+1(r∗pt)2 ∗ I(r∗pt < 0).

3. Kurtosis:
∑T

t=t0+1(r∗pt)4/(T−t0)
σ4

p
− 3.

4. Skewness:
√

(T−t0)(T−t0−1)
T−t0−2

∑T

t=t0+1(r∗pt)3/(T−t0)
σ3

p
.

5. Average diversification ratio: 1
(T−t0)

∑T
t0+1

∑N

i=1 ŵitσit

σpt
, where σpt = ŵ′tΣtŵt.

6. Average max. weight: 1
(T−t0)

∑T
t=t0+1 max1≤i≤N(ŵit) for i = 1, . . . , N .

7. Average min. weight: 1
(T−t0)

∑T
t=t0+1 min1≤i≤N(ŵit) for i = 1, . . . , N .

8. Average gross leverage: 1
N(T−t0)

∑T
t=t0+1

∑N
i=1 |ŵit|.

9. Proportion of leverage: 1
N(T−t0)

∑T
t=t0+1

∑N
i=1 I(ŵit < 0).

10. Average turnover: 1
N(T−t0)

∑T
t=t0+1

∑N
i=1 |ŵit − ŵholdit |, where ŵholdit =

ŵit−1
1+rit−1
1+rpt−1

. rpt is the portfolio return at time t, rit is the stock i re-
turn at time t, and ŵholdit is the weight of stock i in the hold portfolio.
The hold portfolio at time t+ 1 is defined as the resulting portfolio from
keeping all the stocks from period t.

11. Average excess return: µep = 1
(T−t0)

∑T
t=t0+1(rept) = 1

(T−t0)
∑T
t=t0+1(ŵ′trt −

rf,t), where rf,t is the risk free rate.

12. Cumulative Return: ∏T
t=t0+1(1 + rpt).

13. Sharpe ratio: µ
e
p

σp
.

Table 6.2 shows these results for the minimum variance portfolio opti-
mization problem, presented in equation (6-1). In terms of standard deviations,
the VHAR class of models perform better than all others. For these models,
the standard deviations go from a high of 10.39 % (1 factor and LASSO) to a
low of 8.58 % (5 factors and adaLASSO). Note that the lowest value is almost
half of the standard deviation for the S&P 500 Minimum Volatility Index,
presented in Table 6.1. Benchmark models (upper results) also have smaller
standard deviation than the S&P 500 indices (except for the EWMA, which
has the worst performance in this sense). Similar results hold for lower partial
standard deviations.

Table 6.2 shows that some portfolios have extreme short positions. In
most of the cases, the proportion of leverage is close to 50%. Average gross
leverage is also quite high for many of the alternative models. Since shorting
stocks may not be feasible and can be costly, we consider these positions
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potentially extreme. The values for average maximum and minimum weights
are also quite large in some cases. Our models appear to generate more
balanced portfolios.

In terms of average excess returns and cumulative returns, our models
provide mixed results: slightly inferior performance compared to BEKK-NL
and DCC-NL; similar performance compared to the RW and Block models;
and much better performance relative to the EWMA. Since the optimization
problem focuses on minimizing the portfolio variance, it is not obvious which
models should achieve higher returns. For this reason, we do not see the slightly
superior performance of the BEKK-NL and DCC-NL models as a problem, as
they are choosing riskier portfolios that are likely to deliver higher returns.
Moreover, the small difference in realized returns is more than compensated
by the substantial reduction in standard deviation (as evidenced by the higher
Sharpe ratios for our models).

6.2
Restricted Minimum Variance Portfolios

We now resort to what we consider a more realistic investor problem. In
this section, we solve a problem similar to equation (6-1), except that now we
impose two additional restrictions. First, we allow the maximum leverage to be
30% (in some sense, consistent with a 130-30 fund concept in the mutual fund
industry). Second, we restrict the maximum weights on individual stocks to be
20% (in absolute value). The problem for an investor at time t = t0, . . . , T − 1
is then given by

ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+11 = 1,
N∑
i=1
|wit+1|I(wit < 0) ≤ 0.30 and |wit+1| ≤ 0.20.

(6-2)

In Table 6.3 we report the same performance statistics as in the last
subsection. Again, our methodology generates lower standard deviations than
the competing models (our VHAR 1-factor model performs closely to the RW
and Block benchmarks). In terms of returns, the results are, again, mixed.
While our models perform better against the EWMA, BEKK-NL, and DCC-
NL, the RW and Block models are much more competitive this time. Again, we
do not consider this to be a problem, as we were able to obtain smaller standard
deviations with our models. Finally, the restriction on leverage drastically
reduces the proportion of leverage in all cases.
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Table 6.2: Statistics for Daily Portfolios - Global Minimum Variance
The table reports the results for portfolios constructed according to the optimization problem
as in (6-1). Different models are used to provide the one-step-ahead forecasts for the realized
covariance matrix: RW is the random walk model, and Blocks 1F, 3F, 5F, and 7F are random
walks applied to the residual covariance matrix after the four different factor decompositions.

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL
Standard Deviation (%) 12.07 8.21 8.29 8.25 8.25 14.62 9.41 10.65

Lower Partial Standard Deviation (%) 12.82 8.79 8.94 8.73 8.83 14.90 9.63 11.31
Kurtosis 1.29 0.69 0.77 0.72 0.73 2.12 1.60 4.60
Skewness -0.35 -0.39 -0.40 -0.38 -0.40 -0.15 -0.33 -0.50

Average Diversification Ratio 3.29 6.05 6.11 6.11 6.12 1.01 3.03 3.53
Average Max. Weight 0.06 0.10 0.10 0.10 0.10 0.20 0.06 0.12
Average Min. Weight -0.06 -0.03 -0.03 -0.03 -0.03 -0.15 -0.04 -0.04

Average Gross Leverage 5.94 3.08 3.14 3.14 3.19 12.55 5.09 4.11
Proportion of Leverage (%) 44.30 44.40 44.22 44.10 44.11 49.17 45.11 51.73

Average Turnover (%) 1.80 0.75 0.78 0.78 0.80 0.27 0.11 0.21
Average Excess Return (%) 14.20 12.72 14.46 15.37 14.95 3.42 17.98 17.46
Cumulative Return (%) 29.04 26.42 30.59 32.86 31.82 4.74 39.27 37.58

Sharpe Ratio 1.18 1.55 1.74 1.86 1.81 0.23 1.91 1.64
1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR

(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Standard Deviation (%) 8.46 8.42 8.37 8.32 8.29 8.25 8.12 8.09
Lower Partial Standard Deviation (%) 8.86 8.81 8.78 8.68 8.57 8.53 8.52 8.51

Kurtosis 0.96 0.98 0.99 0.98 0.96 0.94 1.13 1.06
Skewness -0.21 -0.20 -0.18 -0.17 -0.15 -0.13 -0.24 -0.22

Average Diversification Ratio 4.79 4.81 5.02 5.03 4.87 4.88 4.96 4.96
Average Max. Weight 0.07 0.08 0.08 0.08 0.08 0.09 0.08 0.09
Average Min. Weight -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03

Average Gross Leverage 2.66 2.67 2.80 2.80 2.82 2.82 2.93 2.93
Proportion of Leverage (%) 45.89 46.01 44.88 45.03 44.89 45.12 45.26 45.50

Average Turnover (%) 0.20 0.22 0.20 0.22 0.19 0.21 0.20 0.22
Average Excess Return (%) 15.24 15.18 17.69 17.45 18.93 18.61 18.09 17.85
Cumulative Return (%) 32.49 32.35 38.74 38.13 42.01 41.19 39.85 39.21

Sharpe Ratio 1.80 1.80 2.11 2.10 2.28 2.26 2.23 2.21

Table 6.3: Statistics for Daily Portfolios - Restricted Minimum Vari-
ance
The table reports the results for portfolios constructed according to the optimization problem
as in (6-2). Different models are used to provide the one-step-ahead forecasts for the realized
covariance matrix: RW is the random walk model, and Blocks 1F, 3F, 5F, and 7F are random
walks applied to the residual covariance matrix after the four different factor decompositions.

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL
Standard Deviation (%) 13.29 13.34 13.20 13.17 13.25 15.28 15.49 14.72

Lower Partial Standard Deviation (%) 14.13 13.91 13.66 13.35 13.68 16.47 16.24 15.28
Kurtosis 3.40 4.71 4.68 4.79 5.10 4.16 4.36 3.08
Skewness -0.27 -0.13 -0.08 -0.10 -0.17 -0.48 -0.36 -0.15

Average Diversification Ratio 3.55 3.92 4.11 4.12 4.07 2.22 2.24 2.15
Average Max. Weight 0.17 0.16 0.15 0.15 0.15 0.19 0.19 0.19
Average Min. Weight -0.09 -0.07 -0.07 -0.07 -0.08 -0.16 -0.15 -0.11

Average Gross Leverage 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60
Proportion of Leverage (%) 1.91 3.11 3.08 3.06 2.93 0.71 0.85 1.41

Average Turnover (%) 0.43 0.40 0.42 0.41 0.42 0.09 0.10 0.11
Average Excess Return (%) 16.72 18.23 19.01 22.42 21.22 13.68 14.24 16.91
Cumulative Return (%) 34.88 38.74 40.83 50.14 46.79 26.74 27.99 34.86

Sharpe Ratio 1.26 1.37 1.44 1.70 1.60 0.90 0.92 1.15
1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR

(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Standard Deviation (%) 13.20 13.37 12.81 12.86 12.57 12.83 12.63 12.75
Lower Partial Standard Deviation (%) 13.29 13.64 12.60 12.54 12.54 12.75 12.52 12.62

Kurtosis 3.89 4.09 4.82 4.84 4.44 5.05 4.47 5.14
Skewness -0.03 -0.12 0.14 0.12 0.04 0.10 0.03 0.05

Average Diversification Ratio 3.41 3.38 3.64 3.65 3.73 3.70 3.68 3.65
Average Max. Weight 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Average Min. Weight -0.08 -0.08 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07

Average Gross Leverage 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60
Proportion of Leverage (%) 2.46 2.44 2.37 2.38 2.43 2.41 2.27 2.25

Average Turnover (%) 0.22 0.23 0.24 0.24 0.23 0.24 0.22 0.23
Average Excess Return (%) 16.07 19.89 19.72 21.04 20.56 18.93 20.74 19.19
Cumulative Return (%) 33.30 43.13 42.88 46.43 45.22 40.76 45.67 41.48

Sharpe Ratio 1.22 1.49 1.54 1.64 1.64 1.48 1.64 1.51
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Table 6.4: Statistics for Daily Portfolios - Restricted Minimum Vari-
ance (Long Only)
The table reports the results for portfolios constructed according to the optimization problem
as in (6-3). Different models are used to provide the one-step-ahead forecasts for the realized
covariance matrix: RW is the random walk model, and Blocks 1F, 3F, 5F, and 7F are random
walks applied to the residual covariance matrix after the four different factor decompositions.

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL
Standard Deviation (%) 17.10 17.06 16.96 16.85 16.88 17.74 17.92 17.78

Lower Partial Standard Deviation (%) 17.56 17.83 17.63 17.49 17.58 18.94 19.16 19.13
Kurtosis 3.29 3.04 3.16 3.22 3.17 2.84 2.88 2.60
Skewness -0.25 -0.30 -0.32 -0.31 -0.31 -0.32 -0.35 -0.33

Average Diversification Ratio 3.10 3.04 3.07 3.09 3.09 2.63 2.60 2.51
Average Max. Weight 0.18 0.19 0.19 0.19 0.19 0.18 0.18 0.18
Average Min. Weight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Gross Leverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Proportion of Leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Turnover (%) 0.17 0.16 0.16 0.16 0.16 0.03 0.03 0.04
Average Excess Return (%) 14.29 15.86 16.18 14.98 15.06 20.22 15.85 16.28
Cumulative Return (%) 27.49 31.30 32.15 29.25 29.44 42.18 30.91 32.04

Sharpe Ratio 0.84 0.93 0.95 0.89 0.89 1.14 0.88 0.92
1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR

(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Standard Deviation (%) 16.96 16.98 16.55 16.59 16.34 16.47 16.31 16.44
Lower Partial Standard Deviation (%) 17.51 17.64 17.29 17.27 16.88 17.10 16.89 17.03

Kurtosis 4.32 4.27 4.18 3.70 3.37 3.46 3.69 3.56
Skewness -0.35 -0.35 -0.36 -0.27 -0.19 -0.21 -0.20 -0.23

Average Diversification Ratio 3.10 3.09 3.09 3.10 3.12 3.13 3.11 3.11
Average Max. Weight 0.17 0.18 0.19 0.19 0.19 0.19 0.19 0.19
Average Min. Weight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Gross Leverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Proportion of Leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Turnover (%) 0.08 0.08 0.07 0.08 0.07 0.08 0.07 0.07
Average Excess Return (%) 17.60 17.57 17.62 18.04 18.02 18.17 17.13 17.04
Cumulative Return (%) 35.71 35.63 35.95 37.01 37.06 37.38 34.79 34.50

Sharpe Ratio 1.04 1.03 1.06 1.09 1.10 1.10 1.05 1.04

6.3
Long-Only Minimum Variance Portfolios

In this section, we impose a restriction of no short-selling. The problem
for an investor at time t = t0, . . . , T − 1 is then given by

ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+11 = 1,

0 ≤ wit+1 ≤ 0.20.

(6-3)

From Table 6.4, we see that, except for the 1-factor model, our method-
ology is able to reduce standard deviations compared to the benchmarks. This
time, interestingly, average returns and cumulative returns are higher in all
cases. These facts are reflected in higher Sharpe ratios.
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7
Conclusions

We propose a model to forecast very large realized covariance matrices
of returns, applying it to the constituents of the S&P 500 on a daily basis.
To address the curse of dimensionality, we decompose the return covariance
matrix using standard firm-level factors (e.g., size, value, and profitability)
and use sectoral restrictions in the residual covariance matrix. This restricted
model is then estimated using vector heterogeneous autoregressive (VHAR)
models estimated with the least absolute shrinkage and selection operator
(LASSO). Our methodology improves forecasting precision relative to standard
benchmarks and leads to better estimates of the minimum variance portfolios.
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A
Factor Loadings

This appendix describes how daily loadings on factors can be calculated
using daily realized covariance matrices of returns Σt, daily factor covariance
matrices Σf,t, and factor weights W (which are calculated yearly). To simplify
the notation, we drop the subscript t and derive the equation for a daily
matrix of loadings B̂ (the final equation is applied to daily data, providing
1,495 matrices B̂). Letters with one subscript t represent vectors with cross-
sectional data at time t, while letters with one superscript n represent time
series data for asset n.

Assume that we have T observations for K factors and N assets (in our
case, T can be thought of as intra-daily high-frequency observations). Stacking
all observations in matrix form,

F =


f1,1 . . . fK,1
... . . . ...

f1,T . . . fK,T

 =


f ′1
...
f ′T



R =


r1,1 . . . r1,T
... . . . ...

rN,1 . . . rN,T

 =


r′1
...
r′N

 =
(
r1 . . . rT

)
.

(A-1)

From equation (2-4), we can rewrite the matrix F as

F =


w′1r1 . . . w′Kr1
... . . . ...

w′1rT . . . w′KrT

 =


r′1w1 . . . r′1wK
... . . . ...

r′Tw1 . . . r′TwK

 =


r′1
...
r′T

(w1 . . . wK
)

= R′W.

(A-2)
With this setup, consider the linear model of asset n, n ∈ {1, . . . , N}, on

K factors: 
rn,1
...

rn,T


rn

=


f ′1
...
f ′T


F


bn,1
...

bn,K


bn

+


εn,1
...

εn,T

 . (A-3)

The OLS estimator for bn, b̂n, is given by

b̂n = (F ′F )−1F ′rn for i = 1, . . . , N. (A-4)

In matrix form for all n,
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Appendix A. Factor Loadings 39

B̂ =
(
b̂1 . . . b̂N

)
= (F ′F )−1F ′

(
r1 . . . rN

)
=

= (F ′F )−1F ′


r′1
...
r′T

 = (F ′F )−1F ′R′ =

= (F ′F )−1W ′RR′
mean=0−−−−→ (Σf )−1W ′Σ,

(A-5)

with equation (A-2) being used on the last line. Again, in our setup, B̂ is
different for every day in the sample.
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B
Betas’ Long Memory

In this section, we investigate the long-range dependency for the series
of factor loadings (“betas”). For this, we estimate the fractional differencing
parameter (d) distribution for four groups of betas, corresponding to the 1F,
3F, 5F, and 7F factor configurations. For each factor configuration, we pool all
series into a single distribution (e.g., for FF3, we plot the distribution of d for
the 430 x 3 series). Figure B.1 shows the results obtained using the Whittle
method. From the results, we see that, in all four cases, few series have values
of d close to zero, which evidences long memory.

Figure B.2 shows similar results for the GPH (Geweke and Porter-Hudak)
estimator. Again, in all cases, most series have a value of d different from zero.
We can also see that the distributions are centered close to 0.5 and away from
1, which indicates stationarity.
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Figure B.1: Estimated Fractional Differencing Parameter (d) - Whittle
Method
These panels show the distribution of fractional differencing parameter (d) estimated by the
Whittle method. Each panel corresponds to one of the factor configurations (1, 3, 5, or 7
factors). In total, there are 430×number of factors series of betas for each case. We plot the
distribution of d for these series.
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Figure B.2: Estimated Fractional Differencing Parameter (d) - GPH
Method
These panels show the distribution of fractional differencing parameter (d) estimated by
the GPH method. Each panel corresponds to one of the factor configurations (1, 3, 5, or 7
factors). In total, there are 430×number of factors series of betas for each case. We plot the
distribution of d for these series.
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C
Factor Construction

Market: The market portfolio is a value-weighted portfolio of all stocks
in our sample. The market factor is the excess return of this portfolio relative
to the risk-free rate.
Size and Value: These factors are based on a double sorting of stocks on
market equity and book-to-market equity. Market equity is defined as the last
available price in June times the corresponding value of shares outstanding.
Book-to-market ratio is calculated using the book value of the previous fiscal
year and the market equity from the last day of December of the previous year.
Stocks are ranked on market equity and split into two portfolios, small and big
(S and B). Book-to-market is used to split the stocks into three book-to-market
equity groups based on breakpoints for the bottom 30% (low, or L), middle
40% (medium, or M), and high 30% (high, or H). Six portfolios are formed
from intersections of the aforementioned groups: S/L, S/M, S/H, B/L, B/M,
and B/H. Daily value-weighted returns are calculated for the six portfolios, for
the whole year (portfolios are rebalanced annually). The factor SMB (small
minus big) is the difference between the simple average of returns on the three
small-stock portfolios and the simple average of returns on the three big-stock
portfolios, that is,

SMB = (RS/L +RS/M +RS/H)
3 −

(RB/L +RB/M +RB/H)
3 .

Similarly, the factor HML (high minus low) is defined as the daily
difference of the simple average of returns on the two high book-to-market
portfolios (S/H and B/H) and the simple average of returns on the two low
book-to-market portfolios (S/L and B/L), that is,

HML = (RS/H +RB/H)
2 −

(RS/L +RB/L)
2 .

Gross Profitability: The factor construction follows (17). The signal gross
profitability (GP) is defined as the ratio between gross profits and total assets.
Stocks are ranked and split in 10 deciles every year, using current year financial
data. The gross profitability portfolio consists of a strategy that is long in the
group with the lowest GP and short in the group with the highest GP. For
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both groups, value-weighted returns are calculated, and the factor GP is given
by

GP = RlowGP −RhighGP .

Accruals: This factor follows (20). The signal accrual is defined as

Accruals = ∆ACT −∆CHE −∆LCT + ∆DLC + ∆TXP −DP
(AT + AT−12)/2 ,

where ACT is the annual total current assets, CHE is the annual total cash
and short-term investments, LCT is the annual current liabilities, DLC is the
annual debt in current liabilities, TXP is the annual income taxes payable,DP
is the annual depreciation and amortization, and (AT+AT−12)/2 represents the
average total assets over the last two years. ∆ stands for the annual variation
in these variables. Stocks are split in 10 deciles every year, and two value-
weighted portfolios are formed on the lowest and highest deciles. The accruals
portfolio consists of a strategy that is long on the small accrual portfolio and
short on the high accrual portfolio. The factor is then given by

Accrual = RlowAccrual −Rhighaccrual.

Asset Growth: This factor follows (19). The asset growth signal is defined
as Asset Growth = AT/AT−12, with AT and AT−12 previously defined in the
accruals section. Analogous to the procedure used for the accruals factor, the
asset growth portfolio is simply a strategy that is long on the lowest decile
asset growth portfolio and short on the highest decile portfolio (the stocks are
sorted into 10 deciles). Following this procedure, the factor is then given by

AssetGrowth = RlowAssetGrowth −RhighAssetGrowth.

Investment: The factor construction follows (18). The investment signal is
defined as

Investment = (∆PPEGT + ∆INV T )/AT−12,

where PPEGT is the gross total property, plant, and equipment (COMPU-
STAT’s variable ’ppegt’), and INV T is total inventories (COMPUSTAT’s
’invt’). For the investment portfolio, the stocks are triple sorted in size, value
(as in the Fama-French factors), and investment. For each of the three charac-
teristics, each stock is classified into one of three groups: low (30%), medium
(30%-70%), or high (70%-100%). This procedure results in 27 different port-
folios. The investment portfolio consists of a strategy that is long on the low
investment portfolio (the simple average between the 9 groups with low invest-
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ment) and short on the high investment portfolio (the simple average between
the 9 groups with high investment), that is,

Investment = RlowInvestment −RhighInvestment.

Risk Free: We obtain the daily series of returns from Kenneth French’s
website.
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D
Diagnostic Criterion for Approximate Factor Structure

In this appendix, we follow the procedure described in (22) to check for
the existence of omitted factors in our models. The diagnostic criterion for
omitted factors is based on the following expression:

ξ(k) = µk+1

(
1
NT

∑
i

εiε
′
i

)
− g(N, T ),

where µk+1(.) denotes the (k+ 1)-th largest eigenvalue of a symmetric matrix,
N represents the number of assets, T represents the sample size, and εi is
a vector of dimension T × 1 with the residuals from the i-th asset relative
to the model being tested. g(N, T ) is a penalty function given by g(N, T ) =[
N+T
NT

log( NT
N+T )

]
σ̂2, where σ̂2 is the estimated variance of the residuals. The

criterion detects k omitted factors in the residuals when ξ(k) < 0. To illustrate,
for a given specification, if ξ(2) > 0 and ξ(3) < 0, the residuals present a factor
structure with two omitted factors.

In Figure D.1, we show the values of ξ(k) for four factor configurations:
1F, 3F, 5F, and 7F. In all cases, we detect the presence of omitted factors,
which suggests that imposing more structure on the residuals is appropriate.
Since we used sector classifications to restrict the residual dynamics, we also
evaluate the criterion in one of these cases. In Figure D.2, we show similar
results for the better performing model of Section 6, that is, the 7F with block
diagonal residual covariance matrices. From the results, we verify a reduction
in the number of omitted factors from five to three in this case.
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Figure D.1: Approximate Factor Structure for the 1F, 3F, 5F, and 7F
Models

Figure D.2: Approximate Factor Structure for the 7F + 10 Industry
Factors Model
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E
Residual Covariance Matrix - Parameter Selection

In this appendix, we show the average equation size and average pa-
rameter change for models used to forecast the residual covariance matrices.
Since the number of categories of equations is much higher than the one used
for the factor covariance matrices, we present the results in percentiles of the
distribution (instead of individual plots).
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Table E.1: Average Equation Size Distribution for Blocks in the
Residual Covariance Matrix (1-Factor VHAR).
The distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separated into 10 groups, according to SIC. Averages are
calculated among stocks in the same group.

Distribution Min 0.25 0.5 0.75 Max Mean

Variance Equations
Group
Consumer Non-Durables 11.29 11.90 12.16 12.48 13.55 12.25
Consumer Durables 6.12 6.38 6.62 6.88 7.62 6.69
Manufacturing 16.05 16.57 16.74 16.92 17.26 16.74
Oil, Gas, and Coal Extraction 9.38 10.16 10.47 10.66 11.38 10.43
Business Equipment 14.70 15.15 15.33 15.52 15.97 15.33
Telecommunications 6.50 6.90 7.40 7.60 7.90 7.28
Wholesale and Retail 12.51 13.27 13.44 13.6 14.00 13.43
Health Care, Medical Equipments, and Drugs 11.69 12.19 12.46 12.85 13.35 12.5
Utilities 11.86 12.56 12.83 13.17 13.72 12.85
Others 15.46 15.88 16.52 16.97 18.1 16.47

Covariance Equations
Group
Consumer Non-Durables 0.77 1.07 1.51 1.63 1.75 1.36
Consumer Durables 0.39 0.96 1.50 1.68 1.93 1.35
Manufacturing 0.51 0.60 0.69 0.76 0.82 0.68
Oil, Gas, and Coal Extraction 1.72 2.03 2.43 2.59 3.00 2.33
Business Equipment 0.37 0.45 0.60 0.64 0.69 0.55
Telecommunications 1.44 1.67 1.78 1.89 2.18 1.79
Wholesale and Retail 0.56 0.69 1.03 1.14 1.28 0.95
Health Care, Medical Equipments, and Drugs 0.58 0.85 1.39 1.83 2.02 1.34
Utilities 0.69 0.77 0.84 1.48 1.92 1.09
Others 0.48 0.54 0.64 0.74 0.77 0.63
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Table E.2: Average Parameter Change Distribution for Blocks in the
Residual Covariance Matrix (1-Factor VHAR).
The distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separated into 10 groups, according to SIC. Averages are
calculated among stocks in the same group.

Distribution Min 0.25 0.5 0.75 Max Mean

Variance Equations
Group
Consumer Non-Durables 0.21 0.94 1.25 1.66 3.75 1.33
Consumer Durables 0.00 0.00 0.00 1.56 4.69 0.52
Manufacturing 0.17 0.78 0.99 1.25 3.48 1.05
Oil, Gas, and Coal Extraction 0.10 0.88 1.37 1.86 4.30 1.43
Business Equipment 0.46 0.96 1.16 1.43 4.03 1.21
Telecommunications 0.00 0.00 0.00 1.00 4.00 0.65
Wholesale and Retail 0.20 0.89 1.14 1.43 2.91 1.19
Health Care, Medical Equipment, and Drugs 0.00 0.74 1.04 1.48 6.07 1.16
Utilities 0.15 0.62 0.93 1.16 4.32 0.94
Others 0.37 0.68 0.79 0.94 1.81 0.82

Covariance Equations
Group
Consumer Non-Durables 0.10 0.30 0.39 0.48 0.96 0.39
Consumer Durables 0.00 0.45 0.89 1.34 4.46 0.94
Manufacturing 0.07 0.11 0.13 0.14 0.24 0.13
Oil, Gas, and Coal Extraction 0.26 0.55 0.67 0.79 1.32 0.68
Business Equipment 0.05 0.09 0.10 0.12 0.17 0.1
Telecommunications 0.00 0.44 0.89 1.33 3.56 0.9
Wholesale and Retail 0.07 0.17 0.21 0.26 0.42 0.21
Health Care, Medical Equipment, and Drugs 0.11 0.30 0.43 0.58 1.04 0.45
Utilities 0.06 0.22 0.31 0.41 0.78 0.32
Others 0.04 0.06 0.07 0.07 0.1 0.07
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Table E.3: Average Equation Size Distribution for Blocks in the
Residual Covariance Matrix (3-Factor VHAR).
The distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separated into 10 groups, according to SIC. Averages are
calculated among stocks in the same group.

Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 11.19 11.97 12.19 12.48 13.61 12.29
Consumer Durables 6.25 6.50 6.62 7.00 7.75 6.79
Manufacturing 16.22 16.69 16.85 17.05 17.46 16.86
Oil, Gas, and Coal Extraction 9.00 9.78 10.19 10.59 11.12 10.17
Business Equipment 15.03 15.46 15.64 15.77 16.18 15.62
Telecommunications 6.60 6.90 7.30 7.60 7.90 7.27
Wholesale and Retail 12.80 13.36 13.53 13.71 14.22 13.55
Health Care, Medical Equipment, and Drugs 11.54 12.19 12.42 12.92 13.58 12.53
Utilities 12.03 12.75 13.00 13.25 14.25 13.03
Others 15.41 15.85 16.47 17.13 18.11 16.53

Covariance Equations
Group
Consumer Non-Durables 0.66 0.83 1.28 1.39 1.52 1.15
Consumer Durables 0.21 0.36 0.54 0.68 0.89 0.53
Manufacturing 0.47 0.55 0.63 0.68 0.72 0.61
Oil, Gas, and Coal Extraction 1.46 1.76 2.09 2.23 2.64 2.01
Business Equipment 0.34 0.40 0.55 0.67 0.71 0.54
Telecommunications 1.36 1.53 1.62 1.73 2.11 1.65
Wholesale and Retail 0.51 0.60 0.89 1.02 1.09 0.83
Health Care, Medical Equipment, and Drugs 0.42 0.73 1.12 1.58 1.77 1.13
Utilities 0.67 0.74 0.85 1.58 2.06 1.14
Others 0.52 0.60 0.65 0.70 0.72 0.64
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Table E.4: Average Parameter Change Distribution for Blocks in the
Residual Covariance Matrix (3-Factor VHAR).
The distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separated into 10 groups, according to SIC. Averages are
calculated among stocks in the same group.

Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 0.21 0.94 1.25 1.66 3.85 1.33
Consumer Durables 0.00 0.00 0.00 1.56 3.12 0.52
Manufacturing 0.33 0.83 1.02 1.23 3.36 1.08
Oil, Gas, and Coal Extraction 0.00 0.68 1.17 1.56 4.49 1.19
Business Equipment 0.40 0.94 1.18 1.40 3.60 1.21
Telecommunications 0.00 0.00 0.00 1.00 5.00 0.57
Wholesale and Retail 0.25 0.94 1.19 1.43 3.80 1.24
Health Care, Medical Equipment, and Drugs 0.00 0.74 1.04 1.48 4.88 1.16
Utilities 0.08 0.62 0.93 1.23 4.55 0.98
Others 0.31 0.67 0.80 0.94 1.63 0.82

Covariance Equations
Group
Consumer Non-Durables 0.10 0.25 0.33 0.40 0.64 0.33
Consumer Durables 0.00 0.00 0.45 0.89 3.12 0.50
Manufacturing 0.06 0.09 0.11 0.12 0.20 0.11
Oil, Gas, and Coal Extraction 0.15 0.45 0.56 0.69 1.16 0.58
Business Equipment 0.04 0.08 0.10 0.12 0.20 0.10
Telecommunications 0.00 0.44 0.67 1.11 3.33 0.78
Wholesale and Retail 0.07 0.15 0.18 0.22 0.42 0.19
Health Care, Medical Equipment, and Drugs 0.05 0.25 0.34 0.45 0.86 0.36
Utilities 0.08 0.21 0.31 0.42 0.78 0.33
Others 0.05 0.06 0.07 0.07 0.10 0.07
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Table E.5: Average Equation Size Distribution for Blocks in the
Residual Covariance Matrix (5-Factor VHAR).
The distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separated into 10 groups, according to SIC. Averages are
calculated among stocks in the same group.
Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 11.32 11.97 12.19 12.45 13.61 12.27
Consumer Durables 6.12 6.50 6.62 7.00 7.62 6.77
Manufacturing 15.91 16.46 16.72 16.97 17.57 16.72
Oil, Gas, and Coal Extraction 10.28 10.75 11.12 11.38 12.06 11.08
Business Equipment 15.00 15.34 15.52 15.72 16.39 15.55
Telecommunications 6.50 6.90 7.30 7.70 7.90 7.30
Wholesale and Retail 12.56 13.22 13.40 13.62 14.24 13.42
Health Care, Medical Equipment, and Drugs 11.69 12.15 12.54 12.96 13.50 12.55
Utilities 13.47 14.22 14.36 14.56 14.97 14.37
Others 15.35 15.94 16.60 17.22 18.12 16.61

Covariance Equations
Group
Consumer Non-Durables 0.59 0.83 1.33 1.43 1.52 1.17
Consumer Durables 0.21 0.39 0.46 0.57 0.79 0.48
Manufacturing 0.46 0.53 0.61 0.63 0.69 0.59
Oil, Gas, and Coal Extraction 1.38 1.67 1.73 1.95 2.33 1.80
Business Equipment 0.37 0.42 0.57 0.68 0.74 0.56
Telecommunications 1.13 1.44 1.56 1.69 1.91 1.55
Wholesale and Retail 0.59 0.70 0.97 1.06 1.13 0.90
Health Care, Medical Equipment, and Drugs 0.52 0.75 1.20 1.54 1.78 1.16
Utilities 0.64 0.74 0.95 1.15 1.39 0.95
Others 0.60 0.67 0.70 0.74 0.77 0.70
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Table E.6: Average Parameter Change Distribution for Blocks in the
Residual Covariance Matrix (5-Factor VHAR).
The distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separated into 10 groups, according to SIC. Averages are
calculated among stocks in the same group.

Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 0.10 0.83 1.25 1.56 3.95 1.27
Consumer Durables 0.00 0.00 0.00 0.00 3.12 0.41
Manufacturing 0.31 0.88 1.07 1.30 3.98 1.12
Oil, Gas, and Coal Extraction 0.10 0.59 0.88 1.27 4.49 0.97
Business Equipment 0.27 0.97 1.16 1.37 3.55 1.19
Telecommunications 0.00 0.00 0.00 1.00 6.00 0.61
Wholesale and Retail 0.20 0.94 1.23 1.53 4.10 1.27
Health Care, Medical Equipment, and Drugs 0.00 0.59 1.04 1.63 4.44 1.17
Utilities 0.00 0.85 1.16 1.47 5.71 1.19
Others 0.42 0.66 0.77 0.91 1.66 0.81

Covariance Equations
Group
Consumer Non-Durables 0.10 0.26 0.33 0.41 0.68 0.33
Consumer Durables 0.00 0.00 0.00 0.45 3.57 0.41
Manufacturing 0.05 0.09 0.10 0.12 0.17 0.10
Oil, Gas, and Coal Extraction 0.14 0.42 0.49 0.58 0.95 0.50
Business Equipment 0.04 0.08 0.10 0.12 0.18 0.10
Telecommunications 0.00 0.22 0.67 0.89 3.11 0.68
Wholesale and Retail 0.08 0.16 0.20 0.24 0.39 0.20
Health Care, Medical Equipment, and Drugs 0.07 0.26 0.39 0.50 1.11 0.39
Utilities 0.08 0.20 0.28 0.36 0.59 0.28
Others 0.05 0.07 0.07 0.08 0.10 0.07
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Table E.7: Average Equation Size Distribution for Blocks in the
Residual Covariance Matrix (7-Factor HVAR).
The distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separated into 10 groups, according to SIC. Averages are
calculated among stocks in the same group.

Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 11.29 11.94 12.13 12.48 13.74 12.24
Consumer Durables 6.12 6.38 6.50 6.88 7.62 6.65
Manufacturing 15.82 16.38 16.65 16.91 17.37 16.65
Oil, Gas, and Coal Extraction 10.12 10.81 11.03 11.34 11.97 11.09
Business Equipment 14.72 15.20 15.38 15.56 16.05 15.37
Telecommunications 6.40 6.80 7.30 7.50 8.00 7.23
Wholesale and Retail 12.73 13.31 13.47 13.69 14.33 13.49
Health Care, Medical Equipment, and Drugs 11.77 12.31 12.69 13.15 13.73 12.73
Utilities 13.69 14.22 14.36 14.53 14.92 14.35
Others 15.36 15.93 16.57 17.12 18.05 16.59

Covariance Equations
Group
Consumer Non-Durables 0.59 0.82 1.33 1.41 1.51 1.15
Consumer Durables 0.14 0.36 0.46 0.54 0.75 0.45
Manufacturing 0.50 0.56 0.63 0.65 0.72 0.61
Oil, Gas, and Coal Extraction 1.40 1.64 1.77 2.05 2.42 1.84
Business Equipment 0.54 0.62 0.77 0.90 0.95 0.76
Telecommunications 1.58 1.82 1.91 2.02 2.56 1.93
Wholesale and Retail 0.62 0.73 1.03 1.11 1.16 0.93
Health Care, Medical Equipment, and Drugs 0.54 0.77 1.02 1.41 1.65 1.06
Utilities 0.78 0.88 1.06 1.12 1.25 1.00
Others 0.63 0.71 0.75 0.78 0.81 0.74
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Table E.8: Average Parameter Change Distribution for Blocks in the
Residual Covariance Matrix (7-Factor HVAR).
The distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separated into 10 groups, according to SIC. Averages are
calculated among stocks in the same group.

Distribution Min 0.25 0.5 0.75 Max Mean

Variance Equations
Group
Consumer Non-Durables 0.00 0.94 1.25 1.66 3.64 1.32
Consumer Durables 0.00 0.00 0.00 0.00 3.12 0.40
Manufacturing 0.38 0.88 1.04 1.25 3.74 1.10
Oil, Gas, and Coal Extraction 0.00 0.59 0.88 1.17 3.71 0.92
Business Equipment 0.46 0.91 1.13 1.35 3.14 1.16
Telecommunications 0.00 0.00 0.00 1.00 8.00 0.67
Wholesale and Retail 0.25 0.89 1.19 1.53 3.90 1.24
Health Care, Medical Equipment, and Drugs 0.00 0.59 1.04 1.63 4.44 1.19
Utilities 0.23 0.85 1.16 1.47 6.10 1.22
Others 0.36 0.65 0.77 0.92 1.73 0.80

Covariance Equations
Group
Consumer Non-Durables 0.05 0.25 0.33 0.40 0.65 0.33
Consumer Durables 0.00 0.00 0.00 0.89 2.23 0.43
Manufacturing 0.06 0.09 0.10 0.12 0.18 0.11
Oil, Gas, and Coal Extraction 0.17 0.43 0.51 0.61 0.92 0.52
Business Equipment 0.06 0.11 0.12 0.14 0.25 0.13
Telecommunications 0.00 0.44 0.89 1.33 4.00 0.93
Wholesale and Retail 0.08 0.17 0.20 0.24 0.40 0.20
Health Care, Medical Equipment, and Drugs 0.06 0.25 0.34 0.44 0.75 0.35
Utilities 0.10 0.22 0.29 0.36 0.63 0.30
Others 0.05 0.07 0.08 0.08 0.10 0.08
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F
Minimum Variance Portfolio: Partial Rebalancing

In this section, we show the return statistics for cases in which we do not
fully rebalance the portfolio on a daily basis. We assume that each day, the
investor updates only 1/22 of the portfolio based on the predicted covariance
matrix for the following day, implying that every daily portfolio update has
an effective one-month holding period. This change accounts for the possible
effect of transaction costs, as only a fraction of the portfolio changes in any
single day. Indirectly, we also test whether investors with a one-month horizon
could also benefit from using covariance estimates from the proposed model,
which are designed to forecast one-day ahead covariance matrices.

Tables F.1, F.2 and F.3 present results for the unrestricted, restricted,
and long-only cases, respectively. Our proposed model continues to perform
better than the alternatives, even when we focus on longer holding periods.
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Table F.1: Statistics for Daily Average Portfolios - Global Minimum
Variance.
The table reports the results for portfolios constructed according to the optimization problem
as in (6-1) with partial rebalancing. Different models are used to provide the one-step-ahead
forecasts for the realized covariance matrix: RW is the random walk model, and Blocks 1F,
3F, 5F, and 7F are random walks applied to the residual covariance matrix after the four
different factor decompositions.

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL
Standard Deviation (%) 11.08 9.49 9.57 9.40 9.43 14.00 9.58 10.64

Lower Partial Standard Deviation (%) 12.57 10.69 10.75 10.48 10.50 14.16 9.65 11.09
Kurtosis 4.86 5.11 4.76 4.66 4.94 2.09 1.57 4.08
Skewness -0.72 -0.88 -0.85 -0.81 -0.84 -0.04 -0.18 -0.09

Average Diversification Ratio 7.09 7.19 7.29 7.30 7.35 1.08 3.07 3.90
Average Max. Weight 0.03 0.07 0.07 0.07 0.07 0.19 0.06 0.10
Average Min. Weight -0.02 -0.01 -0.01 -0.01 -0.01 -0.14 -0.04 -0.03

Average Gross Leverage 2.57 2.14 2.15 2.15 2.16 11.89 5.01 3.74
Proportion of Leverage (%) 37.74 42.09 41.75 41.36 41.54 49.07 45.15 50.94

Average Turnover (%) 0.09 0.04 0.04 0.04 0.04 0.08 0.03 0.04
Average Excess Return (%) 17.06 14.41 15.00 15.61 15.36 3.73 17.52 15.50
Cumulative Return (%) 36.44 30.21 31.65 33.21 32.56 5.52 38.03 32.61

Sharpe Ratio 1.54 1.52 1.57 1.66 1.63 0.27 1.83 1.46
1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR

(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Standard Deviation (%) 9.13 9.11 9.09 9.06 8.98 8.96 8.86 8.84
Lower Partial Standard Deviation (%) 9.84 9.81 9.79 9.77 9.72 9.72 9.72 9.76

Kurtosis 2.76 2.83 2.37 2.40 2.18 2.21 2.72 2.74
Skewness -0.53 -0.53 -0.50 -0.50 -0.47 -0.47 -0.58 -0.58

Average Diversification Ratio 4.84 4.88 5.05 5.08 4.85 4.88 4.96 4.98
Average Max. Weight 0.06 0.07 0.07 0.07 0.07 0.08 0.07 0.08
Average Min. Weight -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

Average Gross Leverage 2.56 2.56 2.70 2.70 2.74 2.74 2.84 2.84
Proportion of Leverage (%) 45.61 45.70 44.64 44.78 44.65 44.81 44.95 45.14

Average Turnover (%) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Average Excess Return (%) 13.75 13.56 15.95 15.66 16.70 16.30 15.60 15.33
Cumulative Return (%) 28.69 28.23 34.12 33.40 36.05 35.05 33.30 32.63

Sharpe Ratio 1.51 1.49 1.75 1.73 1.86 1.82 1.76 1.73
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Table F.2: Statistics for Daily Average Portfolios - Restricted Mini-
mum Variance.
The table reports the results for portfolios constructed according to the optimization problem
as in (6-2) with partial rebalancing. Different models are used to provide the one-step-ahead
forecasts for the realized covariance matrix: RW is the random walk model, and Blocks 1F,
3F, 5F, and 7F are random walks applied to the residual covariance matrix after the four
different factor decompositions.

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL
Standard Deviation (%) 13.10 12.79 12.62 12.56 12.63 14.80 15.01 14.55

Lower Partial Standard Deviation (%) 13.85 13.34 13.19 13.03 13.16 15.53 15.58 15.40
Kurtosis 3.33 3.10 3.27 3.29 3.40 3.35 3.26 3.14
Skewness -0.37 -0.31 -0.35 -0.34 -0.36 -0.35 -0.28 -0.29

Average Diversification Ratio 4.61 4.53 4.78 4.78 4.78 2.38 2.44 2.35
Average Max. Weight 0.12 0.11 0.11 0.11 0.11 0.18 0.19 0.19
Average Min. Weight -0.05 -0.05 -0.05 -0.05 -0.05 -0.15 -0.14 -0.10

Average Gross Leverage 1.43 1.48 1.48 1.48 1.48 1.57 1.56 1.55
Proportion of Leverage (%) 7.63 14.89 14.51 13.71 13.26 1.16 1.64 2.75

Average Turnover (%) 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02
Average Excess Return (%) 16.75 18.48 18.64 18.36 17.74 15.38 14.05 13.75
Cumulative Return (%) 35.03 39.58 40.07 39.34 37.72 31.01 27.71 27.17

Sharpe Ratio 1.28 1.44 1.48 1.46 1.41 1.04 0.94 0.95
1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR

(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Standard Deviation (%) 12.68 12.74 12.21 12.35 12.07 12.17 12.19 12.24
Lower Partial Standard Deviation (%) 12.94 12.95 12.40 12.57 12.41 12.43 12.67 12.72

Kurtosis 2.59 2.73 2.96 2.99 3.05 3.04 3.19 3.03
Skewness -0.23 -0.24 -0.24 -0.26 -0.27 -0.25 -0.30 -0.26

Average Diversification Ratio 3.62 3.61 3.87 3.86 3.91 3.91 3.87 3.85
Average Max. Weight 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
Average Min. Weight -0.07 -0.07 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

Average Gross Leverage 1.58 1.58 1.59 1.59 1.59 1.59 1.59 1.59
Proportion of Leverage (%) 8.52 8.71 7.72 7.97 7.68 7.85 7.12 7.34

Average Turnover (%) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Average Excess Return (%) 18.12 17.87 17.94 18.10 17.65 17.97 17.20 17.42
Cumulative Return (%) 38.69 38.02 38.37 38.74 37.65 38.45 36.47 37.00

Sharpe Ratio 1.43 1.40 1.47 1.47 1.46 1.48 1.41 1.42
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Table F.3: Statistics for Daily Average Portfolios - Restricted Mini-
mum Variance (Long Only).
The table reports the results for portfolios constructed according to the optimization problem
as in (6-3) with partial rebalancing. Different models are used to provide the one-step-ahead
forecasts for the realized covariance matrix: RW is the random walk model, and Blocks 1F,
3F, 5F, and 7F are random walks applied to the residual covariance matrix after the four
different factor decompositions.

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL
Standard Deviation (%) 16.66 16.73 16.60 16.49 16.51 17.53 17.73 17.58

Lower Partial Standard Deviation (%) 17.85 17.69 17.45 17.40 17.49 18.56 18.78 18.62
Kurtosis 2.70 2.76 2.79 2.78 2.83 2.78 2.53 2.63
Skewness -0.33 -0.32 -0.32 -0.32 -0.33 -0.32 -0.31 -0.29

Average Diversification Ratio 3.37 3.27 3.30 3.32 3.32 2.72 2.69 2.61
Average Max. Weight 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Average Min. Weight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Gross Leverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Proportion of Leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Turnover (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Average Excess Return (%) 17.41 16.96 17.35 17.36 17.38 17.74 16.90 16.28
Cumulative Return (%) 35.36 34.18 35.23 35.30 35.35 35.81 33.61 32.12

Sharpe Ratio 1.05 1.01 1.05 1.05 1.05 1.01 0.95 0.93
1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR

(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Standard Deviation (%) 16.66 16.73 16.60 16.49 16.51 17.53 17.73 17.58
Lower Partial Standard Deviation (%) 17.85 17.69 17.45 17.40 17.49 18.56 18.78 18.62

Kurtosis 2.70 2.76 2.79 2.78 2.83 2.78 2.53 2.63
Skewness -0.33 -0.32 -0.32 -0.32 -0.33 -0.32 -0.31 -0.29

Average Diversification Ratio 3.37 3.27 3.30 3.32 3.32 2.72 2.69 2.61
Average Max. Weight 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Average Min. Weight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Gross Leverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Proportion of Leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Turnover (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Average Excess Return (%) 17.41 16.96 17.35 17.36 17.38 17.74 16.90 16.28
Cumulative Return (%) 35.36 34.18 35.23 35.30 35.35 35.81 33.61 32.12

Sharpe Ratio 1.05 1.01 1.05 1.05 1.05 1.01 0.95 0.93
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